Aalborg University Centre
Institute of Electronic Systems
M. Sc. Thesis in Computer Science

An Extended Bisimulation
Induced by a Preorder on

Actions
by

Bent Thomsen

Abstract

In this paper we investigate how a preorder on actions induces a preorder on
processes in a model of concurrent systems based on labelled transition systems.

We use an extension of bisimulation [Par 81, Mil 83] to induce a preorder on
processes from the preorder on actions.

The language for defining processes is taken to be an extract of current
variants of CCS [Mil 80].

Sound and complete proof systems for the induced preorders on processes
are given for three sublanguages: one for finite nondeterministic processes; one
for general finite terms and one for regular expressions.

A preorder on processes expressing concreteness relationship between partial
specifications are induced by a particular preorder on actions. This 1s investi-
gated and used to verify the concurrent alternating bit protocol [Koy 85].

The concept of abstract interpretation [Cou 79], wellknown from traditional
data flow analysis, is introduced to the framework of CCS, and it is shown how to
use this concept together with an extension of the notion of bisimulation. Finally
methods for determining properties of processes by abstract interpretation are
presented.

Preface

The work presented in this paper represents my M. Sc. thesis in computer
science. It is the physical result of a working period of about five months.
During this period Dr. Kim G. Larsen has been my supervisor.

The presentation demands a knowledge of current research within the field
of concurrency as in [Mil 80] and [Mil 83].

References in this paper are given by [Author Year].

Propositions, Definitions, Lemmas and Theorems are separately numbered
sequentially in each chapter. Those proven in appendix have the same numbers
as in the report.

Acknowledgements

It is hard to express my gratitude to the people who have helped me during
these past months, but I want to thank all of them very much.

A special thank to my superviser Dr. Kim G. Larsen for his enthusiastic
supervision and fruitful commenting.

I hope Lone Leth already knows my gratitude to her for all she has done for
me.

Aalborg University Centre 12/1 1987.

Bent Thomsen.

Contents

Abstract

Preface

Introduction

1 A model of concurrency and implementation orders

2 The language for defining processes
2.1 A general scheme for transformations.

3 Complete proof systems
3.1 Fimiteterms
3.2 Regularexpressions L.
3.3 An alternative characterization of recursive processes

4 Partial specifications

4.1 Instantiations of | and (..)[f]
4.2 General properties of partial specification

4.3 Verifying the CABP o oo

5 Data flow analysis

5.1 Introduction
5.2 The framework
5.3 Correctness and safeness on actions

5.4 Extending correctness and safeness to process systems

5.5 Inducing data flow analysis
5.6 Stable analysis
5.7 Using proof systems together with data flow analysis
5.8 Concreteness testo

Conclusion

18
20

22
22
30
41

48
49
49
51

Bibliography
A

B

74

77

96

Introduction

For many years investigations on modular or hierarchical approaches to devel-
opment, implementation and verification of concurrent systems have been going
on.

One branch of concurrent system development is protocol implementation
and verification.

A protocol is a behaviour implementing data transmission from a sender a
to a receiver b via a channel or a medium k. The channel is assumed to be
faulty in various numbers of ways.

One family of protocols is the alternating bit protocols. The protocols consist
of a number of communicating finite state machines, including a sender and a
receiver process. The sender process receives data from a user, adds a sequence
number and sends it to the receiver process, which answers by sending back
an acknowledgement. The receiver process receives the message, peels off the
sequence number and outputs the message to a user. The sequence number of
new messages takes the values 0 and 1 alternately. The purpose of the sequence
number is to detect loss of messages or acknowledgements. To recover from loss
of messages or acknowledgements the sender process retransmits the message.
There are at least two possible ways of holding information about the sequence
number; the one being a variable, demanding for a value parsing mechanism, the
other being a change of state in the sender and receiver processes. We choose
the last since we do not consider value parsing in this thesis. Also the message
sent is abstracted to a signal of sending since the actual message is inessential.

We now turn our attention to a specific member of the family of alternating
bit protocols called the concurrent alternating bit protocol. This protocol was
investigated by C. P. J. Koymans and J. C. Mulder in [Koy 85].

The concurrent alternating bit protocol (CABP) has the architecture dis-
played in figure .1.

a takes in a message and sends it via & to b. b outputs the message and
sends an acknowledgement to ¢ which transmits it to d via [. d communicates
the acknowledgement to a. The channels & and [are assumed to be faulty in the
sense that a message may be corrupted 1.e. changed into an error message or
it may be lost. Together a, k and b implement a sender/receiver process called
p, and ¢, [and d a control process called ¢. In [Koy 85] it is verified that the

)
)

Figure 0.1: Architecture of the CABP.

process p enjoyes the property:

Pg C Q1 ¢ Q5
c a a a a a
P g3 Yoo Ro Q10 Qi1 P12
b c b c b
T T/ T/ T/ T T
d 13d 14d 15d 15d P17d Pis

Figure 0.2: Figure 2.2 [Koy 85]

and ¢ the property:

1| e
\
{4 - ;f\
e

4
O
S)
NG
O
4
X
w
o
[
by

Figure 0.3: Figure 2.3 [Koy 85]

Consider the processes p and ¢q. Together they implement CABP which is
verified in [Koy 85] using process algebra. But when p and ¢ are knit together
over 80% of p and ¢ cannot be reached i.e. in the context of ¢ certain parts of p
cannot be reached and also certain parts of ¢ cannot be reached in the context

of p.
It would be nice if we could specify p and ¢q as p’ and ¢':

Figure 0.5: Figure 2.5 [koy85]

Here 833 may be thought of as an area where any behaviour may be en-
countered. When we knit p’ and ¢’ together we are prohibited from entering

the EIB , and the behaviour is like that of p and ¢ knit together.

We want to formalize the idea of using 813 in what may be called partial
specification of processes. In [Koy 85] a method called modularization was de-
veloped in the framework of process algebra [Gla 85], but the concept of modules
seems ad hoc and seems only to be adequate to treat the example.

Perhaps the idea of using 83 could be fit into the use of environment
information presented in [Lar 86b] Here we are much more informal about what
environment the process i1s to be in as long as it prohibits the process from

entering the 83 . This approach is much more like a creative programming
process, we guess where to put in 83 , then knit the system together and try

if any 8:3 may be reached. In that case the system is not fully specified and
we have to concretize the specification.

To take the place of 83 we want a process able to do an action which may
represent any action. Call the action * and define U as the process:

U: * le. U can do % and then become it self again.

In a way * may be thought of as being a stronger (more informative) action
than any other action. This yields a preorder on actions. The idea of using

a preorder on actions seems more general than just to fit the above example.
Another example where a preorder may be used is when actions are sets of
”actions” with subset inclusion as ordering.

The purpose of this thesis is to formalize the 1dea of preorders on actions and
extend it to processes. We shall develop a framework characterizing the preorder
on processes induced by the preorder on actions and we shall show how this may
be used in hierarchical development of concurrent systems. One example being
the above system called CABP. Also we shall show how to introduce data flow
analysis methods into hierarchical development of concurrent systems using the
method of abstract interpretation.

Overview

Chapter 1 contains the description of our model of concurrent systems. The
formalization of processes simulating and bisimulating each other is presented,
and their extension to process systems with ordering upon actions is defined.
The most refined preorder being able to take deadlock properties into account.

Chapter 2 contains the syntax and semantics of a language for defining process.
The language being an extract of current variants of CCS [Mil 80].

In chapter 3 three sound and complete proof systems for the preorder introduced
in chapter 1 are presented. The one system being for finite nondeterministic
terms, the second the extension to general finite terms, and the third being for
regular expressions.

In chapter 4 we show how the ordering introduced in the introduction may be
used to formalize and solve the problem of partial specification and how 1t may
be used to verify the concurrent alternating bit protocol (CABP).

Chapter 5 contains a larger and more theoretical use of the framework. Here the
framework of abstract interpretation [Cou 77], known from data flow analysis of
sequential and functional programming, is introduced such that approximations
of concurrent processes may be used to make statements about processes. An
example of the use of this is stable analysis, answering when processes are stable.
This may be used to infer, that if p and ¢ are observational equivalent and both
stable, then p and ¢ are congruent [Mil 80]. Also the proof system of chapter 3
may be used together with the framework presented in chapter 5.

Chapter 6 is the conclusion. We make a review of goals achieved and future
work to be done.

Chapter 1

A model of concurrency
and implementation orders

In recent years strong efforts have gone into giving semantic models for concur-
rent systems. Especially the desire for applying the methods of denotational
semantics, known and well established for sequential programs, has been tried
but without or with little success. The desire for a denotational model is partly
based on its ability of decompositionality, but a major defect with this model
seems to be that it only takes the input/output behaviour of programs into
account, without taking notice of the intermediate states the program may pass
through. Although this problem has been dealt with (see e.g. [Smy 78]), the
solution does not seem appropriate.

Instead the method of operational semantics, with a notion of concurrent
systems being processes or machines able to perform actions or offering experi-
ments, together with labelled transition systems has shown successful in giving
models for concurrent systems.

The work presented in this thesis follows up the line of defining processes,
concurrent or nondeterministic, by the set of experiments they offer to an ob-
server. We use the model of labelled transition systems, which is a simple model
of nondeterminism based upon the primitive notion of state and transition. The
simple notion of labelled transition systems has proven a very good model for
operational semantics of programming languages [Plo 81].

Definition 1.1 (Definition 1.4 in [Plo 81])

A labelled transition system is a structure (St, Act,—), where St is a set of
states (or configurations), Act is a set of actions (or labels or operations) and
—C St x Act x St is the transition relation.

For (s,a,t) €— we shall write s —5 t which may be interpreted as in state
s the system may perform an @ action and in doing so evolve to a state . We

use the usual abbreviations as e.g. s —— for 3t € St.s —= t and s 72) for
—3t € St.s — t.

Also we shall identify the state of a process by the process, yielding a transi-
tion system P = (Pr, Act,—) modelling the operational semantics of a system
of processes. Now if p and ¢ are two processes of P, we say that p is simulated
by ¢ or ¢ simulates p if every derivation of p can be simulated by a derivation
of ¢ in such a way that the simulation properties are maintained.

Definition 1.2 A simulation R is a binary relation on Pr such that whenever
pRq and a € Act then:
I p-5p =3¢ ¢ &pRy

A process q is said to simulate a process p if and only if there is a simulation
R such that pRq and then we write p < ¢.
Now for R C Pr? we can define S(R) as:

Definition 1.3 (p,q) € S(R) iff:
1. Ya€Actp -5 p =3¢ g ¢ & p'Ry

S is easy seen to be a monotone endofunction on the complete lattice of
binary relations (over Pr) under subset inclusion. Standard fixed point results,
due to Tarski [Tar 55], yield that a maximal fixed point for § exists and is
defined as [J{R | R € S(R)}. This maximal fixed point equals <.

Proposition 1.1 < is a preorder on Pr?

ProoF: Idp, = {(p,p) | p € Pr} is a simulation, and composition of simu-
lations yields a simulation. a

Composition of relations R, S C Pr? is taken to be

Ro S ={(p1,p3) | Ip2.(p1,p2) € R& (p2,p3) € S}.

Note how this is opposite of function composition. The above yields the elegant
proof technique named Park’s Induction Principle by L. Cardelli [Car 81]:

Definition 1.4 p < ¢ ¢ff IR C Pr’.(p,q) € R& RC 8(R)

So when we have to prove p < ¢ it 1s sufficient and necessary to find a
simulation containing (p,¢). Throughout this thesis we shall write: ”To see
that R C function(R)...”, where function is e.g. S§. By this we actually
mean: ”To see that (p,q) € function(R) whenever (p,q) € R..”.

An equivalence relation on Pr may be obtained by p ~ ¢ iff p < ¢ and ¢ < p.
However, this equivalence does not preserve deadlock properties as may be seen
from the following example:

10

Example 1.1 (Example 2.1-14 [Lar 86a])

q1 1
a a a

q2 P2 Ps
b b

43 yz!

Then Ry = {(gi,pi) | i =1,2,3} and Ra = {(ps, @) | ¢ = 1,2,3}U{(pa, ¢2)}
are both simulations. But p can perform an a-action and reach a state where no
b-action 1s possible whereas ¢ cannot. To obtain an equivalence that preserves
deadlock properties the notion of bisimulation is introduced. Bisimulation is
originally due to D. Park [Par 81] and was investigated by R. Milner [Mil 83].

Definition 1.5 A binary relation R on Pr is a bisimulation iff whenever pRq
and a € Act then:

. p-5p =3¢ ¢ &PRY
2. ¢g-S5q¢d=>Wp-Sp &dRY
Two processes p and ¢ are said to be simulating each other if there exists a

bisimulation containing (p, ¢), and then we write p ~ ¢.

Now for R C Pr? define B(R) as:
Definition 1.6 (p,¢) € B(R) iff:

. YacAp-S5p =3¢ g5 ¢ &Ry

2. YacAqg-5q¢ =T p-Sp &Ry

Also B is easy seen to be a monotone endofunction on the complete lattice of
binary relations (over Pr) under subset inclusion. Thus there exists a maximal
fixed point. This fixed point equals ~. We refer to [Lar 86a] for a proof of
when ~ coincides with strong equivalence defined in [Mil 80]. But the following
proposition is easy established:

Proposition 1.2 ~ is an equivalence on Pr

ProoF: Idp, 1s a bisimulation, and composition of bisimulations are easy
seen to be bisimulations, and if R is a bisimulation then

R" ={(p,q) | (¢.p) € R}

11

1s a bisimulation. O

If the set of actions Act is equiped with a preorder C 4, this preorder may
have the intuition that a C4 b holds whenever what a can do for an observer b
can do at least as well.

One may think of this as for example the light switches in a car. If a is the
parking light and b is the normal light then switching on the normal light also
turns on the parking light, so the normal light can do as well as the parking
light. Of course the normal light is more informative than the parking light.

The preorder on actions may be extended to processes by an extension of
the notion of simulation and bisimulation discussed above. Remember that a
process ¢ simulated a process p if all the derivations of p could be simulated
by derivations of ¢. The extended simulation has the intuition that all the
derivations of p can be simulated by derivations of ¢ which can do at least as
well for an observer e.g.

Definition 1.7 p<g ¢ iff p — p/ = 3¢’ 3 4 LN g & al,b& p'Ry

Definition 1.8 An extended simulation R is a binary relation on Pr such that
whenever pRq and a € Act then:

1. pi>p’:>E|q’.E|b’.qi>q’ &alyb& pRy

A process q is said to simulate, in the extended sense, a process p if and only
if there exists a simulation R with pRq and in this case we write p <¢ q.
Now for R C Pr? we can define &S(R) as:

Definition 1.9 (p,q) € ES(R) iff:
L p-5p =3¢ g LN g &alab& p'Rg
Proposition 1.3 R is an extended simulation iff R C ES(R)

As for simulation and bisimulation the fact that & is monotone upon the com-
plete lattice of binary relations (over Pr) under inclusion is easy verified. Thus
there exists a maximal fixed point given by U{R | R C &S(R)} using standard
fixed point results, originally due to Tarski [Tar 55]. This maximal fixed point
equals <g. As with the notion of simulation ¢ may extended simulate p without
having the same deadlock properties. Also extended bisimulation enjoys the
property of being a preorder:

Proposition 1.4 <g is a preorder on Pr?

ProoFr: As for simulation. O

12

To obtain a preorder which preserves deadlock properties we may, as with
simulation, extend the notion of extended simulation to extended bisimulation.
The intuition in the notion of extended bisimulation is that a process p is ex-
tended bisimulated by a process ¢ if all the first actions of p can be matched
by actions of ¢ which for an observer can do at least as well. Also whenever ¢
can do an action a, p has to match a in an approximative way by an action b
such that b C4 a. Also the processes have to have the same potentiality after
performing the actions. This may be stated as:

Definition 1.10 A binary relation R on Pr is an extended bisimulation when-
ever pRq and a € Act then:

1. pi>p’:>E|q’.E|b’.qi>q’ &alyb& pRy
2. ¢ i)q’zﬂp’.ﬂb’.pL)p’&bEA a & p'Rq'

If there exists a relation R such that R is an extended bisimulation and pRg
holds we write p C ¢q. Now for R C Pr? we can define EB(R) as:

Definition 1.11 (p,q) € EB(R) iff:
1. Ya€ Actp -5 p = 3¢ 3 ¢ LN g &alb& p'Rg
2. Ya € Actq ¢ =3 I p L>10’ &bC,al& pRY
Proposition 1.5 R is an extended bisimulation iff R € EB(R)

&EB may be shown to be a monotone endofunction upon the complete lattice
of binary relations over Pr. And by classic lattice theory &B has a maximal
fixed point which equals C. Also C is a preorder:

Proposition 1.6 C is a preorder on Pr?

ProoFr: As for simulation. O

One may wonder why extended bisimulation only yields a preorder when
bisimulation yields an equivalence. This is due to the use of C 4 in the predicate,
a simple example shows why we cannot hope for an equivalence:

Example 1.2 if a T4 b then

|

M

b but bI Z Ia

13

This is analogous to the development in [Hen 84] where divergence is taken
into account. A process is said to diverge if it can perform an endless sequence
of internal /unobservable actions. In [Hen 84] bisimulation is extended such that
p C ¢ iff whatever action p can do ¢ can match and if p and ¢ do not diverge,
then if ¢ performs an action p has to match it.

The idea of C may be further refined. We think of a C4 b as a relation
specifying whether b for an observer can do as well as a. In a way this states
that b contains more information than a. In p C ¢ we insisted on p matching
every move of ¢ perhaps by a less informative action, but this constraint can
be too strong. If b is an action that in a way is too informative, like T in
denotational semantics [Sto 77], we may loosen the second condition on C by
cutting out such actions. This may be done by excluding b from the set of
actions p has to match by giving only the set M of actions which has to be
matched. And we arrive at the definition of AM/-bisimulation.

Definition 1.12 A set M is downwardsclosed iff Ya € M. bCypa=be M.

Definition 1.13 Let M be a downwardsclosed set. An M-bisimulation R is a
binary relation on Pr such that whenever pRq:

1. pi>p’:>E|q’.E|b’.qi>q’ &alyb& p'Ry
2. Yae€ M.y i)q’zﬂp’.ﬂb’.pL)p’&bgA a & p'Rq’

Two processes p and ¢ are said to be in M-bisimulation if there exists an M-
bisimulation containing (p, ¢) and we write p Cps ¢. The need for M being down-
wardsclosed has proven essential for the theoretical development to work. Note
that we may always downwardsclose a set B by CL(B) = {a | 3b € B.a C4 b}.
M may be seen as an environment where we can cut out uninteresting actions,
for example when they are useless because they contain too much (possible
inconsistent) information. Now for R C Pr? we can define MB(R) as:

Definition 1.14 (p,q) € MB(R) iff:
1. Ya€ Actp 5 p = 3¢ 3 ¢ LN g & al,b& p'Ry
2. YaeMqg-q¢ =3 Ip L)p’ &bC4al& pRY
Proposition 1.7 R is an M-bisimulation iff R C MB(R)

The fact that MB(R) is a monotone endofunction on the complete lattice
of binary relations on Pr under inclusion is easy established. Thus M B has
a maximal fixed point given by: [J{R | R € MB(R)}. Also this fixed point
coincides with Cyy.

Car actually extends C 4 to processes:

14

Proposition 1.8 Ty, is a preorder on Pr

PRrROOF: L[y is reflexive since Id = {(p,p) | p € Pr} is easy seen to be an
M-bisimulation. Ty is transitive since if p Cas g and ¢ Car r then there exist
M-bisimulations R and @ such that (p,¢) € R and R C MB(R) and (¢,7) € @
and Q@ C MB(Q). If M is downwardsclosed we may infer that the composition
R o @ is an M-bisimulation containing (p,). To see that Ro Q@ C MB(Ro Q)
observe that if (p,7) € R o Q then if p - p’ then there exist ¢, q’ and b such
that ¢ LN q with a C4 b and (p/,¢’) € R. Also if ¢ LN q’ there exist r’ and
¢ such that » = ¢ with b C4 ¢ and (¢/,7') € Q i.e. (p/,+') € Ro Q. Also if
r—%3 ', a € M, then there exist q, q" and b such that 6 C4 a and (*',¢') € Q,
since M is downwardsclosed & € M and there exist p’ and ¢ such that ¢ C4 b
and p == p with (¢, ¢') € Rie. (p/,7') € Ro Q. a

A very convenient concept in proofs of M-bisimulation is the notion of a
relation being an M -bisimulation upto ’Cs’°. A similar definition of bisimulation
upto ’~’ is given in [Mil 83].

Definition 1.15 R is an M-bisimulation upto *Car’ itff Cyy oRo Typ is an
M -bistmulation.

