The DBM Library of UPPAAL and DBM Subtractions

Alexandre David

Gerd Behrmann Kim Larsen Johan Bengtsson John Håkansson Paul Pettersson Wang Yi

. . .

Timed Automata in a Nutshell

User

What is it about?

- Difference Bound Matrix: data structure for representing clock constraints, i.e., zones.
- DBMs represent convex zones.
 Note: canonical form.
- Subtraction may result in non-convex zones, i.e., DBMs must be split.
- Federations: unions of DBMs.

Example of a DBM

$x_0 - x_0 < = 0$	$x_0 - x_1 < = -2$	$x_0 - x_2 < = -1$
$x_1 - x_0 < =6$	$x_1 - x_1 < = 0$	$x_1 - x_2 < = 3$
$x_2 - x_0 < =5$	$x_2 - x_1 < = 1$	$x_2 - x_2 < = 0$

$$X_i - X_j \le C_{ij}$$

Zone (DBM) to subtract

X₁

Where is it needed?

- In UPPAAL: reachability and liveness analysis, deadlock detection.
- Subtraction needed for deadlock detection, implementation of priorities, and urgent transition with clock guards.
- Federations useful to handle split DBMs from subtractions and the extrapolation procedure.

Wait a second...

- Deadlock detection is available in UPPAAL: conversion to CDDs internally.
- Priority is work in progress.
- Urgent transition with clock guards is on the TODO list.
- UPPAAL uses DBMs, so we solve this problem with DBMs.

The DBM Library

- Stand-alone library usable in different languages: C, C++, ML (Emmanuel has promised a wrapper).
- Unit testing, robustness (it is used for formal verification right?).

The DBM Library

- New API based on past experience and new needs:
 - optimizations for the "close" operation
 - new extrapolations
 - federations
- Written in C, C interface to DBMs and federations.
- Federation C++ class.

Features of the Library

- Classical operations with a reduced "close", DBMs always in canonical form.
- Different update functions (x:=y+c).
- Test suite with test API (generation of DBMs, points ...).
- Operations at the federation level.
- Subtractions (federation only).
- Different extrapolations.
- Minimal graph reduction.
- Priced DBMs coming...

General Features

- Well-known constraint encoding
 - (c << 1) | w : c constraint, w weakness of inequality (x-y < c or x-y ≤ c).
 - operations made directly on the encoded format – no decoding most of the time.
- Resizing of DBMs supported.
- Test suite, debugging API.

Minimal Graph – RTSS'97

- Mainly used for saving and restoring DBMs:
 - save and load
 - equality testing (with DBMs)
 - guaranteed to reduce memory footprint features dynamic internal data representation (16/32 bits, bit matrix, list of indices, copy without diagonal)
 - Separated minimal graph analysis (for CDDs, priced DBM, subtraction)
 - Relation operation (inclusion checking).

LFederations

- A federation is an arbitrary union of zones
 - implemented as a list of DBMs
 - alternative representation as CDDs
- Semantically manipulated as a whole.
- Internal memory management (recycle DBMs).

Features of Federations

- Special relation (inclusion checking)
 DBM~fed:
 - subset if DBM included in one DBM of fed
 - superset if DBM includes all DBMs of fed
 - equal if subset and superset
 - different otherwise
 - safe but can miss some inclusions
- Exact relation also available but very expensive.

C++ Federation

- Wraps operations on the C data structure.
- Supports active clocks and resizing.
- Encapsulated memory management.

Subtractions

Supported:

- FED2 = DBM1 FED1
- FED1 = DBM1 DBM2
- FED2 = FED1 DBM1
- FED3 = FED1 FED2
- FED1 = FED1 DBM1
- FED1 = FED1 FED2
- Minimal split.
- Disjoint DBMs.

Subtractions

- Problems with subtractions:
 - Splitting DBMs means to partition the symbolic states.
 - Splitting "propagates": states are used to generate successors, that will generate successors...
 - Issues: inclusion checking, state-space explosion.

What to do?

- Best data structure for most operations in timed model-checkers.
- Compute the "best" subtraction possible
 - No redundancy
 - Fewest number of splits

How to do it?

- Compute the minimal graph (RTSS'97).
- Remove non necessary edges (w.r.t. the subtraction).
- Compute disjoint subtraction.

Subtraction (Z-C): Basics

- Here only in 2D, seems obvious.
- Complexity: cubic.

- Decision algorithm linear in the number of clocks for every facet.
- Remove edges not necessary for the subtraction, i.e., non intersecting facets.
- Complexity: cubic.

Disjoint Result

- Remove redundancy between split DBMs.
- Result = union of disjoint zones.
- Complexity: O(n⁴)

How to Compute the Minimal Graph?

- Identify equivalence classes.
- Remove redundant edges between equivalence classes.
- See paper RTSS'97.
- Correctness: the minimal graph describe the same zone.

- Project the zone on every facet.
- Consider the "closed" form but do not compute it.
- Test for intersection with on-the-fly tightened constraints.

Technically...

Go through edges c_{ii} (minimal graph) and:

2. Compute partial projections with

$$C_{ji}'=-C_{ij}$$
 $C_{ki}'=C_{kj}+C_{ji}'$
 $C_{ik}'=C_{ii}'+C_{ik}$

3. Compare against z_{ij} , z_{ik} , $z_{kj:}$ if $-c_{ji}'>=z_{ij}$ or $-c_{ki}'>=z_{ik}$ or $-c_{jk}'>=z_{kj}$ then remove c_{ii}

Soundness

- The computed subtraction is the same:
 - Removed edges correspond to non intersecting facets and thus have no effect on the result because the zone is convex.
 - Special case: all edges removed if Z included in C and the result is empty. Also correct because there is no subtraction at all.

Completeness

- The subtraction has the fewest number of splits possible:
 - Remaining edges are the necessary ones needed to describe the zone to subtract.
 - Remaining edges intersect the zone to subtract from.

How to Have Disjoint DBMs?

- Keep track of the removed DBMs by computing the remaining of the subtraction.
- Correctness: we only remove redundancy between the resulting DBMs.

- A different order results in a different partition.
- The union is still the same and has no redundancy.

Optimization: 2 Easy Cases

Edge has obviously no effect

Identity

Is It Worth?

- There is a significant computation overhead (twice slower).
- The quality of the result is more important since it will be reused in the model-checker.
- How to evaluate: implemented very expensive operations on federations that use subtraction in a recursive manner.

Experiments

- Benchmark one of the tests in our DBM library:
 - Run one function 1000 times
 - Generate random arguments
 - But not any random: find bad cases
- Run the test with the same random seed (same random set) with different options.
- Note: operation is exponential in the number of DBMs, n⁴ in the number of clocks.

Expensive Reduce: Detect Redundant DBMs

Dim/DBMs	Basic	Disjoint	Reduced	Minimal
7/4	1.5s/29.7M	0.7s/0.7M	1s/11.7M	0.5s/0.5M
7/5	2.9s/63.9M	0.6s/0.5M	1.4s/11.1M	0.6s/0.4M
7/6		0.5s/0.8M	7.9s/173.5M	0.8s/0.4M
7/14		4s/1.9M		3.5s/1.2M
7/30		24.8s/6.3M		18.7s/3.1M
8/20		11s/11.1M		9.2s/5.2M
9/20		15s/27.6M		13.2s/13.9M

Conclusions

DBM Library

- we have to release it (promised)
- support for federations, active clocks ...
- Subtractions
 - Minimal subtraction:
 - Fewest number of splits
 - Smallest result (disjoint DBMs)
 - Important because the result is propagated in the model-checker.
 - Computation overhead is worth.