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Abstract

This thesis develops two Calculi for Higher Order Communicating Systems� Both

calculi consider sending and receiving processes to be as fundamental as nondeter�

minism and parallel composition�

The 	rst calculus called CHOCS is an extension of Milner
s CCS in the sense

that all the constructions of CCS are included or may be derived from more funda�

mental constructs� Most of the mathematical framework of CCS carries over almost

unchanged� The operational semantics of CHOCS is given as a labelled transition

system and it is a direct extension of the semantics of CCS with value passing� A

set of algebraic laws satis	ed by the calculus is presented� These are similar to the

CCS laws only introducing obvious extra laws for sending and receiving processes�

The power of process passing is underlined by a result showing that the recursion

operator is unnecessary in the sense that recursion can be simulated by means of

process passing and communication� The CHOCS language is also studied by means

of a denotational semantics� A major result is the full abstractness of this semantics

with respect to the operational semantics� The denotational semantics is used to

provide an easy proof of the simulation of recursion�

Introducing processes as 	rst class objects yields a powerful metalanguage� It

is shown that it is possible to simulate various reduction strategies of the untyped

��Calculus in CHOCS� As pointed out by Milner� CCS has its limitations when one

wants to describe unboundedly expanding systems� e�g� an unbounded number of

procedure invocations in an imperative concurrent programming language P with

recursive procedures� CHOCS may neatly describe both call�by�value and call�

by�reference parameter mechanisms for P� We also consider call�by�name and lazy

parameter mechanisms for P�

The second calculus is called Plain CHOCS� Essential to the new calculus is the

treatment of restriction as a static binding operator on port names� This calculus

is given an operational semantics using labelled transition systems which combines

ideas from the applicative transition systems described by Abramsky and the tran�

sition systems used for CHOCS� This calculus enjoys algebraic properties which are

similar to those of CHOCS only needing obvious extra laws for the static nature
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of the restriction operator� Processes as 	rst class objects enable description of

networks with changing interconnection structure and there is a close connection

between the Plain CHOCS calculus and the ��Calculus described by Milner� Parrow

and Walker the two calculi can simulate one another�

Recently object oriented programming has grown into a major discipline in

computational practice as well as in computer science� From a theoretical point of

view object oriented programming presents a challenge to any metalanguage since

most object oriented languages have no formal semantics� We show how Plain

CHOCS may be used to give a semantics to a prototype object oriented language

called O�
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Chapter �

Introduction

��� Background

During the past two decades several notions for formal description of concurrent

and nondeterministic systems have been proposed� Such systems may be hardware

or software and they often involve some notion of processes which can evolve in�

de	nitely� The motivation for such notions can be found in the need for rigorous

speci	cations and formal veri	cation of implementations meeting their speci	ca�

tions�

One may group the various theories into two classes according to their view

of �true��concurrency and nondeterministic interleaving� Theories such as Petri

Nets �Rei���� Event Structures �Win��� and Mazurkiewicz Traces �Maz��� are rep�

resentatives of the class which treats concurrency di�erently from nondeterministic

interleaving� The second class mainly consists of the various notions of process

algebras or process calculi such as CCS �Mil��� HenMil��� Mil���� CSP �Hoa����

SCCS �Mil���� ACP �BerKlo���� MEIJE �Sim���� We shall use the term process

calculus� as advocated by Milner in �Mil���� for the above class as opposed to the

more common term process algebra� since not everything in this class is done alge�

braically� logic and other mathematical disciplines are used� Although much e�ort

has recently been put into 	nding a commonly accepted theory for concurrent and

nondeterministic systems� to date no such unifying theory has emerged� though

the pioneering work by Boudol and Castellani �BouCas���� the work by Abramsky

�Abr��b� and the work by Aceto �Ace��� show some promising hopes for the future�

In the past decade process calculus has proved extremely successful as a de�

scription tool for speci	cation and formal reasoning about concurrent and nonde�

terministic systems� and the international standardization organization �ISO� have

chosen to base its new standard for network speci	cation LOTOS on the framework

of process calculus �BolBri����

��
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Usually in process calculus the semantics of the speci	cation language is given

in terms of a labelled transition system in the style of Plotkin �Plo��� thus yielding

an operational description of system behaviour�

On the basis of the operational semantics various notions of equivalence between

processes �or systems� have been proposed re�ecting various views on observability�

Examples are Trace equivalence �Hoa��� identifying processes with the same be�

havioural language� Failure equivalence �Hoa��� Hen��� identifying processes with

the same set of failures �impossible actions or behaviour� after a trace� Bisimulation

equivalence �Par��� Mil��� Mil��� where processes must have matching states with

identical action capabilities�

In process calculus� speci	cations and implementations are often both expressed

in the same process language� the speci	cation being a high level abstract process

and the implementation being a more concrete description� usually constructed of

several components in parallel� The equivalence relation is then used to relate pro�

cess descriptions on di�erent levels of abstraction and veri	cation or correctness of

the implementation with respect to the speci	cation is then taken to be equivalence

of the two� Usually we do not expect to derive the implementation directly from

the speci	cation� Rather we derive it through a series of small and successive re�

	nements of the speci	cation using the stepwise re	nement approach� To ensure

correctness of the implementation with respect to the speci	cation it is necessary

to prove equivalence of each re	nement of the speci	cation with its predecessor�

To keep the process of re	nement manageable each step of the re	nement process

usually consists of a small re	nement of the current version of the speci	cation� Let

p be the small part considered to be too abstract and subject to re	nement and

let q be the more concrete version which replaces p� If C denotes the surrounding

speci	cation which is left una�ected by the re	nement step then C�p� is the speci�

	cation before the re	nement and C�q� is the speci	cation after� To complete the

re	nement step we have to prove that the new version is equivalent to its predeces�

sor� Such a proof would in general not only have to deal with p and q but also the

context C� Since C is usually expected to be large relative to p and q this calls for

an increasing amount of work� However� if the equivalence enjoys the property of

being a congruence relation then this ensures that to prove C�p� equivalent to C�q�

it su�ces to prove p equivalent to q� This is one of the main reasons why so much

emphasis is put on ensuring that the equivalence relation under consideration in

most process calculi is in fact a congruence relation�

For some purposes an inequality theory based on a behavioural preorder may

re	ne the notion of equivalence� In �Hoa��� a preorder p v q with the inter�

pretation of p being more nondeterministic than q is used� One can use this
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to express a speci	cation with nondeterminism built in� Implementations should

then resolve this nondeterminism and successively become more deterministic� In

�Mil��b� Hen��� Wal��� Abr��� preorders which re	ne the notion of bisimulation by

an explicit treatment of divergence were presented� �LarTho��� presents a preorder

which re	nes the notion of bisimulation by explicit treatment of under or partial

speci	cation� It is pointed out that the stepwise re	nement strategy normally used

in process calculus may have one drawback� The subspeci	cation may be more

complex than strictly necessary because it has to cover not only the behaviour in

the particular system C but in order to ensure congruence it has to cover behaviour

in any context� The preorder may be used to ease the task of stepwise re	nement by

leaving parts of the subsystem unspeci	ed� the only constraint being that the overall

speci	cation is total� In �Wal��� LarTho��� the preorders under certain constraints

�e�g� absence of divergence resp� total speci	cation� degenerate to bisimulation

equivalence�

Most process calculi provide a set of laws which are sound with respect to the

underlying operational equivalence�preorder� This allows the task of veri	cation

to be subjected to algebraic reasoning� In many cases �see e�g� �HenMil��� Hen���

Mil���� sound and complete proof systems for laws concerning various sublanguages

are provided� Recently several proof checking systems have been constructed� Tools

like the Concurrency Workbench �CleParSte���� TAV �GodLarZee��� and AUTO

�LecMadVer��� may be used to construct speci	cations and implementations and

leave the task of veri	cation to be carried out automatically by the system�

Instead of using the same language for both speci	cation and implementation

logical languages have been developed to ease the task of speci	cation� Languages

such as Hennessy�Milner Logic �HML� �HenMil���� Synchronization Tree Logic

�STL� �GraSif��� and also a Modal Process Logic �MPL� �LarTho��b� may be

viewed as representatives for this discipline� The task of veri	cation then boils

down to showing that an implementation satis	es its logical speci	cation� STL and

MPL may be seen as attempts to extend logical speci	cations with composition

operators relating to the constructs on the underlying process� This yields a form

of compositionality in the speci	cation that gets inherited in the implementation�

Logical speci	cations may be used to do process synthesis automatically� Algo�

rithms that construct a process from the logical speci	cation have been made see

e�g� �Lar��� BouLar���� These processes may be taken as idealized implementations

and may of course be further re	ned by the usual algebraic methods�

Although denotational semantics have been used to validate equational laws in

process calculi �Hoa��� Hen��� the methods of denotational semantics have not been

widely used for veri	cation purposes in process calculus though its inherent compo�
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sitional nature should encourage its use� To some extent the success of the opera�

tional approach has overshadowed the need for denotational descriptions� Another

reason may be early failures to 	nd denotational semantics which were fully ab�

stract with respect to bisimulation equivalence� but recently very promising results

have shown how to obtain fully abstract denotational semantics for bisimulation

equivalence �Abr��a� enabling the use of denotational methods to be introduced in

process calculus�

��� Motivation

A calculus for computation should provide a mathematical framework for the de�

scription of and reasoning about computing systems all inside the calculus� CCS

has proved to be a very successful tool for reasoning about the complex nature of

nondeterministic and concurrent systems and it is an excellent representative for the

process calculus approach to speci	cation and veri	cation of such systems� Each

constructor in this calculus has been carefully chosen to provide a minimal set of

primitive constructions from which one may build more complex systems �Mil����

At the same time CCS provides a rich and well developed theory and its expres�

sive power compares favourably with other process calculi �Sim���� According to

�Mil���� one of the original intentions of CCS was that it should serve as the ��

Calculus of concurrent systems� Subsequent research shows that it serves well as

such for a large range of applications� But� as already pointed out in �Mil���� it

has its limitations when one wants to describe unboundedly expanding systems as

e�g� an unbounded number of procedure invocations in an imperative concurrent

programming language�

I believe that this de	ciency is due to the 	rst order nature of CCS and most

process calculi in general� Later extensions of CCS� such as SCCS �Mil���� ECCS

�EngNie��� and Mobile Processes �MilParWal���� which allow dynamic use of com�

munication channels� may be used to take care of the above problem�

I take the view that it is natural to attempt to solve the above problems by

introducing some notion of higher order constructs and treating objects of the lan�

guage as 	rst class citizens� The extensions of CCS proposed in ECCS and Mobile

Processes seem low level and far removed from the ��Calculus analogy� since they

do not explicitly support any higher order constructions�

Higher order constructs arise in almost any branch of theoretical computer sci�

ence� The justi	cation for having process passing in a calculus of communicating

systems may be found in the powerful and elegant abstraction technique it yields�

just as with �higher order� functions or procedures in traditional programming lan�
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guages� Many systems can be easily described using process passing� some are even

most naturally described in this way� As an excellent example take the system

consisting of a satellite and an earth station originally described by P� Christensen

in �Chr���� One interesting property of this system is that the satellite is physically

far away from the earth station� If the program controlling the satellite has to be

changed� either because of a program error or because the job of the satellite is

to be changed� then it would be preferable to be able to send a new program to

the satellite� stop the old program and run the new program instead� Alternatively

we would have to send a space shuttle to take the satellite out of orbit to bring it

back to earth for reprogramming and then relaunch it� a rather expensive strategy�

A reprogrammable system consisting of two components could be speci	ed� in a

CCS�like syntax� as follows

sat  newprg!x��x j �int!�sat" error!�sat" end!�sat��

earth  newprg#job��newprg#job�����

The satellite is ready to receive a new job on the newprg channel� After reception it

acts according to this job until it is �interrupted� either by a new job or because a

program error has occurred or because the job has 	nished� In this example we are

beyond CCS because of newprg!x��x j � � ��� what we receive on the newprg channel

is a program �a process�� we then run this program in parallel with the rest of the

system�

Recently some promising treatments of processes as 	rst class objects in CCS�like

languages have been proposed �AstReg��� KenSle��� Chr��� Bou��� GiaMisPra���

Nie���� The SMoLCS�framework �AstReg��� is a general theory for specifying pro�

cesses as abstract data types including processes as values and higher order func�

tions� The framework includes operational semantics in the form of algebraic la�

belled transition systems �AstGioReg��� and denotational semantics �AstReg��b��

Both �KenSle��� and �Chr��� focus on formulating denotational semantics for CCS

respectively CSP with processes as communicable values� The main emphasis in

these references is to establish specialized functors for process passing and ensuring

that these have properties which enable them to be used together with standard

functors used in denotational semantics� In �Bou��� a CCS�like language with spe�

cial operators for �application� and process passing is presented� The language can

also be viewed as a variant of the ��Calculus extended with communication and

interleaving operators� It is shown how this language can describe an interpreta�

tion of the pure ��Calculus� A symmetric integration of concurrent and functional

programming is presented in �GiaMisPra���� The language FACILE is a typed

higher order functional language with statements for channel creation and includes
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a process language with parallel composition and �nondeterministic� choice oper�

ators� The semantics of FACILE was given in terms of an abstract machine in

�GiaMisPra���� but has later been given an operational semantics in terms of la�

belled transition systems �GiaMisPra���� This paper also presents an abstracting

equivalence and some of its algebraic properties� �Nie��� presents a mixture of a

typed ��Calculus and a CCS�like language� called TPL� with processes as 	rst class

objects� It is shown how the types �including sorts of processes� of programs may

be used to detect certain errors statically� An operational semantics for TPL is

described� but no abstracting equivalence or preorder is considered�

To my knowledge� no study of process passing in its puri	ed form has yet been

presented� except for �Tho��� where preliminary results from this thesis were pre�

sented� By process passing in its puri	ed form I mean searching for a minimal set

of operators necessary and su�cient for this purpose along the line of viewing the

pure ��Calculus as a set of minimal operators for the study of functions in their

pure form�

We therefore set out to crystallize the foundations of process passing and study

calculi of communicating systems which consider sending and receiving processes

to be as fundamental as nondeterminism and parallel composition�

This leads us to

� Find a process language consisting of a set of well chosen operators which

conforms to the principles of �Mil��� and provides a minimal but expressive

set of constructors� preferably including or encoding the operators of CCS�

� Find a semantic foundation for the process language and explore its properties�

� Study abstracting equivalences and preorders which preferably have the prop�

erty of being �pre��congruences to ensure compositionality� enabling the use

of partial speci	cation as described in �Wal��� LarTho����

� Exemplify the expressive power of the theories by application to examples�

The introduction of processes as communicable values suggests that we have a

notion as powerful as higher order functions and the connection with the ��Calculus

should be investigated� In �MilParWal��� a framework for communicating systems

with dynamically changing interconnection structure is presented� It is suggested

that this may be used to simulate process passing� we should therefore investigate

the relationship between link passing and process passing�
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��� Overview

The main objective of this thesis is to study how processes as 	rst class objects

can be introduced in process calculus and to contribute with an investigation of the

expressive power of doing so�

We stay 	rmly within the framework of process calculus and treat concurrency

as nondeterministic interleaving�

We put forward two calculi� CHOCS and Plain CHOCS� with slightly di�erent

syntaxes� semantics and abstracting equivalences� Common to both is that they

consider sending and receiving processes to be as fundamental as nondeterminism

and parallel composition�

The thesis is divided into two parts� Part I consists of chapter � to � and

concerns the CHOCS calculus� Part II consists of chapter � and describes the Plain

CHOCS calculus�

The CHOCS calculus may be seen as an extension or an adaptation of CCS

with value passing� In chapter � we present the syntax and operational semantics

of CHOCS� Inspired by the developments of �Tho��� we propose a de	nition of

bisimulation which takes processes passed in communication into account� we call

this predicate higher order bisimulation and we investigate the algebraic theory of

CHOCS� This theory turns out to contain the algebraic theory of CCS� the only

addition being some natural laws concerning sending and receiving processes in

communication� We show how process passing can be used to simulate recursion

using a construction which resembles the Y �combinator of the untyped ��Calculus�

Clearly the set of port names which processes may use for communication through

their life time plays an essential r$ole especially for implementation considerations�

We show how the concept of sort may be used when reasoning about higher order

communicating systems� We present a sort inference system inspired by the type

system of �Nie���� The syntax and operational semantics of CHOCS may be formu�

lated using the SMoLCS framework �AstReg��� and the de	nition of higher order

bisimulation may be obtained as a specialization of the generalized bisimulation of

�AstGioReg��� as demonstrated to me by Prof� E� Astesiano in �Ast���� I shall not

pursue this any further in this thesis since the framework of SMoLCS �AstReg���

does not seem to clarify the formulation of theories in this thesis� A bisimulation

predicate similar to higher order bisimulation has been presented in �Bou���� This

predicate takes termination of processes into account to allow certain sequential

behaviour which we shall not study in this thesis�

A new theory of communicating systems should be able to describe interesting

systems which are hard or impossible to describe using existing theories� In chapter
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� we study three applications of CHOCS in the description of higher order com�

municating systems� First we study the ��Calculus and we show how to encode

function abstraction and function application in CHOCS� We show how to obtain

di�erent evaluation strategies such as lazy evaluation and call�by�value evaluation

by varying the interpretation� Secondly we study the imperative toy language P

from �Mil��� and we show how neatly process passing can cater for the problems of

unbounded number of call�by�value procedure invocations recognized as a problem

in �Mil���� We also show how to describe call�by�reference procedure invocation in

P following ideas from �EngNie���� A third case study consists of a description of a

fault tolerant editor inspired by systems investigated in �Pra���� The editor system

is described with an automatic reboot system which in the case of a fault occurring

restarts the editor in the state just before the fault occurred� thus protecting the

user from errors out of his�her control� This system can easily be generalized to an

operating systems setting�

There have been a few attempts to give denotational descriptions of process lan�

guages with process passing �KenSle��� Chr���� Both are formulated in a category

theoretical setting and the main purpose of both papers is to establish functors

describing the properties of process passing� A lot of e�ort is put into assuring

that these functors can be used together with standard domain constructors and

in recursive domain equations� I believe that it is not necessary to establish spe�

cial functors for this purpose and that standard domain theory is su�cient to give

denotational semantics for languages with processes as 	rst class objects� In chap�

ter � we follow the ideas of �Abr��a� and construct a denotational semantics for

CHOCS which resides in a domain constructed using the standard constructions of

separated sum� Cartesian product� the Plotkin power domain constructor and re�

cursively de	ned domains� We show� under mild restrictions� that the denotational

semantics and the operational semantics of CHOCS are fully abstract� We also use

the denotational semantics to obtain a simpler proof of the simulation of recursion

result�

Inspired by the ideas of �EngNie��� MilParWal��� of the restriction operator

being a scope binder we put forward the Plain CHOCS calculus which includes

this facility in chapter �� It turns out that this calls for a di�erent operational

setting and we introduce the notion of higher order applicative transition systems

and propose a notion of applicative higher order bisimulation inspired by the notion

of applicative �bi�simulation from �Abr��� and the notion of strong ground bisim�

ulation of �MilParWal���� We investigate its algebraic properties which are similar

to the algebraic properties of Mobile Processes �MilParWal��� with the addition of

laws for sending and receiving processes� We make the connection between process
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passing and link passing explicit by showing that they may be used to simulate one

another� As an example of the use of Plain CHOCS as a metalanguage we show

how one may give a formal semantics to an object oriented programming language

called O� The language O is a prototype object oriented programming language

which features most common concepts from object oriented programming such as

class� inheritance and even object passing in method calls�

Finally in chapter � we summarize the contribution of this thesis and we give

some directions for future work�
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Operational Theory of CHOCS

It has become almost a standard technique to de	ne the semantics of process lan�

guages in process calculi in terms of labelled transition systems and thereby provide

an operational semantics framework� In this chapter we present the CHOCS calcu�

lus� its syntax and its operational semantics� We also present abstracting equiva�

lences and preorders built on the concept of bisimulation and we study the algebraic

properties these enjoy� We start by reviewing the de	nition of labelled transition

systems and the de	nitions and properties related to the notion of bisimulation�

��� Transition Systems and Bisimulation

When de	ning semantics of process languages in process calculi it has become al�

most standard to give the semantics in terms of a labelled transition system� This

yields a method of de	ning processes� concurrent or nondeterministic� by the set

of experiments they o�er to an observer� Labelled transition systems are a simple

model of nondeterminism based upon the primitive notion of state and transition�

De�nition ��� �De�nition ��� in �Plo��	


A labelled transition system is a structure �St�Act����� where St is a set of states

�or con�gurations
� Act is a set of actions �or labels or operations
 and ���

St�Act� St is the transition relation�

For �s� �� t� ��� we shall write s
�
�� t which may be interpreted as in state s

the system may perform a � action and in doing so evolve to a state t� We use the

usual abbreviations as e�g� s
�
�� for �t � St�s

�
�� t and s

�

	� for 
�t � St�s
�
�� t�

We shall identify the state of a process by the process� yielding a transition

system P  �Pr�Act���� modelling the operational semantics of a system of pro�

cesses�

��
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As an abstracting equivalence between processes de	ned in terms of labelled

transition systems bisimulation �Par��� Mil��� is commonly accepted as the 	nest

extensional or behavioural equivalence between processes one would impose

De�nition ��� A bisimulation R is a binary relation on Pr such that whenever

pRq and � � Act then�

�i
 Whenever p
�
�� p�� then q

�
�� q� for some q� with p�Rq�

�ii
 Whenever q
�
�� q�� then p

�
�� p� for some p� with p�Rq�

Two processes p and q are said to be bisimulation equivalent i there exists a

bisimulation R containing �p� q�� In this case we write p � q�

Note how the processes have to match each others actions by syntactically equal

actions� We shall relax this constraint in later parts of this thesis�

We may rephrase the above de	nition in terms of a functional B on the set of

binary relations on Pr

De�nition ��� �p� q� � B�R� i�

�i
 Whenever p
�
�� p�� then q

�
�� q� for some q� with p�Rq�

�ii
 Whenever q
�
�� q�� then p

�
�� p� for some p� with p�Rq�

It is easy to see that B is a monotone endofunction on the complete lattice of

binary relations over Pr ordered by subset inclusion� Therefore by standard 	xed

point result� originally due to Tarski �Tar���� there exists a maximal 	xed point for

B and this 	xed point equals
S
fR  R � B�R�g� This 	xed point equals �� It is

easily veri	ed that � is itself a bisimulation� Moreover � is an equivalence relation

Proposition ��� � is an equivalence

In addition � enjoys the property of being a congruence relation with respect

to the process construction in CCS �Mil���� �The class of constructions for which

bisimulation is a congruence has been studied in detail in �GroVaa�����

In �Mil��� � �now usually denoted ��� was originally de	ned as the intersection

of a decreasing sequence of equivalences on Pr

De�nition ��	

� p �� q is always true �i�e� �� Pr � Pr
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� p �k�� q i �� � Act�

�i
 Whenever p
�
�� p�� then q

�
�� q� for some q� with

p� �k q
�

�ii
 Whenever q
�
�� q�� then p

�
�� p� for some p� with

p� �k q
�

�i�e� �k�� B��k�
� Then �� 
T
k�� �k 

T
n�� B

n�Pr��

This decreasing sequence is bounded below by � and we have ���k����k for

all k� The de	nition of �� is not in general a 	xed point� However� under the

condition that the transition systems is image 	nite it is�

De�nition ��� A transition system P  �Pr�Act���� is said to be image �nite

i for each process p of Pr and all actions � � Act the set fp�  p
�
�� p�g is �nite�

Proposition ��
 If P is image �nite then � �� on P�

� and �� are de	ned relative to a transition system� Often we want to compare

processes from di�erent transition systems� This is done by taking their disjoint

union and use � resp� �� on this new transition system� We shall freely use this

technique without further comment throughout this thesis�

��� Syntax and Semantics

In this section we introduce the syntax and operational semantics of a language

for description of higher order communicating systems� CHOCS extends CCS as in

�Mil��� Mil��� HenMil��� simply by allowing processes to be both sent and received

and� equally important to be used when received�

We presuppose an in	nite set Names of channel names ranged over by a� b� c� � � �

and an in	nite set V of process variables ranged over by x� y� z� � � �� A special symbol

� not in Names will be used to symbolize internal moves of processes� Let p� q� r� � � �

�possible indexed and�or primed� range over process expressions with the following

possible forms

�� Inaction nil� This process may be thought of as the stopped process with no

further communication capabilities�

�� Input pre	x a!x�p� The pre	x is a variable binder and x occurring free in p will

be bound by this construct� The process has the capability of receiving any

process on the a channel� The received process is put into use by substituting

it for the bound variable�
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�� Output pre	x a#p��p� This construct may be thought of as being able to send

the process p� on the a channel and there after act as the process p�

�� Tau pre	x ��p� This process performs the silent action � and then behaves as

p�

�� �Nondeterministic� choice p"p�� This process behaves as either p or p�� Which

process is chosen depends on the communication capabilities and the choice

may be nondeterministic�

�� Parallel composition p j p�� Processes composed in parallel act either asyn�

chronously interleaved or by synchronized message passing producing � �actions�

�� Restriction pna� This process acts like p except that communications on the a

channel with components in its surrounding context are prohibited� Inside p

communications along a can take place since they become silent � �moves�

�� Renaming p�S�� where S  Names � Names� This process acts as p but

communication along channels are renamed according to S� e�g� if p can com�

municate via a then p�S� can communicate via S�a�� We use the shorthand

notation p�a�b� for the renaming function which is the identity function on all

c � Names except b where it returns a�

�� Process variables x are to be bound by input pre	x� They act as place holders

and do not occur free in programs�

The syntax of the expressions may be summarized as follows

De�nition ���

p  nil

a!x�p

a#p��p

��p

p " p�

p j p�

pna

p�S�

x
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To avoid heavy use of brackets we adopt the following precedence of operators

restriction or renaming � pre	x � parallel composition � choice�

We denote by Pr the set of processes built according to the above syntax� Readers

familiar with CCS will notice that there is no recursion construct in CHOCS� We

shall later see �Theorem ������ how recursive behaviours may be simulated using

only process passing in communication�

We focus on the process passing and leave out details about other values� Pure

synchronization may be obtained by ignoring the processes being sent and received�

We shall use the sloppy notation a!�p and a#�p as action pre	xing for pure syn�

chronization� Other types of values may % with little theoretical overhead % be

obtained simply by encoding the values in pure synchronization using the approach

of �Mil��� by introducing a family of value indexed guards and generalizing the

�nondeterministic� choice operator� We shall indeed use this technique in section

��� and we refer to this section for further discussion�

Input guards are variable binders� This implies a notion of free and bound

variables�

De�nition ��� We de�ne the set of free variables FV �p� by induction�

FV �nil�  

FV �a!x�p�  FV �p� fxg

FV �a#p��p�  FV �p� � FV �p��

FV ���p�  FV �p�

FV �p" p��  FV �p� � FV �p��

FV �p j p��  FV �p� � FV �p��

FV �pna�  FV �p�

FV �p�S��  FV �p�

FV �x�  fxg

A variable which is not free i�e� does not belong to FV �p� is said to be bound in

p�

The above de	nition may be rephrased as x is free in p if x is not contained

in any subexpression a!x�p�� An expression p is closed if FV �p�  � Closed

expressions are referred to as programs and we denote the set of programs by CPr�

To allow processes received in communication to be used we need a way of

substituting the received processes for bound variables� Let q  �q�� � � � � qn� be

a vector of processes and x  �x�� � � � � xn� be a vector of variables� then p�q�x�
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describes the simultaneous substitution of expressions q for variables x in p� We

always assume that q and x are compatible� i�e� have the same length and that x

consists of distinct variables� We use the notation FV �q�  FV �q�� � � � �� FV �qn�

and in the case x  �x�� we write p�q�x��� We also consider x as a set of variables

and write x � FV �p�   which means that x as a set does not have common

elements with the set FV �p��

De�nition ��� The substitution p�q�x� is de�ned structurally on p�

nil�q�x� � nil

�a!y�p��q�x� �

�����
a!y��p�q�x�� if y 	� x and y 	� FV �q�
a!z���p�z�y���q�x�� otherwise

for some z 	� FV �p� � FV �q� � x � fyg

�a#p��p��q�x� � a#�p��q�x���p�q�x�

���p��q�x� � ���p�q�x��

�p " p���q�x� � �p�q�x�� " �p��q�x��

�p j p���q�x� � �p�q�x�� j �p��q�x��

�pna��q�x� � �p�q�x��na

�p�S���q�x� � �p�q�x���S�

�y��q�x� �

�
qi if y  xi
y otherwise

This de	nition extends the de	nition of substitution given in �Mil��� by allow�

ing substitution in processes built using the parallel composition� restriction or

renaming operators� To a certain extent this de	nition resembles the de	nition of

substitution in the ��Calculus as de	ned in �Bar���� We shall pursue this further

in a later section �see lemma ������� Note how substitution is straightforward only

taking care of change of bound variables� In chapter � we modify this de	nition and

study a version of CHOCS where the restriction operator acts as a binding operator

on port names following the ideas of �EngNie��� MilParWal����

Here are a few useful properties of substitution

Proposition ��� Let p�p��x�  �p��p��x�� � � � � pn�p��x���

�� If x � y   then p�p��x��p���y� � p�p���y��p��p���y��x��

�� p�p��x� � p�p���x��� where x��  x � FV �p� and p��  �p�� � � � � pm�

with pj � fp�j  xj � x�� & p�j � p�g i�e� p�� is the projection of p� corresponding

to x���
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�� p�p��x� � p if x � FV �p�  �

�� If x � y   and p�� p�� are closed then p�p��x��p���y� � p�p���y��p��x��

Proof� The proofs of �� and �� are easily established by structural induction
on p� The only case which needs special attention is when p � a!z�p� and z �

x � y � FV �p�� � FV �p���� In this case we choose a �fresh� variable z� and proceed

on a!z���p��z��z���

�� is a corollary of �� Note the special case when p is closed�

�� follows as a corollary of �� and ��

The operational semantics of CHOCS is given in terms of a labelled transition

system� In �Mil��� a structure called communication trees� describing transitions of

the form p
av
�� p�� where v is some value� is used to give semantics to CCS with

value passing in communication� We shall pursue this idea and from now on we

shall consider labelled transition systems P  �Pr�Act����� where Pr is the set of

expressions �processes� built according to the syntax of de	nition ����� and where

Act has the formNames�f!� #g�Pr�f�g and Names is an uninterpreted set referred

to as a set of port names� We also study the subsystem of P where all expressions are

closed CP  �CPr�CAct����� where CAct has the formNames�f!� #g�CPr�f�g�

p
a�p�
�� p�� may be read as �p can receive the process p� at port a and in doing so

become the process p����

p
a�p�
�� p�� may be read as �p can send the process p� via port a and in doing so

become the process p����

p
�
�� p� may be interpreted as �the process p can do an internal or silent move and

in doing so become the process p���

Note that instead of insisting on an Abelian monoid structure on the set Names

of port names as in �Mil��� we simply use the CSP�like notation of !� # to indicate

the input�output direction of communication� We call this structure higher order

communication trees� The special symbol � not in Names is used to symbolize

internal moves of processes� We use � to stand for any action a!p� a#p or � � For

actions of the form a!p or a#p let a!p  a#p and a#p  a!p�
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De�nition ��	 Let � be the smallest subset of Pr � Act � Pr� where Act  