Proposition 1.9 R s an M-bisimulation upto "Cyy’ iff
RC MB(Ep oo Cy)
ProoF: if R is an M-bisimulation upto > Cjs’ then
Car oRo Cyr € MB(Epr oRo Car)

Clearly R CCpr oRo Ly, since Id CCpy and R = Ido Ro Id.
Also if
RC MB(Cpr oRo L)

then
Cp oRoEy C By oMB(Epr oRo Car)o Cy
but
Cym € MB(Cwu)
SO

Cym oRoCpyr C MB(Epr) o MB(Epr oRoCpr) o MB(Cay)

but M B 1s monotone so
Car oo By € MB(Ep 0 By oRo Cpy 0 Epy) = MB(Epy oRo Cyr)

since Ly 1s transitive. a

15

The conveniency of this concept may be seen in proofs where we can con-
struct a relation R, which almost is an M-bisimulation except for certain closure
properties. The concept of M-bisimulation upto 'Cps’ provides these closure
properties and ensures the existence of an M-bisimulation. We may now see
the notion of simulation, bisimulation, extended simulation, extended bisimula-
tion and M-bisimulation as an evolution:

Simulation Act
Bisimulation

By putting structure upon Act putting C4 = =
Ext. Simulation (Act,Ca)

Ext. Bisimulation
taking M=0
By restricting the ”interesting” actions taking M=Act
(Act,Ca), MCAct

M-Bisimulation

Figure 1.1:

Note how M-bisimulation does not need a definition of M-simulation since
we just take M = (). This shows M-bisimulation as the most abstract of the
notions considered and we therefore investigate its properties by giving sound
and complete proof systems for it over a language for defining processes or
machines. The language for defining machines is simply the word algebra Tx,
over the signature X of operators for machines. This yields a way of defining
machines by their constituents.

A very interesting connection between two preorders upon the same universe
is expressed by:

Proposition 1.10 Let T4 and <4 be preorders over the same set of actions
A. Let M, N C A, then:

NCM& CaC<a &pEnwg = p<ng

ProoF: The relation R = {(p,¢) | p Car ¢} is an N-bisimulation with re-
spect to <4. To see that R C NB(R) observe that if p = p’ then there exist

q’ and b such that q LN ¢ and a C4 b and p’ Cpy ¢ but since £4C<, then

16

(p',q") € R. Alsoif ¢ =5 ¢', a € N, then there exist p” and b such that p LN p’
and b Cy4 a, since a € M, and p’ Ty ¢’ but since C4C<4 then (p',¢') € R. O

By this proposition it is possible to relate two different orderings on actions
to orderings on processes.

17

Chapter 2

The language for defining
processes

The language for defining processes is taken to be the free X-algebra Tx over a
signature X, including the set of actions Act, a set of variables

X = {a,2;,..,y,2, ..} and operators for nondeterminism, communication and
recursion.

The model is extensional in the sense that concurrency is unobservational
and therefore, as will be seen later, communication may be exchanged by action-
prefixing and nondeterminism.

Let ¥ = Act U{nid,+,(..)[f], |y, pz.} UX. Thus ¥ is a set of operators.
nil and every x € X being constants, every a € Act a unary operator for action
prefixing, px. a unary operator for recursive binding of z, + a binary operator
for nondeterminism, |, a binary operator for communication with the possibility
of interleaving, one for every binary monotone partial function g : Act? — Act
and (...)[f], an n-ary operator for every n-ary monotone partial function
f i Act” — Act.

By a monotone partial function we mean a function such that
aCy b& f(a) defined = f(b) defined & f(a) Ta f(b).

Terms p in Ty, are generated by the following abstract grammar:
p = nil | a.p1 |P1 +p2 | (p1---pa)lf] |P1 g P2 |l‘ | p.p

As it may be seen from the above definition, X resembles an extract or extension
of current variants over CCS [Mil 80].

In the notation (...)[f] we follow the idea of P. Aczel [Acz 84].

As an example f may be instantiated to an identity function on a subset B
of Act, obtaining the restriction operator [B, known from SCCS [Mil 83]. Also

18

f may be instantiated to a monotone endofunction ® : Act — Act yielding a
renaming function.

Definition 2.1 The operational semantics of the language is taken to be the
smallest family of relations {—+C TE | a € Act} satisfying:

ACT —: ap—sp

SUM —: if m =
or py—>p
then p; +ps - p

FUN —: if Yipi <Spl&e~ flar.. . an)
then (p1...pa)[f] == (P1 - -P))[f]

COM —: if (;m s pl & p="p} lg P2)
c
or (p2—py &P =p1ly 1)
b
or (p1——=p) &ps—ph &p =1 |y ph & ¢~ g(a,b))
then pi|gp2 — P/

REC —: if plpz.p/z] = p
then px.p—p

Here ¢ ~ f(a1...an) and ¢ ~ g(a,b) means true if f(ay...an)(g9(a,b)) is
defined and ¢ is instantiated to the value of f(ay .. .an)(g(a,b)), false otherwise.

In the above definition p[g/«] means simultaneous substitution of ¢ on every
occurrence of z in p taking account of change of bound variables. A formal
definition of substitution will be given in chapter 3 (definition 3.3).Also p[ux.p/z]
in REC — may be refered to as unfolding the recursive process uz.p once.

In the notion |, we generalize the communication operator | form CCS. By
instantiating g to a function such that g(a,@) = 7 and g(a,b) = undefined if
a # b we obtain |.

The inclusion of |, with the operational semantics COM — shows that we
have chosen to model concurrency asynchronously. Processes may communicate
if they perform actions a and b and g(a,b) is defined, otherwise they only can
proceed interleaved.

If Act has an ablean group structure with composition function f : Act? —
Act, we could model the synchronous communication operator x known from
SCCS [Mil 83],with the notion (...)[f].

As was shown in [Mil 83] it is possible to derive | from x if we add an unob-
servable action 71”7 to the set of actions and extend the notion of M-bisimulation
to take this into account, obtaining a notion of ”weak”-M-bisimulation. It is a

19

field for further study if and how such a theory may be developed but we do
not investigate it further in this thesis.

If we only want to model synchronism we may exclude |, from the language
and COM — from the semantics.

By the introduction of g in |; we have the ability of obtaining much more
interesting communication operators by taking Act to a set with much more
structure. An example would be Act ~ BAct + Act x Act where BAct 1s
a set of basic actions as e.g. {a,b,c,...,@,b,¢ ...}. We then instantiate |,
with ¢ = © o Ins o (,) where (,) is tupling and © is the isomorphism folding
into a recursive defined domain. This communication operator gives a kind of
composite action, composed of basic actions involved in communication during
evaluation of the program. Of cause we may use the above g in (...)[f] in the
synchronous case.

2.1 A general scheme for transformations

Often we want to define a transformation F from the language for defining
processes to some domain D of interest, for example defining the free variables
in processes by a transformation F : Ty — P(X).

We want the function to be defined structurally i.e. the result of taking F
upon a compound construct depends on it constituents.

This is done by giving functions for every operator of ¥. So we have to define
functions and constants:

Definition 2.2

g9+ € DxD—=D
gnit € D
Juz. € D—D
9. € D? =D
goom € D"—=D
gz € D oneforeach z € X
go € D one for each a € Act

Then we can define F : Ty, — P(X) structurally by:

(ml) = Y9nil
Fpr+p2) = g+(F(p1), Flp2))
Fpep) = gue(F(p))
Fpilgp2) = 9lg(Fp1), F(p2))

20

F(lpr---pa)lfD) = g9comFp1) ... Fpa))
f(l‘) E
Flap) = g4(F(p))

Note how this scheme resembles denotational definitions.

21

Chapter 3

Complete proof systems

In this chapter we present sound and complete proof systems for three sublan-
guages ¥ ¥ and X7 of ¥.

We cannot hope for sound and complete proof systems for the whole X since
11 |g p2 and (p1...pn)[f] allow communication to be introduced into recursive
defined terms and by this a coding of a Turing machine may be possible (see e.g.
[Mil 83]). Therefore we restrict our attention to three proof systems of interest.

The first is for closed finite terms with only action-prefixing and nonde-
terminism, the second for closed finite terms without recursion and the third
for regular expressions. The second is only a conservative (to be explained
later) extension of the first. In general these are of interest since the second
and third system may be used to express a lot of interesting concurrent sys-
tems within, systems either involving only closed finite expressions or systems
involving only regular expressions or systems with recursion without using com-
munication within recursion. Examples are protocols in data transmission.

3.1 Finite terms

In this part we present sound and complete proof systems for finite terms. We do
this in three steps, first we present a proof system for nondeterminism, secondly
we extend this by the operator |, for communication and thirdly we introduce
the function scheme (.. .)[f].

Prefix and nondeterminism

First let us define the transition system of nondeterministic finite terms N FT =
(Ppny, Act,—) where P,; is given by the following abstract syntax:

p = nil|a.p1 |p1 + p2

22

Thus £ = S\ ({(-.)[f], g, 2.} U X).
The operational semantics is the smallest family of relations satisfying

ACT — and SUM — of definition 2.1

Proposition 3.1 Ty is a precongruence with respect to the operators of X7

Proo¥F: By proposition 1.8 Cjs is a preorder.
To show that Ty is preserved by prefixing and nondeterminism we establish
two M-bisimulations:

Ry ={(a.p1,bpz) |aCa b& p1 Cpyr p2}U Ly

Ro={(pr+pr201+¢) |mCyw 1 &p2Cx ¢2}UCH

Ry 1s more general than needed for showing preservation of Ty by prefixing,
but we obtain this by choosing b = a.
The full proof is presented in appendix A. a

Proposition 3.2 The following holds for all p1,ps, ps € Txny:

pr+(p2+ps) ~m (p1+p2)+ps
prt+p2 =y p2t+p
P+ =M P
p1+nil =~y pr

Here ~3r means that both Ty and Jyr hold.

Proor: The proof is similar to previous axiomations of bisimulation see
e.g. [Hen 85].
The proof consists of establishing 8 M -bisimulations:
The relations

Ri={(p1 + (p2 +p3), (p1 + p2) + p3) | p1,p2,ps € Pr}uUld

Ry ={(p1 +p2, 1 +p2) | p1,p2 € Priuld
Rs={(p1+p1,p1) | p € Pr}uld
Ry=A{(p1 +nil,p1) |pp € Priuld

are M-bisimulations.
Also all R7Y, i€ {1...4}, are M-bisimulations.

The full proof is presented in appendix A. a
We now present the proof system S, ; of the precongruence Cpr over Ppy:
We write = p1 Car po if py Cas po is provable by the rules of table 3.1.

23

SUM SL p1+ (p2 +p3) =m (p1 +p2) + 13

52 pL+pr=mMp2+nm
S3 pPL+pPi=MDn
54 p1+ni =y p
PREORD P1 pEm p
[[
P2 Prbm P2 p2mM P3
1 Em ps
[[
P3 Prbm P2pP2m D1
P1 =M P2
P4 P1 =M P2
P1Ear p2p2Cam p1
[
PRECONG C1 =M P e, b
a.pi Car b.p2
9 P1Eam p2p3Em pa
P1+p3Em p2+pa
ANNIHIL b&iM
nil Car b.p
[
CONS bi=u P Ny
P1 EN P2

Table 3.1: Proof system for nondeterminism.

Proposition 3.3 Ty satisfies the axiom ANNIHIL of table 3.1

PrROOF: The relation R = {(nil,b.p) | b &€ M} is an M-bisimulation.

To see that R € MB(R) observe that nil 72) for any a. Also b.p 72) for any
a € M. i.e. both conditions of T3y hold trivially. a

Theorem 3.1 The proof system S, of table 3.1 is sound

ProoF: By proposition 3.2 Ty satisfies S1-S4. By proposition 1.8 Cpy is
a preorder. By proposition 3.1 Cjs is a precongruence and by proposition 3.3
ANNIHIL is satisfied. Also proposition 1.10 with <4=C 4 ensures that Cys
satisfies CONS. ad
We now turn to prove the completeness of the proof system S,;. In this
proof we introduce a normalform similar to that of [Hen 85]. A term is said to

24

be in normalform if it can be written as:
n
p= E a;.p; where p; is in normalform
i=1

We use Z?:l a;.p; to describe the sum a;.p1 + ...+ an.pn, 7 > 0 and nel if
n = 0, knowing the notion is unambiguous because of S1-S3 of table 3.1.

Proposition 3.4 Fvery term p in ¥*/ has a normalform nf(p)
such that = p =p nf(p)

ProoOF: By structural induction (see appendix A). a
Proposition 3.5 If p and q are in normal form then:

pCy ¢g=>FpCuy ¢

ProoF: By induction on the size of p and ¢ using that p — p’ iff a.p’ is a
subterm of p. Also in the case a € M we use ANNIHIL.
For the full proof see appendix A. a

Theorem 3.2 Ifp LTy g thenbFpLCyr g

ProOF: Assume p Cpy ¢. By proposition 3.4 there exist nf(p) and nf(q)
such that:

Fp=mnf(p)and Fq=mn nf(q) (3.1)
By theorem 3.1 (soundness) we have
pCwm nf(p) andnf(p) Ty pand ¢ Ty nf(q) and nf(q) T ¢ (3.2)

Since Cpy is a preorder, p Cpr ¢ together with 3.2 yields:
nf(p) Ex nf(q)

By proposition 3.5 we get

Enf(p) Ev nflq)
By (3.1) and P2 of table 3.1 we get

FpCu nf(p) and Fnf(g) Cur g
giving
FpCu g
O
This shows that the proof system S, is sound and complete. In fact the

proof system of table 3.1 induces the least ¥"/-precongruence satisfying the
axioms S1-54.

25

Communication

We now extend the language X"/ with the operator |, for communication.
Let CFT = (P.f, Act,—) be the transition system of finite terms with
communication, where F.; is given by the following abstract syntax:

p o= nil |ap | pr+p2 | p1lgp

Thus 5 = S\ ({(..)[f], par-} U X) = 5 U {],}.
The operational semantics is the smallest family of relations satisfying

ACT —, SUM — and COM — of definition 2.1.

Proposition 3.6 Ty is a precongruence with respect to the operators of X,
provided g in |4 is monotone.

PrOOF: As in proposition 3.1 with the extension that the relation

R={(p1lg P2, 91 lg 92) | Pi Epmrucrig-r g €65t € {1,2}}

is an M -bisimulation.
(The proof of this is presented in appendix A.) a
Remember that CL(B) = {a | 3b € B.a C4 b}.

Proposition 3.7 if p=> " a;.p; and ¢ = Z;n:l b;.q; then

Plg g =m > g(ai, b;).(pi |g 4;)+
(6,5)€{(1,5)1g(ai,b5) defined}

n m

D aipilg)+ Y _bi(plg a;)

i=1 j=1
ProoF: The relation
R=A(plyq, > glai, bs).(pi lg 95)+
(i,7)€{(i,5)lg(aib;) defined}

n m

ai(pilg @)+ bj(p g 45))
i=1 j=1
lp=) aipi&g=> bjq}
i=1 j=1

is an M -bisimulation.
Also R7! is an M-bisimulation.
(See appendix A.) a
This proposition shows that communication may be exchanged by action-
prefixing and nondeterminism.

26

Functions

We now extend the language %¢/ with the operator (...)[f] for the general
function scheme.

Let FT = (Pf, Act,—>) be the transition system of finite terms, where P
is given by the following abstract syntax:

p = nil | a.py |P1 + p2 | (p1--.pa)[/] |P1 lg P2

Thus X5 = 2t U {(..)[f]}.
The operational semantics is the smallest family of relations satisfying

ACT —, SUM —, COM — and FUN — of definition 2.1

Proposition 3.8 Ty is a precongruence with respect to the operators of L7
provided g in |4 and fin (...)[f] are monotone.

PrOOF: As in proposition 3.6 extended with the proof that the relation

R={((p1 - -pa)lf]; (a1 a)lf]) | Pi Cerngr-1(anysiy @i}

1s an M-bisimulation.
e proof of this is presented in appendix A.
Th f of this 1 ted 1 dix A 0O

Proposition 3.9 The following holds for p1...p, € Txy:

(p1---p)lf] =am nilif p; = nil for some i <n

flar .. an).(p1...pa)lf]

(a1.p1. . an.po)lf] =um if flai ... ay) is defined

nil otherwise

(pr-pi+aqi- p)lf] = (Pr-opio-pn)[fl+
(p1---qi--.pa)lf]

ProoF: By establishing 8 M-bisimulations. The relations
Ry ={((p1-..pa)lf],nil) | pi = nil, i <n}

Ro={((a1.p1.. an-pn)f], flar...an).(p1...pn)[f])
| flay...apn) is defined} U Id
Rs ={((a1.p1...an.pn)[fl,nil) | (a1 ...a,) is undefined}
Ri={(lpr- - ps+qi---p)fls(r-opio o)1+ 1 s pn) DU Id

27

SUM S1 P+ (p2 +p3) =m (p1 + p2) + 3

S2 PLt+pr=mp2t+p
S3 PLt+pr=mp1
54 p1+ nil =5 p1
PREORD P1 pEum p
P9 P1Cym p2pP2Cm p3
1 Em ps
P3 P1Cym p2p2Cy 1
P1 =M P2
P4 P1 =M P2
P1Cym p2p2Cy 1
[
PRECONG Cl1 L1
a.pt Ep b.po
9 P1Cym p2pP3Cm pa
p1+psEpm p2+pa
C3 PiEMUCLG OO0 G e g 9y
P1lg P2 Car g1 lg g2
pi Cor(r-1 (M) Pi ;
4 Jorall i <n
(P12 f1 o (P - 2)IS] -
bed M
ANNIHIL Qi
nil Cpr bop
[
CONS P11 =M P2 L NCM
p1 BN p2

Table 3.2: Proof system for finite terms (Continued on next page).

28

PEY aipi q= Y5 bgs

COM
plngME(l)j)e{(m)|g(a“bj) depineay 900005 (Pilgai)+
Doy e ile DT b5 (Pleas)
p; = nil
FUN F1

(p1 - -pa)f] =n nil

flar...an).(p1-..pa)lf]
if f(ay...apn) is defined

F2 (01~P1 anpn)[f] =M
nil otherwise

F3 (p1---pi+qi-p)lfl =2 (pr-.pi- o)1+
(p1---qi - .pa)lf]

Table 3.2: Proof system for finite terms.

Also the relations R, i € {1...4} are M-bisimulations.

(see appendix A.) a
This shows that (...)[f] may be exchanged by action-prefixing and nonde-

terminism.
In table 3.2 we present a proof system S} of the precongruence Ty over P;.
We write = p1 Car po if py Cas po is provable by the rules of table 3.2.

Theorem 3.3 The proof system of table 3.2 is sound, i.e.

FpiCym p2 = p1Cu po

Proo¥F: By theorem 3.1 and proposition 3.6, 3.7, 3.8 and 3.9. a

We now turn to prove the completeness of the proof system 5.

We do this by a similar proof technique as presented in [Hen 85], but we
have to take into account that Cas is only a preorder, not an equivalence.

Definition 3.1 Let ¥ C Y. Let R be a relation over Ty, and R’ a relation over
Ts:. Then R’ is a conservative extension of R if R NTx C R.

Lemma 3.1 Let ¥ C ¥ and let R and R’ be preorders over Tx, and Tx: such
that R C R'.
Let S be a preorder over T such that:

1. S s a conservative extension of R

2. RRCS

29

3. For each p € Tx/ there exists a normalform nf(p) in Tx such that
(p,nf(p) € R and (nf(p),p) € K

Then R = S.

(Tn spirit this is the extension lemma of [Hen 85] extended to take account of
preorders).
PRrROOF: Suppose (p,q) € S. Then:

from 3: (p,nf(p)) € R and (nf(q),q) € R

from 2: (nf(p),nf(q)) € S
from 1: (nf(p),nf(q)) € R

Therefore (p,q) € R since RC R'. a

In the following theorem the precongruence induced by S1-54 shall be named
Cl, , and the precongruence induced by S1-S4, COM and F1-F3 shall be named
Cor -

Theorem 3.4 Ty s the least precongruence which satisfies the azioms S1-54,
COM and F1-F3 of table 3.2

ProOF: We apply lemma 3.1 with ¥ = ¥/ and ¥ = ¥/ R =C}, R’ =C3,
and S =Ly .
As it has been shown in proposition 3.2, 3.7 and 3.9, Cys satisfies the axioms
S1-S4, COM and F1-F3 of table 3.2. This establishes hypothesis 2 of lemma

3.1 Also by using the axioms COM and F1-F3 of table 3.2 every occurrence of
|s and (...)[f] can be eliminated from terms in ¥/. This establishes hypothesis

3. It remains to show that Ty is a conservative extension of C}, . Let E;w be
the precongruence satisfying ACT — and SUM —. From theorem 3.1 and 3.2
we know t p; T}, po iff p1 C;; p2. A simple proof by structural induction will

establish that for all p1,ps € % 1 p1 Car po = p1 E;w pa. m|
Since table 3.2 induces the least precongruence the above theorem establishes
the desired result:

Theorem 3.5 The proof system S; of table 3.2 is sound and complete 1.e:

Fp1Car p2 ff p1 Eoy Do
ProoF: By theorem 3.3 and 3.4 and the above remark. a

3.2 Regular expressions

Let us define the transition system of regular expressions RE = (P, Act,—)
where P, is given by the following abstract syntax:

p o= nilla.p1 |p1 + pa |x|ux.p

30

The operational semantics is the smallest family of relations satisfying
ACT =, SUM — and REC — of definition 2.1.

z and pz. introduce the wellknown concept of free and bound variables in
expressions.

