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Abstract

In this paper we investigate how a preorder on actions induces a preorder on
processes in a model of concurrent systems based on labelled transition systems�
We use an extension of bisimulation �Par ��� Mil ��� to induce a preorder on

processes from the preorder on actions�
The language for de	ning processes is taken to be an extract of current

variants of CCS �Mil �
��
Sound and complete proof systems for the induced preorders on processes

are given for three sublanguages� one for 	nite nondeterministic processes� one
for general 	nite terms and one for regular expressions�
A preorder on processes expressing concreteness relationship between partial

speci	cations are induced by a particular preorder on actions� This is investi�
gated and used to verify the concurrent alternating bit protocol �Koy �
��
The concept of abstract interpretation �Cou ���� wellknown from traditional

data �ow analysis� is introduced to the framework of CCS� and it is shown how to
use this concept together with an extension of the notion of bisimulation� Finally
methods for determining properties of processes by abstract interpretation are
presented�
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Introduction

For many years investigations on modular or hierarchical approaches to devel�
opment� implementation and veri	cation of concurrent systems have been going
on�
One branch of concurrent system development is protocol implementation

and veri	cation�
A protocol is a behaviour implementing data transmission from a sender a

to a receiver b via a channel or a medium k� The channel is assumed to be
faulty in various numbers of ways�
One family of protocols is the alternating bit protocols� The protocols consist

of a number of communicating 	nite state machines� including a sender and a
receiver process� The sender process receives data from a user� adds a sequence
number and sends it to the receiver process� which answers by sending back
an acknowledgement� The receiver process receives the message� peels o� the
sequence number and outputs the message to a user� The sequence number of
new messages takes the values 
 and � alternately� The purpose of the sequence
number is to detect loss of messages or acknowledgements� To recover from loss
of messages or acknowledgements the sender process retransmits the message�
There are at least two possible ways of holding information about the sequence
number� the one being a variable� demanding for a value parsing mechanism� the
other being a change of state in the sender and receiver processes� We choose
the last since we do not consider value parsing in this thesis� Also the message
sent is abstracted to a signal of sending since the actual message is inessential�
We now turn our attention to a speci	c member of the family of alternating

bit protocols called the concurrent alternating bit protocol� This protocol was
investigated by C� P� J� Koymans and J� C� Mulder in �Koy �
��
The concurrent alternating bit protocol �CABP� has the architecture dis�

played in 	gure ���
a takes in a message and sends it via k to b� b outputs the message and

sends an acknowledgement to c which transmits it to d via l� d communicates
the acknowledgement to a� The channels k and l are assumed to be faulty in the
sense that a message may be corrupted i�e� changed into an error message or
it may be lost� Together a� k and b implement a sender�receiver process called
p� and c� l and d a control process called q� In �Koy �
� it is veri	ed that the
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Figure 
��� Architecture of the CABP�

process p enjoyes the property�
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and q the property�
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Consider the processes p and q� Together they implement CABP which is
veri	ed in �Koy �
� using process algebra� But when p and q are knit together
over �
� of p and q cannot be reached i�e� in the context of q certain parts of p
cannot be reached and also certain parts of q cannot be reached in the context
of p�
It would be nice if we could specify p and q as p� and q��
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Here 	 
	 
	 
� �� �� ��	 �
may be thought of as an area where any behaviour may be en�
countered� When we knit p� and q� together we are prohibited from entering

the 	 
	 
	 
� �� �� ��	 �
 � and the behaviour is like that of p and q knit together�
We want to formalize the idea of using 	 
	 
	 
� �� �� ��	 �
 in what may be called partial

speci	cation of processes� In �Koy �
� a method called modularization was de�
veloped in the framework of process algebra �Gla �
�� but the concept of modules
seems ad hoc and seems only to be adequate to treat the example�

Perhaps the idea of using 	 
	 
	 
� �� �� ��	 �
 could be 	t into the use of environment
information presented in �Lar ��b� Here we are much more informal about what
environment the process is to be in as long as it prohibits the process from

entering the 	 
	 
	 
� �� �� ��	 �
 � This approach is much more like a creative programming
process� we guess where to put in 	 
	 
	 
� �� �� ��	 �
 � then knit the system together and try

if any 	 
	 
	 
� �� �� ��	 �
may be reached� In that case the system is not fully speci	ed and
we have to concretize the speci	cation�

To take the place of 	 
	 
	 
� �� �� ��	 �
 we want a process able to do an action which may
represent any action� Call the action � and de	ne U as the process�

U � r�

�
��
�

� i�e� U can do � and then become it self again�

In a way � may be thought of as being a stronger �more informative� action
than any other action� This yields a preorder on actions� The idea of using

�



a preorder on actions seems more general than just to 	t the above example�
Another example where a preorder may be used is when actions are sets of
�actions� with subset inclusion as ordering�
The purpose of this thesis is to formalize the idea of preorders on actions and

extend it to processes� We shall develop a framework characterizing the preorder
on processes induced by the preorder on actions and we shall show how this may
be used in hierarchical development of concurrent systems� One example being
the above system called CABP� Also we shall show how to introduce data �ow
analysis methods into hierarchical development of concurrent systems using the
method of abstract interpretation�

Overview

Chapter � contains the description of our model of concurrent systems� The
formalization of processes simulating and bisimulating each other is presented�
and their extension to process systems with ordering upon actions is de	ned�
The most re	ned preorder being able to take deadlock properties into account�

Chapter � contains the syntax and semantics of a language for de	ning process�
The language being an extract of current variants of CCS �Mil �
��

In chapter � three sound and complete proof systems for the preorder introduced
in chapter � are presented� The one system being for 	nite nondeterministic
terms� the second the extension to general 	nite terms� and the third being for
regular expressions�

In chapter � we show how the ordering introduced in the introduction may be
used to formalize and solve the problem of partial speci	cation and how it may
be used to verify the concurrent alternating bit protocol �CABP��

Chapter 
 contains a larger and more theoretical use of the framework� Here the
framework of abstract interpretation �Cou ���� known from data �ow analysis of
sequential and functional programming� is introduced such that approximations
of concurrent processes may be used to make statements about processes� An
example of the use of this is stable analysis� answering when processes are stable�
This may be used to infer� that if p and q are observational equivalent and both
stable� then p and q are congruent �Mil �
�� Also the proof system of chapter �
may be used together with the framework presented in chapter 
�

Chapter � is the conclusion� We make a review of goals achieved and future
work to be done�
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Chapter �

A model of concurrency

and implementation orders

In recent years strong e�orts have gone into giving semantic models for concur�
rent systems� Especially the desire for applying the methods of denotational
semantics� known and well established for sequential programs� has been tried
but without or with little success� The desire for a denotational model is partly
based on its ability of decompositionality� but a major defect with this model
seems to be that it only takes the input�output behaviour of programs into
account� without taking notice of the intermediate states the program may pass
through� Although this problem has been dealt with �see e�g� �Smy ����� the
solution does not seem appropriate�
Instead the method of operational semantics� with a notion of concurrent

systems being processes or machines able to perform actions or o�ering experi�
ments� together with labelled transition systems has shown successful in giving
models for concurrent systems�
The work presented in this thesis follows up the line of de	ning processes�

concurrent or nondeterministic� by the set of experiments they o�er to an ob�
server� We use the model of labelled transition systems� which is a simple model
of nondeterminism based upon the primitive notion of state and transition� The
simple notion of labelled transition systems has proven a very good model for
operational semantics of programming languages �Plo ����

De�nition ��� �De	nition ��� in �Plo ����
A labelled transition system is a structure �St�Act����� where St is a set of
states �or con�gurations�� Act is a set of actions �or labels or operations� and
��� St � Act� St is the transition relation�

For �s� a� t� ��� we shall write s
a
�� t which may be interpreted as in state

s the system may perform an a action and in doing so evolve to a state t� We

�



use the usual abbreviations as e�g� s
a
�� for �t � St�s

a
�� t and s

a

	� for

�t � St�s

a
�� t�

Also we shall identify the state of a process by the process� yielding a transi�
tion system P � �Pr�Act���� modelling the operational semantics of a system
of processes� Now if p and q are two processes of P � we say that p is simulated
by q or q simulates p if every derivation of p can be simulated by a derivation
of q in such a way that the simulation properties are maintained�

De�nition ��� A simulation R is a binary relation on Pr such that whenever
pRq and a � Act then�

�� p
a
�� p� � �q��q

a
�� q� � p�Rq�

A process q is said to simulate a process p if and only if there is a simulation
R such that pRq and then we write p � q�
Now for R � Pr� we can de	ne S�R� as�

De�nition ��� �p� q� � S�R� i��

�� 
a � Act�p
a
�� p� � �q��q

a
�� q� � p�Rq�

S is easy seen to be a monotone endofunction on the complete lattice of
binary relations �over Pr� under subset inclusion� Standard 	xed point results�
due to Tarski �Tar 

�� yield that a maximal 	xed point for S exists and is
de	ned as

S
fR j R � S�R�g� This maximal 	xed point equals ��

Proposition ��� � is a preorder on Pr�

Proof� IdPr � f�p� p� j p � Prg is a simulation� and composition of simu�
lations yields a simulation� �

Composition of relations R�S � Pr� is taken to be

R � S � f�p�� p�� j �p���p�� p�� � R � �p�� p�� � Sg�

Note how this is opposite of function composition� The above yields the elegant
proof technique named Park�s Induction Principle by L� Cardelli �Car ����

De�nition ��	 p � q i� �R � Pr���p� q� � R � R � S�R�

So when we have to prove p � q it is su�cient and necessary to 	nd a
simulation containing �p� q�� Throughout this thesis we shall write� �To see
that R � function�R� � � ��� where function is e�g� S� By this we actually
mean� �To see that �p� q� � function�R� whenever �p� q� � R � � ���
An equivalence relation on Pr may be obtained by p � q i� p � q and q � p�

However� this equivalence does not preserve deadlock properties as may be seen
from the following example�

�




Example ��� �Example ������ �Lar ��a� �
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Then R� � f�qi� pi� j i � �� �� �g and R� � f�pi� qi� j i � �� �� �g� f�p�� q��g
are both simulations� But p can perform an a�action and reach a state where no
b�action is possible whereas q cannot� To obtain an equivalence that preserves
deadlock properties the notion of bisimulation is introduced� Bisimulation is
originally due to D� Park �Par ��� and was investigated by R� Milner �Mil ����

De�nition ��� A binary relation R on Pr is a bisimulation i� whenever pRq
and a � Act then�

�� p
a
�� p� � �q��q

a
�� q� � p�Rq�

�� q
a
�� q� � �p��p

a
�� p� � q�Rp�

Two processes p and q are said to be simulating each other if there exists a
bisimulation containing �p� q�� and then we write p � q�
Now for R � Pr� de	ne B�R� as�

De�nition ��
 �p� q� � B�R� i��

�� 
a � A�p
a
�� p� � �q��q

a
�� q� � p�Rq�

�� 
a � A�q
a
�� q� � �p��p

a
�� p� � q�Rp�

Also B is easy seen to be a monotone endofunction on the complete lattice of
binary relations �over Pr� under subset inclusion� Thus there exists a maximal
	xed point� This 	xed point equals �� We refer to �Lar ��a� for a proof of
when � coincides with strong equivalence de	ned in �Mil �
�� But the following
proposition is easy established�

Proposition ��� � is an equivalence on Pr

Proof� IdPr is a bisimulation� and composition of bisimulations are easy
seen to be bisimulations� and if R is a bisimulation then

RT � f�p� q� j �q� p� � Rg

��



is a bisimulation� �

If the set of actions Act is equiped with a preorder vA� this preorder may
have the intuition that a vA b holds whenever what a can do for an observer b
can do at least as well�
One may think of this as for example the light switches in a car� If a is the

parking light and b is the normal light then switching on the normal light also
turns on the parking light� so the normal light can do as well as the parking
light� Of course the normal light is more informative than the parking light�
The preorder on actions may be extended to processes by an extension of

the notion of simulation and bisimulation discussed above� Remember that a
process q simulated a process p if all the derivations of p could be simulated
by derivations of q� The extended simulation has the intuition that all the
derivations of p can be simulated by derivations of q which can do at least as
well for an observer e�g�

De�nition ��� p �E q i� p
a
�� p� � �q���b��q

b
�� q� � a vA b � p�Rq�

De�nition ��� An extended simulation R is a binary relation on Pr such that
whenever pRq and a � Act then�

�� p
a
�� p� � �q���b��q

b
�� q� � a vA b � p�Rq�

A process q is said to simulate� in the extended sense� a process p if and only
if there exists a simulation R with pRq and in this case we write p �E q�
Now for R � Pr� we can de	ne ES�R� as�

De�nition ��� �p� q� � ES�R� i��

�� p
a
�� p� � �q���b��q

b
�� q� � a vA b � p�Rq�

Proposition ��� R is an extended simulation i� R � ES�R�

As for simulation and bisimulation the fact that ES is monotone upon the com�
plete lattice of binary relations �over Pr� under inclusion is easy veri	ed� Thus
there exists a maximal 	xed point given by �fR j R � ES�R�g using standard
	xed point results� originally due to Tarski �Tar 

�� This maximal 	xed point
equals �E � As with the notion of simulation q may extended simulate p without
having the same deadlock properties� Also extended bisimulation enjoys the
property of being a preorder�

Proposition ��	 �E is a preorder on Pr�

Proof� As for simulation� �

��



To obtain a preorder which preserves deadlock properties we may� as with
simulation� extend the notion of extended simulation to extended bisimulation�
The intuition in the notion of extended bisimulation is that a process p is ex�
tended bisimulated by a process q if all the 	rst actions of p can be matched
by actions of q which for an observer can do at least as well� Also whenever q
can do an action a� p has to match a in an approximative way by an action b
such that b vA a� Also the processes have to have the same potentiality after
performing the actions� This may be stated as�

De�nition ���� A binary relation R on Pr is an extended bisimulation when	
ever pRq and a � Act then�

�� p
a
�� p� � �q���b��q

b
�� q� � a vA b � p�Rq�

�� q
a
�� q� � �p���b��p

b
�� p� � b vA a � p�Rq�

If there exists a relation R such that R is an extended bisimulation and pRq
holds we write p v q� Now for R � Pr� we can de	ne EB�R� as�

De�nition ���� �p� q� � EB�R� i��

�� 
a � Act�p
a
�� p� � �q���b��q

b
�� q� � a vA b � p�Rq�

�� 
a � Act�q
a
�� q� � �p���b��p

b
�� p� � b vA a � p�Rq�

Proposition ��� R is an extended bisimulation i� R � EB�R�

EB may be shown to be a monotone endofunction upon the complete lattice
of binary relations over Pr� And by classic lattice theory EB has a maximal
	xed point which equals v� Also v is a preorder�

Proposition ��
 v is a preorder on Pr�

Proof� As for simulation� �

One may wonder why extended bisimulation only yields a preorder when
bisimulation yields an equivalence� This is due to the use of vA in the predicate�
a simple example shows why we cannot hope for an equivalence�

Example ��� if a vA b then

� � � �r r
r r

r r
r r

a v but bb 	v a

��



This is analogous to the development in �Hen ��� where divergence is taken
into account� A process is said to diverge if it can perform an endless sequence
of internal�unobservable actions� In �Hen ��� bisimulation is extended such that
p v q i� whatever action p can do q can match and if p and q do not diverge�
then if q performs an action p has to match it�
The idea of v may be further re	ned� We think of a vA b as a relation

specifying whether b for an observer can do as well as a� In a way this states
that b contains more information than a� In p v q we insisted on p matching
every move of q perhaps by a less informative action� but this constraint can
be too strong� If b is an action that in a way is too informative� like � in
denotational semantics �Sto ���� we may loosen the second condition on v by
cutting out such actions� This may be done by excluding b from the set of
actions p has to match by giving only the set M of actions which has to be
matched� And we arrive at the de	nition of M �bisimulation�

De�nition ���� A set M is downwardsclosed i� 
a �M � b vA a� b �M �

De�nition ���� Let M be a downwardsclosed set� An M	bisimulation R is a
binary relation on Pr such that whenever pRq�

�� p
a
�� p� � �q���b��q

b
�� q� � a vA b � p�Rq�

�� 
a �M�q
a
�� q� � �p���b��p

b
�� p� � b vA a � p�Rq�

Two processes p and q are said to be inM �bisimulation if there exists anM �
bisimulation containing �p� q� and we write p vM q� The need forM being down�
wardsclosed has proven essential for the theoretical development to work� Note
that we may always downwardsclose a set B by CL�B� � fa j �b � B�a vA bg�
M may be seen as an environment where we can cut out uninteresting actions�
for example when they are useless because they contain too much �possible
inconsistent� information� Now for R � Pr� we can de	ne MB�R� as�

De�nition ���	 �p� q� �MB�R� i��

�� 
a � Act�p
a
�� p� � �q���b��q

b
�� q� � a vA b � p�Rq�

�� 
a �M�q
a
�� q� � �p���b��p

b
�� p� � b vA a � p�Rq�

Proposition ��� R is an M	bisimulation i� R �MB�R�

The fact that MB�R� is a monotone endofunction on the complete lattice
of binary relations on Pr under inclusion is easy established� Thus MB has
a maximal 	xed point given by�

S
fR j R � MB�R�g� Also this 	xed point

coincides with vM �
vM actually extends vA to processes�

��



Proposition ��� vM is a preorder on Pr

Proof� vM is re�exive since Id � f�p� p� j p � Prg is easy seen to be an
M �bisimulation� vM is transitive since if p vM q and q vM r then there exist
M �bisimulations R and Q such that �p� q� � R and R �MB�R� and �q� r� � Q
and Q � MB�Q�� If M is downwardsclosed we may infer that the composition
R � Q is an M�bisimulation containing �p� r�� To see that R � Q � MB�R � Q�

observe that if �p� r� � R �Q then if p
a
�� p� then there exist q� q� and b such

that q
b
�� q� with a vA b and �p�� q�� � R� Also if q

b
�� q� there exist r� and

c such that r
c
�� r� with b vA c and �q�� r�� � Q i�e� �p�� r�� � R � Q� Also if

r
a
�� r�� a � M � then there exist q� q� and b such that b vA a and �r�� q�� � Q�
since M is downwardsclosed b � M and there exist p� and c such that c vA b
and p

c
�� p� with �p�� q�� � R i�e� �p�� r�� � R �Q� �

A very convenient concept in proofs of M �bisimulation is the notion of a
relation being anM �bisimulationupto �vM �� A similar de	nition of bisimulation
upto ��� is given in �Mil ����

De�nition ���� R is an M	bisimulation upto 
 vM 
 i� vM �R� vM is an
M 	bisimulation�

Proposition ��� R is an M	bisimulation upto 
vM 
 i�

R �MB�vM �R� vM �

Proof� if R is an M�bisimulation upto �vM � then

vM �R� vM �MB�vM �R� vM �

Clearly R �vM �R� vM � since Id �vM and R � Id �R � Id�
Also if

R �MB�vM �R� vM �

then
vM �R� vM � vM �MB�vM �R� vM �� vM

but
vM �MB�vM �

so
vM �R� vM �MB�vM � �MB�vM �R� vM � �MB�vM �

but MB is monotone so

vM �R� vM �MB�vM � vM �R� vM � vM � �MB�vM �R� vM �

since vM is transitive� �

�




The conveniency of this concept may be seen in proofs where we can con�
struct a relation R� which almost is anM �bisimulation except for certain closure
properties� The concept of M �bisimulation upto �vM � provides these closure
properties and ensures the existence of an M �bisimulation� We may now see
the notion of simulation� bisimulation� extended simulation� extended bisimula�
tion and M �bisimulation as an evolution�

By putting structure upon Act

By restricting the �interesting� actions

Simulation

Bisimulation

Ext� Simulation

Ext� Bisimulation

M�Bisimulation

�Act�vA �� M�Act

�Act�vA �

Act

taking M�Act

taking M��

putting vA � �

Figure ����

Note how M �bisimulation does not need a de	nition of M �simulation since
we just take M � �� This shows M �bisimulation as the most abstract of the
notions considered and we therefore investigate its properties by giving sound
and complete proof systems for it over a language for de	ning processes or
machines� The language for de	ning machines is simply the word algebra T�
over the signature � of operators for machines� This yields a way of de	ning
machines by their constituents�
A very interesting connection between two preorders upon the same universe

is expressed by�

Proposition ���� Let vA and �A be preorders over the same set of actions
A� Let M�N � A� then�

N � M � vA��A � p vM q � p �N q

Proof� The relation R � f�p� q� j p vM qg is an N�bisimulation with re�

spect to �A� To see that R � NB�R� observe that if p
a
�� p� then there exist

q� and b such that q
b
�� q� and a vA b and p� vM q but since vA��A then

��



�p�� q�� � R� Also if q
a
�� q�� a � N � then there exist p� and b such that p

b
�� p�

and b vA a� since a �M � and p� vM q� but since vA��A then �p�� q�� � R� �

By this proposition it is possible to relate two di�erent orderings on actions
to orderings on processes�

��



Chapter �

The language for de�ning

processes

The language for de	ning processes is taken to be the free ��algebra T� over a
signature �� including the set of actions Act� a set of variables
X � fx� xi� ��� y� z� ��g and operators for nondeterminism� communication and
recursion�
The model is extensional in the sense that concurrency is unobservational

and therefore� as will be seen later� communicationmay be exchanged by action�
pre	xing and nondeterminism�
Let � � Act � fnil� � �� � ���f �� jg� �x�g � X� Thus � is a set of operators�

nil and every x � X being constants� every a � Act a unary operator for action
pre	xing� �x� a unary operator for recursive binding of x�  a binary operator
for nondeterminism� jg a binary operator for communication with the possibility
of interleaving� one for every binary monotone partial function g � Act� �� Act
and �� � ���f �� an n�ary operator for every n�ary monotone partial function
f � Actn �� Act�
By a monotone partial function we mean a function such that

a vA b � f�a� defined � f�b� defined � f�a� vA f�b��

Terms p in T� are generated by the following abstract grammar�

p ��� nil a�p� p�  p� �p� � � � pn��f � p� jg p� x �x�p

As it may be seen from the above de	nition� � resembles an extract or extension
of current variants over CCS �Mil �
��
In the notation �� � ���f � we follow the idea of P� Aczel �Acz ����
As an example f may be instantiated to an identity function on a subset B

of Act� obtaining the restriction operator dB� known from SCCS �Mil ���� Also

��



f may be instantiated to a monotone endofunction ! � Act � Act yielding a
renaming function�

De�nition ��� The operational semantics of the language is taken to be the
smallest family of relations f

a
��� T �

� j a � Actg satisfying�

ACT�� a�p
a
�� p

SUM�� if p�
a
�� p�

or p�
a
�� p�

then p�  p�
a
�� p�

FUN�� if 
i�pi
ai�� p�i � c � f�a� � � � an�

then �p� � � � pn��f �
c
�� �p�� � � � p

�
n��f �

COM�� if �p�
c
�� p�� � p �� p�� jg p��

or �p�
c
�� p�� � p� � p� jg p���

or �p�
a
�� p�� � p�

b
�� p�� � p� � p�� jg p

�
� � c � g�a� b��

then p� jg p�
c
�� p�

REC�� if p��x�p�x�
a
�� p�

then �x�p
a
�� p�

Here c � f�a� � � �an� and c � g�a� b� means true if f�a� � � �an��g�a� b�� is
de�ned and c is instantiated to the value of f�a� � � �an��g�a� b��� false otherwise�

In the above de	nition p�q�x� means simultaneous substitution of q on every
occurrence of x in p taking account of change of bound variables� A formal
de	nition of substitution will be given in chapter � �de	nition �����Also p��x�p�x�
in REC� may be refered to as unfolding the recursive process �x�p once�
In the notion jg we generalize the communication operator j form CCS� By

instantiating g to a function such that g�a� a� � � and g�a� b� � undefined if
a 	� b we obtain j�
The inclusion of jg with the operational semantics COM� shows that we

have chosen to model concurrency asynchronously� Processes may communicate
if they perform actions a and b and g�a� b� is de	ned� otherwise they only can
proceed interleaved�
If Act has an ablean group structure with composition function f � Act� ��

Act� we could model the synchronous communication operator � known from
SCCS �Mil ����with the notion �� � ���f ��
As was shown in �Mil ��� it is possible to derive j from � if we add an unob�

servable action ��� to the set of actions and extend the notion ofM �bisimulation
to take this into account� obtaining a notion of �weak��M �bisimulation� It is a
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	eld for further study if and how such a theory may be developed but we do
not investigate it further in this thesis�
If we only want to model synchronism we may exclude jg from the language

and COM� from the semantics�
By the introduction of g in jg we have the ability of obtaining much more

interesting communication operators by taking Act to a set with much more
structure� An example would be Act � BAct  Act � Act where BAct is
a set of basic actions as e�g� fa� b� c� � � �� a� b� c� � � �g� We then instantiate jg
with g � " � In� � �� � where �� � is tupling and " is the isomorphism folding
into a recursive de	ned domain� This communication operator gives a kind of
composite action� composed of basic actions involved in communication during
evaluation of the program� Of cause we may use the above g in �� � ���f � in the
synchronous case�

��� A general scheme for transformations

Often we want to de	ne a transformation F from the language for de	ning
processes to some domain D of interest� for example de	ning the free variables
in processes by a transformation F � T� � P�X��
We want the function to be de	ned structurally i�e� the result of taking F

upon a compound construct depends on it constituents�
This is done by giving functions for every operator of �� So we have to de	ne

functions and constants�

De�nition ���

g	 � D �D � D

gnil � D

g�x� � D � D

gjg � D� � D

g�����
f� � Dn � D

gx � D one for each x � X

ga � D one for each a � Act

Then we can de�ne F � T� � P�X� structurally by�

F�nil� � gnil

F�p�  p�� � g	�F�p���F�p���

F��x�p� � g�x��F�p��

F�p� jg p�� � g jg�F�p���F�p���

�




F��p� � � � pn��f �� � g�����
f��F�p�� � � �F�pn��

F�x� � gx

F�a�p� � ga�F�p��

Note how this scheme resembles denotational de	nitions�

��



Chapter �

Complete proof systems

In this chapter we present sound and complete proof systems for three sublan�
guages �nf ��f and �r of ��
We cannot hope for sound and complete proof systems for the whole � since

p� jg p� and �p� � � � pn��f � allow communication to be introduced into recursive
de	ned terms and by this a coding of a Turing machine may be possible �see e�g�
�Mil ����� Therefore we restrict our attention to three proof systems of interest�
The 	rst is for closed 	nite terms with only action�pre	xing and nonde�

terminism� the second for closed 	nite terms without recursion and the third
for regular expressions� The second is only a conservative �to be explained
later� extension of the 	rst� In general these are of interest since the second
and third system may be used to express a lot of interesting concurrent sys�
tems within� systems either involving only closed 	nite expressions or systems
involving only regular expressions or systems with recursion without using com�
munication within recursion� Examples are protocols in data transmission�

��� Finite terms

In this part we present sound and complete proof systems for 	nite terms� We do
this in three steps� 	rst we present a proof system for nondeterminism� secondly
we extend this by the operator jg for communication and thirdly we introduce
the function scheme �� � ���f ��

Pre�x and nondeterminism

First let us de	ne the transition system of nondeterministic 	nite terms NFT �
�Pnf � Act���� where Pnf is given by the following abstract syntax�

p ��� nil a�p� p�  p�

��



Thus �nf � � n �f�� � ���f �� jg� �x�g �X��
The operational semantics is the smallest family of relations satisfying
ACT� and SUM� of de	nition ���

Proposition ��� vM is a precongruence with respect to the operators of �nf

Proof� By proposition ��� vM is a preorder�
To show that vM is preserved by pre	xing and nondeterminism we establish
two M �bisimulations�

R� � f�a�p�� b�p�� j a vA b � p� vM p�g� vM

R� � f�p�  p�� q� q�� j p� vM q� � p� vM q�g� vM

R� is more general than needed for showing preservation of vM by pre	xing�
but we obtain this by choosing b � a�
The full proof is presented in appendix A� �

Proposition ��� The following holds for all p�� p�� p� � T�nf �

p�  �p�  p�� �M �p�  p��  p�

p�  p� �M p�  p�

p�  p� �M p�

p�  nil �M p�

Here �M means that both vM and wM hold�

Proof� The proof is similar to previous axiomations of bisimulation see
e�g� �Hen �
��
The proof consists of establishing � M �bisimulations�
The relations

R� � f�p�  �p�  p��� �p�  p��  p�� j p�� p�� p� � Prg � Id

R� � f�p�  p�� p�  p�� j p�� p� � Prg � Id

R� � f�p�  p�� p�� j p� � Prg � Id

R� � f�p�  nil� p�� j p� � Prg � Id

are M �bisimulations�
Also all R��

i � i � f� � � ��g� are M �bisimulations�

The full proof is presented in appendix A� �

We now present the proof system Snf of the precongruence vM over Pnf �
We write � p� vM p� if p� vM p� is provable by the rules of table ����

��



SUM S� p�  �p�  p�� �M �p�  p��  p�
S� p�  p� �M p�  p�
S� p�  p� �M p�
S� p�  nil �M p�

PREORD P� p vM p

P�
p� vM p� p� vM p�

p� vM p�

P�
p� vM p� p� vM p�

p� �M p�

P�
p� �M p�

p� vM p� p� vM p�

PRECONG C�
p� vM p�

a�p� vM b�p�
� a vA b

C�
p� vM p� p� vM p�
p�  p� vM p�  p�

ANNIHIL
b 	�M

nil vM b�p

CONS
p� vM p�
p� vN p�

� N �M

Table ���� Proof system for nondeterminism�

Proposition ��� vM satis�es the axiom ANNIHIL of table ���

Proof� The relation R � f�nil� b�p� j b 	�Mg is an M �bisimulation�

To see that R � MB�R� observe that nil
a

	� for any a� Also b�p
a

	� for any
a �M � i�e� both conditions of vM hold trivially� �

Theorem ��� The proof system Snf of table ��� is sound

Proof� By proposition ��� vM satis	es S��S�� By proposition ��� vM is
a preorder� By proposition ��� vM is a precongruence and by proposition ���
ANNIHIL is satis	ed� Also proposition ���
 with �A�vA ensures that vM

satis	es CONS� �

We now turn to prove the completeness of the proof system Snf � In this
proof we introduce a normalform similar to that of �Hen �
�� A term is said to

��



be in normalform if it can be written as�

p �
nX
i��

ai�pi where pi is in normalform

We use
Pn

i�� ai�pi to describe the sum a��p�  � � � an�pn� n � 
 and nil if
n � 
� knowing the notion is unambiguous because of S��S� of table ����

Proposition ��	 Every term p in �nf has a normalform nf�p�
such that � p �M nf�p�

Proof� By structural induction �see appendix A�� �

Proposition ��� If p and q are in normal form then�

p vM q� � p vM q

Proof� By induction on the size of p and q using that p
a
�� p� i� a�p� is a

subterm of p� Also in the case a 	�M we use ANNIHIL�
For the full proof see appendix A� �

Theorem ��� If p vM q then � p vM q

Proof� Assume p vM q� By proposition ��� there exist nf�p� and nf�q�
such that�

� p �M nf�p� and � q �M nf�q� �����

By theorem ��� �soundness� we have

p vM nf�p� and nf�p� vM p and q vM nf�q� and nf�q� vM q �����

Since vM is a preorder� p vM q together with ��� yields�

nf�p� vM nf�q�

By proposition ��
 we get

� nf�p� vM nf�q�

By ����� and P� of table ��� we get

� p vM nf�p� and � nf�q� vM q

giving
� p vM q

�

This shows that the proof system Snf is sound and complete� In fact the
proof system of table ��� induces the least �nf �precongruence satisfying the
axioms S��S��

�




Communication

We now extend the language �nf with the operator jg for communication�
Let CFT � �Pcf � Act���� be the transition system of 	nite terms with

communication� where Pcf is given by the following abstract syntax�

p ��� nil a�p� p�  p� p� jg p�

Thus �cf � � n �f�� � ���f �� �x�g �X� � �nf � fjgg�
The operational semantics is the smallest family of relations satisfying

ACT�� SUM� and COM� of de	nition ����

Proposition ��
 vM is a precongruence with respect to the operators of �cf �
provided g in jg is monotone�

Proof� As in proposition ��� with the extension that the relation

R � f�p� jg p�� q� jg q�� j pi vM�CL�g���M��i� qi� i � f�� �gg

is an M �bisimulation�
�The proof of this is presented in appendix A�� �

Remember that CL�B� � fa j �b � B�a vA bg�

Proposition ��� if p �
Pn

i�� ai�pi and q �
Pm

j�� bj�qj then

p jg q �M

X
�i�j��f�i�j�jg�ai�bj� definedg

g�ai� bj���pi jg qj� 

nX
i��

ai��pi jg q�  
mX
j��

bj��p jg qj�

Proof� The relation

R � f�p jg q�
X

�i�j��f�i�j�jg�ai�bj� definedg

g�ai� bj���pi jg qj� 

nX
i��

ai��pi jg q�  
mX
j��

bj��p jg qj��

j p �
nX
i��

ai�pi � q �
mX
j��

bj�qjg

is an M �bisimulation�
Also R�� is an M �bisimulation�
�See appendix A�� �

This proposition shows that communication may be exchanged by action�
pre	xing and nondeterminism�

��



Functions

We now extend the language �cf with the operator �� � ���f � for the general
function scheme�
Let FT � �Pf � Act���� be the transition system of 	nite terms� where Pf

is given by the following abstract syntax�

p ��� nil a�p� p�  p� �p� � � � pn��f � p� jg p�

Thus �f � �ct � f�� � ���f �g�
The operational semantics is the smallest family of relations satisfying

ACT�� SUM�� COM� and FUN� of de	nition ���

Proposition ��� vM is a precongruence with respect to the operators of �f

provided g in jg and f in �� � ���f � are monotone�

Proof� As in proposition ��� extended with the proof that the relation

R � f��p� � � � pn��f �� �q� � � � qn��f �� j pi vCL�f���M��i� qig

is an M �bisimulation�
�The proof of this is presented in appendix A�� �

Proposition ��� The following holds for p� � � � pn � T�f �

�p� � � � pn��f � �M nil if pi � nil for some i � n

�a��p� � � � an�pn��f � �M

����
���

f�a� � � �an���p� � � � pn��f �
if f�a� � � �an� is de�ned

nil otherwise

�p� � � � pi  qi � � � pn��f � �M �p� � � � pi � � � pn��f �  

�p� � � � qi � � � pn��f �

Proof� By establishing � M �bisimulations� The relations

R� � f��p� � � � pn��f �� nil� j pi � nil� i � ng

R� � f��a��p� � � �an�pn��f �� f�a� � � � an���p� � � � pn��f ��

j f�a� � � � an� is de	nedg � Id

R� � f��a��p� � � �an�pn��f �� nil� j f�a� � � �an� is unde	nedg

R� � f��p� � � � pi  qi � � � pn��f �� �p� � � � pi � � � pn��f �  �p� � � � qi � � � pn��f ��g � Id

��



SUM S� p�  �p�  p�� �M �p�  p��  p�
S� p�  p� �M p�  p�
S� p�  p� �M p�
S� p�  nil �M p�

PREORD P� p vM p

P�
p� vM p� p� vM p�

p� vM p�

P�
p� vM p� p� vM p�

p� �M p�

P�
p� �M p�

p� vM p� p� vM p�

PRECONG C�
p� vM p�

a�p� vM b�p�
� a vA b

C�
p� vM p� p� vM p�
p�  p� vM p�  p�

C�
pi vM�CL�g���M��i� qi

p� jg p� vM q� jg q�
� i � f�� �g

C�
pi vCL�f���M��i� p

�
i

�p� � � � pn��f � vM �p�� � � � p
�
n��f �

�for all i � n

ANNIHIL
b 	�M

nil vM b�p

CONS
p� vM p�
p� vN p�

� N �M

Table ���� Proof system for 	nite terms �Continued on next page��
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COM
p �
Pn

i�� ai�pi q �
Pm

j�� bj�qj

pjgq�M

P
�i�j��f�i�j�jg�ai�bj� definedg

g�ai�bj���pijgqj�	P
n

i
�
ai��pijgq�	

P
m

j
�
bj��pjgqj �

FUN F�
pi � nil

�p� � � � pn��f � �M nil

F� �a��p� � � �an�pn��f � �M

����
���

f�a� � � �an���p� � � � pn��f �
if f�a� � � �an� is de	ned

nil otherwise

F� �p� � � � pi  qi � � � pn��f � �M �p� � � � pi � � � pn��f � 
�p� � � � qi � � � pn��f �

Table ���� Proof system for 	nite terms�

Also the relations R��
i � i � f� � � ��g are M �bisimulations�

�see appendix A�� �

This shows that �� � ���f � may be exchanged by action�pre	xing and nonde�
terminism�
In table ��� we present a proof system Sf of the precongruence vM over Pf �
We write � p� vM p� if p� vM p� is provable by the rules of table ����

Theorem ��� The proof system of table ��
 is sound� i�e�

� p� vM p� � p� vM p�

Proof� By theorem ��� and proposition ���� ���� ��� and ���� �

We now turn to prove the completeness of the proof system Sf �
We do this by a similar proof technique as presented in �Hen �
�� but we

have to take into account that vM is only a preorder� not an equivalence�

De�nition ��� Let � � ��� Let R be a relation over T� and R� a relation over
T�� � Then R� is a conservative extension of R if R� � T�� � R�

Lemma ��� Let � � �� and let R and R� be preorders over T� and T�� such
that R � R��
Let S be a preorder over T�� such that�

�� S is a conservative extension of R

�� R� � S

��



�� For each p � T�� there exists a normalform nf�p� in T� such that
�p� nf�p�� � R� and �nf�p�� p� � R�

Then R� � S�

�In spirit this is the extension lemma of �Hen �
� extended to take account of
preorders��
Proof� Suppose �p� q� � S� Then�

from �� �p� nf�p�� � R� and �nf�q�� q� � R�

from �� �nf�p�� nf�q�� � S

from �� �nf�p�� nf�q�� � R

Therefore �p� q� � R� since R � R�� �

In the following theorem the precongruence induced by S��S� shall be named
v�
M � and the precongruence induced by S��S�� COM and F��F� shall be named

v�
M �

Theorem ��	 vM is the least precongruence which satis�es the axioms S�	S��
COM and F�	F� of table ��


Proof� We apply lemma ��� with � � �nf and �� � �f � R �v�
M �R

� �v�
M

and S �vM �
As it has been shown in proposition ���� ��� and ���� vM satis	es the axioms
S��S�� COM and F��F� of table ���� This establishes hypothesis � of lemma
��� Also by using the axioms COM and F��F� of table ��� every occurrence of
jg and �� � ���f � can be eliminated from terms in �f � This establishes hypothesis

�� It remains to show that vM is a conservative extension of v�
M � Let v

�

M be
the precongruence satisfying ACT � and SUM�� From theorem ��� and ���
we know � p� v�

M p� i� p� v
�

M p�� A simple proof by structural induction will

establish that for all p�� p� � �nf � p� vM p� � p� v
�

M p�� �

Since table ��� induces the least precongruence the above theorem establishes
the desired result�

Theorem ��� The proof system Sf of table ��
 is sound and complete i�e�

� p� vM p� i� p� v
�

M p��

Proof� By theorem ��� and ��� and the above remark� �

��� Regular expressions

Let us de	ne the transition system of regular expressions RE � �Pr � Act����
where Pr is given by the following abstract syntax�

p ��� nil a�p� p�  p� x �x�p

�




The operational semantics is the smallest family of relations satisfying
ACT�� SUM� and REC� of de	nition ����

x and �x� introduce the wellknown concept of free and bound variables in
expressions�

De�nition ��� We de�ne the set of free variables free�p� inductively�

free�nil� � �

free�a�p� � free�p�

free�p�  p�� � free�p�� � free�p��

free�x� � fxg

free��x�p� � free�p� n fxg

Note how �x� binds free occurrences of x in p in �x�p� A variable that is
not free is called bound� Note too how free also may be seen as an instance of
the general scheme of de	nition ���� A variable may be seen as a place holder�
and we may substitute a variable with an expression� We will use the notation
p�#r�#x�� where #x � �x� � � �xn� are free variables in p and #r � �r� � � � rn� are n
expressions� as the act of simultaneous substituting ri for xi in p taking account
of change of bound variables�
This may be formalized in the following de	nition�

De�nition ��� p�#r�#x� is de�ned structurally on p as follows�

nil�#r�#x� � nil

�a�p��#r�#x� � a��p�#r�#x��

�p�  p���#r�#x� � p��#r�#x�  p��#r�#x�

y�#r�#x� �

�
ri if y � xi
y if y 	� #x

��y�p��#r�#x� �

����
���

�y�p�#r�#x� if y not in #x nor free in #r

�z��p�z�y��#r�#x��
otherwise for some z not in #x nor free in �y�p or #r

This de	nition is similar to the de	nition of substitution in �Mil ��� and has
resemblance to substitution in the ��calculus �see e�g� �Bar �
���
In the above de	nition � means syntactic equivalence upto change of bound

variables�
We now turn to investigate some useful properties of substitution� but 	rst

we introduce the concept of guarded variables� which divides the set of free
variables of terms into two groups� guarded and unguarded variables�

��



De�nition ��	 We de�ne the set of unguarded variables UG�p� inductively�

UG�nil� � �

UG�a�p� � �

UG�p�  p�� � UG�p�� � UG�p��

UG�x� � fxg

UG��x�p� � UG�p� n fxg

A variable which is not unguarded is said to be guarded�

Properties of substitution

Property ��� Whenever p�#r�#x�
a
�� p� then

either for some p�� � p
a
�� p�� and p� � p���#r�#x�

or for some xi � UG�p� � ri
a
�� p�

Proof� by induction on inferences observing the structure of p�
�see appendix A�� �

Property ��� Whenever p� � p
a
�� p� then p�#r�#x�

a
�� p��#r�#x�

Proof� by induction on inferences observing the structure of p�
�see appendix A�� �

Property ��� Whenever xi � UG�p� and ri
a
�� p� then p�#r�#x�

a
�� p�

Proof� by induction on inferences observing the structure of p�
�see appendix A�� �

Property ��	 If no xi is free in p then p�#r�#x� � p

Proof� by structural induction�
�see appendix A�� �

Property ��� If #x and #y are disjoint then�

p�#q�#x��#r�#y� � p�#q�#r�#y��#x� #r�#y�

Proof� by structural induction�
�see appendix A�� �

Before presenting a proof system characterizing vM over Pr we have to
extend vM to take account of the possibility of free variables in the expressions�

��



There are basically two possible strategies for doing this� the one being
de	ned as�

p v
�

M q i� 
#r�p�#r�#x� vM q�#r�#x�

where #x contains all the free variables in p and q and the ri�s in #r are closed�
This strategy may be called instantiation�
The other strategy consists of extending the function MB to take account

of free variables� the extension ensuring that the two processes have the same
set of unguarded variables i�e�

De�nition ��� �p� q� � MB���R� i��

�� UG�p� � UG�q�

�� 
a � Act�p
a
�� p� � �q���b � Act�q

b
�� q� � a vA b � �p�� q�� � R

�� 
a �M�q
a
�� q� � �p���b � Act�p

b
�� p� � b vA a � �p�� q�� � R

This strategy may be called re	ning� and a relation R such that
R � MB���R� is called a re	ned M �bisimulation� We write p v

��

M q if there
exists a re	ned M �bisimulation containing �p� q��
Despite the di�erent nature of the two strategies they are equal in express�

ability�

Proposition ����

p v
��

M q i� p v
�

M q

Proof�

� We show that the relation

R � f�p�#r�#x�� q�#r�#x�� j p v
��

M qg � Id

is an M �bisimulation�

� We prove this by showing
p 	v��m q � 	v�m q

For the full proof see appendix A� �

From now on we shall useM �bisimulation for a re	nedM �bisimulation� since
the results of re	ned M �bisimulation holds for closed 	nite terms and since M �
bisimulation and re	ned M �bisimulation coincides on closed 	nite terms�
Let us now turn to characterize vM for regular expressions� In table ��� we

present the proof system Srt of the precongruence vM over Pr�
Note the interesting properties of R� and R
� These rules state that �x�p�

is the least pre	x point and the greatest post	x point of the recursive equation

��



SUM S� p�  �p�  p�� �M �p�  p��  p�
S� p�  p� �M p�  p�
S� p�  p� �M p�
S� p�  nil �M p�

PREORD P� p vM p

P�
p� vM p� p� vM p�

p� vM p�

P�
p� vM p� p� vM p�

p� �M p�

P�
p� �M p�

p� vM p� p� vM p�

PRECONG C�
p� vM p� p� vM p�
p��p��x� vM p��p��x�

C�
p� vM p�

�x�p� vM �x�p�

REC R� �x�p �M �y��p�y�x��� y not free in �x�p

R� �x�p �M p��x�p�x�

R� �x��p x� �M �x�p

R�
p��p��x� vM p�
�x�p� vM p�

�x guarded in p�

R

p� vM p��p��x�

p� vM �x�p�
�x guarded in p�

ANNIHIL
b 	�M

nil vM b�p

CONS
p� vM p�
p� vN p�

� N �M

PREFIX
a vA b

a�p vM b�p

Table ���� Proof system for nondeterminism�

��



x � p� provided x is guarded in p�� Together R� and R
 state that �x�p� is the
unique solution� as was also shown in �Mil ����
First we prove the soundness of the proof system�
We shall write � p� vM p� if p� vM p� is provable by the rules from table

����

Proposition ���� vM is a precongruence with respect to the operators of �r�
i�e� vM satis�es C� and C
 of table ���

Proof� The relation

R� � f�p��p��x�� p��p��x�� j p� vM p� � p� vM p�g� vM

is an M �bisimulation� and the relation

R� � f�p��x�p��x�� p��x�p��x��

j p� vM p� � p�� p�� p � �
r � free�p� � fxgg� vM

is an M �bisimulation� The result follows by taking p � x� We have chosen only
to prove the case where free�p� � fxg� the result easy generalizes to general
open expressions�
To see that R� �MB�R�� we use induction on the length of inferences�

�For the full proof see appendix A�� �

Proposition ���� The following holds for all p�� p�� p� � T�r �

p�  �p�  p�� �M �p�  p��  p�

p�  p� �M p�  p�

p�  p� �M p�

p�  nil �M p�

Here �M means that both vM and wM hold�

Proof� As for proposition ���

UG�p�  �p�  p��� � UG�p�� � UG�p�� � UG�p�� � UG��p�  p��  p��

etc� �

Proposition ���� If a vA b then a�p vM b�p for all p � T�r

Proof� The relation

R � f�a�p� b�p� j a vA bg � Id

is an M �bisimulation�
To see this observe that a�p

a
�� p which b�p can match by b�p

b
�� p and by

de	nition of R � a vA b and �p� p� � Id � R� Also if b �M a�p can match b�p�
otherwise the result holds trivially� �

�




Proposition ���	 If b 	�M then nil vM b�p for all p � T�r �

Proof� The relation

R � f�nil� b�p� j b 	�Mg

is an M �bisimulation� since UG�nil� � � � UG�b�p� and nil
a

	� and b�p
a

	� for
any a �M � �

Proposition ���� �x�p has exactly the derivations of its unfold i�e�

�x�p �M p��x�p�x�

Proof� The relation

R � f��x�p� p��x�p�x�� j p � T�rg � Id

is an M �bisimulation�
To see that R �MB�R� observe that

if �x�p
a
�� p� then this is due to p��x�p�x�

a
�� p��

Also if p��x�p�x�
a
�� p�� a �M then by REC� �x�p

a
�� p� which obviously is

the matching move�
Also R�� is an M �bisimulation� �

Proposition ���
 If y is not free in �x�p then �x�p �M �y��p�y�x��
i�e� vM satis�es R� of table ���

Proof� Let p� � �x�p and p� � �y��p�y�x��� By proposition ���

p� �M p�p��x� and p� �M p�p��x� � We now show that

R � f�q�p��x�� q�y�x��p��y�� j q � T�rg

is an M �bisimulation� The result follows by taking q � p and applying propo�
sition ���
�
To see that R �MB�R� we use induction on the number of inferences�
The full proof is presented in appendix A� �

Proposition ���� If x is guarded in p� then
if p��p��x� vM p� then �x�p� vM p�
and
if p� vM p��p��x� then p� vM �x�p��
i�e� vM satis�es R� and R� of table ����

Proof� Since �x�p �M p��x�p�x� it is enough to show that if
p� vM p�p��x� � p�p��x� vM p� � p� vM p� then p�p��x� vM p�p��x��
Let

R � f�q�p��x�� q�p��x�� j q � T�rg

We wish to show that R is anM �bisimulation upto �vM � and the result follows
by taking q � p and applying proposition ����
The full proof is presented in appendix A� �

��



Proposition ���� �x�p �M �x��p x� i�e� vM satis�es R� of table ���

Proof� The relation

R � f�q��x�p�x�� q��x��p x��x�� j q � T�rg

is an M �bisimulation� The result follows by taking q � x�
To see that R �MB�R� we use induction on the number of inferences�
The full proof is presented in appendix A� �

By these propositions we arrive at the desired result�

Theorem ��
 The proof system Srt is sound i�e�

p vM q � � p vM q

Proof� By propositions ����������By proposition ��� we know that vM is
a preorder� and proposition ���
 shows that CONS is sound with �A�vA � �
We now turn to prove the completeness of the proof system� But 	rst we

need a lemma which resembles the properties ������
�

Lemma ��� �� if #x is not free in p then � p�#r�#x� �M p

�� if #x and #y are disjoint then � p�#q�#x��#r�#y� �M p�#q�#r�#y��#x� #r�#y�

Proof�

�� if #x is not free in p then p�#q�#x� � p� by de	nition of substitution and by
P�� � p �M p

�� We prove this by structural induction on p �see appendix A��

�

We now prove a theorem which in spirit is similar to theorem 
�� of �Mil ����
but the details as well as the overall result are quite di�erent� The result of this
theorem together with an equational characterization analogous to theorem 
��
of �Mil ��� yields the completeness proof of the system of table ���� Also the
completeness proof is similar in spirit to that of theorem 
�� in �Mil ��� but in
detail it is rather di�erent�

Theorem ��� Let #x � �x� � � �xm� and #y � �y� � � � yn� be distinct variables� and
let #q � �q� � � � qm� and #q

� � �q�� � � � q
�
m� be expressions with free variables in �#x� #y�

in which each xi is guarded� Then there exist expressions #p � �p� � � � pm� and
#p� � �p�� � � � p

�
m� with free variables in #y such that

� pi vM qi�#p�#x� and � p�i vM q�i�#p
��#x�

and moreover this and � qi vM q�i implies for �i � m�

� pi vM p�i

��



Proof� By induction on m�

Basis For m � � we choose p� � �x��q� and p�� � �x��q
�
�� The 	rst result

follows immediately from R� and R�� the second follows from C��

Step Assume the result for m� Now let #q � �q� � � � qm� and qm	� and #q
� �

�q�� � � � q
�
m� and q�m	� be expressions with free variables in �#x� xm	�� #y� in

which xi is guarded �i � m ��� We 	rst 	nd expressions #p � �p� � � � pm�
and pm	� and #p� � �p�� � � � p

�
m� and p

�
m	� such that for �i � m  ���

� pi vM qi�#p�#x� pm	��xm	�� and

� p�i vM q�i�#p
��#x� p�m	��xm	��

�����

For this purpose� 	rst set

rm	� � �xm	��qm	� and

r�m	� � �xm	��q
�
m	�

�����

and for �i � m��
ri � qi�rm	��xm	�� and

r�i � q�i�r
�
m	��xm	��

���
�

Since ri and r�i have free variables in �#x� #y� with #x guarded� by induc�
tion there are expressions #p � �p� � � � pm� and #p� � �p�� � � � p

�
m� with free

variables in #y such that�

� pi vM ri�#p�#x� and

� p�i vM r�i�#p
��#x�

�����

If we choose
pm	� � rm	��#p�#x� and

p�m	� � r�m	��#p
��#x�

�����

we may rewrite ����� using ���
� to�

� pi vM qi�rm	��xm	���#p�#x� and

� q�i�r
�
m	��xm	���#p��#x� vM p�i

�����

if we appeal to lemma ��� and use ����� we obtain for �i � m��

� pi vM qi�#p�#x� pm	��xm	�� and

� q�i�#p
��#x� p�m	��xm	�� vM p�i

�����

��



To obtain ����� for i � m �� we deduce from ����� and ����� since xm	�

is not in #p nor #p��

pm	� � �xm	��qm	��#p�#x�� and

p�m	� � �xm	��q�m	��#p
��#x��

����
�

and hence by R�� P� and lemma ��� we obtain� �since xm	� is not free in
#p nor #p��

� pm	� vM qm	��#p�#x� pm	��xm	�� and

� q�m	��#p
��#x� p�m	��xm	�� vM p�m	�

������

For the second part� observe that the induction yields for �i � m��

� ri vM r�i � � pi vM p�i ������

If � qi vM q�i �i � m  �� then also

� rm	� vM r�m	� ������

by C� and this yields
� ri vM r�i ������

by C� so � pi vM p�i �i � m� to see � pm	� vM p�m	� use ������ and
������ and C��

�

Note how this theorem extends R� and R
 of table ��� to systems of simul�
taneous recursive processes�

Theorem ��� For any expression p� with free variables in #y� there exist expres	
sions p� � � � pk �k � �� with free variables in #y satisfying k equations�

� pi �
niX
j��

aij�pf�i�j�  
miX
j��

yg�i�j� �k � ��

moreover
� p � p�

Proof� By structural induction on p�
�The full proof is presented in appendix A�� �

Theorem ��� If p vM p� then � p vM p�

Proof� Let p and p� have free variables in #y� By theorem ��� there are
equations � p �M p� and � p

� �M p�� and

pi �M

miX
j��

aij �pf�i�j�  
niX
j��

yg�i�j� �i � k�

��



p�i �M

m�
iX

j��

a�ij�pf ��i�j�  

n�iX
j��

yg��i�j� �i � k�

Now let I � f�i� i�� j pi vM p�ig� Clearly ��� �� � I since � p �M p� and
� p� �M p�� and by soundness �Theorem ����� This implies p� vM p and
p� vM p�� and p vM p� so by transitivity of vM p� vM p��� Moreover pi and
p�i must have equal sets of unguarded variables and every move a of pi can be
matched by a move b of p�i with a vA b� Also if b �M then the b�action of p�i
may be matched by the a�action of pi and if b 	� M then pi does not have to
match b� So the following holds

�� There exists a relation
Jii� � f�j� j�� j aij vA a�i�j� � �f�i� j�� f

��i�� j��� � Ig

�� There exists a set Jcii� � fj� � � � � �m�
i� j 
�j��j� j

�� � Jii�g

�� �
Pni

j�� yg�i�j� �
Pn

�
i

j��� yg��i��j��

Moreover Jii� is a total and surjective relation between f� � � �mig and
f� � � �m�

i�g n J
c
ii� � Note also for all j

� � Jcii� that a
�
i�j� 	�M since there otherwise

would have been a matching aij and �j� j�� � Jii� �
We now consider the formal equations� two for each �i� i�� � I

xii� �
X

�j�j���Jii�

aij �xf�i�j�f ��i��j��  

niX
j��

yg�i�j�

xii� �
X

�j�j���Jii�

a�i�j� �xf�i�j�f ��i��j��  
X
j��Jc

a�i�j� �p
�
f ��i��j��  

n�iX
j���

yg��i��j��

where xii� is not in #y
These equations are provable satis	ed when instantiated to pi and p

�
i� �

To see this the typical equations become�

pi �
X

�j�j���Jii�

aij�pf�i�j�  
niX
j��

yg�i�j�

p�i� �
X

�j�j���Jii�

a�i�j��p
�
f ��i��j��  

X
j��Jc

a�i�j� �p
�
f ��i��j��  

n�iX
j���

yg��i��j��

The 	rst is provable since J is total and the second since J is total on
f� � � �m�

i�g� and Jc covers the rest� The right hand sides di�er at most by
repeated summands which may be eliminated by S�� S� and S��

�




Now let

qi �
X

�j�j���Jii�

aij �xf�i�j�  
niX
j��

yg�i�j�

q�i� �
X

�j�j���Jii�

a�i�j��xf ��i��j��  
X
j�Jc

a�i�j��p
�
f ��i��j��  

n�iX
j���

yg��i��j��

Since J is total and surjective we know that

�
X

�j�j���J

aij�xf�i�j� vM

X
�j�j���J

a�i�j� �xf ��i��j�� ����
�

by repeated use of PREFIX and C��
By the remark that for j � Jcii� � a

�
i�j� 	�M we know that

� nil �M

X
j�Jc

ii�

nil vM

X
j�Jc

ii�

a�i�j��p
�
f ��i��j��

by ANNIHIL� S� and C� used repeatedly�
So by this and ����
� we know

� qii� vM q�ii�

again by using C� and S� to eliminate nil in every summand�
Also we know that

� pi vM qi�#p�#x�

and
� q�i��#p

��#x� vM p�i�

so by theorem ��� we know

� pi vM p�i� for every �i� i
�� � I

especially � p� vM p�� which proves the theorem�

��� An alternative characterization of recur�

sive processes

In this part we present an alternative to the rules R� and R
 of table ��� for
regular expressions� characterizing �x�p as the least post	xed point and the
greatest pre	xed point of the equation x � p� provided x is guarded in p�
The alternative characterization resembles the characterization of least 	xed

points in denotational semantics �Sto ����
We want to characterize �x�p by its unfoldings and we show that under

certain conditions we may do so�

��



De�nition ��
 An action �A � Act is a top action i� 
a � Act�a vA �A�

De�nition ��� �p � �x��A�x

Proposition ���� If M does not contain �A then for all closed p � p vM �p

Proof� The relation

R � f�p��p� j p is closedg

is an M �bisimulation�
To see that R � MB�R� observe that UG�p� � � since p is closed� also

UG��p� � � by de	nition ���� If p
a
�� p� then �x��A�x

�A�� �x��A�x by
REC� and by de	nition of substitution� Clearly a vA �A and �p���p� � R�
Since �A is not in M � and it is the only action of �p the second condition of
MB holds trivially� �

This shows that under the condition that Act has a top action �A and M
does not contain this top action� we have a greatest process �p�
Throughout this section we shall assume that Act contains a top action and

M does not contain this top action�
The above de	nition of �p may be used in de	ning the unfoldings of �x�p�

De�nition ���

pn	���p�x� �

�
�p if n � 

p�pn��p�x��x� if n � 


Proposition ���� For all n � 	� pn	���p�x� vM pn��p�x�

Proof� By induction on n�
The case 
 holds by proposition �����
To see the case for n  � assume pn��p�x� vM pn����p�x�� Since vM is a
precongruence with respect to the operators of �r by proposition �����p vM p
and the induction hypothesis implies pn	���p�x� vM pn��p�x�� �

This shows that �pn��p�x��n is a decreasing chain in Pr�

Proposition ���� if free�p� � fxg then �x�p vM pn��p�x� for all n

Proof� By induction on n�
The case n � 
 holds by proposition �����
To see the case for n  �� assume that �x�p vM pn��p�x�� Since vM is a
precongruence p vM p and the above implies p��x�p�x�vM p�pn��p�x��x�� By
proposition ���
 �x�p vM pn	���p�x�� �

This proposition shows that �x�p is a lower bound for the chain �pn��p�x��n�
provided that �x�p is closed�
But we want to do better than that� we want to show that �x�p is the greatest

lower bound of the chain �pn��p�x��n�

��



For the theoretical development to work we have to characterize vM in a
di�erent way� We do this by de	ning a decreasing series of preorders over Pr
and showing that under certain conditions vM coincides with the greatest lower
bound of this chain�

De�nition ��� p v

M q is always true�

p vn	�
M q i��

�� 
a � Act�p
a
�� p� � �q���b�q

b
�� q� � a vA b � p� vn

M q�

�� 
a � Act�q
a
�� q� � �p���b�p

b
�� p� � b vA a � p� vn

M q�

p v
�

M q i� 
n � 
�p vn
M q i�e� v

�

M �
T	
n�� v

n
M

This states that v

M � P �

r and that v
n	�
M �MB�vn

M �

De�nition ���� A process system P � �pr�Act���� is said to be image�nite
i��

�� 
p�
a�fp� j �b w a�p
b
�� p�g is �nite and

�� 
q�
a �M�fq� j �b v a�q
b
�� q�g is �nite

This de	nition is an extension of the image	nite condition found in e�g�
�Mil �
� saying p is image	nite if fp� j p

a
�� p�g is 	nite� The above de	nition

takes the ordering on actions into account�
We now turn to show when vM and v

�

M coincide�

De�nition ���� A function F on a complete lattice D is anticontinuous i� for
every decreasing chain x� w x� w x� w � � � xn w � � � of D elements F �unxn� �
unF �xn��

It follows by classic 	x point theory that if a function is anticontinuous on
a complete lattice then the maximal 	x point is� unFn�D��

Proposition ���� If P is image�nite then MB is anticontinuous�
Thus vM �

T
nMBn�Pr� where MB
 � Id and MBn	� �MBn �MB

Proof� Let R� � R� � R� � � � �Rn � � � � be a decreasing chain of binary
relations over Pr� We must prove MB�

T
nRn� �

T
nMB�Rn��

The � ���direction follows directly from monotonicity of MB and
T
nRn � Ri

for all i � 	�
For the � ���direction let �p� q� �

T
nMB�Rn�� If p

a
�� p� we must 	nd a match�

ing move for q i�e� b and q� such that q
b
�� q� � a vA b with �p�� q�� �

T
nRn�

Thus for all n there exist bn and q�n such that q
bn�� q�n � a vA b � �p�� q�n� � Rn�

��



By the 	rst image	nite clause there are only 	nitely many qn�s� This means that

there exist b and q� such that q
b
�� q� � a vA b � �p�� q�� � Rn for in	nitely

many n � 	� Since Rn is decreasing in n �p�� q�� � Rn for all n � 	 and thus
�p�� q�� �

T
nRn�

Also if q
a
�� q�� a �M we must 	nd b and p� such that p

b
�� p� and b vA a and

�p�� q�� �
T
nRn� Now �p� q� �

T
nMB�Rn� i� 
n � 	��p� q� � MB�Rn�� Thus

for all n there exist p�n and bn such that p
bn�� p�n with bn vA a and �p�n� q� � Rn�

By the second image	nite clause there are only 	nitely many pn�s� This means

that there exist b and p� such that p
b
�� p� � b vA a � �p�� q�� � Rn for

in	nitely many n � 	� Since Rn is decreasing in n �p�� q�� � Rn for all n � 	
and thus �p�� q�� �

T
nRn� �

This proposition shows that vM �v
�

M provided P is image	nite� Through�
out this section we shall assume that P is image	nite�
Before presenting the alternative characterization of �x�p we need a few

properties of vn
M �

Proposition ���� For all n � 	� p vn
M q implies r�p�x� vn

M r�q�x� for all
r � Pr

Proof� By induction on n�
The case n � 
 is trivial�
To prove p vn	�

M q implies r�p�x� vn	�
M r�q�x�� Assume the case for n and

assume p vn	�
M q� Then p vn

M q holds since vn	�
M � vn

M so r�p�x� vn
M r�q�x��

If r�p�x�
a
�� r� then by property ����

either r
a
�� r�� and r� � r���p�x�� Then also r�q�x�

a
�� r���q�x� and a vA a

and r���p�x� vn
M r���q�x� which obviously is the matching move�

or x is unguarded in r and p
a
�� p� then q

b
�� q� with a vA b and p� vn

M q�

which is the matching move�

Also if r�q�x�
a
�� r�� a �M then by property ����

either r
a
�� r�� and the case is as above�

or x is unguarded in r and q
a
�� q�� Then p

b
�� p� with b vA a and p� vn

M q�

which is the matching move�

�

Proposition ���	 For all n � 	�pn��p�x� vn
M �x�p�

whenever x is guarded in p

Proof� By induction on n�
The case n � 
 is trivial�

��



To prove the case for n  �� assume that pn��p�x� vn
M �x�p� To see that

pn	���p�x� v
n	�
M

�x�p observe that if pn	���p�x�
a
�� p� then since x is

guarded in p we know from property ��� that p
a
�� p�� and p� � p���pn��p�x��x��

By property ��� we know that p��x�p�x�
a
�� p����x�p�x� so by REC � we

know �x�p
a
�� p����x�p�x�� This is the matching move since by induction

pn��p�x� vn
M �x�p and clearly p�� vn

M p�� so p���pn��p�x��x� vn
M p����x�p�x��

and also a vA a�
Also if �x�p

a
�� p�� a � M � Then this is due to p��x�p�x�

a
�� p�� Again

since x is guarded in p we know from property ��� that p
a
�� p�� and p� �

p����x�p�x�� From property ��� we know that pn	���p�x� � p�pn��p�x��x�
a
��

p���pn��p�x��x� which clearly is the matching move since a vA a and p�� vn
M p��

and by the induction hypothesis pn��p�x� vn
M �x�p which implies

p���pn��p�x��x�vn
M p����x�p�x�� �

Actually this would work as well with any other process than �p in pn��p�x��
since p
�q�x� v


M �x�p holds trivially� But we prefer �p since �pn��p�x��n then
is a decreasing chain in Pr�
This shows that pn��p�x� and �x�p is indistinguishable upto the n�th move�
Our 	rst attempt of characterizing �x�p by its unfoldings is therefore the

following inference rule�

Proposition ���� The inference rule


n�q vM pn��p�x�

q vM �x�p
� x guarded in p

is sound provided P is image�nite�

Proof� If P is image	nite q vM pn��p�x� implies 
m�q vm
M pn��p�x� by

proposition ����� i�e� 
n�
m�q vm
M pn��p�x� especially for m � n i�e� 
n�q vn

M

pn��p�x� � By proposition ���� 
n�pn��p�x� vn
M �x�p so by transitivity of

vn
M � 
n�q vn

M �x�p� Since P is image	nite this states that q vM �x�p which
proves the proposition� �

This rule states that �x�p is the greatest lower bound of the chain �pn��p�x��n�
The above rule resembles the Approximation Induction Principle �AIP� from
process algebra investigated in �Gla �
��
But we want to do better than the above in	nitary inference rule� Since the

above theoretical development only works for image	nite process systems we
may use this to restrict the number of unfoldings of �x�p necessary to do the
inference�

De�nition ����

A set S is said to be ��	closed i� p � S and p
a
�� p� � p� � S�

�




Proposition ���
 If S � Pr is ��	closed then for all binary relations R over
Pr�

MB�R � S�� � S� �MB�R� � S�

Proof� The ��direction follows from the monotonicity of MB�
To see thatMB�R��S� �MB�R�S���S�� let �p� q� �MB�R��S� and prove

�p� q� � MB�R � S��� If p
a
�� p� then q

a
�� q� with a vA b and �p�� q�� � R�

Since S is ���closed �p�� q�� � S� so �p�� q�� � R� S� and �p� q� �MB�R � S���

Also if q
a
�� q�� a �M then similar arguments yield the desired result� �

Proposition ���� If S � Pr is ��	closed and vn
M �S� �vn	�

M �S� then for
all m � n�

vn
M �S� �vm

M �S� �vM �S�

Proof� By induction on m� n using the above proposition�

m� n � 
 Holds trivial� vn
M �S� �vM �S� holds since

vn
M �S� �vn	�

M �S� � � � � � � � � vM �S�

m n � Assume vn
M �S� �vm

M �S� then by proposition ���� and the
assumption vn

M �S� �vn	�
M �S� we get�

vn
M �S� �vn	�

M �S� �MB�vn
M � � S� �

MB�vn
M �S�� � S� �MB�vm

M �S�� � S� �vm	�
M �S�

�

Proposition ���� Let S �fin Pr be a ��	closed set� Then for all �p� q� � S��

p vM q i� p vN
M � N �jS j�

Proof� The ��direction is obvious� For the ��direction consider the
decreasing chain�

v

M �S� �v�

M �S� � � � � vn
M �S� � � � � �vM �S�

Since S is 	nite vi
M �S� must be 	nite for all i and vM �S� must be 	�

nite� Since the chain is decreasing there must exist a smallest n such that
vn
M �S� �vn	�

M �S�� This number n must be smaller than or equal to jS j�

since in a set of size jS j there cannot be more than jS j� combinations� so when
n �jS j��

vn
M �S� �vn	�

M �S� �vjSj
�

M �S� �vM �S�

By proposition �����

��



�

To get an inference rule we apply the above proposition to the set
S � Der�p� �Der�q� where

Der�p� � fp� j �p� � � � pn��a� � � � an	��p
a��� p�

a��� � � �
an�� pn

an��
�� p�g

S has exactly the necessary properties i�e� S is 	nite and ���closed� To give
an upper bound on jDer�p� �Der�q� we use the following function �Lar ��a��
ND � Pr� N �

De�nition ����

ND�nil� � �

ND�x� � �

ND�a�p� � �  ND�p�

ND�p q� � ND�p�  ND�q�

ND��x�p� � ND�p�

The upper bound for �x�p is justi	ed by the � � � correspondence between
�x�p and p�
We are now able to state the inference rule�

Proposition ���� The inference rule�

q vM pN ��p�x�

q vM �x�p
�N � �ND�p�  ND�q��� � x guarded in p

is sound if P is image�nite�

Proof� Assume q vM pN ��p�x�� By proposition ���� pN ��p�x� vN
M

�x�p for all N � especially for N � �ND�p�  ND�q��� and by proposition ����
pN ��p�x� vM �x�p which by transitivity of vM implies q vM �x�p� �

The theoretical development above resembles the development of an alterna�
tive proof system for regular behaviours in �Lar ��a�� although the development
presented here is for processes whereas in �Lar ��a� it is for environments�

��



Chapter �

Partial speci�cations

In this chapter we describe how the framework of chapter ��� may be used in
hierarchical development of systems� We use this in an instantiation of the gen�
eral theory called partial speci	cation� since this allows one to partially specify
subcomponents of systems and by knitting the partial speci	cations together ob�
taining a fully speci	ed system� Specially we verify the concurrent alternating
bit protocol CABP �Koy �
��
As mentioned in the introduction we want to be able to have an action �

which may take the place of any other action� a kind of action stronger than
any other action� Also this action should be used in a process U with the

characteristica U � r�
�
��
�

�

U is meant to take the place of 	 
	 
	 
� �� �� ��	 �
 in diagrams as�

q q� ���q� �
�c

�c

�d

q�� q�� � �� �� �
� �� �� ��� ��

Figure ���� Partial speci	cation of q�

yielding a process q� � �x�#c��#c�U  #d�x� written in the language of chapter ��
Formally U is de	ned as U � �x� � �x Since we want all other actions to

be normal as in CCS �Mil �
�� we take Act � fa� b� � � �� #a�#b� � � � � �g � f�g with
the ordering a vA b i� a � b or b � �� This ordering may be illustrated

as�
�

a b � � �� � �� � ����� AA��

This ordering is extended to processes by vM with M � Act n f�g since we
want ��actions to be as strong as possible�

��



We need to extend the usual operations of CCS �Mil �
� to the new action
set�

��� Instantiations of jg and �� � ���f �

We want to instantiate g in jg and f in �� � ���f � such that we obtain the well�
known operators for communication and restriction� with the extension to take
��actions into account in such a way that we cannot restrict ��actions away�
To obtain a restriction operator we instantiate f by an identity function

f � B � B where B is a subset of Act� yielding the restriction operator dB� To
take ��actions into account we insist that B contains ��
For the communication operator we instantiate jg with the function g de	ned

by the following table�

g a b � � � #a #b � � � �
a u u � � � � u � � � u
b u u � � � u � � � � u
���

���
���

���
���

���
#a � u � � � u u � � � u
#b u � � � � u u � � � u
���

���
���

���
���

���
� u u � � � u u � � � u

where u means unde	ned�

Table ���� g � Act� �� Act

As it may be seen from the table above jg really extends j �Mil �
� to take
��actions into account�
As it may be seen from both dB and jg the functions have the property of

being strict with respect to ��actions i�e� f��� � �� In fact this is the requirement
for f and g to be monotone partial functions ful	lling the de	nition of chapter
�� Also this constraint is enough to ensure that CL�f���M��i� � M and that
M�CL�g���M��i� � M � ensuring that the instantiations may be used with the
proof systems of chapter ��
From now on we shall write jg in	x as j and dB post	x�

��� General properties of partial speci�cation

Before turning to our example we shall present a series of properties which may
be used in partial speci	cation of processes�
In the following � is the bisimulation equivalence de	ned in chapter ��

Proposition 	�� if p � q then p vM q and q vM p

��



Proof� From the de	nition of B and MB it is easy to see that
B�R� � MB�R� for all R � Pr�� Since B�R� obviously is symmetric� also
R�� � B�R��� �MB�R���� which yields the second result� �

De�nition 	�� p is robust i� p
�
�� p� is impossible for any p��

De�nition 	�� p is concrete i� all derivations� including p� are robust�

Note how these de	nitions resemble the de	nitions of rigid and stable in
�Mil �
�� where the ability of performing � �actions is investigated�

Proposition 	�� if q is concrete and p vM q then p is concrete

Proof� Since p vM q there exists an M �bisimulation R including �p� q�

such that R � MB�R�� To see that p
�
�� p� is impossible observe that if

p
�
�� p� then there exist q�� b such that � vA b and �p�� q�� � R� But � vA b

i� b � � and q
�

	� since q is robust so p
�

	�� Also all derivatives of p are robust
since all derivatives of q are especially those q� � �p�� q�� � R� �

This proposition yields an excellent test of concreteness� We just have to
	nd a concrete process q and show p vM q� then we know that p is concrete�
In chapter 
 we shall see another method of concreteness analysis� not involving
another process�

Proposition 	�� if q is concrete and p vM q then p � q

Proof� By proposition ��� p is concrete if q is concrete and p vM q� If
p vM q there exists a relation R such that R �MB�R� containing �p� q�� Now
let SR � �Der�p� �Der�q�� �R� where

Der�p� � fp� j �p� � � � pn�a� � � � an	��p
a��� p� �� � � �

an�� pn
n	�
�� p�g

SR is the smallest M �bisimulation containing and concerning �p� q� and their
derivatives� Then SR is also an M �bisimulation� To see this let �p��� q��� � SR�
To be a member of MB�SR� it is necessary that

�� 
a � Act�p��
a
�� p� � �q��b�q��

b
�� q� � a vA b � �p�� q�� � SR

�� 
a �M � Act�q��
a
�� q� � �p��b�p��

b
�� p� � b vA a � �p�� q�� � SR

Since both p and q are concrete and SR only concerns p and q and their
derivatives� which we assume to be concrete� a vA b specializes to a � b� And
clearly �p��� q��� � B�SR� i�e�

�� 
a � Act�p��
a
�� p� � �q��q��

a
�� q� � �p�� q�� � SR







�� 
a � Act�q��
a
�� q� � �p��p��

a
�� p� � �p�� q�� � SR

Taking a � Act in clause � does not violate a � M since all actions of q��

and its derivatives are di�erent from � i�e� included in M � �

This shows how this instance of vM extends ��

��� Verifying the CABP

In this part we sketch how to verify that the CABP meets its speci	cation� i�e�
is equivalent to spec � �x�a�b�����x
In �Koy �
� it was proven� using process algebra� that the system could be

partioned into two processes p and q behaving like�

p p p p p p
p p p p p p

p p p p p p
� � � � �
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Figure ����

The processes p and q may be de	ned in the language of chapter � with the
instantiations of f de	ned in part ���� The partial speci	cations p� and q� of p
and q may be illustrated as in 	gure ����
These processes may be de	ned as�

p� � �x�a��b��c�d�x d�U�  d�U�where U � �x� � �x

q� � �x�#c�� #d�x #c�U�

We could prove that p vM p� and q vM q� by using the proof systems of
chapter �� But since the relations�

R� � f�pi� p
�
i� j i � ��� ��g� fpi� p

�
�g � fpi� p

�
�g


�
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and
R� � f�qi� q

�
i� j i � ��� ��g� fqi� q

�
�g

are easy seen to be M �bisimulations containing �p� p�� and �q� q��� we may
draw the conclusion directly�
By C� and C� of table ��� we then know that

�p j q�dB vM �p� j q��dB� where B � fa� b� �� �g

We now prove that �p� j q��dB vM spec by use of the proof systems of
chapter ��

�p� j q��dB

�M ���x�a��b��c�d�x d�U�  d�U j �y�#c�� #d�y  #c�U��dB

by de	nition of p� and q��

�M ��a�b��c�d�p� d�U�  d�U� j �#c�� #d�q�  #c�U��dB

by R� of table ��� and de	nition of substitution�

�M �a���b��c�d�p� d�U�  d�U� j �#c�� #d�q�  #c�U��  

#c���a��b��c�d�p� d�U�  d�U�� j � #d�q�  #c�U���dB

by COM of table ����

�M �a���b��c�d�p� d�U�  d�U� j �#c�� #d�q�  #c�U���dB  

�#c���a��b��c�d�p� d�U�  d�U�� j � #d�q�  #c�U���dB

by F� of table ����

�M �a���b��c�d�p� d�U�  d�U� j �#c�� #d�q�  #c�U���dB  nil


�



by F� of table ����

�M a����b��c�d�p� d�U�  d�U� j �#c�� #d�q�  #c�U���dB�

by S� and F� of table ����

�M a���b���c�d�p� d�U� j �#c�� #d�q�  #c�U���  d��U j �#c�� #d�q�  #c�U���  

#c���b��c�d�p� d�U�� j � #d�q�  #c�U��  #c�d�U j � #d�q�  #c�U���dB�

by COM of table ����

�M a�b����c�d�p� d�U� j �#c�� #d�q�  #c�U���dB�

by F� to move dB over  � F� four times and S� three times

to eliminate nil�s�

�M a�b������d�p� j � #d�q�  #c�U��  c��d�p� j �#c�� #d�q�  #c�U���  

d��U j �#c�� #d�q�  #c�U����dB�

by COM of table ����

�M a�b�����d�p� j � #d�q�  #c�U��dB�

by F�� F� and S��

�M a�b������p� j q��dB

by arguments similar to the last two operations�

By R� of R
 of table ��� we know that �p� j q��dB vM spec� By P� we then
know that �p j q�dB vM spec� Both �p j q�dB and spec are concrete� so by
proposition ��� we know that �p j q�dB � spec� which is the desired result�
As it may be seen from the above proofs the method of partial speci	cation

yields an elegant proof technique when modularizing development and veri	ca�
tion of implementations meeting their speci	cations�


�



Chapter �

Data �ow analysis

	�� Introduction

In this chapter we describe how structure upon the set of actions may be used to
impose a data �ow analysis view and how this may be used to 	nd properties of
processes� Since data �ow analysis for concurrent or nondeterministic programs�
to our knowledge� has not yet been investigated� this may be seen as a 	rst
attempt to develop such a theory and not as a 	nal answer to how data �ow
analysis for concurrent programming has to be done� In the development we
try to extend the known methods from sequential programming to concurrent
programming�
In data �ow analysis we are interested in detecting dynamic aspects of pro�

grams by static analysis� The static analysis normally takes place at compile
time such that these analyses may be used to justify program transformations�
i�e� substitutions of subparts of a system with other subparts which in the
context of the system yield the same behaviour� justi	ed by the analysis�
Normally the information collected is in terms of approximations of sets �of

states or values� instead of the real sets� since the information otherwise might
not be computable�
It is essential that the information is correct i�e� yields no information that

does not hold�
In traditional data �ow analysis �see e�g� �Aho ���� one has put on a �practi�

cal� view� concerning how pro	table the analyses are and how to implement the
analyses by �fast� algorithms not concerning correctness� or the methods have
been ad hoc� Abstract interpretation � is a framework for describing correct
data �ow analyses� In �Cou ��� P� Cousot and R� Cousot showed how one could
ensure �correctness� between a data �ow analysis and a nonstandard seman�
tics called the static semantics� by means of a pair �
� �� of adjoined functions�

�For a general introduction to abstract interpretation see for example �Nie ����


�



The semantics model was given as �ow charts of sequential programs and the
static semantics was taken to concern sets of values instead of the real values�
traversing all branches of the �ow chart� The �correctness� in �Cou ��� Cou ���
is called safeness since it relates to one data �ow analysis being safe with respect
to another� i�e� not describing a smaller set than the precise set expressed by the
static semantics� The data �ow analysis was a semantics using approximations
of sets i�e� values describing sets� In �Nie ��� F� Nielson showed how to extend
the work of P� Cousot and R� Cousot to a denotational semantics model by de	n�
ing a series of nonstandard semantics� In �Nie ��� the term collecting semantics�
which we shall use� is used for the static semantics of �Cou ��� Cou ���� Also
the correctness condition is reformulated such that it states that the analysis
must yield information consistent with the standard semantics� It was shown
how one could induce a data �ow analysis by means of the static �collecting�
semantics� and in fact we can construct a correct data �ow analysis if it is safe
with respect to the collecting semantics� relying on the correctness between the
collecting semantics and the standard semantics�
We shall use the term consistent for both safeness and correctness� This will

be justi	ed in the following�

We may apply the method of abstract interpretation to the language for
de	ning processes with the intuition�
Agents o�er experiments in some universe of actions� abstracted agents o�er

experiments in another universe of abstract actions� so that experiments on
abstract agents give information on the actual agents� So applied to the language
for de	ning processes the approximation is in terms of approximations of sets
of actions�
In the last section of this chapter we will describe an analysis which may

give answer to when processes are stable �Mil �
�� This yields information about
processes being weak�congruent or observational congruent �Mil �
��
Also an analysis of concreteness will be described� This analysis has its use

together with the methods presented in chapter ��

	�� The framework

To express consistency of a data �ow analysis with respect to the standard
semantics we follow the line of �Nie ��� by building a series of �non�standard�
semantics consistent with one another in a way to be de	ned later�
Let PSS � �PrSS� Act���SS� where PrSS is given by the following abstract

syntax�

p ��� nil a�p� p�  p� �p� � � � pn��f � p� jg p� x �x�p

for all a � Act� f � Actn �� Act� g � Act� �� Act� and ��SS is the smallest
family f

a
��SS� Pr�

SS
j a � Actg of relations satisfying�







ACT�SS� a�p
a
��SS p

SUM�SS� if p�
a
��SS p

�

or p�
a
��SS p

�

then p�  p�
a
��SS p

�

FUN�SS� if 
i�pi
ai��SS p

�
i � c � f�a� � � �an�

then �p� � � � pn��f �
c
��SS �p

�
� � � � p

�
n��f �

COM�SS� if �p�
c
��SS p

�
� � p �� p�� jg p��

or �p�
c
��SS p

�
� � p� � p� jg p���

or �p�
a
��SS p

�
� � p�

b
��SS p

�
� �

p� � p�� jg p
�
� � c � g�a� b��

then p� jg p�
c
��SS p

�

REC�SS� if p��x�p�x�
a
��SS p

�

then �x�p
a
��SS p

�

This process system will be called the standard semantics SS of the language
for de	ning processes� Throughout this chapter c � f�a� � � � an� and c � g�a� b�
are de	ned as in chapter � and p��x�p�x� has its normal meaning�
It is not obvious how a static �collecting� semantics for nondeterministic

programs should be� but the nondeterministic operator  behaves in a way like
the if�then�else construct of sequential programming� we therefore pursue by
treating  almost as we would treat the if�then�else construct� i�e� traverse over
both branches if they lead to the same state �process�� and collect both values�
Let PCS � �PrCS�P�Act����CS� where PrCS is given by the following ab�

stract syntax�

p ��� nil A�p� p�  p� �p� � � � pn��f � p� jg p� x �x�p

for all A � P�Act�� f � P�Act�n �� P�Act�� g � P�Act�� �� P�Act�� and ��CS

is the smallest family f
A
��CS� Pr�

CS
j A � P�Act�g of relations satisfying�


�



ACT�CS� A�p
A
��CS p

SUM�CS� if p�
A
��CS p

�

or p�
A
��CS p

�

or �A � B �C � p�
B
��CS p

� � p�
C
��CS p

��

then p�  p�
A
��CS p

�

FUN�CS� if 
i�pi
Ai��CS p

�
i � C � f�A� � � �An�

then �p� � � � pn��f �
C
��CS �p

�
� � � � p

�
n��f �

COM�CS� if �p�
C
��CS p

�
� � p �� p�� jg p��

or �p�
C
��CS p

�
� � p� � p� jg p���

or �p�
A
��CS p

�
� � p�

B
��CS p

�
� �

p� � p�� jg p
�
� � C � g�A�B��

then p� jg p�
C
��CS p

�

REC�CS� if p��x�p�x�
A
��CS p

�

then �x�p
A
��CS p

�

This process system will be called the collecting semantics CS of the language
for de	ning processes� We shall assume P�Act� ordered by subset inclusion ��
Assume AppAct is a complete lattice such that t is de	ned� Let PAS �

�PrAS� AppAct���AS� where PrAS is given by the following abstract syntax�

p ��� nil l�p� p�  p� �p� � � � pn��f � p� jg p� x �x�p

for all l � AppAct� f � AppActn �� AppAct� g � AppAct� �� AppAct� and ��AS

is the smallest family f
l
��AS� Pr�

AS
j l � AppActg of relations satisfying�


�



ACT�AS� l�p
l
��AS p

SUM�AS� if p�
l

��AS p
�

or p�
l

��AS p
�

or �l � m t n � p�
m
��CS p

� � p�
n
��CS p

��

then p�  p�
l
��AS p

�

FUN�AS� if 
i�pi
li��AS p

�
i � m � f�l� � � � ln�

then �p� � � � pn��f �
m
��AS �p

�
� � � � p

�
n��f �

COM�AS� if �p�
m
��AS p

�
� � p �� p�� jg p��

or �p�
m
��AS p

�
� � p� � p� jg p���

or �p�
n
��AS p

�
� � p�

l
��AS p

�
� �

p� � p�� jg p
�
� � m � g�n� l��

then p� jg p�
m
��AS p

�

REC�AS� if p��x�p�x�
l
��AS p

�

then �x�p
l
��AS p

�

This process system will be called the approximating semantics AS of the
language for de	ning processes�
Note how CS is just an instance of AS with AppAct � P�Act� and t � ��

but since CS is essential we want to single it out�

	�� Correctness and safeness on actions

To express correctness of an analysis AS with respect to the standard seman�
tics SS we may use a function � � Act � AppAct� The intuition is that if
��a� � Appa then Appa describes properties of a�
In traditional data �ow analysis one analysis� the collecting semantics CS� is

in a way the most precise data �ow analysis� since it gives a trace of all possible
values �actions��
Normally CS takes its values in the powerset of standard values� Applied to

our model of concurrency it takes its actions in P�Act�� The correctness of CS
with respect to SS is expressed by 
 � Act� P�Act� where 
�a� � fag�
To express safeness we may use the ideas of abstract interpretation �Nie �
�

�Cou ��� �Cou ���� Safeness is to say that one data �ow analysis is more approx�
imative than another� i�e� it is not as precise� but it will not give contradicting
information�
Safeness is usually expressed relative to the collecting semantics by a function


 � P�Act�� AppAct�


�



If an approximating analysis AS is safe with respect to CS we may rely on
the correctness between CS and SS to ensure correctness of AS with respect to
SS� This is in a way closest in spirit to the original framework of P� Cousot and
R� Cousot �Cou ��� �Cou ����
These relationships may be illustrated as�

P�Act� AppAct

Act
�

�
�

�
�
�

�
�
�
�
�
�





 �

Figure 
��� �in spirit Figure � of �Nie �����

For a more concrete example suppose Act � A � A � f�g� where A �
fa� b� c� ���g and A is a set of conames� Assume we only have one unary function
f to instantiate FUN�SS with� We have to 	nd functions g � P�Act� �� P�Act�
and h � L �� L� such that they simulate the behaviour of f � Act �� Act� Con�
cerning the collecting semantics we assume P�Act� ordered by subset inclusion
�� and the function as some monotone function g � P�Act� �� P�Act�
Finally we must consider the approximating semantics AS where we assume

that AppAct is some complete lattice L and the function is some monotone

function h � L �� L� A possible choice of L is� n� �




n�

mb�

����

����
i�e� the

complete lattice with elements �� n� � � � n� and mb� ordered by � v l v mb�
where l is n� � � or n� � � seems arti	cial in the above example but it is kept
for historical reasons� Note� however� that the intuition �more approximative�
in the ordering used in data �ow analysis di�ers from the standard intuition�
�more de	ned� and that the ordering may seem back to front by the 	rst glance�
With this assumption 	gure 
�� specializes to 	gure 
�� and we shall now

explain 
� �� � and 
�
Readers familiar with abstract interpretation will notice the analogy with


�
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�
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�
�
�
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� �
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Figure 
���

the rule of sign test �see e�g� �Cou �����
The functions � and 
 are termed representation functions since the intuition

is that ��a� � AppAct and 
�a� � P�Act� are properties that best describe
a � Act� Thus it is natural to put

��a� � n� if a � A

��� � � �

��a� � n� if a � A

and 
�a� � fag
The correctness of hwith respect to f may then be expressed by the condition

that�
��a� v l � ��f�a�� v h�l�

which says that�

whenever l correctly describes a� also h�l� correctly describes f�a�

Similar 
 may be used to express correctness of g with respect to f �
The relationship between P�Act� and L is expressed using the framework of

abstract interpretation �Cou ���� The fundamental ingredient is a pair �
� �� of
abstraction and concretization functions�
The intuition with � is to formalize the intuitive meaning of properties in

AppAct� so one has ��n� � � A� ���� � �� ��mb� � � Act etc�

�




Given a set of actions B the intention with 
 is that 
�B� is a best safe
description of B in AppAct� so one would express e�g�


�fa� bg� � n� and 
�fa� bg� � mb�

This indicates that �B is safely described by l� means

B � ��l�

So fa� bg is safely described by n� and mb� � but ��n� � is a proper subset of
��mb� �� and n� is therefore a better property�
It is most convenient if we can use n� v mb� to deduce that we should prefer

n� � so we have to relate the partial orders v and ��
This is captured by the adjoinedness condition �Cou ��� �

�� 
 and � are monotone

�� 
B � B � �� � 
��B�

�� 
l � �
 � ���l� v l

The relationship between g and h may be illustrated as�

Appact Appact

P�App� P�App�

�

�

�

�

h

g

� 


Figure 
���

Generally we may use two complete lattices L and M � and the adjoinedness
condition of 
 � L�M and � �M � L may be expressed as�


l � L � 
m �M�
�l� v m� l � ��m�

��



��� Extending correctness and safeness to pro�

cess systems

We now turn to extend the correctness and safeness conditions to process sys�
tems so that we are able to make statements like AS is safe and correct with
respect to SS and CS�

The extension of the correctness condition may be given by a bisimulation�
like construct� Note how these constructs extend de�nition ����� in �Lar 	�a
�

Let R � PrSS � PrAS be a relation such that whenever �p� q� � R then


�� �a � Act�p
a
��SS p

���q���l � AppAct�q
l

��AS q
� � ��a�v l� �p�� q�� � R

�� �l � AppAct�q
l
��AS q

���p���a � Act�p
a
��SS p

� � ��a�v l� �p�� q�� � R

We say that R is a correctness relation� and we write p corr� q if there exists
a correctness relation containing �p� q��

Now for R � PrSS � PrAS we de�ne CORR��R� � PrSS � PrAS as


�p� q� � CORR��R� i�


�� �a � Act�p
a
��SS p

���q���l � AppAct�q
l

��AS q
� � ��a�v l� �p�� q�� � R

�� �l � AppAct�q
l
��AS q

���p���a � Act�p
a
��SS p

� � ��a�v l� �p�� q�� � R

CORR� is easy seen to be a monotone endofunction upon the complete
lattice of relations over PrSS�PrAS ordered by subset inclusion� Thus by classic
lattice theory CORR� has a maximal �xed point� This �xed point equals corr��
We may straighten the condition ��a� v l to ��a� � l obtaining a restricted
relation� but ��a� v l seems more in the spirit of abstract interpretation�

The correctness condition of CS with respect to SS may be expressed by ��
but we prefer to use a � A instead of fag � A even though they are equivalent�

Let R � PrSS � PrCS be a relation such that whenever �p� q� � R then


�� �a � Act�p
a
��SS p

� � �q���A � P�Act��q
A
��CS q

� � a � A � �p�� q�� � R

�� �A � P�Act��q
A
��CS q

� � �p���a � Act�p
a
��SS p

� � a � A � �p�� q�� � R

Now for R � PrSS � PrCS we de�ne CORR��R� � PrSS � PrCS as


�p� q� � CORR��R� i�


�� �a � Act�p
a
��SS p

� � �q���A � P�Act��q
A
��CS q

� � a � A � �p�� q�� � R

�� �A � P�Act��q
A
��CS q

� � �p���a � Act�p
a
��SS p

� � a � A � �p�� q�� � R

��



The maximal �xed point of this monotone endofunction is corr� �
Also the safeness condition between P�Act� and AppAct may be extended

to process systems�
Let R � PrCS � PrAS be a relation such that whenever �p� q� � R then


�� �A�P�Act��p
A
��CS p

���q���l�AppAct�q
l
��AS q

����A�v l��p�� q���R

�� �l�AppAct�q
l
��AS q

���p���A�P�Act��p
A
��CS p

��A���l���p� � q���R

We say that R is a safeness relation� and we write p safe�
�
q if there exists

a safeness relation R containing �p� q��
Now for R � PrCS � PrAS we de�ne SAFE�

��R� � PrCS � PrAS as


�p� q� � SAFE�
��R� i�


�� �A�P�Act��p
A
��CS p

���q���l�AppAct�q
l
��AS q

����A�v l��p�� q���R

�� �l�AppAct�q
l
��AS q

���p���A�P�Act��p
A
��CS p

��A���l���p� � q���R

The maximal �xed point of this monotone endofunction is safe�
�
�

To take expressions with free variables into account we may use the technique
of re�ning the functionals CORR�� CORR� and SAFE�

� in the same way as
we did for M �bisimulation in chapter �� We may re�ne SAFE�

�� CORR� and
CORR� by adding the clause UG�p� � UG�q�� where UG�p� is the set of
unguarded variables in p�

�p� q� � SAFE�
��R� i�


�� UG�p� � UG�q�

�� �A �P�Act��p
A
��CS p

���q���l�AppAct�q
l
��AS q

����A�v l��p�� q���R

�� �l�AppAct�q
l
��AS q

���p���A�P�Act��p
A
��CS p

��A���l���p� � q���R

Unfortunately this only works for regular expressions� as the de�nition of
unguardedness given in chapter � �de�nition ����is only given for regular ex�
pressions�

The naive extension of UG by UG��p� � � � pn��f 
� �
Sn

i�� UG�pi� does not
work� since the substitution property will not in general hold� i�e it is not guaran�
teed that p��q��x
 safe

�

�
p��q��x
 holds whenever p� safe

�

�
p� and q� safe

�

�
q�

To see this let


p� � x�a� �a


q� � x�id


p� � a�nil

q� � n	�nil

��



where �a� �a
 means the renaming function which sends every name into its
coname� Then it is obvious that p� vM q� and p� vM q�� but

a�nil�a� �a
 safe�
�
n	�nil�id


does not hold�
In fact this problem is a general problem of substitution in non�regular con�

texts� The solution seems to be to extend the de�nition of unguardedness to take
account of the presence of �f 
 in expressions �see e�g� the remark in �Lar 	�a

p� ����� We will not pursue this any further in this thesis but only turn our
attention to open expressions if they are regular�

��� Inducing data �ow analysis

If we have a function f 
 Actn 
� Act which we may use to instantiate FUN�SS�
then this function may be extended to �f 
 P�Act�n 
� P�Act� in the obvious
way �f�A� � � �An� � ff�a� � � �an� j ai � Aig� and similar for g in COM�SS�

Also if we have de�ned a representation function � 
 Act� AppAct we may
extend this to an abstraction function
� 
 P�Act�� AppAct by ��A� � tf��a� j a � Ag�

� is called a lower adjoined if there exists a function � such that ��� �� is
an adjoined pair� There need not exist such a � but if it does it is uniquely
determined by the formula �Cou ��



��m� � tfl j ��l� v mg

Finally� � is called an upper adjoined if there exists an � such that ��� �� is a
pair of adjoined functions and then � is uniquely determined by

��l� � ufm j l v ��m�g

Also � may be given in terms of � by � � � 	 � assuming that ��a� is fag�
Composition of partial functions is taken to be


�f 	 g��x� �

�
f�g�x�� if g�x� is de�ned
unde�ned otherwise

The above constructs may be used in what may be termed an induced data
�ow analysis� The induction will be given as an instance of the general scheme
of de�nition ����

First we may relate SS to CS by an instance of the general scheme of de�ni�
tion ���� by giving a function Fc 
 PrSS � PrCS� given inductively by


De�nition ���

Fc�nil� � nil

��



Fc�a�p� � ��a��Fc�p� � fag�Fc�p�

Fc�p� � p�� � Fc�p�� � Fc�p��

Fc�p� jg p�� � Fc�p�� j�g Fc�p��

Fc��p� � � � pn��f 
� � �Fc�p�� � � �Fc�pn��� �f 


Fc�x� � x

Fc��x�p� � �x�Fc�p�

To take account for substitution we may use the following lemma


Lemma ���

Fc�p�q�x
� � Fc�p��Fc�q��x


Proof� By structural induction on p using the de�nition of substitution
�de�nition ����� �

Lemma ��� if Fc�p�
A
��CS p

�� then p�� � Fc�p�� and p
a
��SS p

� with a � A

Proof� By induction on the number of inferences�
�The full proof is presented in appendix B�� �

Proposition ��� p corr� Fc�p�� p closed and �nite�

Proof� The relation

R � f�p�Fc�p�� j p � Prf
SS
g

is a correctness relation�
To see that R � CORR��R� we proceed by structural induction using lemma
��� in the cases
 p � �p� � � � pn��f 
 and p � p� jg p��
�The full proof is presented in appendix B�� �

Proposition ��� p corr� Fc�p�� p regular�

Proof� The relation

R � f�p�Fc�p�� j p � Prr
SS
g

is a correctness relation�
To see that R � CORR��R� we proceed by induction on inferences using lemma
��� when p has the form �x�p�
�The full proof is presented in appendix B�� �

The relationship between CS and AS may be given by a function
Fa 
 PrCS � PrAS de�ned inductively by


��



De�nition ���

Fa�nil� � nil

Fa�A�p� � ��A��Fa�p�

Fa�p� � p�� � Fa�p�� �Fa�p��

Fa�p� jh p�� � Fa�p�� j��h��� Fa�p��

Fa��p� � � � pn��g
� � �Fa�p� � � �Fa�pn���� 	 g 	 �n


Fa�x� � x

Fa��x�p� � �x�Fa�p�

Here �n means �v� � � � vn����v�� � � � ��vn���

Actually this is a general scheme when relating two approximating semantics
AS� and AS��

The de�nition of Fa��p� � � � pn��g
� � �Fa�p�� � � �Fa�pn���� 	 g 	 �n
 will be
the best choice of a function approximating g due to the adjoinedness condition
upon ��� ��� In particular it will be better than

Fa��p� � � � pn��h
� � �Fa�p�� � � �Fa�pn����v� � � � vn�



where 
 � tAppAct� as this would yield a rather uninformative analysis�

Lemma ���

Fa�p�q�x
� � Fa�p��Fa�q��x


Proof� By structural induction on p using de�nition ��� of substitution�
�

Lemma ��� if Fa�p�
l
��AS p

�� then p�� � Fa�p
�� and p

A
��CS p

� with ��A� v l

Proof� By induction on the number of inferences� �

That AS is safe with respect to CS is expressed by

Proposition ��� p safe�
�
Fa�p�� p closed and �nite�

Proof� The relation

R � f�p�Fa�p�� j p � Prf
CS
g

is a safeness relation�
To see that R � SAFE�

��R� we proceed by structural induction using lemma
��� in the cases
 p � �p� � � � pn��f 
 and p � p� jg p��
�The proof of the nontrivial cases is presented in appendix B�� �

��



Proposition ��� p safe�
�
Fa�p�� p regular�

Proof� The relation

R � f�p�Fa�p�� j p � Prr
CS
g

is a safeness relation�
To see that R � SAFE�

��R� we use induction on the number of inferences using
lemma ��� when p has the form �x�p� �

From the above we see that by giving either � 
 P�Act� � AppAct or
� 
 Act � AppAct we may induce a consistent data �ow analysis� in the �rst
case relying on the correctness of CS and in the second by using
��A� � tf��a� j a � Ag�

��� Stable analysis

As shown in part ��� we may describe properties of Act � A � �A � f	g by the

lattice L
 n� �

�

n�

mb�

����

����
and we may use the function ��a� � n	 if a � A�

���a� � n	 if �a � �A� ��	 � � 	 to induce a data �ow analysis�
This analysis may be used to test whether a process p is stable or not� If

only p yields n	 or n	 experiments the process is stable� if the process yields 	
experiments it is not stable� and if it yields an mb	 experiment we can not be
certain whether it is stable or not� and a more precise analysis is necessary�

The analysis of stableness is useful for deciding congruence of processes

If p and q are stable then if p � q then p �c q where � is observational
equivalence and �c is congruence �Mil 	�
�

Let g 
 Act� 
� Act be the partial function satisfying the following diagram
shown in table ���


When we instantiate jg with g we obtain the wellknown operator j for com�
munication from CCS �Mil 	�
� Also let f� 
 Act 
� Act be the function


f��x� �

�
x if x 
� c and x 
� �c
unknown otherwise

When we instantiate �� � ���f 
 with f� we obtain the restriction operator nc from
CCS�

��



g a b � � � �a �b � � � 	
a u u � � � 	 u � � � u
b u u � � � u 	 � � � u
���

���
���

���
���

���
�a 	 u � � � u u � � � u
�b u 	 � � � u u � � � u
���

���
���

���
���

���
	 u u � � � u u � � � u

where u means unde�ned�

Table ���
 g 
 Act� 
� Act

Let f� 
 Act 
� Act be the function


f��x� �

����
���

x if x 
� a
x if x 
� �a
c if x � a
�c if x � �a

When we instantiate �� � ���f 
 with f� we obtain the renaming operator �c�a
�
Let f� 
 Act 
� Act be the function


f��x� �

����
���

x if x 
� b
x if x 
� �b
c if x � b
�c if x � �b

When we instantiate �� � ���f 
 with f� we obtain the renaming operator �c�b
�
Let B� � �x�a�b�x and B� � �B��f�
 jg B��f�
��f�
� Fa�Fc�B��� � �x�n	�n	�x
and since Fa�Fc�B��� does not o�er any 	 or mb	 experiment we may conclude
that B� is stable�

Fa�Fc�B��� � �Fa�Fc�B����� 	 �f� 	 �
 j���g�� Fa�Fc�B����� 	 �f� 	 �
��� 	 �f� 	 ��


� ��x�n	�n	�x�� 	 �f� 	 �
 j���g�� �x�n	�n	�x�� 	 �f� 	 �
��� 	 �f� 	 ��


Since

��x�n	�n	�x�� 	 �f� 	 �
 j���g�� �x�n	�n	�x�� 	 �f� 	 �
��� 	 �f� 	 ��

�
��

�n	�n	�x��x�n	�n	�x�� 	 �f� 	 �
�x
�� 	 �f� 	 �
 j���g��

n	�n	�x��x�n	�n	�x�� 	 �f� 	 �
�x
�� 	 �f� 	 �
��� 	 �f� 	 ��


we may conclude that Fa�Fc�B��� is not stable� This shows that although
B� � B� where � is observational equivalence �Mil 	�
 B� enjoys a property
which B� does not� Hence B� and B� are not congruent�

�	



In the above example it seems tedious to decide whether B� and B� enjoy
di�erent properties� but of cause this is because we only use the semantics rules
in the investigation� We may wish to use algebraic laws to manipulate the terms
and clearly terms in CS and AS are much easier to handle by algebraic laws
than their similar SS terms�

��� Using proof systems together with data �ow

analysis

We may extend the proof systems of chapter � to take the operational semantics
of CS and AS into account� All that is required is that the axioms S��S� remain
sound�

Proposition ��� The axoims S��S� of Sr of Sf are sound for AS

Proof� The proof of proposition ��� and ���� has to be extended with the
cases

S� �p� � p�� � p�
l
�� p� and l � m t n and p��i

m
�� p� and pi��

n
�� p� �here

� is modulo ��� But then p� � �p� � p��
l
�� p� by using SUM� twice

S� p� � p�
l
�� p� and l � m t n and and p�

n
�� p� and p�

n
�� p� but then

p� � p�
l
�� p� since l � m t n � n tm

S� p� p
l
�� p� � l � l t l

S� p� nil
l
�� p�� But nil

m


� for any m so we cannot use l � m t n�

�

Note that the above proof also generalizes to CS since CS is just a particular
instance of AS with AppAct � P�Act� and t � �� Once we have established
the above proposition we may use the proof system in a constructive way


Proposition ��	 if p corr� q � q vAppAct q
� then p corr� q�

Proof� Obvious since every action l of q can be matched by q� by an action
l� such that l v l�� Note that this proposition would not hold if we insist on
a � ��l� in the de�nition of corr� � �

Proposition ��
 if p safe�
�
q � p� vP�Act� q

� then p� safe�
�
q�

Proof� Obvious since every moveA of p can be matched by a moveA� � A
of p� and a move l� of q� such that ��A�� v l� since � is monotone� �

��



��� Concreteness test

Recall the method of partial speci�cation described in chapter �� If p and q were
concrete� i�e� p and q and all their derivatives could not perform an ��action�

and p vM q where M � Act n f�g and Act �
�

a b � � �� � �� � ����� AA�� � then p � q where �

is the bisimulation equivalence �Par 	�
�
One method of infering that a process p is concrete is by proposition ���� if

q is concrete and p vM q then p is concrete� But how were we to know that
q was concrete� We could run q testing it and seeing if an ��action is possible�
but this seems as a rather expensive process� If we could make a static analysis
disregarding all other actions and by this process have the answer� then a more
attractive analysis has been reached� We shall use the framework of this chapter
to this end yielding an analysis for concreteness�

For Act � fa� b� � � �g � f�g let AppAct � fn��m�g with the ordering

n� vAppAct m� i�e� AppAct may be illustrated as in
m�

n�
� m� has the intuition

that the action may be �� and n� has the intuition that we by certainty know
that the action is not ��

We may induce the analysis by � 
 Act� AppAct given by


��a� �

�
n� if a 
� �
m� if a � �

This analysis resembles the wellknown strictness analysis from functional
programming where one is interested in information on when operators are
strict� Then the parameter mechanism may be exchanged from call�by�name to
call�by�value without changing the semantics of the language �see e�g� �Nie 	�
��

Returning to the concreteness analysis this states that whenever only n��
actions are possible for the abstracted agent� then only actions inM � Actnf�g
are possible for the real agent�

Instead of using � 	 �f 	 �n in FUN�AS and � 	 �g 	 �� in COM�AS for the
communication operator we could use a more abstract function h 
 AppAct� �
AppAct de�ned as


h�a� b� �

�
n� if a � n� and b � n�
m� otherwise

The fact that � 	 �g 	 �� v h is easy veri�ed�
As an example of the use of the above analysis we may show that spec �

�x�a�b�	�	�x de�ned in chapter � is concrete�
By proposition ��� spec corr� Fa��Fcspec�� where

��



Fa�Fc�spec�� � Fa�Fc��x�a�b�	�	�x�� � �x�Fa�Fc�a�b�	�	�x�� �

�x���a��Fa�Fc��b�	�	�x�� � �x�n � �n � �n � �n � �x

We may now �run� Fa�Fc�spec�� to check that it o�ers no m�� experiment
and infer that spec does not o�er an ��experiment� Also we may see that
q� � �x��c�� �d�x� �d��y� � �y� is not concrete since

Fa�Fc�q
��� � �x�n � ��n � �x� n � ��y�m � �y�

n�
��

�n � �x� n � ��y�m � �y��Fa�Fc�p
����x


n�
�� �y�m � �y

m�
�� y��y�m � �y


i�e� Fa�Fc�p
��� o�ers an m��experiment and therefore we can not be certain

as to whether p� o�ers an ��experiment or not� and further analysis is necessary�

��



Conclusion

A thorough investigation of a preorder vM on processes induced by a preorder
vA on actions has been presented� The preorder on processes is obtained by
extending the notion of bisimulation to take the preorder on actions into account�
Also certain �uninteresting� actions may be excluded from consideration by the
notion of M �bisimulation�

A language for de�ning processes has been de�ned� The language resem�
bles an extract and extension of current variations over CCS� Its semantics is
operational and based on a labelled transition system�

We have algebraically characterized the preorder vM by three sound and
complete proof systems� one for �nite terms describing nondeterminism and
action�pre�xing� the second� an extension of the �rst� introducing the notion
of communication and function� and the third for regular expressions� These
proof systems are of interest since many interesting concurrent systems can be
expressed in the sublanguages they characterize�

We have instantiated the general theory to a speci�c instance called par�
tial speci�cation� We have shown that the concurrent alternating bit protocol
CABP �Koy 	�
 meets its speci�cation using partial speci�cation� and it is our
claim that our method is both more general and simpler than the method of
modularization presented in �Koy 	�
�

Finally by an extension of the generalized bisimulation we have shown how
the method of abstract interpretation may be introduced into hierarchical devel�
opment of concurrent systems� We have shown how to induce safe and correct
analyses and shown how these analyses may answer questions about processes�
that otherwise would have demanded a run of the program�

Still� however� there are numerous �elds for further investigation� An in�
teresting future problem to investigate is to see if our work extends to that of
�weak��bisimulation equivalence� i�e� if a kind of �weak��M �bisimulation exists
and how it may be axiomatized� In that case it will also be interesting how the
notion of divergence will in�uence on the preorder induced�

Another interesting �eld is how modal logic may be used to characterize the
preorder presented in this thesis and the preorders described above� It is clear
that the theory of modal logic o�ers a lot of interesting aspects not considered

��



in this thesis� aspects such as distinguishing processes by the modal properties
they enjoy� Work in this area is going on at the Institute of Electronic Systems�
Aalborg University Centre �see e�g� �Hil 	�� Ves 	�
��

As it may be seen from the veri�cation of the concurrent alternating bit
protocol in chapter � it will be interesting to apply the theory of partial speci�
�cations to larger examples to see how this may shorten the developing time of
large systems� But as it may be seen from the veri�cation of the CABP using
the proof systems of chapter � even modest speci�cations yield tedious proofs�

Therefore it will be interesting if an automatic system of M �bisimulation
checking could be designed and implemented just as it was shown in �Lar 	�a
 for
bisimulation and �weak��bisimulation� It seems like it will at least be possible
for the partial speci�cation problem since this is just a slight extension of the
notion of bisimulation� and since we may stop the search of a branch for further
matches as soon as a pair �p�U� has been encountered�

Finally� further investigations in how methods of data �ow analysis may be
applied to concurrent system development will be interesting� For example does
a �constant propagation� of actions exist�� a �live variable��analysis of actions�
etc� Also the question about the chosen static �collecting� semantics is left open�
is it intuitively the most precise as is the case for sequential programs� or does
there exist one taking the nature of nondeterminism into account in another
way�
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Appendix A

In this appendix we present the full proofs of propositions� lemmas and theorems
which have been presented but not proven in full in chapter � of the thesis�

The proofs are presented here either because they are long� tedious and
sometimes trivial or because they only are of interest for readers interested in
the underlying theoretical development�

Proposition A�� �Proposition 	��

vM is a precongruence with respect to the operators of "nf

Proof�

p � a�p 
 We prove the more general inference rule C� sound� The relation

R� � f�a�p�� b�p�� j a vA b � p� vM p�g� vM

is an M �bisimulation�
To see that R� �MB�R�� observe that if a�p�

a
�� p� then by ACT�


b�p�
b
�� p� and by de�nition of R�
 a vA b and �p�� p�� �vM � R��

Also if b �M then b�p�
b
�� p� and by ACT�
 a�p�

a
�� p� with a vA b

and �p�� p�� � R� which is the matching move� If b 
� M the case holds
trivially�

p � p� � p�� The relation

R� � f�p� � p�� q�� q�� j p� vM q� � p� vM q�g� vM

is an M �bisimulation� To see that R� �MB�R�� observe that if

�� p� � p�
a
�� p� then

either p� � p�� and p�
a
�� p��� Then by de�nition of R� there exist

q�� and b such that q�
b
�� q�� and a vA b and p�� vM q��� By

SUM�
 q� � q�
b
�� q�� which obviously is the matching move�

or p� � p�� and p�
a
�� p��� The case is similar�

��



�� q� � q�
a
�� q�� a �M then

either q� � p�� and q�
a
�� q��� Then by de�nition of R� there exist

p�� and b such that p�
b
�� p�� and b vA a and p�� vM q��� By

SUM�
 p� � p�
b
�� q�� which is the matching move�

or q� � q�� and q�
a
�� q��� The case is similar�

�

Proposition A�� �Proposition 	��

The following holds for all p�� p�� p� � T	nf �

p� � �p� � p�� �M �p� � p�� � p�

p� � p� �M p� � p�

p� � p� �M p�

p� � nil �M p�

Here �M means that both vM and wM hold�

Proof� The relation

R� � f��p� � p�� � p�� p� � �p� � p��� j p�� p�� p� � Prg � Id

is an M �bisimulation�
To see that R� �MB�R�� observe the following cases


�� �p� � p�� � p�
a
�� p�

i� p� � p�� and p�
a
�� p��� Then by SUM�
 p���p��p��

a
�� p�� clearly

a vA a and �p��� p
�
�� � Id � R��

ii� p� � p�� and p�
a
�� p��� Then by SUM� twice
 p�� �p� � p��

a
�� p��

which obviously is the matching move�

iii� p� � p�� and p�
a
�� p��� As in ii�

�� p� � �p� � p��
a
�� p�� a �M � Similar arguments as in i yield the result�

Also the relation R��
� is an M �bisimulation�

The relation
R� � f�p� � p�� p� � p�� j p�� p� � Prg � Id

is an M �bisimulation�
Also the relation R��

� is an M �bisimulation�
The relation

R� � f�p� � p�� p�� j p� � Prg � Id

�	



is an M �bisimulation�
Also the relation R��

� is an M �bisimulation�
The relation

R
 � f�p� � nil� p�� j p� � Prg � Id

is an M �bisimulation�

To see that R
 � MB�R
� observe that nil
a


� for all a � Act and therefore

p� � nil
a
�� p� i� p�

a
�� p� which p obviously can match�

Also the relation R��

 is an M �bisimulation�

�

Proposition A�� �Proposition 	��

Every term p in "nf has a normalform nf�p�
such that � p �M nf�p�

Proof� By structural induction�

p � nil 
 nf�nil� � nil because of P�
 � nil vM nil�

p � a�p� 
 Assume there exists nf�p�� such that � p� vM nf�p��� Choose
nf�ap�� � a�nf�p��� Then clearly nf�a�p�� is in normalform by the as�
sumption and C� we � a�p� vM a�nf�p�� since a vA a�

p � p� � p� 

We may assume that nf�p�� �

Pn

i�� ai�pi and nf�p�� �
Pm

i�n�� ai�pi�
The induction hypothesis states that

� pi � nf�pi�� i � f�� �g

From C� we may infer

� p� � p� � nf�p�� � nf�p��

We choose nf�p� �
Pm

i�� ai�pi in such a way that

� nf�p� � nf�p�� � nf�p�� �A���

and then use P� to obtain the desired result� We only sketch the proof
of �A��� since it is tedious handwork� If n � � or m � n we use S� to
eliminate nil� and in case of �duplicates� we use S� to eliminate these�
Also � nf�p� vM p may be proven by arguments as above yielding �
p �M nf�p��

�

Proposition A�� �Proposition 	�


If p and q are in normal form then�

p vM q� � p vM q

��



Proof� We prove this by induction on the size of p and q� noting that
p

a
�� p� i� a�p� is a subterm of p and the same holds for q� We therefore assume

both p and q take the form
Pn

i�� ai�pi and
Pm

j�� bj�qj�
Assume p vM q�
First consider the case p � nil� that is n � �� since p vM q� q must be nil orPm

j�� bj�qj with all bj 
�M � In the �rst case P� yields the desired result and in
the second case ANNIHIL and C� and S� yield the desired result�
Now consider the case n 
 ��
Let aipi be a subterm of p� Thus if p

ai�� p� then for some q�
 q
cj
�� q� with

ai vA cj and pi vM q�� By the above remark q� must be qj for some j and by
induction � pi vM qj and by C� � ai�pi vM cj �qj�

Now let ci�qi be a subterm of q� Thus if q
ci�� q� then if ci � M then for some

p�
 p
aj
�� p� with aj vA ci and p� vM qi� But p� must be pj for some j�

By induction � pj vM qi and by C�
 � aj�pj vM ci�qi� If ci 
� M then by
ANNIHIL � nil vM ci�qi�
So for every i there exists a j such that � ai�pi vM cj �qj and for every j there
exists an i such that � aj�pj vM ci�qi if ci �M or � nil vM ci�qi� otherwise�
By repeated use of C� we may now build up p and q term by term such that
� p vM q holds using S� to eliminate �duplicates� and S� to eliminate nil#s� �

Proposition A�� �Proposition 	��

vM is a precongruence with respect to the operators of "cf � provided g in jg is
monotone�

Proof� As in proposition ��� with the extension that the relation


R � f�p� jg p�� q� jg q�� j pi vM�CL�g���M��i� qi� i � f�� �gg

is an M �bisimulation�
To see that R �MB�R� observe the following cases


�� p� jg p�
a
�� p�

i� p� � p�� jg p� and p�
a
�� p��� Then by de�nition of R there exist q��

and b such that q�
b
�� q�� with a vM b and p�� vM�CL�g���M��i� q

�
��

By COM �
 q� jg q�
b
�� q�� jg q� which obviously is the matching

move�

ii� p� � p� jg p�� and p�
a
�� p��� The case holds by similar arguments as

in i�

iii� p� � p�� jg p�� and p�
b
�� p�� and p�

c
�� p�� and a � g�b� c�� By

de�nition of R 
 q�
d
�� q�� with b vA d and p� vM�CL�g���M��i� q

�
�

and q�
e
�� q�� with c vA e and p� vM�CL�g���M��i� q

�
�� By COM�

and monotonicity of g
 q� jg q�
g�d�e�
�� q�� jg q�� which obviously is the

matching move�

	�



�� q� jg q�
a
�� q�� a �M

i� q� � q�� jg q� and q�
a
�� q��� Then by de�nition of R there exist p��

and b such that p�
b
�� p�� with b vM a and p�� vM�CL�g���M��i� q

�
��

By COM�
 p� jg p�
b
�� p�� jg p� which obviously is the matching

move�

ii� q� � q� jg q
�
� and q�

a
�� q��� The case holds by similar arguments as

in i�

iii� q� � q�� jg q�� and q�
b
�� q�� and q�

c
�� q�� and a � g�b� c�� b� c �

g���M � then by de�nition of R there exist d and p�� such that p�
d
��

p�� with d vA c and p�� vM�CL�g���M��i� q
�
�� Also there exist e and p��

such that p�
e
�� p�� with e vA c and p�� vM�CL�g���M��i� q

�
�� Since

g is monotone we may infer from COM� that p� jg p�
g�d�e�
�� p�� jg p

�
�

which is the matching move�

�

Proposition A�	 �Proposition 	��

if p �

Pn

i�� ai�pi and q �
Pm

j�� bj�qj then

p jg q �M

X
�i�j��f�i�j�jg�ai�bj� definedg

g�ai� bj���pi jg qj��

nX
i��

ai��pi jg q� �
mX
j��

bj��p jg qj�

Proof� The relation

R � f�p jg q�
X

�i�j��f�i�j�jg�ai�bj� definedg

g�ai� bj���pi jg qj��

nX
i��

ai��pi jg q� �
mX
j��

bj��p jg qj��

j p �
nX
i��

ai�pi � q �
mX
j��

bj�qjg

is an M �bisimulation�
To see that R �MB�R� observe the following cases


�� p jg q
a
�� p�

	�



i� p� � pi jg qj and a � g�ai� bj� and p
ai�� pi and q

bj
�� qj� Then by

de�nition of R and ACT� and SUM�
P
�i�j��f�i�j�jg�ai�bj� definedg

g�ai� bj���pi jg qj� �Pn

i�� ai��pi jg q� �
Pm

j�� bj��p jg qj�
g�ai�bj�
�� pi jg qj

which is the matching move�

ii� p� � pi jg q and a � ai and p
ai�� pi� Then by ACT � and

SUM�
P

�i�j��f�i�j�jg�ai�bj� definedg
g�ai� bj���pi jg qj��

Pn

i�� ai��pi jg

q� �
Pm

j�� bj ��p jg qj�
ai�� pi jg q which is the matching move�

iii� p� � p jg qj and a � bj and q
bj
�� qj� Similar to ii�

��
P

�i�j��f�i�j�jg�ai�bj� definedg
g�ai� bj���pi jg qj� �Pn

i�� ai��pi jg q� �
Pm

j�� bj��p jg qj�
a
�� q�� a �M

i� q� � pi jg qj and a � g�ai� bj�� By de�nition of R and q and f�i� j� j

g�ai� bj�definedg we know that p
ai�� pi and q

bj
�� qj and g�ai� bj�

is de�ned so by COM� p jg q
g�ai�bj�
�� pi jg qj which is the matching

move�

ii� As in ��ii�

iii� As in ��ii�

Also similar arguments as above yield the result that R�� is an M �bisimulation�
�

Proposition A�
 �Proposition 	��

vM is a precongruence with respect to the operators of "f provided g in jg and
f in �� � ���f 
 are monotone�

Proof� As in proposition ��� with the extension that the relation

R � f��p� � � � pn��f 
� �q� � � � qn��f 
� j pi vCL�f���M��i� qig

is an M �bisimulation�
To see that R� � MB�R�� observe that if �p� � � � pn��f 


a
�� p� then p� �

�p�� � � � p
�
n��f 
 and a � f�a� � � � an� and pi

ai�� p�i� By de�nition of R� there

exist q�i#s and bi#s such that qi
bi�� q�i with ai vA bi and p�i vCL�f���M��i� q

�
i�

Since f is monotone b � f�b� � � � bn� exists and f�a� � � �an� vA f�b� � � � bn�� By