Names� f!� #g � Pr � f�g� closed under the following rules�

pre�xing� a!x�p
a�p�
�� p�p��x� a#p��p

a�p�
�� p ��p

�
�� p

choice�
p

�
�� p�

p " q
�
�� p�

p
�
�� p�

q " p
�
�� p�

parallel�
p

�
�� p�

p j q
�
�� p� j q

p
�
�� p�

q j p
�
�� q j p�

p
�
�� p�� q

�
�� q��

p j q
�
�� p�� j q��

restriction�
p

a�p�
�� p��

pnb
a�p�
�� p��nb

� a 	 b
p

a�p�
�� p��

pnb
a�p�
�� p��nb

� a 	 b
p

�
�� p��

pnb
�
�� p��nb

renaming�
p

a�p�
�� p��

p�S�
S�a	�p�
�� p���S�

p
a�p�
�� p��

p�S�
S�a	�p�
�� p���S�

p
�
�� p��

p�S�
�
�� p���S�

Table ������ Operational semantics for CHOCS

A process guarded by input pre	x has the capability of receiving any process�

The received process is put into use by substituting it for the bound variable�

Readers familiar with �Mil��� will recognize the similarities with the operational

semantics for input guarding in CCS with value passing� Parallel composition acts

either asynchronously interleaved or by synchronized message passing e�g� a!x�p j

a#p��p�� can perform a!q or a#p� as well as � � The restriction and renaming operators

have no e�ect on the processes sent or received� This is a matter of choice� The

choice we have made for CHOCS in this chapter yields a very simple operational

semantics for the two constructs�

��� Higher Order Bisimulation

To capture the observational behaviour of processes capable of sending and receiving

processes we extend the notion of bisimulation� Bisimulation is commonly accepted
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as the 	nest extensional or behavioural equivalence between processes that one

would impose and the equivalence corresponds to a view where processes are black

boxes only distinguishable by their interaction capabilities in di�erent environments�

As an excellent motivating example consider the following systems 	rst presented

in �AstGioReg���

Example ���

Let p��  p
 " p�� p��  p� " p
� p�  a#p���nil and p�  a#p���nil for some p
 and p��

If � denotes bisimulation equivalence as de�ned in de�nition ����� then p� 	� p�

since p�
a�p�

��� nil and p�
a�p�

��� nil but a#p�� 	 a#p��� The reason is that p�� and p�� are

not syntactically equal� although we expect them to be equivalent�

The extension of bisimulation should not distinguish between equivalent pro�

cesses even when they are sent or received in communication� This is captured in

the following de	nition

De�nition ��� A higher order bisimulation R is a binary relation on Pr such

that whenever pRq and � � Act then�

�i
 Whenever p
�
�� p�� then q

��
�� q� for some q�� �

� with � bR�
�

and p�Rq�

�ii
 Whenever q
�
�� q�� then p

��
�� p� for some p�� �

� with �
� bR�

and p�Rq�

Where bR  f��� ���  ��  a!p�� & �
�  a!q�� & p��Rq��� � ��  a#p�� & �

�  

a#q�� & p��Rq��� � ��  �
�  � �g�

Two processes p and q are said to be higher order bisimulation equivalent i there

exists a higher order bisimulation R containing �p� q�� In this case we write p � q�

In the above de	nition bR takes care of extending R to the processes passed in

communication� As we shall see later this has the e�ect that we do not distinguish

between equivalent processes passed in communication�

We may rephrase the above de	nition in terms of a functional HB on the set of

binary relations on Pr

De�nition ��� �p� q� � HB�R� i�

�i
 Whenever p
�
�� p�� then q

��
�� q� for some q�� �

� with � bR�
�

and p�Rq�
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�ii
 Whenever q
�
�� q�� then p

��
�� p� for some p�� �

� with �
� bR�

and p�Rq�

It is easy to see that HB is a monotone endofunction on the complete lattice of

binary relations over Pr ordered by subset inclusion� Therefore by standard 	xed

point result� originally due to Tarski �Tar���� there exists a maximal 	xed point for

HB and this 	xed point equals
S
fR  R � HB�R�g� This 	xed point equals ��

It is easily veri	ed that � is itself a higher order bisimulation� Moreover � is an

equivalence relation

Proposition ��� � is an equivalence

Proof� To see this observe that the relation Id  f�p� p� j p � Prg is a higher
order bisimulation� This proves re�exivity�

Composition of higher order bisimulations yields a higher order bisimulation� This

proves transitivity� Composition of relations R�S � Pr
� is taken to be

R S  f�p�� p
� j �p���p�� p�� � R & �p�� p
� � Sg�

Note how this is in the opposite order to function composition�

For all higher order bisimulations R the relation

RT  f�p� q� j �q� p� � Rg

is a higher order bisimulation� This proves symmetry�

It is now easy to see that if a relation R is a bisimulation �de	nition ������ then

we can extend R by Id and obtain a higher order bisimulation R � Id� To see that

R � Id is a higher order bisimulation observe that if �p� q� � R � Id then

either �p� q� � Id and whenever p
�
�� p� then p  q

�
�� q�  p� with ��� �� � cId �dR � Id and �p�� q�� � Id � R � Id�

or �p� q� � R and whenever p
�
�� p� then q

�
�� q� with ��� �� � cId � dR � Id and

�p�� q�� � R � R � Id since R is a bisimulation� A symmetric argument applies

whenever q
�
�� q��

Note that R above is the set of objects which we want to prove properties about�

i�e� bisimilar processes are also higher order bisimilar� The added Id relation acts

as a kind of closure operation taking care of the processes sent and received� We

shall later use this technique in proving algebraic laws for higher order bisimulation�

From now on we use the terms bisimulation and higher order bisimulation to

mean higher order bisimulation� This justi	es the ambiguous use of ��
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We may now relate the process constructions of CHOCS to the underlying se�

mantic equivalence �� As mentioned in section ��� the notion of bisimulation is

relative to a particular transition system though we may relate processes from

di�erent transition systems by taking their disjoint union and usually we do this

without explicit mention� To prove that � is a congruence relation with respect to

the operators of CHOCS we 	rst study � with respect to the transition system CP

of closed expressions� Later we generalize this result to the transition system of all

processes P�

Let q� � q� mean q�j � q�j for all qij � qi� i � �� � and let qi � CPr mean

qij � CPr for all qij � qi�

Proposition ��	 � is a congruence relation on programs �closed expressions
�

�� p�q��x� � p�q��x� if q� � q� and x  FV �p�

�� a!x�p � a!x�q if p�r�x� � q�r�x� for all r

�� a#p��p � a#q��q if p � q and p� � q�

�� ��p � ��q if p � q

�� p " p� � q " q� if p � q and p� � q�

�� p j p� � q j q� if p � q and p� � q�

�� pna � qna if p � q

�� p�S� � q�S� if p � q

The proof of this proposition is quite involved and we need a few technical

de	nitions and lemmas before presenting the proof� The reason for this is that we

can not prove the congruence properties for CHOCS using the �standard� process

calculus technique� i�e� prove that for each operator op in the process language the

relation Rop  fop�p��� op�p��  p� � p�g is a bisimulation and then prove the

substitution property �i�e� that if q� � q� then p�q��x� � p�q��x�� by structural

induction on p� This approach fails for CHOCS in the case of parallel composition

since we need to know the substitution property to prove that the relation Rj is

a higher order bisimulation and we thus end up with a circular argument� This

may at 	rst seem surprising� but the �functional� nature of CHOCS may indicate

that this property should be hard to prove e�g� Abramsky has to give quite an

argument to prove congruence properties of the Lazy���Calculus in �Abr����
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De�nition ���

Let CR  f�p�q��x�� p�q��x��  p � Pr & x  FV �p� & q� � q� & qi � CPrg

and let CR� be the re�exive and transitive closure of CR i�e� �p� q� � CR
� if there

is a sequence p� � � � pn such that �p� p�� � CR� �pi� pi��� � CR for � � i � n and

�pn� q� � CR�

Note if q� � q� then �x�q��x�� x�q��x�� � CR
� and we write �q�� q�� � CR

��

Lemma ��


If p � CPr and p
a�r
�� p� and �r� r�� � CR then p

a�r�
�� p�� with �p�� p��� � CR for some

p���

Proof� By induction on the length of the inference used to establish p
a�r
�� p�

and cases of the structure of p� p � nil� p � a#p��p� and p � ��p� are trivial since

p
a�r

	��

p � a!y�p� By the operational semantics for input pre	x p
a�r
�� p��r�y� for any r�

Since p is closed either FV �p��   and p��r�y� � p� and p
a�r�
�� p��r��y� � p�

and �p�� p�� � CR or FV �p��  fyg� If �r� r�� � CR then r � r��q��x� and r
� �

r��q��x� for some r� with FV �r��  x and q� � q� for some closed qi� Then

p��r�y� � p��r��q��x��y� � �p��r��y���q��x� and p��r��y� � p��r��q��x��y� �

�p��r��y���q��x� since FV �p��  fyg and FV �r��  x we have FV �p��r��y��  

x and ��p��r��y���q��x�� �p��r��y���q��x�� � CR�

p � p� " p� If p
a�r
�� p� then

either p�
a�r
�� p� by a shorter inference� By induction p�

a�r�
�� p�� with �p�� p��� �

CR� By the operational semantics for choice p�"p�
a�r�
�� p�� with �p�� p��� �

CR�

or p�
a�r
�� p� by a shorter inference and we may argue as above�

p � p� j p� If p
a�r
�� p� then

either p�
a�r
�� p�� by a shorter inference and p� � p�� j p�� By induction

p�
a�r�
�� p��� with �p

�
�� p

��
�� � CR� Thus for some p
 with FV �p
�  x and

q� � q� for some closed qi we have p
�
� � p
�q��x� and p

��
� � p
�q��x�� By

the operational semantics for parallel p� j p�
a�r�
�� p��� j p�� Since p is closed

p� is closed and p�� j p� � �p
 j p���q��x� and p
��
� j p� � �p
 j p���q��x� and

we have �p�� j p�� p
��
� j p�� � CR�

or p�
a�r
�� p� by a shorter inference and we may argue as above�
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p � p�nb If p
a�r
�� p� then p�

a�r
�� p�� by a shorter inference and p

� � p��nb and a 	 b�

By induction p�
a�r�
�� p��� with �p

�
�� p

��
�� � CR� Thus for some p
 with FV �p
�  x

and q� � q� for some closed qi we have p
�
� � p
�q��x� and p��� � p
�q��x��

By the operational semantics for restriction p�nb
a�r�
�� p���nb� Thus we have

p��nb � �p
nb��q��x� and p
��
�nb � �p
nb��q��x� and �p

�
�nb� p

��
�nb� � CR�

p � p��S� Follows by an argument similar to the case p � p�nb�

Lemma ���

If p � CPr and p
a�r
�� p� and �r� r�� � CR

� then p
a�r�
�� p�� with �p�� p��� � CR

� for

some p���

Proof� By induction on the length of the sequence p� � � � pn� The base case is
covered by lemma ����� and the inductive step follows by the induction hypothesis

and lemma ������

Proof� �of proposition ��������
We show that the relation CR� is a higher order bisimulation�

To see this we show that if �p�� p�� � CR then p� � p�q��x� and p� � p�q��x� for

some p� x� q�� q� with FV �p�  x and q� � q�� And whenever p�q��x�
�
�� p� then

p�q��x�
��
�� p�� with ��� ��� � d

CR
� and �p�� p��� � CR

�� And whenever p�q��x�
�
�� p�

then p�q��x�
��
�� p�� with ��� ��� � d

CR
� and �p�� p��� � CR

�� We only prove the 	rst

case� the second follows by a symmetric argument� The proposition then follows by

induction on the length of the sequence p� � � � pn� To prove the 	rst case above we

proceed by induction on the length of the inference used to establish the transition

p�q��x�
�
�� p� and cases of the structure of p�

p � nil Trivial since p�qi�x� 	��

p � a!y�p� Assume y 	� x �otherwise use 	�conversion on y�� Then p�qi�x� �

a!y��p��qi�x�� and p�qi�x�
a�r
�� �p��qi�x���r�y� � �p��r�y���qi�x� since r� qi

are closed and FV �p�  x and y 	� x� Since FV �p��r�y��  x we have

��p��r�y���q��x�� �p��r�y���q��x�� � CR � CR
� and since r � r we have

�a!�x�r�x��� a!�x�r�x��� � dCR � d
CR

��

p � a#p��p� From proposition ����� we have

p�qi�x� � a#�p��qi�x����p��qi�x�� � a#�p��q�i �x
�����p��q�i �x

���

where xi  FV �pi� and qij is the respective projection of qj�

Then p�qi�x�
a��p��q

�

i �x
�	

�� �p��q�i�x
���

and �p��q���x
��� p��q���x

��� � CR � CR
� and �a#�p��q���x

���� a#�p��q���x
���� �dCR � dCR��
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p � ��p� An argument similar to the argument given in the case above yields this

case�

p � p� " p� If p�q��x�
�
�� p� then

either p��q��x�
�
�� p� by a shorter inference� By induction p��q��x�

��
�� p��

with ��� ��� � d
CR

� and �p�� p��� � CR
�� By the operational semantics for

choice we have �p� " p���q��x�
��
�� p�� which is a matching move�

or p��q��x�
�
�� p� and we may argue as above�

p � p� j p� If p�q��x�
�
�� p� then

either p��q��x� � p��q
�
��x

��
�
�� p�� by a shorter inference and p� � p�� j

p��q��x� � p�� j p��q
�
��x

�� where xi  FV �pi� and qi� is the respective pro�

jection of q�� By induction p��q��x� � p��q���x
��

��
�� p��� with ��� �

�� � dCR�

and �p��� p
��
�� � CR

�� By the operational semantics for parallel we have

�p� j p���q��x� � �p��q��x�� j �p��q��x��
��
�� p��� j p��q���x

��� Since

�p��� p
��
�� � CR

� there exist p
� q
��
� � q

��
� and x�

�

such that p�� � p
�q�
�

� �x
���

and p��� � p
�q�
�

� �x
��� with FV �p
�  x�

�

and q�
�

� � q�
�

� � We may assume

x�
�

� x�   since if x�
�

� x� 	  we proceed by choosing y such that

y � �FV �p
� � x�
�

� x��   and we have p
�q�
�

i �x
��� � �p
�y�x�

�

���q�
�

i �y�

by proposition ������ Thus p�� j p��q
�
��x

�� � �p
 j p���q�
�

� � q
�
��x

�� �x�� and

p��� j p��q
�
��x

�� � �p
 j p���q�
�

� � q���x
�� � x�� and ��p
 j p���q�

�

� � q���x
�� �

x��� �p
 j p���q�
�

� � q���x
�� � x��� � CR

��

or p��q��x�
�
�� p�� and we may argue as above�

or �  � and w�l�o�g� p��q��x�
a�r
�� p�� and p��q��x�

a�r
�� p�� by shorter infer�

ences and p� � p�� j p
�
�� By induction p��q��x�

a�r��� p��� with �r� r�� � CR
�

and �p��� p
��
�� � CR

� and p��q��x�
a�r��� p��� with �r� r�� � CR

� and �p��� p
��
�� �

CR
�� By lemma ����� we have p��q��x�

a�r��� p���� with �r�� r�� � CR
�

and �p���� p
���
� � � CR

�� By the operational semantics for parallel �p� j

p���q��x�
�
�� p���� j p���� Since �p

�
�� p

���
� � � CR

� there exist p
� q��� q
�
� and

x� such that p�� � p
�q���x
�� and p���� � p
�q���x

�� with FV �p
�  x�

and q�� � q�� and since �p
�
�� p

��
�� � CR

� there exist p�� q��� q
�
� and x�

such that p�� � p��q���x
�� and p��� � p��q���x

�� with FV �p��  x� and

q�� � q��� We may assume x
� � x�   since if x� � x� 	  we pro�

ceed by choosing y such that y � �FV �p
� � FV �p�� � x� � x��  

and we have p
�q�i �x
�� � �p
�y�x����q�i �y� by proposition ������ Therefore

we have p�� j p
�
� � �p
�q

�
��x

��� j �p��q���x
��� � �p
 j p���q�� � q���x

� � x��

and p���� j p��� � �p
�q
�
��x

��� j �p��q
�
��x

��� � �p
 j p���q
�
� � q���x

� � x�� and
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�p�� j p
�
�� p

���
� j p

��
�� � CR

�� �Note that if we have to introduce a �new� y it

is because two or more occurrences of the same xi refer to di�erent qi
s

after the transition��

p � p�nb If p�q��x�
�
�� p� then

either �  a!r� then p��q��x�
a�r
�� p�� by a shorter inference and p

� � p��nb and

a 	 b� By induction p��q��x�
a�r�
�� p�� with �a!r� a!r

�� � d
CR

� and �p��� p
�
�� �

CR
�� By the operational semantics for restriction �p�nb��q��x�

a�r�
�� p��nb�

Since �p��� p
�
�� � CR

� there exist p
� q�� q� and x such that p
�
� � p
�q��x�

and p�� � p
�q��x� with FV �p
�  x and q� � q� and �p
�
�nb� � �p
nb��q��x�

and �p��nb� � �p
nb��q��x� thus �p
�
�nb� p

�
�nb� � CR

��

or �  a#r and we may argue as above�

or �  � and we may argue as above�

p � p��S� Similar to the case p � p�nb�

p � y By assumption FV �p�  x thus x  �y� and if p�q��x�
�
�� p� then q�

�
�� q��

and p�  q��� Since q� � q� we have q�
��
�� q�� with ��� �

�� � b� � d
CR

� and

�q��� q
�
�� ��� CR

� and we have a matching move for p�q��x��

Proposition ���

If p � CPr and p
a�r
�� p� and r � r� then p

a�r�
�� p�� with p� � p�� for some p���

Proof� If r � r� then �x�r�x�� x�r��x�� � CR
� thus �p�� p��� � CR

� by proposition
����� and by proposition ����� we have p� � p���

Proof� �of proposition ������� to ��������

�� This is proved by showing that the following relation R�  R� � where

R  f�a!x�p� a!x�q�  FV �p�  FV �q� � fxg&�r�p�r�x�� q�r�x�g

is a higher order bisimulation Note that the above relation consists of two

parts� one part covers the structure we are interested in and the second com�

ponent is a kind of closure to cover the processes sent and received� The

second component is necessary since the processes sent and received do not

have to have the structure of the 	rst part�

That the above relation is indeed a higher order bisimulation is easily estab�

lished�
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Assume �p� q� � R�� Then either p � q and we are done since if p
�
�� p� then

q
��
�� q� for some q�� �� with ��� ��� � b� � cR� and �p

�� q�� �� R� or p � a!x�p�

and q � a!x�q�� If a!x�p�
�
�� p�� then �  a!r and p�� � p��r�x� for some r�

Then a!x�q�
a�r
�� q��r�x� and by assumption p��r�x� � q��r�x� which implies

�p��r�x�� q��r�x�� � R�� Also �a!r� a!r� � cId � b� which implies ��� ��� � cR�� A

symmetric argument applies if a!x�q�
�
�� q���

��� �� follow from

��a#x�y���p� p����x� y��� �a#x�y���q� q����x� y��� � CR

����x��p�x�� ���x��q�x�� � CR

��x" y���p� p����x� y��� �x" y���q� q����x� y��� � CR

��x j y���p� p����x� y��� �x j y���q� q����x� y��� � CR

��xna��p�x�� �xna��q�x�� � CR

��x�S���p�x�� �x�S���q�x�� � CR

if p � q and p� � q� and x 	 y�

�Note that we could prove ����� directly by construction of bisimulations� e�g�

to prove

p j p� � q j q� if p � q and p� � q�

we show that the relation

R  f�p j p�� q j q��  p � q & p� � q�g� �

is a higher order bisimulation� To see this we assume �p� q� � R� Then either p � q

and if p
�
�� p� then q

��
�� q� with ��� ��� � b� � bR and �p�� q�� ��� R and we have

a matching move or p � p� j p� and q � q� j q�� If p� j p�
�
�� p�� then

either p�
�
�� p��� and p�� � p��� j p�� Since p� � q� we know that q�

��
�� q���

and ��� ��� � b� � bR and �p���� q
��
�� ��� R� Then q� j q�

��
�� q��� j q� and

�p��� j p�� q
��
� j q�� � R�

or p�
�
�� p��� and p

�� � p� j p��� and similar arguments as above apply�

or �  � and w�l�o�g� p�
a�r
�� p��� and p�

a�r
�� p��� and p�� � p��� j p

��
�� Then q�

a�r��� q���
with r � r� and p��� � q��� since p� � q� and q�

a�r��� q��� with r � r� and p��� � q���
since p� � q�� By proposition ����� we have q�

a�r��� q���� and q��� � q���� � Then

q� j q�
�
�� q���� j q

��
� and ��� � � �

bR and �p��� j p���� q���� j q���� � R�

If q� j q�
�
�� q�� then a symmetric argument applies��
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The relation � is an equivalence relation on Pr but not a congruence relation

since e�g� x � y but a!x�x 	� a!x�y� Instead of using � directly on Pr we de	ne �

in terms of � on CPr and abuse the notation

De�nition ����

p � q i �r�p�r�x� � q�r�x�

where x  FV �p�  FV �q� and r is closed�

This is equivalent to the following de	nition

p � q i� a!x� � � � a!xn�p � a!x� � � � a!xn�q

Proposition ���� � is a congruence relation�

Proof� We only need to check that if q� � q� then p�q��x� � p�q��x�� This is
done by structural induction on p using the above de	nition of � on open terms