Definition 3.2 We define the set of free variables free(p) inductively:

free(nil) = 0
free(a.p) free(p)
free(pi +p2) = free(p1) U free(ps)
free(z) = {x}
free(uep) = free(p) \ {z}

Note how px. binds free occurrences of & in p in pz.p. A variable that is
not free 1s called bound. Note too how free also may be seen as an instance of
the general scheme of definition 2.2. A variable may be seen as a place holder,
and we may substitute a variable with an expression. We will use the notation
p[7/&], where & = (x1...2,) are free variables in p and ¥ = (r1...7,) are n
expressions, as the act of simultaneous substituting »; for ; in p taking account
of change of bound variables.

This may be formalized in the following definition:

Definition 3.3 p[r/z] is defined structurally on p as follows:

nillr/z] = nil
(a.p)[r/z] = a.(p[r/2])
(p1 +p2)r/z] = pilr/z] + pa[r/7]
P o fy=w;

uy.plr/z] if y not in & nor free in ¥

(y)lr/2]l =3 s ol /el 2)

otherwise for some z not in & nor free in py.p or v

This definition is similar to the definition of substitution in [Mil 81] and has
resemblance to substitution in the A-calculus (see e.g. [Bar 85]).

In the above definition = means syntactic equivalence upto change of bound
variables.

We now turn to investigate some useful properties of substitution; but first
we introduce the concept of guarded variables, which divides the set of free
variables of terms into two groups: guarded and unguarded variables:

31

Definition 3.4 We define the set of unguarded variables UG (p) inductively:

UGnil) = 0
UG(ap) = 0
UG(p1+p2) = UG(p1)UUG(p2)
UG) = {2}
UG(pz.p) = UG(p)\{z}

A variable which is not unguarded is said to be guarded.

Properties of substitution
Property 3.1 Whenever p[F/Z] = p' then

either for some p’ . p - p" and p’ = p"[F/ %]

or for some x; € UG(p) :1i — p'

PrOOF: by induction on inferences observing the structure of p.
(see appendix A.) a

Property 3.2 Whenever p' : p —— p/ then p[r/z] —— p'[7/Z]

PrOOF: by induction on inferences observing the structure of p.
(see appendix A.) a

Property 3.3 Whenever x; € UG(p) and r; — p' then p[F/Z] == p

PrOOF: by induction on inferences observing the structure of p.
(see appendix A.) a

Property 3.4 If no x; is free in p then p[r/z] = p

ProoF: by structural induction.
(see appendix A.) a

Property 3.5 If & and y are disjoint then:

pla/=lr/y) = plalr/9)/ 2, /4]
ProoF: by structural induction.
(see appendix A.) a

Before presenting a proof system characterizing Cyy over P, we have to
extend C s to take account of the possibility of free variables in the expressions.

32

There are basically two possible strategies for doing this, the one being
defined as:

pCyr ¢iff Vrp[r/2) Car q7/2]
where z contains all the free variables in p and ¢ and the 7;’s in 7 are closed.
This strategy may be called instantiation.
The other strategy consists of extending the function M B to take account
of free variables, the extension ensuring that the two processes have the same
set of unguarded variables i.e:

Definition 3.5 (p,q) € MB"(R) iff:

L. UG(p)=UG(q)
2. VYa€ Actp -2 p = ¢TI Act.q -2 ¢/ & a Ty b& (p',¢') € R
3. YaeMg-"5¢ = I IEActp-p &bCTy ak (¢, ¢)ER

This strategy may be called refining, and a relation R such that
R C MB"(R) is called a refined M-bisimulation. We write p 23(4 q if there
exists a refined M-bisimulation containing (p, q).

Despite the different nature of the two strategies they are equal in express-
ability:

Proposition 3.10

PEy g f PEy ¢
PRrROOF:

= We show that the relation

R ={(p[r/),q[r/z)) | p Ty q}UId
1s an M-bisimulation.

< We prove this by showing
PZnma =Yg

For the full proof see appendix A. a

From now on we shall use M-bisimulation for a refined M -bisimulation, since
the results of refined M-bisimulation holds for closed finite terms and since M-
bisimulation and refined M-bisimulation coincides on closed finite terms.

Let us now turn to characterize Ty for regular expressions. In table 3.3 we
present the proof system S,; of the precongruence Cps over P,.

Note the interesting properties of R4 and Rb5. These rules state that puz.py
is the least prefix point and the greatest postfix point of the recursive equation

33

SUM S1
52

53

54

PREORD P1

P2

P3

P4

PRECONG (1

C2

REC R1

R2

R3

R4

R5
ANNIHIL

CONS

PREFIX

p1+ (P2 +p3) =m (01 +p2) +p3
P1+p2=mp2+p
PLt+pL=M P
p1+ nil =5 p1
pEum p

P1 Eam p2p2Enm ps
1 Cym p3

P1Ea p2p2Cm ;1
P1 =M P2

P1 =M P2
P1Ea p2p2Cm ;1

P1 Eam p2p3Em pa

p1lps/x) Ty palpa/x]

1 Em P2
px.p1 Epr px.ps

px.p =p py.(ply/x]), y not free in pa.p

p.p =nr plpr.p/]

px.(p+x) =m pa.p
pilp2/x] Car po

,x guarded in py
pr.pr Ear po

P2 Ty pilpa/x]
p2 Epr px.pr
beg M
nil Car b.p

,x guarded in py

P Cy ps

NCM
p1 EN P2

a EA b
apCuy b.p

Table 3.3: Proof system for nondeterminism.

34

z = p1 provided z is guarded in p;. Together R4 and R5 state that pz.p; is the
unique solution, as was also shown in [Mil 81].

First we prove the soundness of the proof system.

We shall write - py Car po if py Car po is provable by the rules from table
3.3.

Proposition 3.11 Ty, is a precongruence with respect to the operators of X7,

r.e. Cyar satisfies C1 and C2 of table 3.3
Proor: The relation

Ry = {(p1lps/=], p2lpa/x]) | pr Car P2, p3 Em paUCny

1s an M-bisimulation, and the relation

Ry = {(p[px.p1/x], plpx.pa/x])
|p1 EM P2, P1, P2, P S xr 5 f?”@@(p) g {$}}U EM

is an M-bisimulation. The result follows by taking p = z. We have chosen only
to prove the case where free(p) C {x}, the result easy generalizes to general
open expressions.

To see that Ry € MB(R3) we use induction on the length of inferences.
(For the full proof see appendix A.) a

Proposition 3.12 The following holds for all p1,p2, p3 € Tsr:

pr+(p2+ps) ~m (p1+p2)+ps
prt+p2 =y p2t+p
P+ =M P
p1+nil =~y pr

Here ~3r means that both Ty and Jyr hold.
Proo¥F: As for proposition 3.1
UG(py+ (p2 +ps)) = UG(p1) WU G(p2) UUG(ps) = UG((p1 + p2) + ps)
etc. a
Proposition 3.13 Ifa T4 b then a.pCy b.p for all p € Tsr
ProoF: The relation
R={(a.p,bp)|aCy b} UId

is an M -bisimulation.

To see this observe that a.p — p which b.p can match by b.p LN p and by
definition of R : a C4 b and (p,p) € Id C R. Also if b € M a.p can match b.p,
otherwise the result holds trivially. a

35

Proposition 3.14 [fb & M then nil Cay b.p for all p € Txr.

ProoF: The relation

R={(nil,bp)|b& M}

is an M-bisimulation, since UG(nil) = § = UG(b.p) and nil 7(14) and b.p 72) for
any a € M. a

Proposition 3.15 px.p has exactly the derivations of its unfold i.e.

pa.p = plpe.p/x]
ProoF: The relation

R = {{(px.p,plpz.p/z]) |p € Tert U Id
is an M-bisimulation.
To see that R C M B(R) observe that
if px.p - p’ then this is due to p[ux.p/z] == p'.
Also if pluz.p/z] == p’,a € M then by REC — pz.p — p’ which obviously is
the matching move.
Also R7! is an M-bisimulation. ad

Proposition 3.16 Ify is not free in px.p then px.p ~yn py.(ply/z])
r.e. Cyar satisfies R1 of table 3.3

PrOOF: Let py = px.p and py = py.(p[y/]). By proposition 3.15
p1 ~u p[p1/a] and ps ~ar plpa/a] . We now show that

R=A{(qlpr/z], aly/llp2/y]) | ¢ € Tsr}

is an M-bisimulation. The result follows by taking ¢ = p and applying propo-
sition 3.15.

To see that R C MB(R) we use induction on the number of inferences.

The full proof is presented in appendix A. a

Proposition 3.17 If x is guarded in py then

if prlp2/®]) Ty pa then px.py Ty po
and

if p2 Car pilpa/] then p; Ty pa.pr.
1.e. Car satisfies R4 and R of table 3.3.

PROOF: Since px.p ~p p[px.p/] it is enough to show that if
p1 Ear plpr/2] & plpo/2] Ty p2 & pr Ear po then plpi /2] Ear plpo/a].

Let
R={(qlpr/], qlp2/7]) | ¢ € Txr}

We wish to show that R is an M-bisimulation upto ’Cj; ” and the result follows
by taking ¢ = p and applying proposition 1.7.
The full proof is presented in appendix A. a

36

Proposition 3.18 px.p ~p pa.(p+ x) i.e. T satisfies R3 of table 3.3

ProoF: The relation

R={(q[pz.p/z], qlpx.(p+ x)/2]) | ¢ € T}

is an M-bisimulation. The result follows by taking ¢ = =.

To see that R C MB(R) we use induction on the number of inferences.

The full proof is presented in appendix A. a
By these propositions we arrive at the desired result:

Theorem 3.6 The proof system Sy is sound i.e.

PCy ¢ =>FpCy ¢

ProoOF: By propositions 3.11-3.17.By proposition 1.8 we know that Cpy is
a preorder, and proposition 1.10 shows that CONS is sound with <;=C,4 . O

We now turn to prove the completeness of the proof system. But first we
need a lemma which resembles the properties 3.1-3.5.

Lemma 3.2 1. if z is not free in p then - p[r/z] =p p
2. if and y are disjoint then - plq/z][7/y] =um plal7/vl/ %, /Y]
PRrooOF:

1. if & is not free in p then p[g/z] = p, by definition of substitution and by
Pl:Fp=mp

2. We prove this by structural induction on p (see appendix A).

O

We now prove a theorem which in spirit is similar to theorem 5.7 of [Mil 81],

but the details as well as the overall result are quite different. The result of this

theorem together with an equational characterization analogous to theorem 5.8

of [Mil 81] yields the completeness proof of the system of table 3.3. Also the

completeness proof is similar in spirit to that of theorem 5.9 in [Mil 81] but in
detail it 1s rather different.

Theorem 3.7 Let & = (x1...2m) and § = (y1 .. .yn) be distinet variables, and
letGg=(q1...qm) and § = (¢} .. .q.,) be expressions with free variables in (Z,y)
in which each x; is guarded. Then there exist expressions p = (p1...pm) and
P = (p}...pl,) with free variables in § such that

Fpi Eum gilp/7] and +pi Cy gi[p'/7]

and moreover this and - ¢; Cpr ¢} implies for (i < m)

Fpi Cu pj

37

Proor: By induction on m.

Basis For m = 1 we choose p; = px1.qq and p) = pay.q). The first result
follows immediately from R2 and R4, the second follows from C2.

Step Assume the result for m. Now let ¢ = (q1...¢m) and ¢m41 and ¢ =
(¢1 -..4q,,) and gq;, 1 be expressions with free variables in (Z,#,41,¥) in
which z; is guarded (i < m+1). We first find expressions p = (p1...pm)
and pp41 and p’ = (p} ... p;,) and p,, ., such that for (i < m + 1):

Fpi Ty 4i[p/%, pmg1/Tmy1] and

Ep Cu qg[ﬁ’/i‘,p;@H/me]
For this purpose, first set
Tmtl = fTm41-Gm41 and
(3.4)
g1 = M8t - G
and for (¢ < m):
i = qi[Pmg1/®my1] and
(3.5)

~

r

5

= ¢i[rny1/Tma]

Since r; and r} have free variables in (#,y) with # guarded, by induc-
tion there are expressions p = (p1...pm) and § = (p ... p),) with free
variables in g such that:

Fpi Car ri[p/2] and

(3.6)
Epi Ca il /]
If we choose
Pm+1 = Tm+1[p/@] and
(3.7)
Pyt = T [P'/7]
we may rewrite (3.6) using (3.5) to:
b pi Cur Gilrmgr/@mea][p/] and
(3.8)
E il /Tmall0’ /2] Ty pf
if we appeal to lemma 3.2 and use (3.7) we obtain for (i < m):
b pi Ev 4:[p/%, prg1/Tm41] and
(3.9)

Fallp' /%, gy /Eme1] Car P}

38

To obtain (3.3) for ¢ = m + 1, we deduce from (3.4) and (3.7) since Zmm41
Is not in p nor p':

Pmt1 = i1 (gm41[p/7]) and
(3.10)

Prng1 = Hma1 (@ng1 [P/ 2])
and hence by R2, P4 and lemma 3.2 we obtain: (since #p,41 is not free in
p nor p)
EPmt1t v Gm+1[P/Z, Pmy1 /@] and

(3.11)
F @1 [P/, Pragt /Tma1] EM Proga
For the second part, observe that the induction yields for (i < m):
Fory Capr 7“; = |‘pi Capr p; (312)
If ¢ Car ¢} (1 <m+1) then also
S Y (3.13)
by C2 and this yields
Fri Cy 7l (3.14)

by Clsot p; Car pi (i < m) to see b pry1 Ty ph,pq use (3.13) and
(3.14) and C1.

O
Note how this theorem extends R4 and Rb of table 3.3 to systems of simul-

taneous recursive processes.

Theorem 3.8 For any expression p, with free variables in y, there exist expres-
sions p1...pg (k> 1) with free variables in y satisfying k equations:

nq

Fpi =i pra) + Y gig) (K2 1)

j=1 j=1

moreover

Fp=p

Proor: By structural induction on p.

(The full proof is presented in appendix A.) a

Theorem 3.9 Ifp Ty p' thentp Ty p

ProoF: Let p and p’ have free variables in y. By theorem 3.8 there are

equations F p = p1 and F p’ =y p} and

Pi =M Zaij Prig)+ Zyg(i,j) (i < k)
= =

39

m; n;
Pi =)i ppg) T) e (< k)
j=1 j=1

Now let T = {(i,#') | p; Cpr pi}. Clearly (1,1) € T since F p =p p1 and
F p =m p) and by soundness (Theorem 3.6). This implies py Ty p and
p' Cam Pl and p Epr P’ so by transitivity of Ty p1 Car p). Moreover p; and
p} must have equal sets of unguarded variables and every move a of p; can be
matched by a move b of p; with a C4 b. Also if b € M then the b-action of p}
may be matched by the a-action of p; and if b € M then p; does not have to
match b. So the following holds

1. There exists a relation
Jii = {(3,3") | aij Ca ajy & (f(3,5), F'(@', 7)) € T}
2. There exists aset JG, = {j' € 1...m}, |=35.(4,5) € Jisr}

K3

3. F Z?Q Yg(ir5) = E;'L'lﬂ Yo' (31,5

Moreover Jy;: is a total and surjective relation between {1...m;} and
{1...m }\ J§,. Note also for all j" € J, that aj,;, & M since there otherwise
would have been a matching a;; and (j, j') € Jisr.

We now consider the formal equations, two for each (¢,i') € I

n;
Tijr = Z aijwf(z’,j)f'(z",j')+Zyg(z’,j)
j=1

(4,5 €J

n;
/ / /
Ty = Z ai/j/.xf(iyj)f/(ilyj/) —|— Z ai’j"pf’(i’,j’) —|— Z ygl(ilyjl)
7i=1

(4,5 €J jrede

where z;;/ 18 not in y
These equations are provable satisfied when instantiated to p; and pl,.
To see this the typical equations become:

Pi= Y @) Y Yelid)

(4,3 j=1

n;

;o ’ ’ ’ ’

Po= Do dbePlgnn T D g P+ D Ygrtingn
ji=1

(4,3") € jrede

The first is provable since J is total and the second since J is total on
{1...ml}, and J° covers the rest. The right hand sides differ at most by
repeated summands which may be eliminated by S1, S2 and S3.

40

Now let

q; = Z @ij . Ty(ig) + Z Yg(i.j)

(G.3")€T i j=1

n;

[A— / / /

q;r = Z ai,j,.xf/(izyj/) + Z ai’j"pf’(i’,j’) + Z ygl(ilyj/)
(G,3") €T jeJe =1
Since J 1s total and surjective we know that
P g B D aherpn (3.15)
(47.5€d (4,.3)€J

by repeated use of PREFIX and C2.
By the remark that for j € J£, : a;»,j, & M we know that

F nil =M Z nil EM Z a;/j/.p},(ilyj/)
jeve, jere,
by ANNIHIL, 54 and C2 used repeatedly.
So by this and (3.15) we know
F i Ty g

again by using C2 and S4 to eliminate n¢/ in every summand.
Also we know that
Fpi Cym a:lp/]
and
Fqi[p'/x] Ty pi

so by theorem 3.7 we know
b pi Car pj for every (i,7') € T

especially F p; Cps p} which proves the theorem.

3.3 An alternative characterization of recur-
sive processes

In this part we present an alternative to the rules R4 and Rb of table 3.3 for
regular expressions, characterizing pz.p as the least postfixed point and the
greatest prefixed point of the equation & = p, provided z is guarded in p.

The alternative characterization resembles the characterization of least fixed
points in denotational semantics [Sto 77].

We want to characterize px.p by its unfoldings and we show that under
certain conditions we may do so.

41

Definition 3.6 An action T 4 € Act is a top action iff Va € Act.aTx Ty.
Definition 3.7 T, = px. T 4.z

Proposition 3.19 If M does not contain T 4 then for all closedp :p Ty T,

Proor: The relation
R=A{(p,T,) | pis closed}

is an M -bisimulation.
To see that R C MB(R) observe that UG(p) = @ since p is closed, also

UG(T,) = 0 by definition 3.4. If p —% p’ then pz.T4.x BN px. T 4.2 by
REC — and by definition of substitution. Clearly a T4 T4 and (p/, T,) € R.
Since T4 is not in M, and it is the only action of T, the second condition of
M B holds trivially. a

This shows that under the condition that Act has a top action T 4 and M
does not contain this top action, we have a greatest process T,.

Throughout this section we shall assume that Act contains a top action and
M does not contain this top action.

The above definition of T, may be used in defining the unfoldings of ux.p.

Definition 3.8

n+1 T, ifn=20
" Wﬂﬁ]—{ Pl Ty/al/a] ifn >0

Proposition 3.20 For alln € w. p" T T, /z] Cyr p*[T,/7]

Proor: By induction on n.
The case 0 holds by proposition 3.19.
To see the case for n + 1 assume p"[T,/z] Car p"~'[T,/2]. Since Ty is a
precongruence with respect to the operators of X" by proposition 3.11:p Cys p
and the induction hypothesis implies p" [T, /z] Cpr p"[T,/2]. O
This shows that (p”[T,/z])n is a decreasing chain in P,.

Proposition 3.21 if free(p) C {x} then px.p Car p?[T,/x] for alln

Proor: By induction on n.
The case n = 0 holds by proposition 3.19.
To see the case for n + 1, assume that pz.p Ty p?[Tp/2]. Since Ty is a
precongruence p Car p and the above implies plpz.p/x] Car p[p™[T,/x]/2]. By
proposition 3.15 px.p Car p" T[T, /2]. a

This proposition shows that uz.p is a lower bound for the chain (p"”[T,/2])n,
provided that pz.pis closed.

But we want to do better than that, we want to show that pa.pis the greatest
lower bound of the chain (p”[T,/z])n.

42

For the theoretical development to work we have to characterize Cyr in a
different way. We do this by defining a decreasing series of preorders over P,
and showing that under certain conditions C s coincides with the greatest lower
bound of this chain.