FUN�
 �q� � � � qn��f 

b
�� �q�� � � � q

�
n��f 
 which is the matching move�

Also if �q� � � � qn��f 

a
�� q�� a �M then q� � �q�� � � � q

�
n��f 
 and

qi
ai�� q�i� ai �vCL�f���M��i�� By de�nition of R� there exist p�i#s and bi#s such

that pi
bi�� p�i with bi vA ai and p

�
i vCL�f���M��i� qi� Again since f is monotone

and all sets have to be downwardsclosed
 f�b� � � � bn� vA f�a� � � �an�� Clearly

f�a� � � �an� � M implies f�b� � � � bn� � M � By FUN�
 �p� � � � pn��f 

f�b����bn�
��

�p�� � � � p
�
n��f 
 which is the matching move� �

	�



Proposition A�� �Proposition 	��

The following holds for p� � � � pn � T	f �

�p� � � � pn��f 
 �M nil if pi � nil for some i � n

�a��p� � � � an�pn��f 
 �M

����
���

f�a� � � �an���p� � � � pn��f 

if f�a� � � �an� is de�ned

nil otherwise

�p� � � � pi � qi � � � pn��f 
 �M �p� � � � pi � � � pn��f 
 �

�p� � � � qi � � � pn��f 


Proof� The relation

R� � f��p� � � � pn��f 
� nil� j pi � nil� i � ng

is an M �bisimulation�

To see this observe that �p� � � � pn��f 

a


� for any a since f�a� � � �an� is not de�

�ned since ai does not exist� Also nil
a


� for any a�
The relation R��

� is also an M �bisimulation�

The relation

R� � f��a��p� � � �an�pn��f 
� f�a� � � � an���p� � � � pn��f 
�

j f�a� � � �an� is definedg � Id

is an M �bisimulation�
To see that R� �MB�R�� observe that by ACT�
 ai�pi

ai�� pi and by de�ni�

tion of R�
 f�a� � � � an� is de�ned and by FUN�
 �a��p� � � �an�pn��f 

f�a����an�
��

�p� � � � pn��f 
� Also by ACT �
 f�a� � � �an���p� � � � pn��f 

f�a����an�
�� �p� � � � pn��f 


which is the matching move�
Also R��

� is an M �bisimulation�
The relation

R� � f��a��p� � � �an�pn��f 
� nil� j f�a� � � � an� is undefinedg

is an M �bisimulation�
To see this observe that the only action of �a��p� � � �an�pn��f 
 should be f�a� � � �an�

so �a��p� � � �an�pn��f 

a


� for any a� also nil
a


� for any a�
Also R��

� is an M �bisimulation�
The relation

R
 � f��p� � � � pi � qi � � � pn��f 
� �p� � � � pi � � � pn��f 
 � �p� � � � qi � � � pn��f 
�g � Id

	�



is an M �bisimulation�
To see this observe that if �p� � � � pi � qi � � � pn��f 


a
�� p� then

either p� � �p�� � � � p
�
i � � � p

�
n��f 
 and �i�pi

ai�� p�i and a � f�a� � � � an� which
by FUN �
 �p� � � � pi � � � pn��f 
 can match and the result follows from
SUM��

or p� � �p�� � � � q
�
i � � � p

�
n��f 
 and �j 
� i�pj

aj
�� pj and qi

ai�� q�i and
a � f�a� � � �an� and the result follows by arguments as above�

Also R��

 is an M �bisimulation� �

Property A�� �Property 	��


Whenever p��r��x

a
�� p� then

either for some p�� 
 p
a
�� p�� and p� � p����r��x


or for some xi � UG�p� 
 ri
a
�� p�

Proof� By induction on inferences� Observe the possible form of p�

p � nil 
 The statement holds trivially since nil��r��x
 � nil�

p � a�p� 
 By de�nition all variables in p are guarded since they are within a
subterm a�p�� since the only action of a�p� is a and �a�p����r��x
 � a�p���r��x


then a�p�
a
�� p� and p� � p���r��x
�

p � p� � p� 
 Assume the proposition holds for p� and p�� Since �p��p����r��x
 �
p���r��x
 � p���r��x
 the proposition holds by induction and SUM��

p � xi 
 Then by de�nition of substitution xi��r��x
 � ri� so xi��r��x

a
�� p� i�

ri
a
�� p� and the proposition holds�

p � �x�p� 
 Since the only actions of �x�p� are the actions of p���x�p��x
 


��x�p����r��x

a
�� p� i� �p���x�p��x
���r��x


a
�� p� which holds by induction�

�

We also need the opposite properties


Property A�� �Property 	��


Whenever p� 
 p
a
�� p� then p��r��x


a
�� p���r��x


Proof� We prove this by induction on inferences� Observe the possible
form of p�

p � nil 
 The case holds trivially since nil
a


� for all a�

	�



p � a�q 
 a�q
a
�� q by ACT �� by de�nition of substitution �a�q���r��x
 �

a��q��r��x
�� and a��q��r��x
�
a
�� q��r��x
 by ACT �� and the desired result

holds�

p � p� � p� 
 If p� � p�
a
�� p� then either p�

a
�� p� or p�

a
�� p� by a shorter

inference� Thus either p���r��x

a
�� p���r��x
 or p���r��x


a
�� p���r��x
 by the

induction hypothesis� by SUM �
 p���r��x
 � p���r��x

a
�� p���r��x
 and by

de�nition of substitution p��r��x

a
�� p���r��x
 which is the desired result�

p � y 
 Then the result holds trivially since y
a


��

p � �x�q 
 If �x�q
a
�� p� then this is due to q��x�q�x


a
�� p� by a shorter

inference� Thus by induction q��x�q�x
��r��x

a
�� p���r��x
� By REC� and

de�nition of substitution we may infer that ��x�q���r��x

a
�� p���r��x
 which

is the desired result�

�

Property A�� �Property 	�	


Whenever xi � UG�p� and ri
a
�� p� then p��r��x


a
�� p�

Proof� We prove this by induction on inferences� Observe the possible
form of p�

p � nil 
 The case holds trivially since UG�nil� � �

p � a�q 
 The case holds trivially since UG�a�q� � �

p � p� � p� 
 If xi � UG�p� then xi � UG�p�� or xi � UG�p�� or both� If

p��r��x

a
�� p� then either p���r��x


a
�� p� or p���r��x


a
�� p� by a shorter

inference� Thus if xi � UG�p�� or xi � UG�p�� and ri
a
�� p� then

p���r��x

a
�� p� or p���r��x


a
�� p�� By SUM� and de�nition of substitution

p��r��x

a
�� p� which is the desired result�

p � y 
 If y 
� �x the result holds trivially� If y � �x then y � xi for some i and
UG�p� � fxig� If ri

a
�� p� then p��r��x


a
�� p� by de�nition of substitution�

�x�q 
 If xi � UG�p� then xi � UG�q� and xi 
� x� If ri
a
�� p� then q��r��x


a
�� p�

by induction and also q��r��x
��x�q�x

a
�� p�� By REC�
 p��r��x


a
�� p�

which is the desired result�

�

Property A�� �Property 	��

If no xi is free in p then p��r��x
 � p

Proof� By structural induction on p�

	�



p � nil 
 free�nil� � � and by de�nition of substitution nil��r��x
 � nil�

p � a�q 
 free�p� � free�q�� Assume q��r��x
 � q then �a�q���r��x
 � a��q��r��x
� by
de�nition of substitution and a��q��r��x
� � a�q by induction�

p � y 
 If no xi is free in p then y 
� �x so y��r��x
 � y by de�nition of substitution�

p � p� � p� 
 Assume no xi is free in p� nor p� and p���r��x
 � p� and p���r��x
 �
p�� Since free�p� � free�p�� � free�p�� no xi is free in p� Also p���r��x
 �
p���r��x
 � �p� � p����r��x
 by de�nition of substitution� and also p� � p� �
�p� � p����r��x
 by induction�

p � �x�p� 
 Assume no xi is free in p� and p���r��x
 � p�� Since free�p� �
free�p�� n fxg and ��x�p����r��x
 � �x�p���r��x
 if x is not in �x nor free in
�r which by induction yields �x�p���r��x
 � �x�p�� Otherwise ��x�p�� �
�z��p��z�x
��r��x
� for some z not in �x nor free in �x�p� or �r� and the result
follows by the induction hypothesis applied to p��z�x
�

�

Property A�� �Property 	�


If �x and �y are disjoint then�

p��q��x
��r��y
 � p��q��r��y
��x� �r��y


Proof� By structural induction on p�

p � nil 
 nil��q��x
��r��y
 � nil � nil��q��r��y
��x� �r��y
 by de�nition of substitution�

p � a�q 
 Assume �x and �y are disjoined and q��q��x
��r��y
 � q��q��r��y
��x� �r��y
 then

p��q��x
��r��y
 � a��q��q��x
��r��y
�

by de�nition of substitution

� a��q��q��r��y
��x� �r��y
�

by induction

� �a�q���q��r��y
��x� �r��y


by de�nition of substitution

p � p� � p� 
 Assume pi��q��x
��r��y
 � pi��q��r��y
��x� �r��y
 i � f�� �g then

�p� � p����q��x
��r��y
 � p���q��x
��r��y
 � p���q��x
��r��y


by de�nition of substitution

� p���q��r��y
��x� �r��y
 � p���q��r��y
��x� �r��y


by induction

� �p� � p����q��r��y
��x� �r��y


by de�nition of substitution

	�



p � x 
 If x � �x then x��q��x
��r��y
 � qi��r��y
� also x��q��r��y
��x� �r��y
 � qi��r��y
� If
x � �y similar arguments hold� If x 
� �x � �y then x��q��x
��r��y
 � x �
x��q��r��y
��x� �r��y
�

p � �x�q 
 Assume q��q��x
��r��y
 � q��q��r��y
��x� �r��y
� Then if x not in �x nor in �y
and not free in �q nor �r�

��x�q���q��x
��r��y
 � �x��q��q��x
��r��y
�

by de�nition of substitution

� �x��q��q��r��y
��x� �r��y
�

by induction

� ��x�q���q��r��y
��x� �r��y


by de�nition of substitution

Otherwise

��x�q���q��x
��r��y
 � ��z�q�z�x
���q��x
��r��y


for z not in �x or �y nor free in q or �q or �r� and the result follows by induction
on q�z�x
�

�

De�nition A��

We de�ne the possible actions of a process by an inductively de�ned function
Names 
 T	r � P�Act��

Names�nil� � �

Names�a�p� � fag �Names�p�

Names�p� � p�� � Names�p�� �Names�p��

Names�x� � �

Names�recp� � Names�p�

Note how this is an instance of the general function scheme of de�nition ����

Proposition A�
 �Proposition 	���


p v
��

M q i� p v
�

M q

Proof� For the ��direction assume p v
��

M q� We have to prove that
��r�p��r��x
 vM q��r��x
 holds� This is established by proving that the relation

R � f�p��r��x
� q��r��x
� j p v
��

M qg � Id

	�



is an M �bisimulation� To see that R � MB�R� observe that if p��r��x

a
�� p�

then

either p
a
�� p�� and p� � p����r��x
� But then we know from the de�nition of R

that p v
��

M q such that q
b
�� q�� with a vA b and p�� v

��

M q�� �By property

��� q��r��x

b
�� q����r��x
 which obviously is the matching move�

or there exists xi � �x which is unguarded in p and ri
a
�� r�i and p� � r�i� Since

UG�p� � UG�q� by p v
��

M q then q��r��x

a
�� ri by property ���� which is

the matching move�

If q��r��x

a
�� q��a � M then

either q
a
�� q�� and q� � q����r��x
� Then we have from the de�nition of R that

p v
��

M q such that p
b
�� p�� with b vA a and p�� v

��

M q��� By property ���

p��r��x

b
�� p����r��x
� which obviously is the matching move�

or there exists xi � �x which is unguarded in q and ri
a
�� r�i and q� � r�i� Since

UG�p� � UG�q� by p v
��

M q then q��r��x

a
�� ri by property ���� which

obviously is the matching move�

The ��direction is proved by showing p 
v
��

M q � p 
v
�

M q�

Assume p 
v
��

M q� Then

�� UG�p� 
� UG�q�

�� There exists an a such that p
a
�� p� but there exist no b and q� such that

a vA b and q
b
�� q� with p v

��

M q

�� Or there exists a � M such that q
a
�� q� but there exist no b and p� such

that b vA a and p
b
�� p� with p v

��

M q�

Assume �� Then take �r � �a��nil � � �an�nil� where ai 
� Names�p��Names�q�
and a vA ai for all a � Names�q��
There must exist xi � UG�p��xi 
� UG�q� or xi � UG�q��xi 
� UG�p�� in

the �rst case p��r��x

ai�� nil but q��r��x


b


� such that ai vA b� The second
case is similar�

Assume �� Take �r � nil � �nil � � �nil� then p v
�

M q cannot hold either� since
the only actions of p�nil��x
 are the actions of p which q cannot match�

Assume �� The argument as in � yields the desired result with p and q ex�
changed�

		



�

Proposition A��� �Proposition 	���

vM is a precongruence with respect to the operators of "r � i�e� vM satis�es C�
and C� of table 	�	

Proof� The relation

R� � f�p��p��x
� p��p
�x
� j p� vM p�� p� vM p
g� vM

is an M �bisimulation�
To see that R� �MB�R�� observe that if p��p��x


a
�� p� then by property ���

either p�
a
�� p�� and p� � p���p��x
 but by de�nition of R� 
 p�

b
�� p�� with

a vA b and p�� vM p�� also by property ��� p��p
�x

b
�� p���p
�x
 which is

the matching move

or x is unguarded in p� and p�
a
�� p�� and p� � p��� But by de�nition of

R� 
 p

b
�� p�
 with a vA b and p�� vM p�
� and also x is unguarded in p�

since p� vA p�� So by property ��� p��p
�x

b
�� p�
 which is the matching

move�

Also if p��p
�x

a
�� p�� a �M then by property ���

either p�
a
�� p��� a �M and p� � p���p
�x
� By the de�nition of R� 
 p�

b
�� p��

with b vA a and p�� vM p��� Then similar arguments as above yield the
desired result

or x is unguarded in p� and p�� and similar arguments as above yield the desired
result�

The relation

R� � f�p��x�p��x
� p��x�p��x
� j p� vM p�� p� p�� p� � "r � free�p� �fxgg� vM

is an M �bisimulation� and the result follows by taking p � x�
To see that R� �MB�R�� we shall show by induction on the length of inferences
that if

�� p��x�p��x

a
�� p� then there exist p�� and b such that p��x�p��x


b
�� p��

with a vA b and �p�� p��� � R�

�� p��x�p��x

a
�� p�� a � M � then there exist p�� and b such that

p��x�p��x

b
�� p�� with b vA a and �p��� p�� � R�

We only prove case �� the other being similar but simpler�
Consider the possible form of p


	�



p � x 
 Then �x�p�
a
�� p�� a �M � so by a shorter inference p���x�p��x


a
�� p��

a �M � and by induction p���x�p��x

b
�� p�� with �p��� p�� � R and b vA a�

But p� vM p� by de�nition of R�� so p���x�p��x
 vM p���x�p��x
 by the

�rst part of this proposition� so ��x�p��x

c
�� p��� with c vA b� b � M �

Since M is downwardsclosed �p���� p��� �vM � R��

By REC�
 p��x�p�

c
�� p��� which obviously is the matching move�

p � q� � q� 
 Then either q���x�p��x

a
�� p�� a � M or q���x�p��x


a
�� p��

a � M and hence by induction q���x�p��x

b
�� p�� or q���x�p��x


b
�� p��

with b vA a and �p��� p�� � R��

By SUM�
 p��x�p��x

b
�� p�� which is the matching move�

p � c�q 
 Then a � c and p� � q��x�p��x
 and by induction p�� � q��x�p��x
 and
�p��� p�� � R��

p � nil 
 Since p has no free occurrences of x
�nil��x�p��x
� nil��x�p��x
� � R�

p � �y�q 
 y 
� x� Then we have� by assumption� that �y��q��x�p��x
�
a
�� p��

a �M � so by a shorter inference we have q��x�p��x
�p��x�p��x
�y

a
�� p��

a �M � which by property ��� may be rewritten as q�p�y
��x�p��x

a
�� p��

a � M � So by induction� applied to the expression q�p�y
� we know that

q�p�y
��x�p��x

b
�� p�� with b vA a and �p��� p�� � R�� By using property

��� q��x�p��x
�p��x�p��x
�y

b
�� p�� and by REC�
 p��x�p��x


b
�� p��

which is the matching move�

�

Proposition A��� �Proposition 	���

If y is not free in �x�p then �x�p �M �y��p�y�x
�
i�e� vM satis�es R� of table 	�	

Proof�

Let p� � �x�p and p� � �y�p�y�x
� By proposition ���� p� � p�p��x
 and
p� � p�y�x
�p��y
�
We may now show that

R � f�q�p��x
� q�y�x
�p��y
� j q � "rg

is an M �bisimulation�
The result follows by taking q � p and applying proposition �����
To see that R �MB�R� we use induction on the number of inferences�

Observe that if q�p��x

a
�� q� then

either q
a
�� q� and q� � q��p��x
� but also q�y�x
�p��y


a
�� q� � q��y�x
�p��y


and �q�� q�� � R

��



or x is unguarded in q and p�
a
�� q� then p�p��x


a
�� q� and by shorter

inference p�y�x
�p��y

b
�� q� with a vA b and �q�� q�� � R�

By REC�
 p�
b
�� q� and since x is unguarded in q then

q�y�x
�p��y

b
�� q� which is the matching move�

Also if q�y�x
�p��y

a
�� q� �a �M � then

either q
a
�� q�� a �M � and the case is obvious

or x is unguarded in q� Then y becomes unguarded in q�y�x
 and p�
a
�� q�

then p�y�x
�p��y

a
�� q� and by a shorter inference p�p��x


b
�� q� with

b vA a and �q�� q�� � R�

By REC�
 p�
b
�� q� and since x is unguarded in q then q�p��x


b
�� q�

which is the matching move�

�

Proposition A��� �Proposition 	���

If x is guarded in p� then
if p��p��x
 vM p� then �x�p� vM p�
and
if p� vM p��p��x
 then p� vM �x�p��
i�e� vM satis�es R� and R� of table 	�	

Proof� Since vM satis�es �x�p �M p��x�p�x
 it is enough to show that if
p� vM p�p��x
 � p�p��x
 vM p� � p� vM p� then
p�p��x
 vM p�p��x
�
Let R � fq�p��x
� q�p��x
 j q � "rg�
We wish to show that R is anM �bisimulation upto #vM #� and the result follows
by taking q � p� and applying proposition ����
We prove that R �MB�R��

For arbitrary q let q�p��x

a
�� q� then

either q
a
�� q� and q� � q��p��x
 but also q�p��x


a
�� q� � q��p��x
 and

�q�� q�� � R

or x is unguarded in q and p�
a
�� q��

Then p�p��x

b
�� q��� a vA b with �q�� q

�
�� �vM � Since x is guarded in

p then p
b
�� p� and q�� � p��p��x
� Also p�p��x


b
�� q� � p��p��x
 and

p�
c
�� p��� b vA c with �q�� p��� �vM �

But �p��p��x
� p��p��x
� � �q��� q�� � R which implies
�q�� p��� � vM 	 R 	 vM �

Also q�p��x

c
�� p�� since x is unguarded in q�

Also if q�p��x

a
�� q�� a �M then

��



either q
a
�� q� and q� � q��p��x
 but also q�p��x


a
�� q� � q��p��x
 and

�q�� q�� � R

or x is unguarded in q and p�
a
�� q�� a �M �

Then p�p��x

b
�� q��� b vA a with �q��� q�� �vM � But since x is guarded

in p then p
b
�� p� and q�� � p��p��x
� Also p�p��x


b
�� q� � p��p��x
 and

p�
c
�� p��� c vA b� b �M since M is downwardsclosed with �p��� q�� �vM �

But �p��p��x
� p��p��x
� � �q�� q��� � R which implies
�p��� q�� � vM 	 R 	 vM �

Also q�p��x

c
�� p�� since x is unguarded in q�

�

Proposition A��� �Proposition 	���

�x�p �M �x��p� x� i�e� vM satis�es R� of table 	�	

Proof� The relation

R � f�q��x�p�x
� q��x��p� x��x
� j q � T	rg

is an M �bisimulation� The result follows by taking q � x�

To see that R � MB�R� we use induction on the number of inferences�

Observe that if q��x�p�x

a
�� q� then

either q
a
�� q�� and q� � q����x�p�x
� By property ��� then also

q��x��p� x��x

a
�� q����x��p� x��x
 which is the matching move�

or x is unguarded in q and �x�p
a
�� q�� But then q� � p���x�p�x
 and this

is due to p��x�p�x

a
�� p���x�p�x
 and by a shorter inference� Thus the

induction hypothesis
 p��x��p � x��x

b
�� p���x��p � x��x
 with a vA b

and �p���x�p�x
� p���x��p � x��x
� � R� By SUM �
 p��x��p � x��x
 �

x��x��p�x��x

b
�� p���x��p�x��x
 which by the de�nition of substitution

yields
 �p� x���x��p� x��x

b
�� p���x��p� x��x
 and by REC�


�x��p� x�
b
�� p���x��p� x��x
� Since x is unguarded in q


q��x��p�x��x

b
�� p���x��p�x��x
 which obviously is the matching move�

Also if q��x��p� x��x

a
�� q�� a �M then

either q
a
�� q�� and the case is obvious�

or x is unguarded in q and �x��p� x�
a
�� q� and this is due to

�p � x���x��p� x��x

a
�� p���x��p� x��x
 � q� Then

either p��x��p� x��x

a
�� q�

��



or x��x��p� x��x

a
�� q� i�e� �x��p� x�

a
�� q�

In the �rst case we have by induction that p��x�p�x

a
�� q�� � p����x�p�x


with b vA a and �q�� q��� � R and by REC�
 �x�p
a
�� q��� and since x

is unguarded in q then q��x�p�x

b
�� q�� which is the matching move� In

the second case we may unfold at most a �nite number and then arrive at
the �rst case�

Also R�� may be shown to be an M �bisimulation by similar arguments� �

Lemma A�� �Lemma 	��


�� if �x is not free in p then � p��r��x
 �M p

�� if �x and �y are disjoint then � p��q��x
��r��y
 �M p��q��r��y
��x� �r��y


Proof�

�� if �x is not free in p then p��q��x
 � p� by de�nition of substitution and by
P�
 � p �M p

�� We prove this by structural induction on p

p � nil 
 Then by the de�nition of substitution p��q��x
��r��y
 � nil and also
p��q��r��y
��x� �r��y
 � nil and by P�
 � nil �M nil

p � a�p� 
 By the de�nition of substitution �a�p����q��x
��r��y
 � a��p���q��x
��r��y
�
also �a�p����q��r��y
��x� �r��y
 � a��p���q��r��y
��x� �r��y
�� By induction

� p���q��x
��r��y
 � p���q��r��y
��x� �r��y
 and by C� with p� � p� � a�z where z is
not in �x� �y� p�� �q or �r the result follows using the rules of substitution�

p � p� � p� 
 By the de�nition of substitution �p� � p����q��x
��r��y
 �
p���q��x
��r��y
 � p���q��x
��r��y
� Also �p� � p����q��r��y
��x� �r��y
 �
p���q��r��y
��x� �r��y
 � p���q��r��y
��x� �r��y
� By induction � p���q��x
��r��y
 �
p���q��r��y
��x� �r��y
 and � p���q��x
��r��y
 � p���q��r��y
��x� �r��y
 and by C� with
p� � p� � v�w where v and w are not in �x� �y� p�� �q or �r the result follows
using the rules of substitution�

p � v 
 By the de�nition of substitution v��q��x
��r��y
 � qi��r��y
 if v � xi or else
v��q��x
��r��y
 � v��r��y
 otherwise� which is ri if v � yi or v otherwise� Also
v��q��r��y
��x� �r��y
 � qi��r��y
 if v � xi or else v��q��x
��r��y
 � v��r��y
 otherwise�
which is ri if v � yi or v otherwise� In all cases P� yields the desired
result�

p � �z�p 
 If z is in �x� �y or free in �q or �r we �rst use R� to obtain
� �z�p �M �v��p�v�z
� for a completely new variable v and the details are
as follows
 ��z�p���q��x
��r��y
 � �z��p��q��x
��r��y
� also
��z�p���q��r��y
��x� �r��y
 � �z��p��q��r��y
��x� �r��y
� and by induction

� p��q��x
��r��y
 � p��q��r��y
��x� �r��y
 so by C� the we obtain the desired result�

��



�

Theorem A�� �Theorem 	��

For any expression p� with free variables in �y� there exist expressions p� � � � pk �k �
�� with free variables in �y satisfying k equations�

� pi �
niX
j��

aij�pf�i�j� �
miX
j��

yg�i�j� �k � ��

moreover
� p � p�

Proof� By structural induction on p� �

p � nil 
 Choose mi � � and ni � � then with k � �
 � p �M nil by P��

p � a�p� 
 By induction there exist k equations

� p�i �M

miX
j��

aijp
�
f�i�j� �

niX
j��

yg�i�j� �k � ��

and � p� �M p���
By C� with p� � p� � a�z with z not in �p� nor in �y and p� � p
 � p�i we
obtain k equations such that � p �M p� and pi are on the desired form
namely by taking p� � a�p�� and pi � a�p�i� Clearly the pi#s are on the
desired form� also � p �M p� holds since � p� �M p�� and a vA a�

p � p� � p� 
 Now p� and p� have free variables in �y so by induction we have
�k equations
 p�� � � � p

�
k and p�� � � � p

�
k satisfying �k equations


� p�i �M

m�

iX
j��

a�ij �p
�
f��i�j� �

n�iX
j��

yg��i�j�

� p�i �M

m
�

iX
j��

a�ij �p
�
f��i�j� �

n
�

iX
j��

yg��i�j�

By C� twice with p� � p� � z� � z� and z� and z� not in �p� nor in �p� or
in �y we obtain

� p�i � p�i �M

m�

iX
j��

a�ij�p
�
f��i�j�

�

n�iX
j��

yg��i�j� �

m�

iX
j��

a�ij�p
�
f��i�j�

�

n�iX
j��

yg��i�j�

Let pi � p�i � p�i � We obtain k equations which by rearrangement by S�
and S� may be brought on the desired form� moreover � p �M p��

��



p � x 
 As for nil we may choose mi � � and ni � � then with k � � we obtain
� p �M x by P��

p � �x�q 
 Now q has free variables in �x� �y�� so by induction we have expressions
q� � � � qp satisfying k equations


� qi �M

miX
j��

aijqf�i�j� �
niX
j��

yg�i�j� � �x
 �k � ��

in each summand x may or may not occurre$ also q � q�� Now set

� q�� �M

m�X
j��

a�j�qf���j��
n�X
j��

yg���j�

So that either � q �M q�� or � q �M q�� � x� It follows by R� and R� that

� p �M q���p�x
 �A���

Now set
pi � q��p�x
 �i � k�

Then by instantiation �p�x
 of the equation we obtain using �A��� for any
summand x�

� pi �M

miX
j��

aij�pf�i�j� �

niX
j��

yg�i�j� � �

m�X
j��

a�j�pf���j� �

n�X
j��

yg���j�


which by S� and S� may be rearranged to the desired form� Moreover
� p �M p� follows from � q �M q� and expressions pi are easy seen to
have free variables in �y�

�

��



Appendix B

In this appendix we present the full proofs of propositions� lemmas and theorems
which have been presented but not proven in full in chapter � of the thesis�

The proofs are presented here because they are long� tedious and sometimes
trivial�

Lemma B�� �Lemma 
��


If Fc�p�
A
��CS p

�� then p�� � Fc�p
�� and p

a
��SS p

� with a � A

Proof� We prove this by induction on the number of inferences used to

obtain
 Fc�p�
A
��CS p

��� Observe the possible structure of p


p � nil� The lemma holds trivially since Fc�nil�
A


�
CS

for any A � P�Act�

p � a�p�� If Fc�a�p��
A
��CS p

�� then by ACT�CS and de�nition of Fc
 A � fag

and p�� � Fc�p�� and by ACT�SS
 a�p�
a
��SS p��

p � p� � p�� If Fc�p� � p��
A
��CS p

�� then by SUM�CS and de�nition of Fc


either Fc�p��
A
��CS p

�� by a shorter inference so p�� � Fc�p��� and p�
a
��SS

p�� with a � A and by SUM�CS
 Fc�p� � p��
A
��CS Fc�p��

or Fc�p��
A
��CS p

�� and the case is similar�

or both Fc�p� � p��
B
��CS p�� and Fc�p��

C
��CS p�� and A � B � C by

shorter inferences so p�� � Fc�p��� and p�
b
��SS p�� with b � B and

so p�� � Fc�p
�
�� and p�

c
��SS p

�
� with c � C but then p�� � Fc�p

�
�� �

Fc�p
�
�� and an easy argument by structural induction establishes that

Fc�p
�
�� � Fc�p

�
��� p� � p� so by SUM�CS 
 we arrive at the desired

result�

p � �p� � � � pn��f 
� If Fc��p� � � � pn��f 
�
C
��CS p

�� then �i�Fc�pi�
Ai��CS p

��
i and by

shorter inferences so for all i
 p��i � Fc�p�i� and pi
ai��SS p�i with ai � Ai�

��



Also p�� � �p��� � � � p
��
n��

�f 
 and by induction and the de�nition of Fc
 p�� �
Fc��p�� � � � p

�
n��f 
��

p � p� jg p�� If Fc�p� jg p��
C
��CS p

�� then

either Fc�p��
C
��CS p�� and p�� � p��� j�g Fc�p�� by a shorter inference�

So p��� � Fc�p
�
�� and p�

c
��SS p�� with c � C� By COM�CS and

de�nition of Fc
 p
�� � Fc�p

�
� jg p��

or Fc�p��
C
��CS p

�� and the case is similar�

or Fc�p��
A
��CS p�� and Fc�p��

B
��CS p�� and C � �g�A�B� by a shorter

inference� So p��� � Fc�p��� and p�
a
��SS p�� with a � A and p��� �

Fc�p��� and p�
b
��SS p

�
� with b � B but then c � g�a� b� � �g�A�B� �

fg�a� b� j a � A� b � Bg and by COM�SS
 p� jg p�
c
��SS p�� jg p

�
�

which is the matching move�

p � x� The case holds trivially since
 Fc�x�
A


�
CS

for any A � P�Act��

p � �x�p�� IfFc��x�p��
A
��CS p

�� then byREC�CS
 Fc�p����x�Fc�p���x

A
��CS

p�� by a shorter inference� So p���x�p��x

a
��SS p� with a � A and

p�� � Fc�p��� By REC�SS
 �x�p�
a
��SS p

� which is the matching move�

�

Proposition B�� �Proposition 
��

p corr� Fc�p�� p closed and �nite�

Proof� The relation

R � f�p�Fc�p�� j p � Prf
SS
g

is a correctness relation�
To see that R � CORR��R� we proceed by structural induction on p�

p � nil� Since nil
a


�
SS

for any a � Act and nil
A


�
CS

for any A � P�Act�

�nil�Fc�nil�� � R

p � a�p�� Since a�p�
a
��SS p

� byACT�SS and fag�Fc�p��
fag
�� Fc�p�� byACT�CS

and a � fag and �p��Fc�p
��� � R by induction� which proves that
 �a�p�� fag�Fc�p

��� �
R�

p � p� � p�� if p� � p�
a
��SS p� then either p�

a
��SS p� or p�

a
��SS p� by

assumption Fc�p��
A
��CS p

�� with �p�� p��� � R and a � A or Fc�p��
A
��CS

��



p��� By SUM �CS
 Fc�p�� � Fc�p��
A
��CS p�� which obviously is the

matching move�

Also if Fc�p�� p��
A
��CS p

�� then either Fc�p��
A
��CS p

�� or Fc�p��
A
��CS

p�� or A � B �C and Fc�p��
B
��CS p

�� and Fc�p��
C
��CS p

��� By induction

p�
a
��SS p� with a � A and �p�� p��� � R or p�

a
��SS p� with a � A and

�p�� p��� � R or p�
b
��SS p

�
� and p�

c
��SS p�� with b � B and �p��� p

��� � R
and c � C and �p��� p

��� � R�

In all cases p� � p�
d
��SS p� with �p�� p��� � R and d � A by SUM�SS�

and clearly this is the matching move�

p � �p� � � � pn��f 
� if �p� � � � pn��f 

c
��SS �p�� � � � p

�
n��f 
 then c � f�a� � � �an� and

�i�pi
ai��SS p

�
i By induction there exist Ai#s and p��i #s such that �i�Fc�pi�

Ai��
p��i with ai � Ai and �p�i� p

��
i � � R�

By FUN�SS
 �Fc�p�� � � �Fc�pn��� �f 

C
��CS �p��� � � � p

��
n�� �f 
 with

C � ff�a� � � � an� j ai � Aig and ��p�� � � � p
�
n��f 
� �p

��
� � � � p

��
n�� �f 
� � R which

is the matching move�

Also if �Fc�p�� � � �Fc�pn��� �f 

C
��CS �p��� � � � p

��
n�� �f 
 then C � ff�a� � � �an� j

ai � Aig and �i�Fc�pi�
Ai��CS p��i and by induction there exist ai#s and

pi#s such that �pi
ai��SS p

�
i and ai � Ai and �p�i� p

��
i � � R so by FUN�SS


�p� � � � pn��f 

c
��SS �p�� � � � p

�
n��f 
 which obviously is the matching move�

p � p� jg p�� if p� jg p�
c
�� p� then

�� p�
c
�� p�� � p� � p�� jg p�� Then by induction Fc�p��

C
�� p��� with

c � C and �p��� p
��
�� � R� By COM�CS
 Fc�p� jg p��

C
�� p��� j�g

Fc�p��� By lemma ���
 p��� � Fc�p��� and the induction hypothesis

�p��Fc�p��� � R so p��� j�g Fc�p�� � Fc�p��� j�g Fc�p�� � Fc�p� jg p��
which yields the matching move�

�� p�
c
�� p�� � p� � p� jg p

�
�� As in ��

�� p�
a
�� p�� � p�

b
�� p�� � p� � p�� jg p�� � c � g�a� b�� By induction

Fc�p��
A
�� p��� with a � A and by lemma ���
 p��� � Fc�p��� and

Fc�p��
B
�� p��� with b � B and by lemma ���
 p��� � Fc�p���� By

COM�CS
 Fc�p� jg p�� � Fc�p�� j�g Fc�p��
C
�� p��� j�g p

��
� �

Fc�p�� jg p��� with C � �g�A�B� so c � C and clearly this is the
matching move�

Also if Fc�p� jg p��
C
�� p�� similar arguments yield the result�

�

�	



Proposition B�� �Proposition 
��

p corr� Fc�p�� p regular�

Proof� The relation

R � f�p�Fc�p�� j p � Prr
SS
g

is a correctness relation� To see that R � CORR��R� we proceed by induction
on inferences� Observe the possible form of p


p � nil� Since nil
a


�
SS

for any a � Act and nil
A


�
CS

for any A � P�Act�

�nil�Fc�nil�� � R also UG�nil� � � � UG�Fc�nil��

p � p� � p�� if p� � p�
a
��SS p� then either p�

a
��SS p� or p�

a
��SS p� by

a shorter inference Fc�p��
A
��CS p�� with �p�� p��� � R and a � A or

Fc�p��
A
��CS p��� By SUM�CS
 Fc�p�� � Fc�p��

A
��CS p�� which obvi�

ously is the matching move�

Also if Fc�p�� p��
A
��CS p

�� then either Fc�p��
A
��CS p

�� or Fc�p��
A
��CS

p�� or A � B �C and Fc�p��
B
��CS p

�� and Fc�p��
C
��CS p

��� By induction

p�
a
��SS p� with a � A and �p�� p��� � R or p�

a
��SS p� with a � A and

�p�� p��� � R or p�
b
��SS p

�
� and p�

c
��SS p�� with b � B and �p��� p

��� � R
and c � C and �p��� p

��� � R�

In all cases p��p�
d
��SS p

� with ��p� p��� � R and d � A by SUM�SS � and
clearly this is the matchingmove� Also UG�p��p�� � UG�p���UG�p�� �
UG�Fc�p� � p����

p � x� x
a


�
SS

for all a � Act� x
A


�
CS

for all A � P�Act� and UG�x� �
UG�Fc�x���

p � �x�p� if �x�p
a
��SS p� then p��x�p�x


a
�� p� and by a shorter inference


Fc�p��x�p�x
�
A
��CS p�� with a � A and �p�� p��� � R� By lemma ���


Fc�p��x�p�x
� � Fc�p����x�Fc�p��x
 and by REC�CS
 �x�Fc�p�
A
��CS p

��

which is the matching move�

Also if Fc��x�p�
A
��CS p

�� by a shorter inference Fc�p���x�Fc�p��x

A
��CS

p��� Then by induction p��x�p�x

a
��SS p

� with a � A and �p�� p��� � R� so

by REC�SS
 �x�p
a
��SS p

� which is the matching move�

Also UG��x�p� � UG�Fc��x�p�� since UG��x�p� � UG�p� n fxg and
UG�Fc��x�p�� � UG��x�Fc�p�� � UG�Fc�p�� n fxg and by the induction
hypothesis UG�p� � UG�Fc�p���

�

��



Proposition B�� �Proposition 
�	

p safe�

�
Fa�p�� p closed and �nite�

Proof� The relation

R � f�p�Fa�p�� j p � Prf
CS
g

is a safeness relation� To see that R � SAFE�
��R� we proceed by structural

induction� The only nontrivial cases are


p � p� jh p�� If p� jh p�
C
�� p� then

�� p�
c
�� p�� � p� � p�� jh p��� Then by induction �pi�Fa�pi�� � R so

Fa�p��
l
�� p��� with ��C� v l and p��� � Fa�p

�
�� by lemma ���� By

COM�AS and Fa�p� jh p��
l
�� p��� j��h��� Fa�p�� � Fa�p

�
� jh p��

which is the matching move�

�� p�
C
�� p�� � p� � p� jh p��� As in ��

�� p�
A
�� p�� � p�

B
�� p�� � p� � p�� jh p

�
� � c � h�A�B��

By de�nition of R 
 Fa�p��
l��� p��� with ��A� v l� and �p��� �Fa�p���� �

R and Fa�p��
l��� p��� with ��B� v l� and �p���Fa�p���� � R� Since

C � h�A�B� 
 ��C� v �	h	���l�� l�� by the adjoinedness condition

on ��� ��� By COM�SS
 Fa�p� jh p��
l
�� p��� j��h��� p

��
� � Fa�p�� jh

p��� where l � � 	 h 	 ���l�� l�� which clearly is the matching move�

Also if Fa�p� jh p��
l
�� p�� then

�� p�� � p��� j��h��� Fa�p�� � Fa�p��
l
�� p��� � By induction �pi�Fa�pi�� �

R� i � f�� �g� so p�
C
�� p�� with C � ��l� and p��� � Fa�p��� by lemma

���� so �p���Fa�p
�
��� � R� By COM�CS
 p� jh p�

C
�� p�� jh p� which

is the matching move�

�� p�� � Fa�p�� j��h��� p
��
� � Fa�p��

l
�� p��� � As in ��

�� Fa�p��
l��� p��� � Fa�p��

l��� p��� � p�� � p��� j��h��� p��� � l �

� 	 h 	 ���l�� l��� By assumption p�
A
�� p�� with A � ��l�� and

p��� � Fa�p��� by lemma ���� so �p���Fa�p���� � R p�
B
�� p�� with

B � ��l�� and p��� � Fa�p
�
�� by lemma���� so �p���Fa�p

�
��� � R� By the

adjoinedness condition on ��� �� 
 C � h�A�B� � ���	h	���l�� l����

By COM�CS
 p� jh p�
C
�� p�� jh p

�
� which is the matching move�

p � �p� � � � pn��g
 If �p� � � � pn��g

C
��CS �p�� � � � p

�
n��g
 then �i�pi

A
��CS p�i and

C � g�A� � � �An�� so by induction �i�Fa�pi�
li��AS p

��
i with ��A� v li and

���



by lemma ���
 p��i � Fa�p�i� so �p�i� p
��
i � � R�

By FUN�AS
 �Fa�p�� � � �Fa�pn���h

l
��AS �p��� � � � p

��
n��h
 where

h � � 	 g 	 �n with l � �� 	 g 	 �n��l� � � � ln� clearly ��g�A� � � �An�� v
�� 	 g 	 �n��l� � � � ln� and also ��p�� � � � p

�
n��g
� �p

��
� � � � p

��
n�� � R�

Also if �Fa�p�� � � �Fa�pn���h

l
��AS �p��� � � � p

��
n��h
 then �i�Fa�pi�

li��AS p
��
i

and l � h�l� � � � ln�� So by induction �i�pi
Ai��CS p�i with Ai � ��li�

and �p�i� p
��
i � � R� By FUN�CS
 �p� � � � pn��g


A
��CS �p�� � � � p

�
n��g
 with

A � ��l� since A � g�A� � � �An� v � 	 g 	 �� � � � �
�l� � � � ln�� And this
obviously is the matching move�

�

���


