
The DBM Library of UPPAAL 
and

DBM Subtractions

Alexandre David
Gerd Behrmann

Kim Larsen
Johan Bengtsson
John Håkansson
Paul Pettersson

Wang Yi
...



Timed Automata in a Nutshell

push? push?

push?

push?

Lamp

Userpush!

init

low
high

x:=0

x>5

x<=5



What is it about?

 Difference Bound Matrix: data structure 
for representing clock constraints, i.e., 
zones.

 DBMs represent convex zones.
Note: canonical form.

 Subtraction may result in non-convex 
zones, i.e., DBMs must be split.

 Federations: unions of DBMs.



Example of a DBM

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

Zone (DBM) to subtract
x1

x2



Where is it needed?

 In UPPAAL: reachability and liveness 
analysis, deadlock detection.

 Subtraction needed for deadlock 
detection, implementation of priorities, 
and urgent transition with clock guards.

 Federations useful to handle split DBMs 
from subtractions and the extrapolation 
procedure.



Wait a second…

 Deadlock detection is available in 
UPPAAL: conversion to CDDs 
internally.

 Priority is work in progress.
 Urgent transition with clock guards is on 

the TODO list.
 UPPAAL uses DBMs, so we solve this 

problem with DBMs.



The DBM Library

 Stand-alone library usable in different 
languages: C, C++, ML (Emmanuel has 
promised a wrapper).

 Unit testing, robustness (it is used for 
formal verification right?).



The DBM Library

 New API based on past experience and 
new needs:
 optimizations for the “close” operation
 new extrapolations
 federations

 Written in C, C interface to DBMs and 
federations.

 Federation C++ class.



Features of the Library
 Classical operations with a reduced “close”, 

DBMs always in canonical form.
 Different update functions (x:=y+c).
 Test suite with test API (generation of DBMs, 

points ...).
 Operations at the federation level.
 Subtractions (federation only).
 Different extrapolations.
 Minimal graph reduction.
 Priced DBMs coming...



General Features

 Well-known constraint encoding
 (c << 1) | w : c constraint, w weakness of 

inequality (x-y < c or x-y  c).
 operations made directly on the encoded 

format – no decoding most of the time.
 Resizing of DBMs supported.
 Test suite, debugging API.



Minimal Graph – RTSS'97
 Mainly used for saving and restoring DBMs:

 save and load
 equality testing (with DBMs)
 guaranteed to reduce memory footprint – 

features dynamic internal data representation 
(16/32 bits, bit matrix, list of indices, copy 
without diagonal)

 Separated minimal graph analysis (for CDDs, 
priced DBM, subtraction)

 Relation operation (inclusion checking).



Federations

 A federation is an arbitrary union of 
zones
 implemented as a list of DBMs
 alternative representation as CDDs

 Semantically manipulated as a whole.
 Internal memory management (recycle 

DBMs).



Features of Federations

 Special relation (inclusion checking) 
DBM~fed:
 subset if DBM included in one DBM of fed
 superset if DBM includes all DBMs of fed
 equal if subset and superset
 different otherwise
 safe but can miss some inclusions

 Exact relation also available but very 
expensive.



C++ Federation

 Wraps operations on the C data 
structure.

 Supports active clocks and resizing.
 Encapsulated memory management.



Subtractions

 Supported:
 FED2 = DBM1 – FED1
 FED1 = DBM1 – DBM2
 FED2 = FED1 – DBM1
 FED3 = FED1 – FED2
 FED1 = FED1 – DBM1
 FED1 = FED1 – FED2

 Minimal split.
 Disjoint DBMs.



Subtractions

 Problems with subtractions:
 Splitting DBMs means to partition the 

symbolic states.
 Splitting “propagates”: states are used to 

generate successors, that will generate 
successors…

 Issues: inclusion checking, state-space 
explosion.



What to do?

 Best data structure for most operations 
in timed model-checkers.

 Compute the “best” subtraction possible
 No redundancy
 Fewest number of splits



How to do it?

 Compute the minimal graph (RTSS’97).
 Remove non necessary edges (w.r.t. 

the subtraction).
 Compute disjoint subtraction.



Subtraction (Z-C): Basics

Complexity: O(n4)

Z

C



Compute Minimal Graph

 Here only in 2D, 
seems obvious.

 Complexity: cubic.



Remove Edges

 Decision algorithm 
linear in the number 
of clocks for every 
facet.

 Remove edges not 
necessary for the 
subtraction, i.e., non 
intersecting facets.

 Complexity: cubic.



Disjoint Result

 Remove 
redundancy 
between split 
DBMs.

 Result = union of 
disjoint zones.

 Complexity: O(n4)

1 2



How to Compute the Minimal 
Graph?

 Identify equivalence 
classes.

 Remove redundant 
edges between 
equivalence classes.

 See paper RTSS’97.
 Correctness: the 

minimal graph 
describe the same 
zone.

7

2

0
6

4

5

3

1



How to Remove Edges?

 Project the zone on 
every facet.

 Consider the 
“closed” form but do 
not compute it.

 Test for intersection 
with on-the-fly 
tightened 
constraints.



Technically…

Go through edges cij (minimal graph) and:

2. Compute partial projections with
cji’=-cij

cki’=ckj+cji’
cjk’=cji’+cik

3. Compare against zij, zik, zkj:

if –cji'>=zij or –cki'>=zik or –cjk'>=zkj then 
remove cij.



Soundness

 The computed subtraction is the same:
 Removed edges correspond to non 

intersecting facets and thus have no effect 
on the result because the zone is convex.

 Special case: all edges removed if Z 
included in C and the result is empty. Also 
correct because there is no subtraction at 
all.



Completeness

 The subtraction has the fewest number 
of splits possible:
 Remaining edges are the necessary ones 

needed to describe the zone to subtract.
 Remaining edges intersect the zone to 

subtract from.



How to Have Disjoint DBMs?

 Keep track of the 
removed DBMs by 
computing the 
remaining of the 
subtraction.

 Correctness: we 
only remove 
redundancy 
between the 
resulting DBMs.

1 2



Remark: Order Matters

 A different order 
results in a 
different partition.

 The union is still 
the same and has 
no redundancy.

1

2



Optimization: 2 Easy Cases

Edge has obviously no effect Identity



Is It Worth?

 There is a significant computation 
overhead (twice slower).

 The quality of the result is more 
important since it will be reused in the 
model-checker.

 How to evaluate: implemented very 
expensive operations on federations 
that use subtraction in a recursive 
manner.



Experiments

 Benchmark one of the tests in our DBM 
library:
 Run one function 1000 times
 Generate random arguments

 But not any random: find bad cases

 Run the test with the same random seed 
(same random set) with different options.

 Note: operation is exponential in the number 
of DBMs, n4 in the number of clocks.



Expensive Reduce: Detect 
Redundant DBMs

13.2s/13.9M15s/27.6M9/20

9.2s/5.2M11s/11.1M8/20

18.7s/3.1M24.8s/6.3M7/30

3.5s/1.2M4s/1.9M7/14

0.8s/0.4M7.9s/173.5M0.5s/0.8M7/6

0.6s/0.4M1.4s/11.1M0.6s/0.5M2.9s/63.9M7/5

0.5s/0.5M1s/11.7M0.7s/0.7M1.5s/29.7M7/4

MinimalReducedDisjointBasicDim/DBMs



Conclusions
 DBM Library

 we have to release it (promised)
 support for federations, active clocks ...

 Subtractions
 Minimal subtraction:

 Fewest number of splits
 Smallest result (disjoint DBMs)

 Important because the result is propagated
in the model-checker.

 Computation overhead is worth.