Definition 3.9 p CY, ¢ is always true.
pC g i

1. Ya€ Actp Sy = Hq’.EIb.qL)q’&a Ca b&yp % ¢
2. Ya€Actg—q¢ = EIp’.EIb.pr’&bEA a& p Ty ¢
pCh ¢ i ¥n > 0.pChy g i Ty = o2y Chy

This states that CY, = P? and that £ = MB(C%,)

r

Definition 3.10 A process system P = (pr, Act,—) is said to be imagefinite

1. Vp¥ad{p' |30 Jdap LN p'} is finite and
2. VgN¥Nae MA{q |IE ayq LN q'} is finite

This definition is an extension of the imagefinite condition found in e.g.
[Mil 80] saying p is imagefinite if {p’ | p — p'} is finite. The above definition
takes the ordering on actions into account.

We now turn to show when Cj; and E;w coincide.

Definition 3.11 A function F on a complete lattice D is anticontinuous iff for
every decreasing chain 1 J 2o J g J ...xp O ... of D elements F(Mpxy) =
M F ().

It follows by classic fix point theory that if a function is anticontinuous on
a complete lattice then the maximal fix point is: M, F"™ (D).

Proposition 3.22 If P is imagefinite then M B is anticontinuous.
Thus Car = (), MB™(P,) where MB® = Id and MB"** = MB" o MB

ProoF: Let Ry D Rs D R3 D ...R, D ... be a decreasing chain of binary
relations over P.. We must prove MB((,, R,) =), MB(R,).
The ’ C'-direction follows directly from monotonicity of MB and (), R, C R;
for all ¢ € w.
For the ' D'-direction let (p,q) € ,, MB(R,). If p —5 p’ we must find a match-
ing move for ¢ i.e. b and ¢’ such that ¢ LN ¢ &aly bwith (p/,¢') €, Ra.

Thus for all n there exist b,, and ¢/, such that ¢ LT g &alyb& (p,q),) € Ry.

43

By the first imagefinite clause there are only finitely many ¢,’s. This means that
there exist b and ¢’ such that ¢ LN ¢ &alys b& (p,q¢") € Ry for infinitely
many n € w. Since R, is decreasing in n (p’,¢') € R, for all n € w and thus
(7', d") €Ny Bn-
Alsoif ¢ = ¢, @ € M we must find b and p’ such that p LN p and b C4 a and
(¥,4) €N, Rn. Now (p,q) € N, MB(R,) iff Vn € w.(p,q) € MB(R,). Thus
for all n there exist p}, and b,, such that p LN pj, with b, C4 aand (pl,,q) € Ry.
By the second imagefinite clause there are only finitely many p,,’s. This means
that there exist b and p’ such that p BN p & bCyh a & (P,¢) € R, for
infinitely many n € w. Since R, is decreasing in n (p,¢') € R, forall n € w
and thus (p',¢') €, Rn- 0

This proposition shows that Car :E;V[provided P is imagefinite. Through-
out this section we shall assume that P 1s imagefinite.

Before presenting the alternative characterization of pz.p we need a few
properties of T, .

Proposition 3.23 For all n € w. p %, ¢ implies r[p/z] T4, rlg/«] for all
re b,

Proor: By induction on n.
The case n = 0 is trivial.
To prove p Eﬁj’l q implies r[p/] Eﬁj’l r[q/x]. Assume the case for n and
assume p Eﬁj’l g. Then p C%, ¢ holds since Eﬁj’l C %y so r[p/x] C%, rlg/x].
If #[p/x] — +' then by property 3.1:
either —% # and ' = #"[p/x]. Then also r[q/x] = r'[¢/x] and a T4 «a
and 7''[p/x] C%; r"[q/x] which obviously is the matching move.

or z is unguarded in r and p — p’ then g SN ¢ with a C4 b and p' &%, ¢
which is the matching move.

Also if r[q/2] == 1/, a € M then by property 3.1:
either » —= »" and the case is as above.

or z is unguarded in r and ¢ = ¢’. Then p SN p withbCys aand p/ T, ¢
which is the matching move.

Proposition 3.24 For alln € w.p™[T,/x] C}; pe.p,
whenever x is quarded wn p

Proor: By induction on n.
The case n = 0 1s trivial.

44

To prove the case for n + 1, assume that p”[T,/z] C%, pz.p. To see that
p*tT,/x] Cif't pa.p observe that if p"*1[T,/z] — p' then since z is
guarded in p we know from property 3.1 that p — p and p/ = P T p/ 2]/ x].
By property 3.2 we know that pux.p/z] — p’[uz.p/z] so by REC — we
know pz.p — p/[ux.p/x]. This is the matching move since by induction
Pt T,/x] T4 px.p and clearly p’ TRy p” so p"[p*[T,/x]/2]) Ty p'[px.p/x],
and also a C4 a.
Also if px.p % p/, @ € M. Then this is due to p[uz.p/2] — p/. Again
since # is guarded in p we know from property 3.1 that p — p” and p/ =
p''[px.p/x]. From property 3.2 we know that p?+t1[T,/z] = p[p"[T,/«]/«] —=
P'[p"[Tp/x])/«] which clearly is the matching move since a C4 a and p”’ Cf; p”
and by the induction hypothesis p*[T,/¢] C%,; pz.p which implies
P [T)2 Ty o[z /2] 0

Actually this would work as well with any other process than T, in p™[T,/x],
since p°[¢/x] CY,; px.p holds trivially. But we prefer T, since (p"[T,/z]),, then
is a decreasing chain in P,.

This shows that p" [T, /2] and pz.p is indistinguishable upto the n’th move.

Our first attempt of characterizing pz.p by its unfoldings is therefore the
following inference rule:

Proposition 3.25 The inference rule

Vn.g Cy p"[T,/7]
qCp px.p

, = quarded in p

1s sound provided P is tmagefinite.

Proor: If P is imagefinite ¢ Cpr p”[T,/ 2] implies Vm.q CF; p™[T,/2] by
proposition 3.22, i.e. Vn.¥Ym.q CF; p"[T,/xz] especially for m = n i.e. Vn.q T},
p*[T,/x] . By proposition 3.24 Vn.p”[T,/x] T}, wpx.p so by transitivity of
Ch : Vn.g Cf; px.p. Since P is imagefinite this states that ¢ Car pa.p which
proves the proposition. a

This rule states that px.p is the greatest lower bound of the chain (p™[T,/%])n.
The above rule resembles the Approximation Induction Principle (AIP) from
process algebra investigated in [Gla 85].

But we want to do better than the above infinitary inference rule. Since the
above theoretical development only works for imagefinite process systems we
may use this to restrict the number of unfoldings of pz.p necessary to do the
inference.

Definition 3.12
A set S is said to be —s-closed iff pE€ S andp = p' = p' €S.

45

Proposition 3.26 If.S C Pr is —>-closed then for all binary relations R over
Pr:
MB(RNS*)NS* = MB(R)N S*

Proo¥F: The C-direction follows from the monotonicity of M B.
To see that MB(R)NS? C MB(RNS?)NS?, let (p,q) € MB(R)NS? and prove
(p,q) € MB(RNS?). If p % p/ then ¢ 5 ¢/ with a T4 b and (p',¢') € R.
Since S is —-closed (p',¢') € S? so (p/,¢') € RNS? and (p,q) € MB(RN S?).
Also if ¢ =% ¢, @ € M then similar arguments yield the desired result. a

Proposition 3.27 If S C Pr is —s-closed and C}; NS? :Eﬁj’l NS? then for
all m > n:
Chy NS?=C7% NS? =Cy NS?

ProoF: By induction on m — n using the above proposition.

m —n =0 Holds trivial. C%, NS? =Cp NS? holds since

Ch NS* DL NS*D...D ... Cy NS?

m+n+1 Assume C%, NS? =C7% NS? then by proposition 3.26 and the
assumption Ch, NS? :Eﬁj’l NS? we get:

Chy NS?=Chf NS? = MB(Ch,)N S? =
MB(Ch nS*HNS? = MB(CY; NS*)ns? =Citt Ns?
O
Proposition 3.28 Let S Cy;, Pr be a —-closed set. Then for all (p, q) € S?:

pCum q iff pChr N >[5
ProoF: The =s-direction is obvious. For the <=-direction consider the
decreasing chain:

CY ns?oCi, NS*D...C% NS*D ... DCy NS?

Since S is finite Eéw NS? must be finite for all ¢ and Ty NS? must be fi-
nite. Since the chain is decreasing there must exist a smallest n such that
Chy NS? :Eﬁj’l NS2. This number n must be smaller than or equal to | S|?
since in a set of size | S| there cannot be more than | S| combinations, so when
n>|S|*%

C?, NS? =Cn! ns? =chl ns? =y ng?

By proposition 3.27.

46

To get an inference rule we apply the above proposition to the set
S = Der(p) U Der(q) where

Der(p) ={p' | 3p1...pn3ar .. anp1.p 5 p1 ... e p, Racyst

S has exactly the necessary properties i.e. S is finite and —-closed. To give
an upper bound on | Der(p) U Der(q) we use the following function [Lar 86al:
ND:Pr— N:

Definition 3.13

ND(nil) = 1

ND() = 1

ND(ap) = 1+ ND(p)
ND(p+q) = ND(p)+ND(q)
ND(ux.p) = ND(p)

The upper bound for pz.p is justified by the 1 — 1 correspondence between

pax.p and p.
We are now able to state the inference rule:

Proposition 3.29 The inference rule:

q Ty pN[T,/7]

N > (ND(p) + ND(¢))? , = guarded in
1 Cor 1ty > (ND(p) @) zg p

1s sound if P is tmagefinite.

ProOOF: Assume ¢ Ty pN[T,/2]. By proposition 3.24 p™[T,/z] CY
pa.p for all N, especially for N > (N D(p) + N D(q))? and by proposition 3.28
pN[T,p/x] Car pr.p which by transitivity of Cpy implies ¢ Ty pz.p. a

The theoretical development above resembles the development of an alterna-
tive proof system for regular behaviours in [Lar 86a], although the development
presented here is for processes whereas in [Lar 86a] it is for environments.

47

Chapter 4

Partial specifications

In this chapter we describe how the framework of chapter 1-3 may be used in
hierarchical development of systems. We use this in an instantiation of the gen-
eral theory called partial specification, since this allows one to partially specify
subcomponents of systems and by knitting the partial specifications together ob-
taining a fully specified system. Specially we verify the concurrent alternating
bit protocol CABP [Koy 85].

As mentioned in the introduction we want to be able to have an action *
which may take the place of any other action, a kind of action stronger than
any other action. Also this action should be used in a process U with the

characteristica i: @ *

U is meant to take the place of 813 in diagrams as:

/. d
q —»‘7"#»
91 c 92

Figure 4.1: Partial specification of q.

yielding a process ¢’ = px.c.(¢.U 4 d.x) written in the language of chapter 2.
Formally U is defined as Y = pz. * .z Since we want all other actions to
be normal as in CCS [Mil 80], we take Act = {a,b,...,a,b,..., 7} U{x} with
the ordering a C4 b iff @ = b or b = %. This ordering may be illustrated

a PR

This ordering is extended to processes by Ty with M = Act \ {x} since we
want k-actions to be as strong as possible.

48

We need to extend the usual operations of CCS [Mil 80] to the new action
set.

4.1 Instantiations of |, and (...)[f]

We want to instantiate g in |y and f in (...)[f] such that we obtain the well-
known operators for communication and restriction, with the extension to take
x-actions into account in such a way that we cannot restrict *-actions away.

To obtain a restriction operator we instantiate f by an identity function
f: B — B where B is a subset of Act, yielding the restriction operator [B. To
take x-actions into account we insist that B contains *.

For the communication operator we instantiate |, with the function g defined
by the following table:

gla b a b T

alu wu T u u

b|lu wu u T u

2 where u means undefined.
alT uw ... u u

b|lu 7 u u

Tlu w ... uwu u ... u

Table 4.1: g : Act? — Act

As it may be seen from the table above |, really extends | [Mil 80] to take
*-actions into account.

As it may be seen from both [B and |, the functions have the property of
being strict with respect to *-actionsi.e. f(x) = *. In fact thisis the requirement
for f and g to be monotone partial functions fulfilling the definition of chapter
2. Also this constraint is enough to ensure that crL(f='(m)4i) € M and that
MucL(g~'(M)yi) € M, ensuring that the instantiations may be used with the
proof systems of chapter 3.

From now on we shall write |, infix as | and [B postfix.

4.2 General properties of partial specification

Before turning to our example we shall present a series of properties which may
be used in partial specification of processes.
In the following ~ is the bisimulation equivalence defined in chapter 1.

Proposition 4.1 if p~ q then pCypr q and ¢ Cpr p

49

ProOOF: From the definition of 5 and M B it is easy to see that
B(R) C MB(R) for all R C Pr? Since B(R) obviously is symmetric, also
R=' C B(R™') C MB(R™!), which yields the second result. O

Definition 4.1 p is robust iff p — p' is impossible for any p'.
Definition 4.2 p is concrete iff all derivations, including p, are robust.

Note how these definitions resemble the definitions of rigid and stable in
[Mil 80], where the ability of performing 7-actions is investigated.

Proposition 4.2 if q is concrete and p Ty q then p is concrete

PRrROOF: Since p Cpr ¢ there exists an M-bisimulation R including (p, ¢)
such that R C MB(R). To see that p — p’ is impossible observe that if
p — p/ then there exist ¢/, b such that x T4 b and (p/,¢') € R. But x T4 b

* *
iff 5 = % and ¢ 4 since ¢ is robust so p /. Also all derivatives of p are robust
since all derivatives of ¢ are especially those ¢’ € (¢, ¢') € R. a

This proposition yields an excellent test of concreteness. We just have to
find a concrete process ¢ and show p Cpr ¢, then we know that p is concrete.
In chapter 5 we shall see another method of concreteness analysis, not involving
another process.

Proposition 4.3 if q is concrete and p Ty ¢ then p ~ ¢

Proor: By proposition 4.2 p is concrete if ¢ is concrete and p Ty ¢. If
p Car ¢ there exists a relation R such that R C MB(R) containing (p, ¢). Now
let SR = (Der(p) x Der(q)) N R, where

n 1
Der(p) = {p’ | Elpl...anIal...anH.pL)pl — I, &p/}

SR is the smallest M-bisimulation containing and concerning (p,¢) and their
derivatives. Then SR is also an M-bisimulation. To see this let (p”’,¢"”) € SR.
To be a member of MB(SR) it is necessary that

1. Va€e Actp’ S p = EIq’EIb.q”L)q’&aEA b& (p',¢') € SR
2. Yae MCActqg" ¢ = EIp’EIb.p”L)p’&bEA a& (p',q¢) € SR

Since both p and ¢ are concrete and SR only concerns p and ¢ and their
derivatives, which we assume to be concrete, a T4 b specializes to a = b. And

clearly (p',q¢") € B(SR) i.e.

1. Ya€ Actp” S p = 3¢ 4" ¢ & (¢,q) € SR

50

2. Ya€ Actqg" 5 ¢ = " -5 p & (p,¢)ESR

Taking a € Act in clause 2 does not violate @ € M since all actions of ¢”
and 1ts derivatives are different from # i.e. included in M. ad
This shows how this instance of Cyy extends ~.

4.3 Verifying the CABP

In this part we sketch how to verify that the CABP meets its specification, i.e.
is equivalent to spec = px.a.b.r.T.2

In [Koy 85] it was proven, using process algebra, that the system could be
partioned into two processes p and ¢ behaving like:

ps ¢ yp1 c 5 b 6 C 7 b ps
c a a a a a
P R B2 Ro Q10 Q11 P12
b c b c b
T T/ T/r T/r T T
d 13d 14d 15d 15d P17d Pis

Figure 4.2:

The processes p and ¢ may be defined in the language of chapter 2 with the
instantiations of f defined in part 4.1. The partial specifications p’ and ¢’ of p
and ¢ may be illustrated as in figure 4.3.

These processes may be defined as:

p' = px.a.(b.(cdr+ dU)+ dU)where U = pr. x .x

¢ = pr.c.(dr+cl)

We could prove that p Ty p’ and ¢ Car ¢’ by using the proof systems of
chapter 3. But since the relations:

Ry = {(pi,pi) | i € [1, 4]} U {pi, p5} U {pi, Ps}

51

Figure 4.3:

and
Ry = {(qi,9i) 1 i € [1,2]} U{qi, ¢35}

are easy seen to be M-bisimulations containing (p,p’) and (q,¢’), we may
draw the conclusion directly.
By C3 and C4 of table 3.2 we then know that

(Pl O[BCx (¢ |¢)B, where B ={a,b, 7, x}

We now prove that (p' | ¢/)[B Car spec by use of the proof systems of
chapter 3.

#' [4)B i

=u ((pz.a.(b(cdx+dU)+dU | py.c(dy+cld))[B
by definition of p’ and ¢'.

=y ((ab.(cdp +dU)+dU) | (c.(d.q +clU))[B
by R2 of table 3.3 and definition of substitution.

=y (a.((b.lc.dp +dU)+dU) | (c.(d.¢ +clU))+
e.((a.(b.(cdp' +dU)+dU)) | (d.g +cU)))[B
by COM of table 3.2.

=y (a.((b.(cdp +dU)+dU)| (c.(d.¢ +elU)))[B+
(e.((a.(b.(c.dp' +dU)+dU)) | (d.g +¢cU)))[B
by F3 of table 3.2.

=y (a.((b.(c.dp +dU)+dU)| (c.(d.¢ + clU)))[B + nil

52

by F2 of table 3.2.

=y a.(((b(cdp +dU)+dU)| (c.(d.¢ +cl)))[B)
by S4 and F2 of table 3.2.

=y a.((b.((c.dp +dU) | (c.(d.q +cU)))+d.(U | (c.(
c((b-(cdp’ +dU)) | (dg +cU))+e(dU | (dq +cUd))
by COM of table 3.2.

=y ab.(((c.dp +dU)|(e.(dq +cl))[B)
by F3 to move [B over +, F2 four times and S4 three times
to eliminate nal’s.

=y ab.((r.(dp | (dg +ecl)) +c.(dp' | (c(dq +clU))) +
d.(U | (e.(d.q¢ +¢cU))))[B)
by COM of table 3.2.

=y abr((dp|(dq +cU))[B)
by F3, F2 and S4.

=y abrr(p|q¢)B

by arguments similar to the last two operations.

By R4 of R5 of table 3.2 we know that (p | ¢')[B Car spec. By P2 we then
know that (p | ¢)[B Car spec. Both (p | ¢)[B and spec are concrete, so by
proposition 4.3 we know that (p | ¢)[B ~ spec, which is the desired result.

As it may be seen from the above proofs the method of partial specification
yields an elegant proof technique when modularizing development and verifica-
tion of implementations meeting their specifications.

53

Chapter 5

Data flow analysis

5.1 Introduction

In this chapter we describe how structure upon the set of actions may be used to
impose a data flow analysis view and how this may be used to find properties of
processes. Since data flow analysis for concurrent or nondeterministic programs,
to our knowledge, has not yet been investigated, this may be seen as a first
attempt to develop such a theory and not as a final answer to how data flow
analysis for concurrent programming has to be done. In the development we
try to extend the known methods from sequential programming to concurrent
programming.

In data flow analysis we are interested in detecting dynamic aspects of pro-
grams by static analysis. The static analysis normally takes place at compile
time such that these analyses may be used to justify program transformations,
l.e. substitutions of subparts of a system with other subparts which in the
context of the system yield the same behaviour, justified by the analysis.

Normally the information collected is in terms of approximations of sets (of
states or values) instead of the real sets, since the information otherwise might
not be computable.

It is essential that the information is correct i.e. yields no information that
does not hold.

In traditional data flow analysis (see e.g. [Aho 77]) one has put on a ” practi-
cal” view, concerning how profitable the analyses are and how to implement the
analyses by ”fast” algorithms not concerning correctness, or the methods have
been ad hoc. Abstract interpretation ' is a framework for describing correct
data flow analyses. In [Cou 77] P. Cousot and R. Cousot showed how one could
ensure ”correctness” between a data flow analysis and a nonstandard seman-
tics called the static semantics, by means of a pair (o,) of adjoined functions.

!For a general introduction to abstract interpretation see for example [Nie 85].

54

The semantics model was given as flow charts of sequential programs and the
static semantics was taken to concern sets of values instead of the real values,
traversing all branches of the flow chart. The ”correctness” in [Cou 77, Cou 79]
is called safeness since it relates to one data flow analysis being safe with respect
to another, i.e. not describing a smaller set than the precise set expressed by the
static semantics. The data flow analysis was a semantics using approximations
of sets i.e. values describing sets. In [Nie 82] F. Nielson showed how to extend
the work of P. Cousot and R. Cousot to a denotational semantics model by defin-
ing a series of nonstandard semantics. In [Nie 82] the term collecting semantics,
which we shall use, is used for the static semantics of [Cou 77, Cou 79]. Also
the correctness condition is reformulated such that it states that the analysis
must yield information consistent with the standard semantics. It was shown
how one could induce a data flow analysis by means of the static (collecting)
semantics, and in fact we can construct a correct data flow analysis if it 1s safe
with respect to the collecting semantics, relying on the correctness between the
collecting semantics and the standard semantics.