and proposition ������ We show two cases for illustration

p � a!y�p� Assume y 	� x and y 	� FV �q�� � FV �q�� �otherwise use 	�conversion

on y�� By induction p��q��x� � p��q��x� � �r�p��q��x��r�y� � p��q��x��r�y�

where y  FV �p��q��x��  FV �p��q��x�� and r is closed� If y � FV �p��

then y � y� w�l�o�g� assume y  yn and let r�  �r�� � � � � rn��� and let

y�  �y�� � � � � yn���� Thus �r��r��p��q��x��r
��y���r�y� � p��q��x��r

��y���r�y�

and by proposition ������� we have �r��a!y�p��q��x��r
��y�� � a!y�p��q��x��r

��y��

and therefore a!y�p��q��x� � a!y�p��q��x�� If y 	� y then a!y�p��q��x� �

a!y�p��q��x� follows immediately�

p � p� j p� By induction pi�q��x� � pi�q��x� � �r�pi�q��x��r�yi� � pi�q��x��r�yi�

where yi  FV �pi�q��x��  FV �pi�q��x�� and r is closed� By proposition

�������

�r���r��p��q��x��r��y�� j p��q��x��r��y�� � p��q��x��r��y�� j p��q��x��r��y��

� �r��p� j p���q��x��r�y� � �p� j p���q��x��r�y�

where y  y��y�  FV ��p� j p���q��x��  FV ��p� j p���q��x�� and r is closed�
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Having established that � is a congruence with respect to the process construc�

tions in CHOCS� it is natural to consider � as an equational theory� containing

equations like p j p� � p� j p� Of course the left hand side of this equation is a

di�erent program from the one on the right hand side� but we would expect to 	nd

their behaviour equivalent� and this is in fact what the equation expresses�

We only need to establish bisimulation proof for closed expressions since �

for open expressions is expressed in terms of closed expressions� The equational

properties of � may yield a better understanding of the underlying semantics of

CHOCS and for the unexperienced user of the language it may turn out to be a

helpful way of understanding the language and the interplay of its constructs� In

the process algebraic framework the semantics of the ACP�language �BerKlo��� is

given entirely as an equational theory in an algebraic setting� We shall not do

so� but in fact Pr� � may be considered as an algebra e�g� �Pr� ��"� nil� is an

Abelian monoid as justi	ed by the 	rst three of the following equations

Proposition ����

p" p� � p� " p

p " �p� " p��� � �p " p�� " p��

p" nil � p

p" p � p

Proof� This follows from showing that the following relations are higher order
bisimulations

R�  f�p " p�� p� " p�g � Id

R�  f�p " �p� " p���� �p " p�� " p���g � Id

R
  f�p " nil� p�g � Id

R�  f�p " p� p�g � Id

To see this observe that for �r� q� � Ri� i � f�� �� �� �g we have either �r� q� � Id and

if r
�
�� r� then r  q

�
�� q�  r� with ��� �� � cId � cRi and �r�� q�� � Id � Ri and we

have a matching move or �r� q� belongs to the 	rst part of Ri and if r
�
�� r� then

this must have been inferred by the rules for choice� Then also q
�
�� r� which is a

matching move since ��� �� � cId � cRi and �r
�� q�� � Id � Ri�
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The following are some expected properties of parallel composition

Proposition ����

p j p� � p� j p

p j �p� j p��� � �p j p�� j p��

p j nil � p

Proof� This follows from showing that the following relations are higher order
bisimulations

R�  f�p j p�� p� j p�g � Id

R�  f�p j �p� j p���� �p j p�� j p���g � Id

R
  f�p j nil� p�g � Id

R� Assume �p� q� � R�� Then either �p� q� � Id � R� and if p
�
�� p� we can

establish a matching move for q since p  q
�
�� q�  p� with ��� �� � cId � cR�

and �p�� q�� � Id � R� and we are done or p � p� j p� and q � p� j p��

If p� j p�
�
�� p� then this must have been inferred by the rules for parallel

composition� There are four cases

either p�
�
�� p�� and p� � p�� j p�� Then p� j p�

�
�� p� j p�� which is a

matching move� since ��� �� � cId � cR� and �p�� j p�� p� j p
�
�� � R��

or p�
�
�� p�� and p

� � p� j p��� Then similar arguments as above apply�

or �  � and p�
a�p�

��� p��� and p�
a�p�

��� p��� and p
� � p��� j p

��
�� Then p� j p�

�
�� p��� j

p��� which is a matching move� since ��� � � �
cId � cR� and �p��� j p

��
�� p

��
� j

p���� � R��

or �  � and p�
a�p�

��� p��� and p�
a�p�

��� p��� and p� � p��� j p
��
�� Then similar

arguments as above apply�

If p� j p�
�
�� p� then symmetric arguments apply�

R� The argument for this case is similar to the argument for R� though it is nec�

essary to apply the argument twice�

R
 Assume �p� q� � R
� Then either �p� q� � Id � R
 and if p
�
�� p� we can

establish a matching move for q since p  q
�
�� q�  p� with ��� �� � cId � cR


and �p�� q�� � Id � R
 and we are done or p � p� j nil and q � p�� If
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p� j nil
�
�� p� then this must have been inferred by the rules for parallel

composition� Since nil 	� the transition must have been inferred from a

transition of p�� i�e� p�
�
�� p�� and p� � p�� j nil� Clearly p� has a matching

move and ��� �� � cId � cR
 and �p
�
� j nil� p

�
�� � R
� Also if p�

�
�� p�� then

p� j nil
�
�� p�� j nil by the rules for parallel composition� Clearly this is a

matching move and ��� �� � cId � cR
 and �p�� j nil� p
�
�� � R
�

The following proposition gives a range of properties satis	ed by restriction�

The order of restrictions does not matter and restriction distributes over choice�

Restriction does not in general distribute over parallel composition� but we shall

later show an interplay under certain conditions� The last clause shows that the

processes sent are not a�ected by the restriction on the sending processes�

Proposition ����

pnanb � pnbna

�p " p��nb � pnb" p�nb

�a!x�p�nb �

�
a!x�pnb if b 	 a
nil otherwise

�a#p��p�nb �

�
a#p��pnb if b 	 a
nil otherwise

Proof� This follows from showing that the following relations are higher order
bisimulations

R�  f�pnanb� pnbna�g � Id

R�  f��p " p��nb� pnb" p�nb�g � Id

R
  f��a!x�p�nb� a!x��pnb��  a 	 bg � f��a!x�p�nb� nil�  a  bg � Id

R�  f��a#p��p�nb� a#p���pnb��  a 	 bg � f��a#p��p�nb� nil�  a  bg � Id

As for restriction renaming only a�ects the sending processes� not the processes

sent� Renaming distributes over both choice and parallel composition� Two renam�

ings after one another act as the renaming using their function composition� and

renaming by the identity function does not a�ect the process�
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Proposition ���	

�a!x�p��S� � S�a�!x�p�S�

�a#p��p��S� � S�a�#p��p�S�

�p" p���S� � p�S� " p��S�

�p j p���S� � p�S� j p��S�

p�S��S�� � p�S� � S�

p�Id� � p

Proof� This follows from showing that the following relations are higher order
bisimulations

R�  f��a!x�p��S�� S�a�!x��p�S���g� Id

R�  f��a#p��p��S�� S�a�#p���p�S���g � Id

R
  f��p" p���S�� p�S� " p��S��g � Id

R�  f��p j p���S�� p�S� j p��S��g � Id

R�  f�p�S��S��� p�S� � S��g � Id

R�  f�p�Id�� p�g � Id

The interplay between renaming and restriction may be formulated as follows

Proposition ����

�p�S��nb � �pna� � � � nan��S�

where fa� � � � ang  fa  S�a�  bg assuming this set is �nite�

Proof� This follows from showing that the following relation is a higher order
bisimulation assuming the premisses of the proposition

R  f��p�S��nb� �pna� � � �nan��S��g � Id
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If S is a �� � function we know that its inverse S�� exists and the proposition

can be rephrased as

p�S�nb � pnS���b��S�

This law was incorrectly stated as a general law in �Tho���� The mistake was

pointed out to me by Sanjiva Prasad in a private communication�

We have not listed any immediate interplay between �nondeterministic� choice

and parallel composition above� This is due to the fact that the two operators in

general do not commute� but there is a restricted interplay between them� The

following proposition is a version of the expansion theorem found in most process

algebras� It states that parallel composition may be expressed as the nondetermin�

istic choice of the sequential interleaving of the actions of the components of the

parallel composition� But note that contrary to most process algebras we can not

in general eliminate the parallel operator using this proposition� This is because

we may introduce copying of processes in communication� we may even copy the

process we are trying to eliminate� This will become clear in theorem ������

Proposition ���
 Let x  fx� � � � xng� y  fy� � � � yng and x � y 	  and x �

FV �q�   and y � FV �p�   then
if p  'iai!xi�pi " 'jaj#p�j �pj

and q  'kbk!yk�qk " 'lbl#q
�
l�ql

then p j q � 'iai!xi��pi j q� " 'jaj#p�j ��pj j q�"
'kbk!yk��p j qk� " 'lbl#q�l��p j ql�"
'�i�l	�f�i�l	 � ai�blg���pi�q

�
l�xi� j ql�"

'�j�k	�f�j�k	 � aj�bkg���pj j qk�p
�
j�yk��

where 'i�i�pi describes the sum ���p� " � � �" �n�pn when n � � and nil if n  ��

knowing this notation is unambiguous because of proposition �������

Proof� Assume the premisses of the proposition� Let rhs denote the right hand
side of the above equation� Let