We shall use the term consistent for both safeness and correctness. This will
be justified in the following.

We may apply the method of abstract interpretation to the language for
defining processes with the intuition:

Agents offer experiments in some universe of actions, abstracted agents offer
experiments in another universe of abstract actions, so that experiments on
abstract agents give information on the actual agents. So applied to the language
for defining processes the approximation is in terms of approximations of sets
of actions.

In the last section of this chapter we will describe an analysis which may
give answer to when processes are stable [Mil 80]. This yields information about
processes being weak-congruent or observational congruent [Mil 80].

Also an analysis of concreteness will be described. This analysis has its use
together with the methods presented in chapter 4.

5.2 The framework

To express consistency of a data flow analysis with respect to the standard
semantics we follow the line of [Nie 82] by building a series of (non-standard)
semantics consistent with one another in a way to be defined later.

Let Pos = (Prss, Act,—¢5) where Prgg is given by the following abstract
syntax:

p == nil | a.py |P1 +p2 | (p1---pa)lf] |P1 lgp2 |l‘ | p.p
for all @ € Act, f : Act® — Act, g : Act? — Act, and —s 5 is the smallest

family {—25:-C Pr2, | a € Act} of relations satisfying:

55

ACT— s a.p ﬁggp

SUM— 55 if p1—ss

FUN—q: if Vip 2. pi& e~ flay...a,)
then (p1...pn)[f] ——ss (01 .- 1h)[/]

COM—ss: if (pl —ss P/1 & P =/ pll |g pZ)
c

or (p2 —ss Py &' =pi |y 1h)

or (p1 —ss Pl & pr —eaPh &

then pi |y po —ssp

REC—.: if plpe.p/r] “ss v
then px.p ——osp

This process system will be called the standard semantics SS of the language
for defining processes. Throughout this chapter ¢ ~ f(a; ...an) and ¢ ~ g(a,b)
are defined as in chapter 2 and p[uz.p/z] has its normal meaning.

It is not obvious how a static (collecting) semantics for nondeterministic
programs should be, but the nondeterministic operator + behaves in a way like
the if-then-else construct of sequential programming, we therefore pursue by
treating + almost as we would treat the if-then-else construct. i.e. traverse over
both branches if they lead to the same state (process), and collect both values.

Let Pos = (Pres, P(Act), —>cs) where Preg is given by the following ab-
stract syntax:

p o= nil | Ap | prpa | (o) pr lgps | 2 | mp

for all A € P(Act), [: P(Act)” — P(Act), g : P(Act)? — P(Act), and —rcs
is the smallest family {$CSQ Pri_ | A€ P(Act)} of relations satisfying:

56

ACT— s

SUM—cs:

FUN—¢s:

COM—os:

REC—cs:

then

A
A.p —cs P

A /
P1 —7cs P
A /
P2 —7cs P
(A:BUC&pl icsp/&]?z gcsp/)
A
p1+p2r —es P

Vip: 2eepl & C o f(Ar ... Ay)
(pl .- pn)[f] i>cs (pll .- p;l)[f]

C
(p1 —rcs P’l &p =/ pll |9 pZ)
C
(P2 —cspr & p =mp |g Ph)
(

This process system will be called the collecting semantics CS of the language
for defining processes. We shall assume P(Act) ordered by subset inclusion C.

Assume AppAct 1s a complete lattice such that Ll is defined. Let P,s =
(Pras, AppAct, — 45) where Pr 4. is given by the following abstract syntax:

p o= nil [Lpy | pr+p2 | (01 p)[A] | P2 lgpe | 2 | mep

for all | € AppAct, f : AppAct™ — AppAct, g : AppAct® < AppAct, and — 5
is the smallest family {%Asg Pr?_|1 € AppAct} of relations satisfying:

57

ACT— 45 l.p #Asp

SUM—=,e: if pr—as p/
or py —as
oo (l=mUn&p —esp & pr s P)
then p1 + po L>As P’

FUN—= . i Vip e ph &m e~ f(ly .1y
then (p1...pa)[f] =as (Ph - PL)I/]

COM— 45 if (P1 i>As p/1 &p =/ pll |g Pz)
m
or (pz —asPh &p =p1ly1h)
!
or (pl L>AS P/1 & P2 —Fas p/2 &
P =p Igmp’z & m~g(n,1))
then p1 |g p2 —as P

. l
REC— ,s: il plpap/e] —asp
then pz.p s P’

This process system will be called the approximating semantics AS of the
language for defining processes.

Note how CS is just an instance of AS with AppAect = P(Act) and U = U,
but since CS is essential we want to single it out.

5.3 Correctness and safeness on actions

To express correctness of an analysis AS with respect to the standard seman-
tics SS we may use a function g : Act — AppAct. The intuition is that if
B(a) = Appa then Appa describes properties of a.

In traditional data flow analysis one analysis, the collecting semantics CS, is
in a way the most precise data flow analysis, since it gives a trace of all possible
values (actions).

Normally CS takes its values in the powerset of standard values. Applied to
our model of concurrency it takes its actions in P(Act). The correctness of CS
with respect to SS is expressed by o : Act — P(Act) where o(a) = {a}.

To express safeness we may use the ideas of abstract interpretation [Nie 85]
[Cou 77] [Cou 79]. Safeness is to say that one data flow analysis is more approx-
imative than another, i.e. it is not as precise, but it will not give contradicting
information.

Safeness is usually expressed relative to the collecting semantics by a function

o P(Act) = AppAect.

58

If an approximating analysis AS is safe with respect to CS we may rely on
the correctness between CS and SS to ensure correctness of AS with respect to
SS. This is in a way closest in spirit to the original framework of P. Cousot and
R. Cousot [Cou 77] [Cou 79].

These relationships may be illustrated as:

P(Act) Q AppAct

Act

Figure 5.1: (in spirit Figure 2 of [Nie 86]).

For a more concrete example suppose Act = AU AU {7}, where A =
{a,b,c,..} and A is a set of conames. Assume we only have one unary function
f toinstantiate FFUN—¢q with. We have to find functions g : P(Aect) — P(Act)
and h : L < L, such that they simulate the behaviour of f : Act — Act. Con-
cerning the collecting semantics we assume P(Act) ordered by subset inclusion
C, and the function as some monotone function g : P(Act) — P(Act)

Finally we must consider the approximating semantics AS where we assume
that AppAct is some complete lattice L and the function is some monotone

mbr

function h : L — L. A possible choice of L is: nToToonT l.e. the

complete lattice with elements 1, 7, 7, nT and mbr ordered by L. C [C mbr
where [is 7, 7 or nT. L seems artificial in the above example but 1t is kept
for historical reasons. Note, however, that the intuition ”more approximative”
in the ordering used in data flow analysis differs from the standard intuition:
”more defined” and that the ordering may seem back to front by the first glance.

With this assumption figure 5.1 specializes to figure 5.2 and we shall now
explain a, 3, v and 0.

Readers familiar with abstract interpretation will notice the analogy with

59

of 3 ¥ fj h
P(Act) g Y AppAct

\ /
Act
i

Figure 5.2:

the rule of sign test (see e.g. [Cou 77]).

The functions 8 and ¢ are termed representation functions since the intuition
is that G(a) € AppAct and o(a) € P(Act) are properties that best describe
a € Act. Thus it is natural to put

Bla) = nrifae A
B(r) = r
p@ = mrifacA

and o(a) = {a}
The correctness of h with respect to f may then be expressed by the condition
that:

Bla) T1 = B(f(a)) C h()
which says that:

whenever [correctly describes a, also h(l) correctly describes f(a)

Similar ¢ may be used to express correctness of ¢ with respect to f.

The relationship between P(Act) and L is expressed using the framework of
abstract interpretation [Cou 79]. The fundamental ingredient is a pair («,¥) of
abstraction and concretization functions.

The intuition with v i1s to formalize the intuitive meaning of properties in
AppAct, so one has y(nt) = A, v(L) =0, y(mbr) = Act etc.

60

Given a set of actions B the intention with o is that «(B) is a best safe
description of B in AppAct, so one would express e.g.

a({a,b}) = ar and «({a,b}) = mbr
This indicates that ” B 1s safely described by [” means
B CH(l)

So {@,b} is safely described by 77 and mbr, but ~v(77) is a proper subset of
y(mbr), and T is therefore a better property.

It is most convenient if we can use n7 C mb1 to deduce that we should prefer
nT, so we have to relate the partial orders C and C.

This is captured by the adjoinedness condition [Cou 79] :

1.« and v are monotone
2. VB:BC (yoa)(B)
3. Vi:(aoy)()) CI

The relationship between ¢ and h may be illustrated as:

Appact Appact
LJI
~ o
P(App) g P(App)
Figure 5.3:

Generally we may use two complete lattices L and M, and the adjoinedness
condition of & : L - M and v : M — L may be expressed as:

VieL:VmeMa(l)Eme !l Cy(m)

61

5.4 Extending correctness and safeness to pro-
cess systems

We now turn to extend the correctness and safeness conditions to process sys-
tems so that we are able to make statements like AS is safe and correct with
respect to SS and CS.
The extension of the correctness condition may be given by a bisimulation-
like construct. Note how these constructs extend definition 2.4-6 in [Lar 86a].
Let R € Prgs X Pr,s be a relation such that whenever (p,q) € R then:

1. VYa€ Act.p —5.c p/=3¢'3l € AppAct.q L ¢ & Ba)Cl& (p',¢) €R
2. VI € AppAct.q — e ¢/ =3p'Fa € Act.p —S5es p' & Bla)T L& (¢, ¢') ER

We say that R is a correctness relation, and we write p corrg g if there exists
a correctness relation containing (p, ¢).
Now for R C Prss x Pras we define CORRg(R) C Prgss x Pr,s as:

(p,q) € CORRg(R) iff:
1. VYa€ Act.p —5.c p/=3¢'3l € AppAct.q L ¢ & Ba)Cl& (p',¢) €R

2. VI € AppAct.q — e ¢/ =3p'Fa € Act.p —S5es p' & Bla)T L& (¢, ¢') ER

CORRg is easy seen to be a monotone endofunction upon the complete
lattice of relations over Prsq X Pr,s ordered by subset inclusion. Thus by classic
lattice theory CORRg has a maximal fixed point. This fixed point equals corrg.
We may straighten the condition f(a) E ! to 8(a) = [obtaining a restricted
relation, but f(a) C ! seems more in the spirit of abstract interpretation.

The correctness condition of CS with respect to SS may be expressed by o,
but we prefer to use a € A instead of {a} C A even though they are equivalent.

Let R € Prgs X Pros be a relation such that whenever (p,q) € R then:

1. Va€Actp-Soo p/ = 3¢ FA€P(Act)g eed K a € A& (p,¢) €R
2. VAEP(Act)q esq = Ja€ Actp —Seap &k a€ A& (v, ¢') ER
Now for R C Prgs X Pres we define CORR,(R) C Prgs X Pres as:
(p,q) € CORR,(R) iff:
1. Ya€ Actp—"5oc p/ = ¢ FAEP(Act)q s d &a €Ak (v, ¢) ER

2. VA eP(Act).q Ao ¢ =3 Fa€ Actp s p &kac Ak (Y, ¢)ER

62

The maximal fixed point of this monotone endofunction is corr,, .

Also the safeness condition between P(Act) and AppAct may be extended
to process systems.

Let R C Pros X Prys be a relation such that whenever (p,q) € R then:

1. VAEP(Act).p sce p'= ¢ A€ AppAct.q -4z ¢ & a(A)CTI& (Y, ') ER
2. Vi€ AppAct.q - 4s ¢ =W IAEP(Act).p 2ves P& ACYD& (P, ') ER

We say that R 1s a safeness relation, and we write p safez q if there exists
a safeness relation R containing (p, q).
Now for R C Pres X Prag we define SAFEI(R) C Pres X Prag as:

(p,q) € SAFES(R) iff:
1. VAEP(Act).p sce p' =3¢ ANE AppAct.q = 1c ¢ &a(A)TI& (P, ¢') ER

2. Vi€ AppAct.q —5 .0 ¢ =TI/ BAEP(Act).p “res P& ACY) & (V' ¢') ER

The maximal fixed point of this monotone endofunction is safez.

To take expressions with free variables into account we may use the technique
of refining the functionals CORR,, CORRg and SAFE{ in the same way as
we did for M-bisimulation in chapter 3. We may refine SAFEY, CORRg and
CORR, by adding the clause UG(p) = UG(q), where UG(p) is the set of

unguarded variables in p.

(p,q) € SAFES(R) iff:
L. UG(p)=UG(q)
2. VA EP(Act)p —Sos p' =3¢’ A E AppAct.q - ae ¢’ &a(A)TI& (P, ¢') ER

3. VIEAppAct.q —.c ¢ =TI FAEP(Act) p 50 P& ACY) & (P, ¢')ER

Unfortunately this only works for regular expressions, as the definition of
unguardedness given in chapter 3 (definition 3.4)is only given for regular ex-
pressions.

The naive extension of UG by UG((p1...pn)[f]) = U, UG(p;) does not
work, since the substitution property will not in general hold, i.e it is not guaran-
teed that pi[q1/2] safe? pa[ga/x] holds whenever p1 safe’ ps and ¢1 safe’ ¢

To see this let:

p1 = z[a—al
g = z[id]

ps = a.ni

qgo = nr.nil

63

where [a — @] means the renaming function which sends every name into its
coname. Then it is obvious that p1 Cas ¢1 and ps Cap g2, but

a.nilla — a] safe? nr.nillid]

does not hold.

In fact this problem is a general problem of substitution in non-regular con-
texts. The solution seems to be to extend the definition of unguardedness to take
account of the presence of [f] in expressions (see e.g. the remark in [Lar 86a]
p. 166). We will not pursue this any further in this thesis but only turn our
attention to open expressions if they are regular.

5.5 Inducing data flow analysis

If we have a function f : Act™ — Act which we may use to instantiate FUN— 55,
then this function may be extended to f : P(Act)” — P(Act) in the obvious
way f(Al AR ={flar .. apn) | @i € A}, and similar for ¢ in COM—gs.
Also if we have defined a representation function 5 : Act — AppAct we may
extend this to an abstraction function
a : P(Act) = AppAct by a(A) = LW{H(a) | a € A}.
« is called a lower adjoined if there exists a function v such that (o, %) is
an adjoined pair. There need not exist such a + but if it does it is uniquely
determined by the formula [Cou 79]:

y(m) = U{l | a(l) E m}

Finally, v is called an upper adjoined if there exists an « such that (o,) is a
pair of adjoined functions and then « is uniquely determined by

a(l) =m{m [1 E~(m)}

Also 5 may be given in terms of @ by § = « o ¢ assuming that o(a) is {a}.
Composition of partial functions is taken to be:

Flg(x)) if g(x) is defined

undefined otherwise

o) = {

The above constructs may be used in what may be termed an induced data
flow analysis. The induction will be given as an instance of the general scheme
of definition 2.2.

First we may relate SS to CS by an instance of the general scheme of defini-
tion 2.2. by giving a function F, : Prss — Prcs, given inductively by:

Definition 5.1

Fe(nil) = nil

64

Felap) = o(a)Fe(p) = {a}.Te(p)
Felpr+p2) = Felpr) + Felp2)
Felprlgp2) = Felpr) lg Felp2)

Felpr -2l = (Fe(pr) .. . Fe(pa))lf]
Felz) = =
Fe(pw.p) = paFe(p)

To take account for substitution we may use the following lemma:

Lemma 5.1

Felpla/x]) = Fe(p)[Fela) /]

ProoOF: By structural induction on p using the definition of substitution
(definition 3.3). a

Lemma 5.2 if F.(p) i>cs P’ then p"’ = Fo(p') and p —5 s p/ with a € A

Proor: By induction on the number of inferences.
(The full proof is presented in appendix B.) a

Proposition 5.1 p corr, F.(p), p closed and finite.

ProoF: The relation

R={(p.Fe(p)) | p € Pri}

is a correctness relation.
To see that R € CORR,(R) we proceed by structural induction using lemma

5.2 in the cases: p= (p1...pn)[f] and p = p1 |4 po-
(The full proof is presented in appendix B.) a

Proposition 5.2 p corr, F.(p), p regular.

ProoF: The relation

R={(p,Fe(p)) | p € Pris}

is a correctness relation.

To see that R C CORR,(R) we proceed by induction on inferences using lemma

5.1 when p has the form pz.p.

(The full proof is presented in appendix B.) a
The relationship between CS and AS may be given by a function

F,: Pros — Pr,g defined inductively by:

65

Definition 5.2

Fa(nil) = mnil
Fald) = al4)Fulp)
Falpr+p2) = Falpr) + Falp2)
= F (p1) |aoh0'yz fa(pz)

Fal(pr---pn)ld]
Falx

Fa(pz.p

(Falpr .. - Falpn))aog o]

X

= pr.Fa(p)

)
p)
)
(P1 |n Pz)
)
)
)

Here vp, means Avy ... v (y(v1) ... ¥(vn)).

Actually this is a general scheme when relating two approximating semantics
ASl and ASZ

The definition of Fo((p1...pn)[9]) = (Fa(p1) .- Falpn))[e o g 0 v,] will be
the best choice of a function approximating g due to the adjoinedness condition
upon («,). In particular it will be better than

Fallpr ... pn)P]) = (Falpr) .- - Fa(pn))[Av1 .. cvn. T

where T = UAppAct, as this would yield a rather uninformative analysis.

Lemma 5.3

Fa(pla/x]) = Fa(p)[Fala)/2]

ProoOF: By structural induction on p using definition 3.3 of substitution.
O

Lemma 5.4 if Fy(p) AAS p’ then p'' = Fo(p') and p i>cs p with a(A) C

Proor: By induction on the number of inferences. a
That AS is safe with respect to CS is expressed by

Proposition 5.3 p safez Fa(p), p closed and finite.

ProoF: The relation

R={(p,Fa(p)) | p € Prl}

is a safeness relation.
To see that R C SAFES(R) we proceed by structural induction using lemma

5.4 in the cases: p= (p1...pn)[f] and p = p1 |4 po-
(The proof of the nontrivial cases is presented in appendix B.) a

66

Proposition 5.4 p safez Fa(p), p regular.

ProoF: The relation

R={(p, Falp)) | p € Pris}

is a safeness relation.

To see that R C SAF EJ(R) we use induction on the number of inferences using

lemma 5.3 when p has the form pz.p. a
From the above we see that by giving either o : P(Act) — AppAct or

G Act — AppAct we may induce a consistent data flow analysis, in the first

case relying on the correctness of CS and in the second by using

a(A) = U{5(a) [a € A}.

5.6 Stable analysis
As shown in part 5.3 we may describe properties of Act = AU AU {r} by the

mbr

lattice L: nToT.nt and we may use the function 3(a) = nr if a € A,

B(a) =nrifa € A, B(r) = r to induce a data flow analysis.

This analysis may be used to test whether a process p is stable or not. If
only p yields mT or n7 experiments the process is stable, if the process yields
experiments it is not stable, and if 1t yields an mbr experiment we can not be
certain whether it is stable or not, and a more precise analysis is necessary.

The analysis of stableness is useful for deciding congruence of processes:

If p and ¢ are stable then if p ~ ¢ then p =° ¢ where &~ is observational
equivalence and = is congruence [Mil 80].

Let g : Act? < Act be the partial function satisfying the following diagram
shown in table 5.1:

When we instantiate |, with ¢ we obtain the wellknown operator | for com-
munication from CCS [Mil 80]. Also let f; : Act — Act be the function:

zife £Zcand z £ ¢

unknown otherwise

f1(l‘)={

When we instantiate (...)[f] with f; we obtain the restriction operator \¢ from

CCS.

67

gla b a b T

alu wu T u u

b|lu wu u T u

2 where u means undefined.
alT™ uw ... u u

b|lu 7 u u

Tlu w ... uwu u ... u

Table 5.1: g : Act? — Act

Let f5: Act — Act be the function:

if
if
if
if

(ENi N N

fa(z) =

oo oy R
B 8 18 &8

QU Q Q Q

When we instantiate (...)[f] with fo we obtain the renaming operator [¢/a].
Let f5: Act — Act be the function:

v if x#b
x if xz#b
B@) =9 . i xib
¢ if xz=b

When we instantiate (...)[f] with fs we obtain the renaming operator [¢/b].
Let By = pz.a.b.x and By = (B1[f2] |g Bilfs))fi]. Fa(Fe(B1)) = pz.nr.nr.e
and since Fy(F.(B1)) does not offer any 7 or mbr experiment we may conclude
that Bj 1s stable.

FalFe(B2)) = (Fa(Fe(B1)a 0 f209] laogoy FalFe(Br))aro fs0q])[aro fi 072]

= (pr.nTar.efao faor] loogoy p&.nT.nT.2[00 0 faov])ao fi o]

Since
(prnTarefao faon] loogoy p&.nT.nT.2[00 0 fzov])ao fi o] —

(nt.nr.z[pr.nrarefao fr0v]/x]ao fr 0] o gory
nr.nt.e[prnrar.elao fzo7]/x][ao fz o)) [ao fi o y]

we may conclude that F,(F.(B2)) is not stable. This shows that although
B, =~ By where = is observational equivalence [Mil 80] By enjoys a property
which By does not. Hence By and B» are not congruent.

68

In the above example it seems tedious to decide whether By and Bs enjoy
different properties, but of cause this 1s because we only use the semantics rules
in the investigation. We may wish to use algebraic laws to manipulate the terms
and clearly terms in CS and AS are much easier to handle by algebraic laws
than their similar SS terms.

5.7 Using proof systems together with data flow
analysis

We may extend the proof systems of chapter 3 to take the operational semantics
of CS and AS into account. All that is required is that the axioms S1-S4 remain
sound.

Proposition 5.5 The avoims S1-54 of S, of S; are sound for AS

ProOOF: The proof of proposition 3.2 and 3.12 has to be extended with the
cases

SL (p1 + p2) + p3 SN pand I = mUn and pyi; — p' and p;yo — p' (here
+ is modulo 3). But then p; + (p2 + p3) LN ¢’ by using SUM — twice

52 p1 + p2 L>10/ and [= mUn and and p; — p' and p» — p/ but then
P2+ L>1D’sincel:ml_ln:n|_|m

S3 ptp—sp . l=1U1
S4 p—i—nilL)p’. But nil 4 for any m so we cannot use { = m Un.

O

Note that the above proof also generalizes to CS since CS is just a particular
instance of AS with AppAct = P(Act) and U = U. Once we have established
the above proposition we may use the proof system in a constructive way:

Proposition 5.6 if p corrg ¢ & ¢ Cappact ¢' then p corrg ¢

ProoOF: Obvious since every action [of ¢ can be matched by ¢’ by an action
I’ such that [T I’. Note that this proposition would not hold if we insist on
a = B(l) in the definition of corry. a

Proposition 5.7 if p safe? q & p' Epacr) ¢’ then p’ safe’ ¢

ProoF: Obvious since every move A of p can be matched by a move A’ C A
of p’ and a move I’ of ¢’ such that a(A’) E !’ since « is monotone. a

69

5.8 Concreteness test

Recall the method of partial specification described in chapter 4. If p and ¢ were

concrete, i.e. p and ¢ and all their derivatives could not perform an *-action,
*

and p Cpr g where M = Aet \ {x} and Aet = %\ , then p ~ q where ~

is the bisimulation equivalence [Par 81].

One method of infering that a process p is concrete is by proposition 4.2, if
q 1s concrete and p Cas ¢ then p is concrete. But how were we to know that
g was concrete? We could run ¢ testing it and seeing if an *-action is possible,
but this seems as a rather expensive process. If we could make a static analysis
disregarding all other actions and by this process have the answer, then a more
attractive analysis has been reached. We shall use the framework of this chapter
to this end yielding an analysis for concreteness.

For Act = {a,b,.. } U{x} let AppAct = {n*, mx} with the ordering

mx*

n¥ Cappace mx i.e. AppAct may be illustrated as in | . m* has the intuition
n*

that the action may be *, and nx has the intuition that we by certainty know
that the action is not *.
We may induce the analysis by 3 : Act — AppAct given by:

) = {n* if a2

mx 1 a==%

This analysis resembles the wellknown strictness analysis from functional
programming where one is interested in information on when operators are
strict. Then the parameter mechanism may be exchanged from call-by-name to
call-by-value without changing the semantics of the language (see e.g. [Nie 86]).

Returning to the concreteness analysis this states that whenever only nx*-
actions are possible for the abstracted agent, then only actions in M = Act\ {*}
are possible for the real agent.

Instead of using a o fo Yo In FUN— 45 and a0 go~ys in COM— ,5 for the
communication operator we could use a more abstract function h : AppAct? —

AppAct defined as:

n* if a = nx and b = nx
h(a,b) = { m* otherwise
The fact that a0 g o2 C h is easy verified.
As an example of the use of the above analysis we may show that spec =
px.a.b.m.7.e defined in chapter 4 is concrete.
By proposition 5.5 spec corrg Fu((Fespec)) where

70

Fa(Fe(spec)) = Fo(Fe(pr.aborrz)) = pe Fy(Felab.rra)) =

pr.fla). Fo(Fe((borrx)) = prn* .n* .n* .n*.x

We may now "run” F,(F.(spec)) to check that it offers no m*- experiment
and infer that spec does not offer an *-experiment. Also we may see that
q = pa.c.(d.x + d.py. * .y) is not concrete since

FalFelg)) = prns (nx x4 n* pymx.y) —

(n* .2+ n* pym s y)[FalFe(p')) /2] = py.mx .y 25 yluy.m + 3]

ie. Fo(F.(p'")) offers an mx-experiment and therefore we can not be certain
as to whether p’ offers an *-experiment or not, and further analysis is necessary.

71

Conclusion

A thorough investigation of a preorder C s on processes induced by a preorder
C 4 on actions has been presented. The preorder on processes is obtained by
extending the notion of bisimulation to take the preorder on actions into account.
Also certain ”uninteresting” actions may be excluded from consideration by the
notion of M-bisimulation.

A language for defining processes has been defined. The language resem-
bles an extract and extension of current variations over CCS. Its semantics is
operational and based on a labelled transition system.

We have algebraically characterized the preorder Cas by three sound and
complete proof systems, one for finite terms describing nondeterminism and
action-prefixing, the second, an extension of the first, introducing the notion
of communication and function, and the third for regular expressions. These
proof systems are of interest since many interesting concurrent systems can be
expressed in the sublanguages they characterize.

We have instantiated the general theory to a specific instance called par-
tial specification. We have shown that the concurrent alternating bit protocol
CABP [Koy 85] meets its specification using partial specification, and it is our
claim that our method is both more general and simpler than the method of
modularization presented in [Koy 85].

Finally by an extension of the generalized bisimulation we have shown how
the method of abstract interpretation may be introduced into hierarchical devel-
opment of concurrent systems. We have shown how to induce safe and correct
analyses and shown how these analyses may answer questions about processes,
that otherwise would have demanded a run of the program.

Still, however, there are numerous fields for further investigation. An in-
teresting future problem to investigate is to see if our work extends to that of
?weak”-bisimulation equivalence, 1.e. if a kind of ”weak”- M -bisimulation exists
and how it may be axiomatized. In that case it will also be interesting how the
notion of divergence will influence on the preorder induced.

Another interesting field is how modal logic may be used to characterize the
preorder presented in this thesis and the preorders described above. It is clear
that the theory of modal logic offers a lot of interesting aspects not considered

72

in this thesis, aspects such as distinguishing processes by the modal properties
they enjoy. Work in this area is going on at the Institute of Electronic Systems,
Aalborg University Centre (see e.g. [Hil 87, Ves 86]).

As it may be seen from the verification of the concurrent alternating bit
protocol in chapter 4 it will be interesting to apply the theory of partial speci-
fications to larger examples to see how this may shorten the developing time of
large systems. But as it may be seen from the verification of the CABP using
the proof systems of chapter 4 even modest specifications yield tedious proofs.

Therefore it will be interesting if an automatic system of M-bisimulation
checking could be designed and implemented just as it was shown in [Lar 86a] for
bisimulation and ”weak”-bisimulation. It seems like it will at least be possible
for the partial specification problem since this is just a slight extension of the
notion of bisimulation, and since we may stop the search of a branch for further
matches as soon as a pair (p,i) has been encountered.

Finally, further investigations in how methods of data flow analysis may be
applied to concurrent system development will be interesting. For example does
a ”constant propagation” of actions exist?, a ”live variable”-analysis of actions?
etc. Also the question about the chosen static (collecting) semantics is left open,
is 1t intuitively the most precise as is the case for sequential programs? or does
there exist one taking the nature of nondeterminism into account in another
way’

73

Bibliography

[Acz 84] P. Aczel: ” A Simple Version of SCCS and Its Semantics”
Unpublished notes, Edinburgh 1984.

[Aho 77] A. V. Aho & J. D. Ullman: ” Principles of Compiler Design”,
London, Addison Wesley 1977.

[Bar 85] H. P. Barendreght: ”"The Lambda Calculus — Tts Syntax and Seman-
tics”,

North-Holland 1985.

[Car 81] L. Cardelli: ”Real Time Agents”,
LNCS 104, Springer Verlag 1981.

[Cou 77] P. Cousot & R. Cousot: ”Abstract Interpretation: a unified lattice
model for static analysis of programs by construction of approxima-
tion of fixpoints”,

In: Conf. Record of the 4th ACM symposium on Principles of Pro-
gramming Languages 1977.

[Cou 79] P. Cousot & R. Cousot: ”Systematic design of Program Analysis
Frameworks”,
In: Conf. Record of the 6th ACM symposium on Principles of Pro-
gramming Languages 1979.

[Gla 85] R. J. Glabbeck: ”Bounded Nondeterminism and the Approximation
Induction Principle in Process Algebra”,
Centre for Mathematics and Computer Science, The Netherlands 1985.

[Hen 84] M. Hennessy: ” Axiomatising Finite Delay Operators”,
Acta Informatica 21 (61-88), Springer-Verlag 1984.

[Hen 85] M. Hennessy & R. Milner: ” Algebraic Laws for Nondeterminism and
Concurrency”,
Journal of the Association for Computing Machinery pp. 137-161, 1985.

74

[Hil 87] M. Hillerstrom: ” Verification of CCS—processes”,
M. Sc. Thesis, Aalborg University Centre, 1987.

[Koy 85] C. P. Koymans & J. C. Mulder: ”A Modular Approach to Protocol
Verification Using Process Algebra”,
Logic Group Preprint Series No. 6, University of Utrecht 1985.

[Lar 86a] K. G. Larsen: ”Context Dependent Bisimulation Between Processes”,
Ph. D. Thesis, Edinburgh University 1986.

[Lar 86b] K. G. Larsen & R. Milner: ”A Complete Protocol Verification Using
Relativized Bisimulation”,
Institute of Electronic Systems, Aalborg University Centre, R-86-12
September 1986.

[Mil 80] R. Milner: ” A Calculus of Communicating Systems”,
LNCS 12, Springer Verlag, 1980.

[Mil 81] R. Milner: ”A Complete Inference System for a Class of Regular Be-
haviours”,
University of Edinburgh 1981.

[Mil 83] R. Milner: ”Calculi for Synchrony and Asynchrony”,
Theoretical Computer Science 25 (1983) pp 269-310, North Holland.

[Nie 82] F. Nielson: ”A Denotational Framework For Data Flow Analysis”,
Acta Informatica, Springer Verlag, 1982.

[Nie 85] F. Nielson: ”A Bibliography on Abstract Interpretation”,
Institute of Electronic Systems, Aalborg University Centre 1985.

[Nie 86] F. Nielson: ”Strictness Analysis And Denotational Abstract Interpre-
tation”,

Institute of Electronic Systems, Aalborg University Centre, R-86-9
1986.

[Par 81] D. Park: ”Concurrency and Automata on Infinite Sequences”,

LNCS 104, Springer Verlag, 1981.

[Plo 81] G. Plotkin: ”A Structural Approach to Operational Semantics”,
DAIMI FN-19 Aarhus University Computer Science Department 1981.

[Smy 78] M. Smyth: ”Power Domains”,
Journal of Computers and System Science Vol. 2 pp. 23-36, 1978.

[Sto 77] J. Stoy: ”Denotational Semantics: The Scott-Strachey Approach to
Programming Languages Theory”,

The MIT Press 1977.

75

[Tar 55] A. Tarski: ” A Lattice-Theoretical Fixpoint Theorem and Its Applica-
tions”,
Pacific Journal of Math. 5, 1955.

[Ves 86] K. Vestmar & J. Olesen: ”Specifikation og Implementation af Fuldau-
tomatisk Verifikationsvaerktgj Baseret pa en Operationel Semantik”,
M. Sc. Thesis, Aalborg University Centre, 1986.

76

Appendix A

In this appendix we present the full proofs of propositions, lemmas and theorems
which have been presented but not proven in full in chapter 3 of the thesis.

The proofs are presented here either because they are long, tedious and
sometimes trivial or because they only are of interest for readers interested in
the underlying theoretical development.

Proposition A.1 (Proposition 3.1)
Cu s a precongruence with respect to the operators of 7f

ProOOF:

p = a.p: We prove the more general inference rule C'l sound. The relation
Ry ={(a.p1,b.p2)|aCa b& p1 Ep p2}U LTy
is an M -bisimulation.
To see that Ry C MB(R;) observe that if a.py — p1 then by ACT —:
b.ps LN p2 and by definition of Ry: a C4 b and (p1,p2) €ECEm C Ry.

Also if b € M then b.ps L)pz and by ACT —: a.p; — p; witha T4 b
and (p1,p2) € Ry which is the matching move. If b & M the case holds
trivially.

p = p1 + p2: The relation
Ro={(p1+p2,q1+a2) |11 Ty 1 & p2Cyr 423U Cwy
is an M-bisimulation. To see that Rs C M B(R2) observe that if

1. pi+ps — p then
either p’ = p)| and p; - p}. Then by definition of R» there exist
q} and b such that ¢; LN gy and a C4 b and p] Ty ¢}. By
SUM—: q¢1 + ¢ LN q} which obviously is the matching move.

or p' = ph and ps —= ply. The case is similar.

77

2. q14q2 - ¢, a €M then
either ¢ = p| and ¢ - ¢,. Then by definition of Ry there exist
p} and b such that p; LN py and b C4 a and pj Ty ¢). By
SUM —: p1 + po BN g% which is the matching move.

or ¢ = ¢, and ¢ LN q}. The case is similar.

Proposition A.2 (Proposition 3.2)
The following holds for all py,pa, ps € Txns:

pr+(p2+ps) ~m (p1+p2)+ps
prt+p2 =y p2t+p
P+ =M P
p1+nil =~y pr

Here ~3r means that both Ty and Jyr hold.

ProoF: The relation

Ry ={((p1 +p2) +ps,p1+ (p2 +p3)) | p1,p2,p3 € Priuld

1s an M-bisimulation.
To see that Ry € MB(Ry) observe the following cases:

L (pr+p2)+ps—p
i. p/ =p,and p; - p|. Then by SUM —: p1 +(p2+p3) — p) clearly
alCxs aand (p),p}) € Id C R;.
ii. p' =phand ps = py. Then by SUM — twice: p1 + (p2 + p3) — ph
which obviously is the matching move.
iii. p’ = ph and ps — ph. Asin ii.
2. p14 (p2 +p3) — p/, a € M. Similar arguments as in i yield the result.

Also the relation Rl_l 1s an M-bisimulation.
The relation
Ry = {(p1 +p2,p2+p1) | p1,p2 € Priuld

1s an M-bisimulation.
Also the relation Rz_l 1s an M-bisimulation.
The relation
Rz ={(p1 +p1,p1) | p1 € Priuld

78

1s an M-bisimulation.
Also the relation R;l 1s an M-bisimulation.
The relation
Ry=A{(p1 +nil,p1) |pp € Priuld

1s an M-bisimulation. .

To see that Ry € MB(R4) observe that nil /4 for all @ € Act and therefore
p1 + nil = p’ iff p; = p’ which p obviously can match.

Also the relation RZl 1s an M-bisimulation.

O

Proposition A.3 (Proposition 3.4)
Every term p in X has a normalform nf(p)
such that = p =p nf(p)

Proor: By structural induction.
p = nil : nf(nil) = nil because of P1: F nil Car nil.

p=a.p’ : Assume there exists nf(p’) such that F p’ Cy nf(p’). Choose
nf(ap’) = anf(p'). Then clearly nf(a.p’) is in normalform by the as-
sumption and Cl we F a.p/ Cpr a.nf(p') since a C4 a.

p=p1+p2: . .
We may assume that nf(p1) = > ., a;.p; and nf(ps) = Zi:n-l—l a;.p;.
The induction hypothesis states that

Fpi=nf(pi), i €{1,2}
From C2 we may infer

Fpr+p2 =nf(pr) + nf(p2)

We choose nf(p) = >_ir, a;.p; in such a way that

Fnf(p) =nf(p) +nf(pz2) (A1)

and then use P2 to obtain the desired result. We only sketch the proof
of (A.1) since it is tedious handwork. If n = 0 or m = n we use S4 to
eliminate n#l, and in case of ”"duplicates” we use S3 to eliminate these.
Also F nf(p) Car p may be proven by arguments as above yielding F
p=m nf(p).

O

Proposition A.4 (Proposition 3.5)
If p and q are in normal form then:

pCy ¢g=>FpCuy ¢

79

ProOF: We prove this by induction on the size of p and ¢, noting that
p — p/ iff a.p’ is a subterm of p and the same holds for q. We therefore assume
both p and ¢ take the form Y., a;.p; and Z;»n:l bi.q;.
Assume p Cpr q.
First consider the case p = nil, that is n = 0, since p Cas ¢, ¢ must be nil or
Z;n:l b;.q; with all b; € M. In the first case P1 yields the desired result and in
the second case ANNIHIL and C1 and S4 yield the desired result.
Now consider the case n > 0.
Let a;p; be a subterm of p. Thus if p — p’ then for some ¢': ¢ BEN q’ with
a; E4 ¢; and p; Car ¢'. By the above remark ¢’ must be ¢; for some j and by
induction F p; Car ¢; and by C1 & a;.p; Car cj.q;5.
Now let ¢;.¢; be a subterm of ¢. Thus if ¢ —= ¢’ then if ¢; € M then for some
p.p SN p' with a; T4 ¢ and p’ Car ¢;. But p’ must be p; for some j.
By induction - p; Ty ¢; and by Cl: & aj.p; Car ciqi. If ¢ ¢ M then by
ANNIHIL + nszl EM C;.q;.
So for every ¢ there exists a j such that - a;.p; Car ¢;.q; and for every j there
exists an ¢ such that - a;.p; Car ¢;.q5 if ¢; € M or F nil Ty ¢;.q;. otherwise.
By repeated use of C2 we may now build up p and ¢ term by term such that
F p Car g holds using S3 to eliminate ”duplicates” and S4 to eliminate nil’s. O

Proposition A.5 (Proposition 3.6)
Cu is a precongruence with respect to the operators of £, provided g in lg is
monotone.

PrOOF: As in proposition 3.1 with the extension that the relation:

R={(p1lg P2, 91 lg 92) | Pi Epmrucrig-r g €65t € {1,2}}

is an M -bisimulation.
To see that R C MB(R) observe the following cases:

L opilgps——p

i. p'=p} |y p2 and py = pi. Then by definition of R there exist ¢}
and b such that ¢; LN q} with a Ep b and p) EMuCL(g- (M)4i) q].

By COM —: q¢1 |g ¢2 LN 41 |g g2 which obviously is the matching
move.

ii. p'=p1lgpsand ps = ph. The case holds by similar arguments as
n 1.

. pf = ph |y ph and pr BN p, and py = ph and a = g(b,¢). By
definition of R : ¢ 4 qp with b T4 d and p1 Cayrucr(g-1 (s 91
and g5 — ¢4 with ¢ T4 e and po CymucLig-1 (M) 95 By COM —

.. d, . . .
and monotonicity of g: ¢1 |4 ¢2 gQ)) q1 |y ¢4 which obviously is the
matching move.

80

2. q1|gq2i>q’,aEM

i.

1.

1il.

¢ =4q} |g g2 and @1 —5 ¢,. Then by definition of R there exist p}
b .

and b such that py — p} with b Car @ and p) Cyrucrng-1 i) 91
By COM —: p1 |g 2 LN P4 |lg p2 which obviously is the matching
move.

¢ =q1lg ¢b and ¢ —5 ¢4. The case holds by similar arguments as
n 1.

b
¢ =4q, |y ¢5and ¢ — ¢} and ¢2 = ¢} and a = g(b,c). b,c €
g~ H(M) then by definition of R there exist d and p/ such that p; 4
p) with d C4 c and py Cyrucr(g-1 () 41- Also there exist e and p
such that ps — ph with e T4 ¢ and p), CMuCL(g-1 (M) ¢ Since
d

€

¢ is monotone we may infer from COM — that pi |, p2 g(—>) i lg b
which is the matching move.

Proposition A.6 (Proposition 3.7)
fp=> 1 ai.p; and ¢ = Z;n:l b;.q; then

Plg g =m > g(ai, b;).(pi |g 4;)+
(6,5)€{(1,5)1g(ai,b5) defined}

n m

aipilga)+ Y biply 45)

i=1 j=1

ProoF: The relation

R={(plyq, > glai,). (pi g 45)+
(1.4 €4(.d)lg(asby) defined)

n m

ai(pilg @)+ bj(p g 45))

i=1 j=1

n

p=> aipi&kq=>_bjg}

i=1 j=1

is an M-bisimulation.
To see that R C MB(R) observe the following cases:

Lo oplygg—=p

81

i. p =pilg q; and a = g(a;,b;) and p 24 pi and ¢ i) ¢;. Then by
definition of R and ACT — and SUM —:
DGV EL() glanby) definedy 9(ais b5).(pi lg ¢5) +
n m g(as,bs)
Sy ai(pi lg @)+ Y7y b (p Ly a) T i g 0
which is the matching move.

/

ii. p = pi |g ¢ and ¢ = a; and p 2% pi. Then by ACT — and
SUM — Z (¢,5)€{(¢,7)|g(a;,b;) defined} g(ai’ b])(pl |9 q])—i—zzl:l al(pl |9
q) + ijl bi.(plg q5) 2 pi lg ¢ which is the matching move.

ii. p’=ply¢; and a = b; and ¢ — ¢;. Similar to ii.

20 X edlhlglanbs) defmed}g(ai’bj)'(pi lg 4;) +
Yz @i (pilg) + 2 b plg45) — ¢, ae M
i. ¢ =pilyq; and a = g(a;,b;). By definition of R and ¢ and {(¢, j) |
g(a;, b;)defined} we know that p i) p; and ¢ EN g; and g(a;,b;)
is defined so by COM — p |4 ¢ Lf pi |g ¢; which is the matching
move.
. Asin L.ii.
. Asin 1.ii.
Also similar arguments as above yield the result that R=! is an M-bisimulation.
O

Proposition A.7 (Proposition 3.8)
Cu is a precongruence with respect to the operators of &7 provided g in lg and
frin (..)[f] are monotone.

PrOOF: As in proposition 3.6 with the extension that the relation
R={((p1 - -pa)lf]; (a1 a)lf]) | Pi Cerngr-1(anysiy @i}

is an M-bisimulation.

To see that R3 C MB(R3) observe that if (p1...pa)[f] — p’ then p/ =
(.. .po)[f] and a@ = f(ay...a,) and p; =5 pi. By definition of Rs there
exist ¢/’s and b;’s such that ¢; N q; with a; Ea b; and p} Ceop-1ani) 4
Since f is monotone b = f(by...b,) exists and f(a1...an) Ea f(b1...by). By
FUN—=: (q1...qn)[f] LN (¢} ... q.)[f] which is the matching move.

Also if (q1...q2)[f] == ¢', a € M then ¢’ = (¢} ...¢,)[f] and

4 — q;, a; €Ccr(s-1(a)di)- By definition of Rs there exist p}’s and b;’s such
that p; N p; with b; Ea a; and pi Ecpp-1(aryyi) ¢i- Again since f is monotone
and all sets have to be downwardsclosed: f(by...b,) Ca f(ai...an). Clearly

flay...an) € M implies f(by...b,) € M. By FUN —: (p1...pn)[f] f(bifn)
(py .. .pL)[f] which is the matching move. O

82

Proposition A.8 (Proposition 3.9)
The following holds for p1...pn, € Txy:

(p1---p)lf] =am nilif p; = nil for some i <n

flar .. an).(p1...pa)lf]

(a1.p1. . an.po)lf] =um if flai ... ay) is defined

nil otherwise
(pr-pi+aqi- p)lf] = (Pr-opio-pn)[fl+
(p1---qi--.pa)lf]

ProoF: The relation

Ry ={((p1---pn)[f],nil) | pi = nil, i <n}

is an M -bisimulation. .
To see this observe that (p1...pn)[f] # for any a since f(ay...ay) is not de-
a

fined since a; does not exist. Also nil 4 for any a.
The relation Ry is also an M-bisimulation.

The relation

Ry = {((a1-p1 .. an.pa)lf], flar .. an).(p1 .. .pn)[f])
| flai...apn) is defined} U Id

is an M -bisimulation.
To see that Ry C MB(Rs) observe that by ACT —: a;.p; — p; and by defini-

Sln)

tion of Ra: f(ay...a,) is defined and by FUN —: (a1.p1 ... an.pn)[f] f(al;>

(p1-..pn)[f]- Also by ACT —: f(ay...an).(p1...pn)[f] feagn) (p1--.pa)lf]

which is the matching move.
Also Rz_l 1s an M-bisimulation.
The relation

Rs = {((a1.p1...an-pa)[fl,nil) | fla1...a,) is undefined}

1s an M-bisimulation.
To see this observe that the only action of (a1.p1 . .. an.ps)[f] should be f(a; ... ay)

80 (a1.p1 .. .an.pn)[f] 7 for any «a, also nil 4 for any a.
Also Rgl is an M-bisimulation.
The relation

Ri={(p1--.pi+ai--p)lf), (01 pi-)1+ (p1-qio o) [f) UL

83

is an M -bisimulation.
To see this observe that if (p1...pi + ¢; ... pa)[f] — P’ then

either p' = (p)...pi...pL)[f] and Vi.pi =5 pi and a = f(a; ...a,) which
by FUN —: (p1...pi...pn)[f] can match and the result follows from
SUM —.

., aj ;
or p) = (p)...qf...pp)[f] and Vj # i.pj — p; and ¢; 24 ¢4 and
a = f(ay...a,) and the result follows by arguments as above.

Also RZl 1s an M-bisimulation. O

Property A.1 (Property 3.1)
Whenever p[F/&] — p’ then

either for some p” :p - p" and p/ = p'[7/Z]

or for some x; € UG(p) : ri — p/

Proo¥F: By induction on inferences. Observe the possible form of p.

p = nil : The statement holds trivially since nil[r/z] = nil.

p = a.p1 : By definition all variables in p are guarded since they are within a
subterm a.py, since the only action of a.py is @ and (a.p1)[F/Z] = a.p1[F/Z]
then a.py — py and p’ = p1[7/Z].

p = p1 + p2 : Assume the proposition holds for p; and ps. Since (p1 +p2)[F/Z] =
p1[F/Z] + p2[7/Z] the proposition holds by induction and SUM —.

p=;: Then by definition of substitution x;[7/Z] = i, so ;[F/Z] — p iff
r; — p/ and the proposition holds.

p = pa.py : Since the only actions of uz.p; are the actions of py[uz.pi/] :
(px.p1)[7/2] == p' iff (p1[pe.pi/x))[F/z] == p’ which holds by induction.

O
We also need the opposite properties:

Property A.2 (Property 3.2)
Whenever p' : p — p’ then p[r/&] — p'[F/Z]

ProoOF: We prove this by induction on inferences. Observe the possible
form of p.

p = nil : The case holds trivially since nil 4 for all a.

84

p=a.q: aq — q by ACT —, by definition of substitution (a.q)[F/z] =
a.(q[F/%]), and a.(q[F/Z]) == q[F/%] by ACT —, and the desired result
holds.

p=pi+ps: If pr 4+ ps — p/ then either p; — p’ or p» —> p’ by a shorter
inference. Thus either pi[F/Z] —= p/[F/%] or pa[F/&] — p'[7/Z] by the
induction hypothesis, by SUM —: p1[#/Z] + p2[r/] = p'[F/Z] and by
definition of substitution p[F/%] — p/[F/%] which is the desired result.

p =y : Then the result holds trivially since y /.

p=pz.q: If pr.g — p' then this is due to q[uz.q/z] — p' by a shorter
inference. Thus by induction ¢[uz.q/][F/z] - p/[F/z]. By REC — and
definition of substitution we may infer that (uz.q)[F/&] — p'[F/&] which
is the desired result.

Property A.3 (Property 3.3)
Whenever x; € UG (p) and r; — p' then p[F/Z] == p’

ProoOF: We prove this by induction on inferences. Observe the possible
form of p.

p = nil : The case holds trivially since UG(nil) = §

p = a.q : The case holds trivially since UG(a.q) = §

p=p1+p2: If &; € UG(p) then z; € UG(p1) or x; € UG(p2) or both. If
p[r/2] - p' then either pi[F/z] —= p’ or ps[F/%] —— p’ by a shorter
inference. Thus if #; € UG(p1) or z; € UG(p2) and n; %5 p/ then
pi[F/ %] == p or pa[F/E] == p’. By SUM — and definition of substitution
p[7/%] = p’ which is the desired result.

p=y: If y & Z the result holds trivially. If y € Z then y = z; for some ¢ and
UG(p) = {x;}. If r; =% p’ then p[r/Z] = p’ by definition of substitution.

px.q: Ifx; € UG(p) then z; € UG(q) and x; # x. If r; = p/ then ¢[F/z] - p’
by induction and also ¢[F/&][pux.q/x] — p'. By REC —: p[F/¥] — p’
which is the desired result.

Property A.4 (Property 3.4)
If no x; is free in p then p[r/z] =p

Proor: By structural induction on p.

85

p=nil : free(nil) = 0 and by definition of substitution nil[r/z] = nil.

p=a.q: free(p) = free(q). Assume ¢[7/Z] = ¢ then (a.q)[F/Z] = a.(q[F/Z]) by
definition of substitution and a.(¢[7/%]) = a.¢ by induction.

p=1y: Ifno «; is free in p then y & & so y[r/z] = y by definition of substitution.

p = p1+ p2: Assume no z; is free in p; nor py and py[r/z] = py and ps[r/z] =
pa. Since free(p) = free(p1) U free(pz) no z; is free in p. Also p1[r/Z] +
p2[F/Z] = (p1 + p2)[F/ %] by definition of substitution, and also p1 + ps =
(p1 + p2)[F/ %] by induction.

p = px.py: Assume no wz; is free in py and p1[F/Z] = p1. Since free(p) =
free(pr) \ {z} and (pa.p1)[F/z] = px.pi[F/Z] if # is not in Z nor free in
7 which by induction yields pz.p1[F/Z] = pw.pr. Otherwise (pz.py) =
pz.(p1[z/x][7/Z]) for some z not in & nor free in px.p; or 7, and the result
follows by the induction hypothesis applied to pi[z/z].

O

Property A.5 (Property 3.5)
If & and y are disjoint then:
pla/=lr/y) = plalr/9)/ 2, /4]
Proor: By structural induction on p.

p=a.q: Assume & and y are disjoined and ¢[q/Z][r/y] = qlq[r/y]/z, 7/y] then

pla/=][r/y] a.(qlq/=][r/y])

by definition of substitution
a.(qlalr/y)/ =, v/4])

by induction

= (a.q)lglr/9)/z,7/4]

by definition of substitution

p=p1+p2: Assume p;[q/][r/y] = pilg[r/y]/@,7/y] i € {1,2} then
(p1+p2)lg/2)lr/y) = pila/2)[F/9] + pala/][/ 9]
by definition of substitution
pilalr/y)/z, 7/9] + p2lalr/9) /2, 7/ 9]
by induction
= (p+p2)ldlr/yl/z,7/y]
by definition of substitution

86

p=w:If & €z then z[g/e|[r/y] = q[r/y], also z[q[r/y)/z,7/9] = q;[r/y]. 1
z € y similar arguments hold. If # € Z U g then z[q/Z][F/y] = =
olalr /57,75

p = pa.q: Assume q[q/Z|[r/y] = qlq[r/y]/z,7/y]. Then if & not in Z nor in y

and not free in ¢ nor 7.

(nx-q)lq/)[r/y]

pa - (qlq/=][r/y])

by definition of substitution
pa(qlalr/yl/ =, 7/ y))

by induction
(nx.q)lqlr/yl/=,7/y]

by definition of substitution
Otherwise

(ne-@)la/=][r/y] = (pzqlz/=))la/z][7/y]

for z not in & or y nor free in ¢ or ¢ or 7, and the result follows by induction
on q[z/x].

Definition A.1
We define the possible actions of a process by an inductively defined function
Names : Txr — P(Act):

Names(nil) 0
Names(a.p) = {a}U Names(p)
Names(p1 +p2) = Names(p1) + Names(pa)
Names(z) = 0
Names(recp) = Names(p)

Note how this 1s an instance of the general function scheme of definition 2.1.

Proposition A.9 (Proposition 3.10)
PCy q ff PCy g
Proo¥: For the =-direction assume p 23(4 g. We have to prove that

Vr.p[r/&]) Car q[7/%] holds. This is established by proving that the relation

R={(p[r/],q[r/2]) | p Epy a}UId

87

is an M-bisimulation. To see that R C MB(R) observe that if p[r/z] — p’

then

either p -4 p” and p/ = p”[r/Z]. But then we know from the definition of R
that p 23(4 q such that q LN q" with a T4 b and p” 23(4 q" .By property
3.2 q[7 /7] LN q"'[7/Z] which obviously is the matching move.

or there exists x; € & which is unguarded in p and r; — 7/ and p’ = /. Since
UG(p) = UG(q) by p 23(4 q then ¢[F/&] = r; by property 3.3, which is
the matching move.

If ¢[7/%] - ¢',a € M then

either ¢ — ¢" and ¢’ = ¢"[F/Z]. Then we have from the definition of R that
p 23(4 q such that p LN p” with b C4 a and p” 23(4 q". By property 3.2
p[7/ 7] SN p''[7/Z], which obviously is the matching move.

or there exists x; € # which is unguarded in ¢ and r; — } and ¢’ = /. Since
UG(p) = UG(q) by p 23(4 q then ¢[F/Z] = r; by property 3.3, which
obviously is the matching move.

The <=-direction is proved by showing p z;& q=7p ,Z;W q.

Assume p z;& g. Then

L UG(p) # UG(q)

2. There exists an a such that p — p’ but there exist no b and ¢’ such that
alCy banqu)q’withpE;Q q

3. Or there exists a € M such that ¢ = ¢’ but there exist no b and p’ such
that bC4 a and p L)p’ with p 23(4 q.

Assume 1. Then take 7 = (ay.nil . .. ap.nil) where a; ¢ Names(p)UNames(q)
and a C4 a; for all a € Names(q).

There must exist z; € UG(p),x; & UG(q) or z; € UG(q),z; € UG(p), in
b
the first case p[F/Z] —% nil but ¢[7/Z] /4 such that a; T4 b. The second

case 1s similar.

Assume 2. Take 7 = nil :_(nil ...nél) then p E;w g cannot hold either, since
the only actions of p[nil/z] are the actions of p which ¢ cannot match.

Assume 3. The argument as in 2 yields the desired result with p and ¢ ex-
changed.

88

Proposition A.10 (Proposition 3.11)
Cas s a precongruence with respect to the operators of X7 . 1.e. Cyy satisfies C1
and C2 of table 3.3

ProoF: The relation

Ry = {(p1lps/=], palpa/=]) | pr Ear p2,p3 Em patUCM

is an M -bisimulation.
To see that Ry C MB(R;) observe that if pi[ps/x] = p’ then by property 3.1

either p; — p| and p' = p)[ps/z] but by definition of Ry : po BN ph with
a T4 band p] Cp ph also by property 3.2 pa[pa/z] LA ph[pa/] which is
the matching move

or x is unguarded in p; and ps —— p4 and p' = ps. But by definition of
Ry i ps LN ply with a C4 b and p5 T ply, and also z is unguarded in ps

since p; Ca ps. So by property 3.3 pa[pa/z] LN ply which is the matching
move.

Also if ps[ps/x] = p', @ € M then by property 3.1

either ps — pb, a € M and p’ = ph[ps/z]. By the definition of Ry : p; LN 12
with b C4 a and p{ Ty ph. Then similar arguments as above yield the
desired result

or zisunguarded in p» and p1, and similar arguments as above yield the desired
result.

The relation

Ry = {(p[px.p1/z], plpe.pa/2]) | p1 Car p2, p,p1,p2 €Y, free(p) C{z}}UCH

is an M-bisimulation, and the result follows by taking p = .
To see that Ry € M B(R3) we shall show by induction on the length of inferences
that if

U

L. p[px.pi/x] = p’ then there exist p” and b such that p[ux.ps/z] LN p
with a £4 b and (p/,p") € R

2. pluz.ps/r] = p', a € M, then there exist p” and b such that
plpe.pi/) Lp” with b £4 @ and (p”,p’) € Rs

We only prove case 2, the other being similar but simpler.
Consider the possible form of p:

89

p=x: Then pa.ps = p’, a € M, so by a shorter inference ps[px.pa/x] — ¢/,
a € M, and by induction pa[uz.pi /] LN p" with (p”,p') € Rand b Cy4 a.
But py Ep pa by definition of Ra, so pi[ux.p1/2] Epr pa[ua.p1/a] by the
first part of this proposition, so [ux.p1/x] — p" with ¢ T4 b, b € M.
Since M is downwardsclosed (p"’, p") €Cpr C Ra.
By REC —: pluz.p1] = p’"" which obviously is the matching move.

P=q1+qz: Then either qi[ux.ps/a] — p/, a € M or galuw.pa/a] — p/,
a € M and hence by induction q;[uz.pi/] SN p" or qo[pa.pa/] SN p’
with 8 £4 @ and (p”,p’) € Rs.

By SUM —: plpz.pi /2] LN p” which is the matching move.

p=c.q: Then a = ¢ and p’ = q[ux.pa/2] and by induction p” = ¢[pz.pi /2] and
(r",p') € Rs.

p = nil : Since p has no free occurrences of z
(nil[pz.p1/x], nil|pz.p2/z]) € Ry

p=py.q: y # x. Then we have, by assumption, that uy.(q[ur.pa/zx]) - p/,
a € M, so by a shorter inference we have q[ux.ps/x][plpe.p2/x]/y] — P/,
a € M, which by property 3.5 may be rewritten as g[p/y][uz.ps/x] — P/,
a € M. So by induction, applied to the expression ¢[p/y], we know that
qlp/y][px.p1/] LN p’ with b C4 a and (p”,p’) € Ra. By using property

3.5 q[uz.pi/«][plux.p1/x]/y] LI p” and by REC —: pluz.pi/z] LI p"
which is the matching move.

Proposition A.11 (Proposition 3.16)
If y is not free in px.p then pa.p ~p py.(ply/])
1.e. Cyar satisfies R1 of table 3.3
PRrooOF:
Let p1 = pa.p and ps = py.ply/x]. By proposition 3.15 p; = p[p1/z] and

p2 = ply/=][p2/y].

We may now show that

R = {(q[p1/x], qly/][p2/v]) | ¢ € ¥"}

is an M -bisimulation.
The result follows by taking ¢ = p and applying proposition 3.15.
To see that R C MB(R) we use induction on the number of inferences.

Observe that if ¢[p; /2] — ¢ then

either ¢ — ¢’ and ¢1 = ¢'[p1/z], but also q[y/2][p2/y] —— 42 = ¢'[y/z][p>/Y]
and (q1,¢2) € R

90

or z is unguarded in ¢ and p; - ¢ then p[pi/z] % ¢ and by shorter
inference ply/«][p2/y] LN g2 with a £4 b and (¢q1,¢2) € R.
By REC —: ps LN g2 and since @ is unguarded in ¢ then
qly/x][p2/y] %4 g which is the matching move.

Also if q[y/z][p2/y] — q1 ,a € M, then
either ¢ — ¢/, a € M, and the case is obvious

or z is unguarded in ¢. Then y becomes unguarded in ¢[y/x] and ps ——= ¢
then ply/z][p2/y] — ¢1 and by a shorter inference p[p;/x] LN g2 with
bCa aand (q1,95) € R

By REC —: ps LN g2 and since z is unguarded in ¢ then ¢[p;/x] LN q2
which is the matching move.

Proposition A.12 (Proposition 3.17)
If x is guarded in py then

if pr[p2/=] Ep pa2 then px.pr Ty po
and

if p2 Car pilpa/] then p; Ty pa.pr.
1.e. Car satisfies R4 and Rb5 of table 3.3

ProoF: Since Ty satisfies px.p ~pr p[pa.p/a] it is enough to show that if
p1 Cur plpi/x] & plp2/2] Ear p2 & p1 Eyr pa then
plp1/2] Car plp2/=].

Let R = {glp1 /e, alps/e] | g € 57,

We wish to show that R is an M-bisimulation upto 'Cys’, and the result follows
by taking ¢ = p, and applying proposition 1.9.

We prove that R C MB(R).

For arbitrary ¢ let ¢[p1/x] — ¢1 then

either ¢ % ¢ and ¢1 = ¢'[p1/«] but also ¢[pa/x] == ¢2 = ¢'[p2/2] and
(91,92) € R

or z is unguarded in ¢ and p; — ¢1.
Then p[p:/z] LN 91, a T4 b with (q1,¢}) €Cp . Since z is guarded in
p then p = p/ and ¢} = p'[p1/x]. Also p[pa/x] = g2 = p/[p2/x] and
p2 — ph, b Ca ¢ with (g2, p5) €ECar .
But (p'[p1/x], P'[p2/%]) = (41, q2) € R which implies
((]hP/z) S EM oRo EM .
Also g[pa/x] == pfy since z is unguarded in q.

Also if g[p2/2] = q1, @ € M then

91

either ¢ % ¢’ and ¢q; = ¢'[pa/x] but also g[p1/x] - ¢ = ¢'[p1/x] and
(91,92) € R

or z is unguarded in ¢ and py — q1, a € M.
Then p[pa/] LN 91, b Ea a with (¢7,¢1) €Car . But since » is guarded
in p then p — p' and g¢f = p'lps/2]. Also plp1/x] — g2 = p'[p1 /] and
p1—— p), ¢ Ca b, b€ M since M is downwardsclosed with (p), ¢2) €Car .
But (p'[p1/#], p'[p2/%]) = (42, ¢}) € R which implies
(P1,q1) ECp o RoCpy .
Also g[p1 /2] == p} since z is unguarded in g.

Proposition A.13 (Proposition 3.18)
pr.p ~p pr.(p+ x) i.e. Cp satisfies R3 of table 3.3

ProoF: The relation

R = {(q[pz.p/z], q[pz.(p+ x)/x]) | ¢ € Tsr}

is an M-bisimulation. The result follows by taking ¢ = =.

To see that R C MB(R) we use induction on the number of inferences.
Observe that if g[uz.p/2] = ¢’ then

either ¢ —— ¢” and ¢’ = ¢"[ux.p/x]. By property 3.1 then also
g[pr.(p+ x) /2] =% ¢"[px.(p + x)/2] which is the matching move.

or z is unguarded in ¢ and pz.p —— ¢’. But then ¢’ = p/[uz.p/x] and this
is due to p[px.p/x] - p'[ux.p/x] and by a shorter inference. Thus the
induction hypothesis: p[pz.(p + z)/x] LN plux.(p+ x)/x] with a £4 b
and (p'[pa.p/x],p'lpe.(p+ x)/x]) € R. By SUM —: plpx.(p+ 2)/x] +
zlpx.(p+x)/x] N p'[px.(p+x) /2] which by the definition of substitution
yields: (p + @)[pe.(p+ z)/z] LN plpx.(p+x)/x] and by REC —:
px.(p+x) LN p'[px.(p+) /x]. Since z is unguarded in ¢:
qlpe.(p+x)/x] Ly [uz.(p+x) /] which obviously is the matching move.

Also if g[px.(p+ x) /2] == ¢, @ € M then
either ¢ — ¢” and the case is obvious.

or r is unguarded in ¢ and px.(p +) = ¢’ and this is due to
(p+ x)[pz.(p+) /2] == p'[pz.(p+) /x] = ¢ Then

either p[uz.(p+x)/x] == ¢’

92

or z[ux.(p+x)/e] = ¢ ie. pr.(p+z) ¢

In the first case we have by induction that p[uz.p/x] = ¢ = p"[ux.p/x]
with b C4 @ and (¢/,¢"”) € R and by REC —: px.p — ¢”, and since
is unguarded in ¢ then q[uz.p/z] LN q" which is the matching move. In

the second case we may unfold at most a finite number and then arrive at
the first case.

Also R~! may be shown to be an M-bisimulation by similar arguments. O

Lemma A.1 (Lemma 3.2)

1. if z is not free in p then - p[r/z] =p p

2. if and y are disjoint then - plq/z][7/y] =um plal7/vl/ %, /Y]
Proor:

1. if & is not free in p then p[g/z] = p, by definition of substitution and by
Pl:Fp=mp

2. We prove this by structural induction on p

p=nil : Then by the definition of substitution p[g/z][r/y] = nil and also
plq[r/y)/ @, 7/y] = nil and by P1: F nil =p nil

p = a.p’: By the definition of substitution (a.p')[¢/Z][7/y] = a.(p'[q/Z][7/Y])
also (a.p’)[q[7/y]/%, 7/y] = a.(p'[q[7/y]/Z,7/7]). By induction:
Fp'lg/Z][7/y] = p'lal7/y) /%, 7/y) and by Cl with p; = pa = a.z where z is
not in z,y,p’, ¢ or 7 the result follows using the rules of substitution.

p = p1+ p2 : By the definition of substitution (p1 + p2)[q/Z][7/y] =
pr[a/27/8) + pala /2 /5. Also (py + pa)al/8)/ 7, 7/ 5] =
pr[dl7/3/%, 7/ + palalr/5)/ 7, 7/3]. By induction I pi[g/z][r/7] =
pLgl7/5)/27/5] and & palg/a)F/3] = palali/3)/7, 7/5) and by C1 with
p1 = ps = v+ w where v and w are not in z, ¥, p’, g or 7 the result follows
using the rules of substitution.

p = v : By the definition of substitution v[q/Z][7/y] = ¢;[7/y] if v = a; or else
v[q/Z][7/y] = v[r/y] otherwise, which is r; if v = y; or v otherwise. Also
v[g[7/yl/2, 7/y] = qi[r/y] if v = a; or else v[q/&][r/y] = v[r/y] otherwise,
which is r; if v = y; or v otherwise. In all cases P1 yields the desired
result.

p=pz.p: If zisin z,y or free in ¢ or 7 we first use R1 to obtain
F pz.p =p pv.(plv/z]) for a completely new variable v and the details are
as follows: (pz.p)[q/Z][7/y] = pz.(p[q/Z][F/y]) also
(nep)alr/5)/7,7/9) = p= (lal/5)/% /) and by induction:
F plg/z][7/y] = plq(7/y]l/z, 7/y] so by C2 the we obtain the desired result.

93

Theorem A.1 (Theorem 3.8)
For any expression p, with free variables in g, there exist expressions py .. .pg (k>
1) with free variables in § satisfying k equations:

nq

Fpi= D diprig Y Yty (k2 1)

j=1 j=1
moreover
Fp=m
Proor: By structural induction on p. a
p = nil : Choose m; = 0 and n; = 0 then with k = 1: - p =3y nil by P1.

p = a.p’ : By induction there exist k equations
my [y
Fh=a Y ap gy Y e (k2 1)
j=1 j=1

and F p’ =y pj.

By C1 with p; = ps = a.z with z not in p/ nor in g and p3 = ps = p} we
obtain k equations such that F p =3 p; and p; are on the desired form
namely by taking p1 = a.p] and p; = a.p;. Clearly the p;’s are on the
desired form, also - p =3 p1 holds since - p’ =pr pj and a C4 a.

p = p1+p2: Now p; and ps have free variables in y so by induction we have
2k equations: pi...p, and p}...p7 satisfying 2k equations:

! !
1 1 1
F o =a YAl + 2 Ve i)
j:l j:l

m? n?
2 2 2
F P =a YAl g + 2 Ye i)
j=1 j=1

By C1 twice with p; = ps = 2! 4+ 2% and 2! and 2? not in p' nor in p? or
in y we obtain
1

m

n} m3 n?
1 2 1 1 2 2
Fpf Al =a) ali gy T D Ve + D @ Phag + D Ve
1 j=1 j=1 j=1

J=

Let p; = p} + p?. We obtain k equations which by rearrangement by S1
and S2 may be brought on the desired form, moreover b p =37 p1.

94

p =z : As for nil we may choose m; = 0 and n; = 0 then with £ = 1 we obtain
Fp=wmx by Pl

p = pa.q . Now ¢ has free variables in (x, §), so by induction we have expressions
Q1 - . . qp satisfying k equations:

P =a) aasg +) Yeig + 2] (k2 1)
j=1 j=1
in each summand # may or may not occurre; also ¢ = ¢;. Now set
P =a) anasg)) Yat)
Jj=1 Jj=1
So that either F g =3 ¢} or F g =a ¢4 + x. Tt follows by R2 and R3 that

Fp = qi[p/=] (A.2)

Now set

pi = qilp/] (i < k)
Then by instantiation [p/z] of the equation we obtain using (A.2) for any
summand z,

Fpi=a Y ai g+ D Ve + D i prigy + Y Ygti)]
j=1 j=1 j=1 j=1

which by S1 and S2 may be rearranged to the desired form. Moreover
F p =a p1 follows from F ¢ =3 ¢1 and expressions p; are easy seen to
have free variables in y.

95

Appendix B

In this appendix we present the full proofs of propositions, lemmas and theorems
which have been presented but not proven in full in chapter b of the thesis.

The proofs are presented here because they are long, tedious and sometimes
trivial.

Lemma B.1 (Lemma 5.2)
If F.(p) i>~CS p" then p'' = Fo(p') and p — o< p' with a € A

ProoOF: We prove this by induction on the number of inferences used to

obtain: F.(p) i>cs p”. Observe the possible structure of p:

A
p = nil: The lemma holds trivially since F(nil) 5, for any A € P(Act)

p=ap;: If Felap) i>~Cs p” then by ACT— < and definition of F.: A = {a}
and p'’" = Fe(p1) and by ACT—sq: a.py e p1.

p=0p1+p2: If Fe(pr + p2) i>cs p" then by SUM— .5 and definition of F,:

either F.(p1) i>~Cs p’" by a shorter inference so p’ = F.(p}) and p; s
P, with @ € A and by SUM—ce: Folpr + pa2) —ves Felpr)

or F.(p2) i>~Cs p"” and the case is similar.

Q
=

or both F.(p1 + p2) i)CS p" and Fe(p2) i>~CS p” and A = BUC by
shorter inferences so p” = F.(p}) and py L>SS p) with b € B and
so p' = F.(ph) and ps —ss ph with ¢ € C but then p” = F.(p}) =
Fe(ph) and an easy argument by structural induction establishes that
Fe(ph) = Fo(ph) = p1 = pa so by SUM—cs: we arrive at the desired
result.

p=(p1...p)[f): EF((pr . pa)[f]) e 1 then Vi.Fo(pi) 50s pf and by
shorter inferences so for all é: p{/ = F.(pl) and p; LT p} with a; € A;.

96

Also p”" = (p} ...p!")[f] and by induction and the definition of F,: p" =
Fellrr---pu)lfD)-

C
rP=nr |g Pa: If fc(pl |g Pz) —rcs p// then

either F.(p1) i>~Cs p and p”’ = p{ |3 Fe(p2) by a shorter inference.
So pf = F.(p}) and py LA p) with ¢ € C. By COM —¢5 and
definition of F.: p'’ = Fo(p! |g p2)

or F.(p2) i>~Cs p"” and the case is similar.

o]
=

or F.(p1) A e p" and Fe(p2) By p’" and C' = g(A, B) by a shorter
inference. So pf = F.(p}) and p1 .o p| with @ € A and pYf =
Fe(ph) and pq L>ss ph with b € B but then ¢ = g(a,b) € g(A, B) =
{9(a,b) | a € A, b € B} and by COM =<t p1 |g p2 —ss P! |y Ph
which is the matching move.

o]
=

A
p = x: The case holds trivially since: F.(x) 4, for any A € P(Act).

A A
p = px.prr WF(pe.p1) —cs P’ then by REC—cs: Fo(pr) [z . Fe(pr)/ 2] —cs
p" by a shorter inference. So py[ux.pi/xr] s p' with ¢ € A and
p' = F(p'). By REC—>gss: pa.p —5os P/ which is the matching move.

O

Proposition B.1 (Proposition 5.1)
p corr, Fe(p), p closed and finite.

ProoF: The relation

R={(p,Felp)) | p € Pri}

1s a correctness relation.
To see that R C CORR,(R) we proceed by structural induction on p.

a A

p = nil: Since nil 4., for any a € Act and nil 5, for any A € P(Act):
(nil, Fe(nil)) € R

p=a.p's Since a.p’ —ss p' by ACT— 55 and {a}.Fo(p') ﬂ> Fe(p') by ACT— s

and a € {a} and (p', Fc(p')) € R by induction, which proves that: (a.p’, {a}.Fc(p')) €

R.

a

p=pi+po: if p1 + ps —ss P’ then either p; —os p’ or pp ——ss p' by
assumption Fe(p1) i>cs p' with (p',p"’) € R and a € A or F.(p2) i>~Cs

97

p'. By SUM —cs: Fe(pr) + Felp2) i>~CS p"” which obviously is the

matching move.

Also if Fe(p1+ p2) i>~Cs p’" then either Fe(p1) i>~CS P or Fe(pa) i>~C5
p"or A= BUC and F.(p1) £>cs p" and F.(p2) i>~Cs p"”. By induction
p1 —.s p' with @ € A and (p/,p”) € R or py <5 p' with a € A and
(p',p") € Ror ;1 s p) and py . phy with b € B and (p),p"”) € R
and ¢ € C and (p}, p") € R.

In all cases p; + po i>SS p’ with (p/,p”’) € Rand d € A by SUM—gs,
and clearly this is the matching move.

P= (p pn)[f] if (pl pn)[f] écc (Pll p;z)[f] then ¢ = f(al an) and

Vz pi —<s P By induction there exist A;’s and pl/’s such that Vi.F,(p;) RN
Y with a; € A; and (p}, pf) € R.

By FUN=ss: (Felp1) - Felpn)) (/]
C=A{fla1...ay) | a; € A;} and ((p
is the matching move.
Also if (Fo(p1) ... Felpa))lS] s (py ... p")[f] then C = {f(ay ...a,) |
a; € A;} and Vi.F.(p;) i&:s p and by induction there exist a;’s and
pi’s such that Vp; —5 .« p; and a; € A; and (p}, p}) € R so by FUN—g:
(p1 - pa)[f] —=ss (P} ... p5)[f] which obviously is the matching move.

Sree (B P with
LU 0 - p)L) € R which

p=p1|gp2: if p1 |y p2 — p’ then

1. p1 == pi & p' = p) |y p2. Then by induction F.(p;) < p{ with

c € C and (p},pY) € R. By COM —cs: Felpr |g p2) < IZar
Fe(p2). By lemma 5. 2 p] = F.(p}) and the induction hypothesis:

(P2, Fe(p2)) € R so plf g Fe(pz) = Fe(ph) lg Fep2) = Felpr |y p2)
which yields the matching move.

2. pos——=ph & p =pi |y ph Asin 1.

3. p1 5 p) & po SN vh & p =p) |y Ph & ¢ ~ g(a,b). By induction
Fe(p1) SN p{ with ¢ € A and by lemma 5.2: p{ = F.(p}) and
Fe(p2) N py with b € B and by lemma 5.2: p§ = F.(p). By

c
COM=os: Fe(pr lg p2) = Fe(pr) lg Felp2) — 01 g 0% =
Fo(py |g ph) with C = g(A4,B) so ¢ € C and clearly this is the
matching move.

Also if Fo(p1 |g p2) < p” similar arguments yield the result.

98

Proposition B.2 (Proposition 5.2)
p corr, Fe(p), p regular.

ProoF: The relation

R=A(p, Fe(p)) | p € Pris}

is a correctness relation. To see that R € CORR,(R) we proceed by induction
on inferences. Observe the possible form of p:

a A
p = nil: Since nil 4., for any a € Act and nil 5, for any A € P(Act):
(nil, F.(nil)) € R also UG(nil) = § = UG(F.(nil))

p=pi+po: if p1 + ps —ss P’ then either p; —os p’ or pp —ss p' by
a shorter inference F.(p1) A p’ with (p/,p") € R and a € A or
Fe(p2) 2ros p". By SUM—ce: Fo(pr) + Felpz) —Ses p” which obvi-
ously is the matching move.
Also if Fe(p1+ p2) i>~Cs p’" then either Fe(p1) i>~CS P or Fe(pa) i>~C5
p"or A= BUC and F.(p1) ics p" and F.(p2) i>~Cs p"”. By induction
P1 —es P with a € A and (p/,p") € R or ps —=4. p’ with a € A and

(', 1") € Ror p1 —+s py and ps ~S5os ph with b € B and (p),p") € R
and ¢ € C' and (p,p") € R.

In all cases p1 +p2 i>SS p with ('p,p") € Rand d € A by SUM— ¢, and
clearly this is the matching move. Also UG (p1+p2) = UG(p1)+UG(p2) =
UG(F(p1 + p2)).

a A
p=a:x b, forall a € Act, z AH,, for all A € P(Act) and UG(x) =
UG(Fe(x)).

p=pr.p: if prp - p then pluz.p/z] = p’ and by a shorter inference:

Felplpx.p/]) i>~Cs p" with @ € A and (p/,p”) € R. By lemma 5.1:
A

Fe(plpz.p/x]) = Fe(p).[px.Fe(p)/x] and by REC—cs: pa.Fe(p) —cs P
which is the matching move.
Also if Fe(px.p) i>~Cs p’" by a shorter inference F.(p)[uz.Fe(p)/x] i>~Cs
p". Then by induction p[uz.p/x] <5 p’ with a € A and (p/,p") € R, s0
by REC—ss: pz.p s p’ which is the matching move.
Also UG(px.p) = UG(Fe(puz.p)) since UG(px.p) = UG(p) \ {#} and

UG(Fe(pz.p)) = UG(pe.Fe(p)) = UG(Fe(p)) \ {x} and by the induction
hypothesis UG (p) = UG(F.(p)).

99

Proposition B.3 (Proposition 5.3)
p safez Fa(p), p closed and finite.

ProoF: The relation

R={(p,Fulp)) | p € Pri}

is a safeness relation. To see that R C SAFFE7(R) we proceed by structural
induction. The only nontrivial cases are:

c
p=p1lnp2 I pi|p pp — p then

1.

p1 — p) & p' = Py |n . Then by induction (p;, Fu(pi)) € R so

Falp1) SN pf with a(C) C [and pY = F,(p)) by lemma 5.4. By
l

COM— 5 and fa(pl |h Pz) — P/f |ocoho'yQ fa(pZ) = fa(pll |h Pz)

which is the matching move.

c)
p2 —> ph & p' =p1 |n ph. Asin 1.

P2 & ps 5 ph &P = B & e h(A, B).

By definition of R : F,(p1) HEN pf with a(A) C 1y and (pf, Fa(p})) €
R and Fy(p2) HEN ply with a(B) C [z and (ph, Fa(ph)) € R. Since
C=h(A,B): a(C)C aohoya(ly,ls) by the adjoinedness condition

!
on (@,7). By COM—ss: Falpr [n p2) — P laohoy, P5 = Falph |n
ph) where [= av o h o y2(l1,l2) which clearly is the matching move.

Also if Fu(p1 |n p2) -y p" then

PI(P1~~

1.

I . .
P = P! laohoys Fa(p2) & Fa(p1) — pY. By induction (p;, Fa(ps)) €
R, ie{1,2},s0py i>10’1 with C' C y(l) and p{ = F,(p}) by lemma

c .

5.4, 80 (py, Fa(p})) € R. By COM—cs: p1 |1 p2 — Py | p2 which
is the matching move.

! .
= Fa(p1) lachoys PY & Falpa) —> py. Asin 1.

! !
Falpr) — pf & Falpz) = 08 & p" = pf |aohor. Py & 1 =~

a o ho~a(ly,ls). By assumption p; A, py with A C ~(l;) and

pf = Fa(p}) by lemma 5.4, so (p}, Fa(p}y)) € R p2 N ph with
B C ~y(l2) and pfy = F,(ph) by lemmab.4, so (ph, Fa(ph)) € R. By the
adjoinedness condition on (o,) : C'= h(A, B) Cy(aohoryy(l1,l2)).

By COM—cs: p1 |n 02 <, P} | ph which is the matching move.

c) A
o)) I (p1--.pn)lg] —cs B)...PL)[g] then Yip; —cs pl and

C =g(A1... Ap), so by induction Vi.F,(p;) L>AS pi with a(A) C I; and

100

by lemma 5.4: pi = F,(p;) so (p,p!) € R.

By FUN—act (Falp1) ... Falpn))[h] = as (P} ...p"")[h] where
h=aogoy, withl=(aogovy,)(li...l,) clearly a(g(A;...Ay)) C
(aogovyn)(ly...ly) and also ((p) ...p0)[9], (PY...p1)) € R.

Also if (Falpr) ... Falpn))[h] —=5as @ ... p")[R] then Vi.Fa(pi) — s p!f
and [= h(ly...l;). So by induction Vi.p; i&:s p; with A; C y(l)

and (pi,p!) € R. By FUN—cs: (p1...pa)lg] —=cs (). .pl)[g] with
A C () since A = g(A1...4,) Caogoly...7](lx...1n). And this

obviously is the matching move.

101