R  f�p j q� rhs�g � Id

Then R is a higher order bisimulation� For each transition of p j q we may 	nd a

matching transition of rhs and vice versa�

If p j q
�
�� r then

either p
�
�� p� and r � p� j q� If �  ai!p�� then p� � pi�p���xi� for some i and

rhs
�
�� �pi j q��p��xi� � p��p���xi� j q which is a matching move since xi 	�

FV �q��

If �  aj#p�j then p� � pj for some j and rhs
�
�� pj j q which is a matching

move�
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or q
�
�� q� and r � p j q�� Then similar arguments as above apply�

or �  � � Then

either p
ai�q

�

l�� pi�q�l�xi� and q
bl�q

�

l�� ql and r � pi�q�l�xi� j ql and ai  bl� Then

rhs
�
�� r which is a matching move�

or q
bk�p�j
�� qk�p�j�yk� and p

aj�p�j
�� pj and r � pj j qk�p�j�yk� j qk and aj  bk� Again

rhs
�
�� r which is a matching move�

If rhs
�
�� r then a similar case analysis as above will yield matching moves for

p j q�

Using these laws we may prove properties about processes without directly con�

structing a bisimulation� This approach is often much more manageable and the

two methods may be combined when convenient� In �HenMil��� and �Mil��� equa�

tions like those given above are used to prove soundness for sets of sound and

complete proof systems for the 	nite respectively regular sublanguages of CCS� We

shall not do so in this thesis since we cannot hope for a complete axiomatization

of the properties of CHOCS� the reason for this will become clear in the following

sections�

��� Sorts and CHOCS

We have deliberately chosen to refer to the set Names as a set of port names empha�

sizing that process values are to be thought of as communicated via ports� In any

implementation of a system described in CHOCS it would be of great importance

to know certain facts about these names as e�g� the number of di�erent names�

substitutivity of names etc� We may ascribe a sort �a set of port names� to each

program� To formally de	ne the sort of a program we need a bit of notation�

De�nition ��� q is a derivative of p if p ��� q� where p �� q � �� � Act�p
�
��

q and ��� is the re�exive and transitive closure of ���

De�nition ��� For each L � Names� let PrL be the set of processes p such that

for any derivative q of p� if q
a�q�
�� q�� or q

a�q�
�� q�� then a � L� If p � PrL we say p

has sort L �written p  L
�

We may see how the process constructions of CHOCS act on sorts

Proposition ��� Assume p� p� are closed expressions� then

�� If p  L and L �M then p M �
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�� If a � L and p�r�x�  L for all r then a!x�p  L�

�� If a � L and p  L then a#p��p  L for any p��

�� If p  L then ��p  L�

�� If p  L and p�  L then p" p�  L�

�� If p  L and p�  L then p j p�  L�

�� If p  L then pna  L fag�

�� If p  L then p�S�  fS�a�  a � Lg�

Proof�

� Follows directly from de	nition ������

� Any derivative of a!x�p is either p�r�x� for some r due to a!x�p
a�r
�� p�r�x� or it

is a derivative of p�r�x��

� Any derivative of a#p��p is either p due to a#p��p
a�p�
�� p or it is a derivative of p�

� Any derivative of ��p is either p due to ��p
�
�� p or it is a derivative of p�

	 Any derivative of p" p� is either a derivative of p or a derivative of p��

� Any derivative of p j p� has the form q j q� where q is a derivative of p and q� is

a derivative of p��


 Any derivative p� of pna is a derivative p�� of p such that if p��
�
�� p��� then if

�  b!q or �  b#q then b 	 a and p� � p��na�

� Any derivative p� of p�S� is a derivative p�� of p such that if p��
�
�� p��� then

p� � p���S� and p���S�
S��	
�� p����S��

The following semantic function may be used to compute the sort of a process

De�nition ��� dynamicsort  CHOCS� Names

dynamicsort�p�  fa � Names  �q� q�� q���p ��� q
a�q�
�� q�� or p ��� q

a�q�
�� q��g

This set is the minimal sort for an agent� The dynamic sort is often inconvenient�

We are often satis	ed by coarser % but easier to compute % information which

may be extracted from the program text�



Chapter � Operational Theory of CHOCS ��

De�nition ��	 We de�ne staticsort  CHOCS� Names structurally on p�

staticsort�nil�  

staticsort�a!x�p�  fag � staticsort�p�

staticsort�a#p��p�  fag � staticsort�p�

staticsort���p�  staticsort�p�

staticsort�p" p��  staticsort�p� � staticsort�p��

staticsort�p j p��  staticsort�p� � staticsort�p��

staticsort�pna�  staticsort�p� fag

staticsort�p�S��  fS�a�  a � staticsort�p�g

staticsort�x�  Names

Note how we need to �assume the worst� when encountering a variable� This is

because we do not know the sort of the processes which may be substituted for the

variable� In fact a!x�x
a�p
�� p for any p� and p may have any sort which is re�ected

both in the dynamic sort and the static sort of a!x�x� This �assuming the worst�

resembles how static approximations of dynamic properties of sequential program�

ming languages are made in the framework of abstract interpretation �CouCou����

�Assuming the worst� in case of a variable implies that it is not necessary to cal�

culate the static sort of process values as may be seen from the clause for output

pre	x� the sort of any process received in communication will be covered by the

static assumption on variables�

The dynamic sort and the static sort are of course related

Proposition ��� dynamicsort � staticsort

In general we cannot hope to show that dynamicsort  staticsort since this is

undecidable� even without process passing� as a consequence of �AusBou���� But

both dynamicsort and staticsort are sound with respect to de	nition ����� of a sort

for p�

We may now give some equational properties which only hold under certain

constraints on the sort�

Proposition ��
 �� pnb � p if p  L and b 	� L

�� �p j p��nb � pnb j p�nb if p  L� p� M and b 	� L �M

�� pnb � p�c�b�nc if p  L and c 	� L
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�� shows that restriction has no e�ect if the restricted port does not belong

to the sort of the agent� �� shows that restriction only distributes over commu�

nication if the restriction does not involve the ports which the processes are able

to communicate via� �� shows that the name of a restricted port is not essential

up to renaming� This property corresponds to the notion of 	�convertibility in

�EngNie����

Proof� The proposition is proved by showing that the following relations are
higher order bisimulations

R�  f�pnb� p�  p  L & b 	� Lg � Id

R�  f��p� j p��nb� p�nb j p�nb�  p�  L & p� M & b 	� L �Mg � Id

R
  f�pnb� p�c�b�nc�  p  L & c 	� Lg � Id

That the above relations are higher order bisimulations is easily established by the

following arguments

R� Assume �p� q� � R�� Then either p  q and since Id � R� we are done or

p � p�nb and q � p�� If p�nb
�
�� p�� then this has been inferred by the rules

for restriction and p�
�
�� p��� and p�� � p���nb and if �  a!r or �  a#r then

a 	 b� We have thus established a matching move� If p�
�
�� p��� then if �  a!r

or �  a#r then a 	 b since b 	� L and p�  L� By the rules for restriction we

have p�
�
�� p���nb and we have established a matching move�

R� Assume �p� q� � R�� Then either p  q and since Id � R� we are done or

p � �p� j p��nb and q � p�nb j p�nb� If �p� j p��nb
�
�� p� then this has been

inferred by the rules for restriction and p� j p�
�
�� p�� with p� � p��nb and if

�  a!r or �  a#r then a 	 b� The transition p� j p�
�
�� p�� must have been

inferred by the rules for parallel composition and

either p�
�
�� p��� and p�� � p��� j p�� Then p�nb j p�nb

�
�� p���nb j p�nb and we

have a matching move�

or p�
�
�� p��� and p

�� � p� j p��� and we may argue as above�

or �  � and p�
��
�� p��� and p�

��
�� p��� and p

�� � p��� j p
��
�� Assume w�l�o�g� �

�  

a!r� then a 	 b since a � L�M � Then p�nb
��
�� p���nb and p�nb

��
�� p���nb�

From the rule for parallel composition we have p�nb j p�nb
�
�� p���nb j p

��
�nb

and we have a matching move�

If p�nb j p�nb
�
�� p�� then
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either p�nb
�
�� p��� and p

�� � p��� j p� and this is because p�
�
�� p�� and if �  

a!r or �  a#r then a 	 b and p��� � p��nb� Then �p� j p��nb
�
�� �p��� j p��nb

which is a matching move�

or p�nb
�
�� p��� and we may argue as above�

or �  � and p�nb
��
�� p��� and p�nb

��
�� p��� and p�� � p��� j p

��
� and this is

because p�
��
�� p�� and if �

�  a!r or �
�  a#r then a 	 b and p��� � p��nb

and p�
��
�� p�� and if �

�  a!r or �
�  a#r then a 	 b and p��� � p��nb� Then

by the rules for parallel composition �p� j p��nb
�
�� �p��� j p

��
��nb which is

a matching move�

R
 Assume �p� q� � R
� Then either p  q and since Id � R
 we are done or

p � p�nb and q � p��c�b�nc� If p�nb
�
�� p�� then this has been inferred by the

rules for restriction and p�
�
�� p��� and p�� � p���nb and if �  a!r or �  a#r

then a 	 b� By the rules for renaming p��c�b�
�
�� p����c�b� and by the rules for

restriction p��c�b�nc
�
�� p����c�b�nc and we have established a matching move�

If p��c�b�nc
�
�� p����c�b�nc then p��c�b�

�
�� p����c�b� and if �  a!r or �  a#r

then a 	 c� Then p�
�
�� p��� and if �  a!r or �  a#r then a 	 b since c 	� L

and p�  L� By the rules for restriction we have p�nb
�
�� p���nb and we have

established a matching move�

Sorted CHOCS

The information given by the static sort of de	nition ����� is often too coarse as

in p  �a!x�x j a#�b#nil�nil��nil�na since staticsort�p�  Names fag� whereas

dynamicsort�p�  fbg� As a solution to this problem one could introduce a sort

declaration on each binding of variables and limit communication to processes of

the prescribed sort� This would correspond to type declarations in typed program�

ming languages like PASCAL� This is indeed the approach of �Nie��� where a type

system including sorts of processes is presented for the language TPL� In this sys�

tem the sort of processes sent and received contributes to the calculation of the

sort of processes� The language TPL is a merge between the typed ��Calculus

and a CHOCS�like process language with processes passing� If we leave out the

non�process expressions we may degenerate TPL to a version of CHOCS �Sorted

CHOCS� with the following abstract syntax

s  a!s a#s s � s� �
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p  nil a!x � s�p a#p��p ��p p" p� p j p� pna p�S� x

where a � Names� S  Names� Names and x � V �

We use the term sort instead of type for the degenerated types described by the

	rst syntactic category of the above syntax� The sort expresses the communication

possibilities of processes but not their causality� We may think of � as the empty

sort and it plays the double r$ole of acting as � and NIL of �Nie���� The process

part of Sorted CHOCS given by the second syntactic category of the above syntax

is given an operational semantics de	ned by the rules for �unsorted� CHOCS from

de	nition ������ The process language di�ers slightly from the process part of TPL�

In TPL communication takes place using a sort dependent parallel operator in the

style of �Hoa���� but p j p� can be interpreted as p j Names j p�� The choice operator

" di�ers from the or operator of �Nie��� since the 	rst of the following operational

rules applies to p" p� and the second applies to p or p�

p
�
�� p��

p" p�
�
�� p��

p
�
�� p��

p or p�
�
�� p�� or p�

We now present an inference system for inferring when a process p has sort s�

We have to express sorts of open expressions and in general we have statements

like 
 � p  s which can be read as process p has sort s in the sort environment 
�

Here 
  V � Sort is a function from variables to sorts� We write 
�s�x� for the

environment which acts like 
 except on x where it returns s� Let 
� describe the

environment such that 
� �x�  � for all x�

subsort � � � s � s � s � s� � s� � s� � s� � s� � s�

� s� � s� � s� � s

� s� � s


� s� � s � s� � s

� s� � s� � s

� s � s� � s� � s

� s  s�

� s � s�

� a#s � a#s�
� s � s�

� a!s� � a!s
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non�structural

 � p  s � s � s�


 � p  s�

variables 
 � x  s if 
�x�  s

nil 
 � nil  �

input

�s�x� � p  s�


 � a!x � s�p  a!s � s�

output

 � p�  s� 
 � p  s


 � a#p��p  a#s� � s

tau

 � p  s


 � ��p  s

choice

 � p  s 
 � p�  s�


 � p " p�  s � s�

restriction

 � p  s


 � pna  sna
where sna  

�������������������

b!s� if s  b!s� and a 	 b
b#s� if s  b#s� and a 	 b
� if s  b!s� and a  b
� if s  b#s� and a  b
� if s  �

s�na � s��na if s  s� � s��

renaming

 � p  s


 � p�S�  s�S�
where s�S�  

���������
S�a�!s� if s  a!s�

S�a�#s� if s  a#s�

� if s  �

s��S� � s���S� if s  s� � s��

parallel

 � p  s 
 � p�  s�


 � p j p�  s � s�
� IOmatch �s� s��

Table ����� Sort system for CHOCS

The relation � s � s� facilitates reasoning about subsorts� Intuitively � s � s�

says that s� allows more communication possibilities than s� Note that � is a quasi

ordering and � is the least upper bound� with � as the least sort� In the rule for a!s

the ordering between types is switched� Intuitively this says that a process allows

more communications the less we assume about its input �see �Nie��� for further

discussion��

In �Nie��� the process nil is given its own sort �type� NIL� Using the sort

inference rules we may establish that 
 � nil  s for any s such that � NIL � s� To

a certain extent this follows ideas from �Hoa��� where each nil �or STOP � process
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has to have its sort declared� i�e� STOPA� We have ascribed nil with the sort �

instead of giving nil its own sort� The reason for this is that we want to keep in

line with ideas about sorts from �Mil��� Mil��� Mil��� where nil can have any sort�

We obtain this by � � � s for any s and 
 � nil  � and the non�structural rule�

The predicate IOmatch �s�� s�� is intended to express that the output types of

p are compatible with the input types of p� and vice versa� To formalize this we use

the following de	nition of �Nie���

De�nition ��� Let d  # or d  ! then

Pad  Sort� P �Sort�

Pad�a
�d�s�  

�
fsg if ad  a�d�

 otherwise

Pad�s � s��  Pad�s� � Pad�s
��

Pad�� �  

Intuitively Pad�s� is the set of communication possibilities that s allows over

channel a in direction d�

Using this de	nition we may de	ne IOmatch �s�� s�� as

De�nition ���

IOmatch �s�� s�� �� �j � �� ���a � Chan �s�� � Chan �s���

�s�j � Pa��sj���s
�

�j � Pa��s
�j�� � s��  s��

where Chan �s�  

�����
fag if s  a!s� or s  a#s�

 if s  �

Chan �s�� � Chan �s��� if s  s� � s��

This de	nition di�ers slightly from the de	nition of IOmatch in �Nie��� which

would become

IOmatch �s�� s�� �� �j � �� ���a � Names��s�j � Pa��sj��

�s�
�j � Pa��s
�j�� � s��  s��

If Names is in	nite an in	nite number of conditions is introduced in the inference

system whereas IOmatch from de	nition ����� only needs to check a 	nite number

of conditions�
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We may use the sort information provided by the sort inference system to infer

properties of processes dependent on the sort information� To do this we need to

relate the sort information to the underlying �un�sorted� operational semantics

Theorem ���� �Theorem ��� of �Nie��	
�

Let 
� � p  s and p
�
�� p��

��� if �  � then 
� � p��  s

��� if �  a#p� then a � Chan �s� and �
� � p��  s� and ��s� � Pa��s��
� � p�  s��

��� if �  a!p� then a � Chan �s� and Pa��s� 	  and

��s� � Pa��s��
� � p�  s��  � �
� � p��  s�

Corollary ���� If 
� � p  s and �s� � Pa��s��
� � q�  s� for all derivatives q of

p such that q
a�q�
�� q�� then p  Chan �s��

Proof� By de	nition ����� and theorem ������

Intuitively corollary ������ states that if we restrict ourselves to supplying pro�

cesses which have sort declared in s when p needs an input then p
s computations

will only use the channels in s�

The proof of Theorem ������ follows the proof of Theorem ��� of �Nie��� quite

closely except for a few details due to the di�erence between operators in TPL

and in CHOCS and the fact that we use functions 
 for sort environments whereas

�Nie��� uses ordered lists�

Before presenting a proof of theorem ������ we need the following lemmas

Lemma ���� �Lemma ��� of �Nie��	
�

In a deduction of 
 � p  s we may assume that the non�structural rule is used after

every structural rule and axiom and nowhere else�

Proof� If we look at the proof tree for 
 � p  s we can transform it into a
new proof tree where we use the non�structural rule after each structural rule since

� s � s holds for all s� In this new proof tree there might be applications of

the non�structural rule followed by applications of the non�structural rule but we

can eliminate these using the transitivity rule
� s� � s� � s� � s


� s� � s

by replacing

each double application of the non�structural rule

 � p  s� � s� � s�


 � p  s�
followed

by

 � p  s� � s� � s



 � p  s

with the single application of the non�structural rule
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 � p  s� � s� � s


 � p  s


Lemma ���� �Lemma ��� of �Nie��	
�

if � s� � s� then

�s�� � Pa��s����s
�
� � Pa��s��� � s�� � s��

�s�� � Pa��s����s
�
� � Pa��s��� � s�� � s��

Proof� By induction on the structure of the inference � s�� � s��� For the axioms
� � � s� � s � s� � s� � s� � s� and � s� � s� � s� the result follows from

Pad�� �   and Pad�s� � s��  Pad�s�� � Pad�s��� For the rules
� s � s�

� a#s � a#s�
and

� s � s�

� a!s� � a!s
the result follows from the de	nition of Pad�a�d�s���

Lemma ���� if 
�s��x� � p  s and 
 � p�  s� then 
 � p�p��x�  s

Proof� By induction on the length of the inference 
�s��x� � p  s and cases of
the structure of p with the use of lemma �������

We shall use the fact if x 	� FV �p� then 
�s��x� � p  s i� 
 � p  s which is

easily established by an argument by induction�

Assume 
�s��x� � p  s and 
 � p�  s�

p � nil Trivial since x 	� FV �nil� and nil�p��x� � nil we have 
 � nil�p��x�  s�

p � y If x 	 y then y�p��x� � y and x 	� FV �y� thus 
 � y�p��x�  s�

If x  y then y�p��x� � p�� Since 
�s��x� � y  s we must have � s� � s� By

the non�structural rule and 
 � p�  s� we have 
 � y�p��x�  s

p � a!y � s��p� If x  y then x 	� FV �a!y � s��p�� and �a!y � s��p���p��x� � a!y �

s��p� and we have 
 � �a!y � s��p���p��x�  s�

If x 	 y we may assume y 	� FV �p�� otherwise �a!y � s��p���p��x� � a!z �

s����p��z�x���p
��x�� where z 	 x and z 	� FV �p�� � FV �p�� and we may show


 � a!y � s��p�  s i� 
 � a!z � s��p��z�y�  s and we will have to argue on


 � a!z � s��p��z�y�  s�

By lemma ������ there exists a sort s� such that �
�s��x���s��y� � p�  s�

and � a!s� � s� � s� Since �
�s��x���s��y�  �
�s��y���s��x� if x 	 y we

have �
�s��y���s��x� � p�  s�� By induction �on �
�s��y�� � p  s� we have
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�
�s��y�� � p��p��x�  s�� Since x 	 y and y 	� FV �p�� we have �a!y �

s��p���p��x� � a!y � s���p��p��x�� and we have 
 � �a!y � s��p���p��x� 

a#s� � s�� By � a!s� � s� � s and the non�structural rule we have 
 � �a!y �

s��p���p��x�  s�

The rest of the cases follow straightforwardly by induction and use of lemma �������

We give one case for illustration

p � p� j p� By lemma ������ there exist sorts s� and s� such that 
�s��x� � p�  s�

and 
�s��x� � p�  s� and IOmatch �s�� s�� and � s� � s� � s� By induction


 � p��p��x�  s� and 
 � p��p��x�  s�� Since p��p��x� j p��p��x� � �p� j

p���p��x�  s� we have 
 � �p� j p���p��x�  s� � s� and by the non�structural

rule 
 � �p� j p���p��x�  s�

With this machinery in hand we now prove theorem �������

Proof� Assume 
 � p  s and p
�
�� p�� We proceed by induction on the length

of the inference used to establish p
�
�� p�� Consider the possible forms of p

p � nil Trivial since nil 	��

p � a!x � s��p� Then a!x � s��p�
a�p�
�� p��p��x�� By lemma ������ there exists a

sort s� such that 
� �s��x� � p�  s� and � �a!s�� � s� � s� Thus we have

a � Chan �s�� Assume 
� � p�  s� for all s� � Pa��s� then by lemma ������

we know 
� � p�  s� holds� Using lemma ������ we get 
� � p��p��x�  s� and

by the non�structural rule we have 
� � p��p��x�  s� Also Pa��s� 	  holds�

p � a#p��p� Then a#p��p�
a�p��� p�� By lemma ������ there exist sorts s� and s� such

that 
� � p�  s� and 
� � p�  s� and � �a#s�� � s� � s� Thus we have

a � Chan �s� and by the non�structural rule we have 
� � p�  s� By lemma

������ we have �s� � Pa��s��
� � p�  s� namely s
�  s��

p � ��p� Then ��p�
�
�� p�� By lemma ������ there exists a sort s� such that 
� �

p�  s� and � s� � s� By the non�structural rule we have 
� � p�  s�

p � p� " p� If p�"p�
�
�� p� then either p�

�
�� p� or p�

�
�� p� by a shorter inference�

We consider the case where p�
�
�� p�� the other case is similar� By lemma

������ there exist sorts s� and s� such that 
� � p�  s� and 
� � p�  s� and

� s� � s� � s� We have the following possible forms of �

�  � By induction 
� � p�  s� and by the non�structural rule we have


� � p�  s�
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�  a#p�� By induction a � Chan �s�� and 
� � p�  s� and 
� � p��  s��

for some s�� � Pa��s��� By the non�structural rule we have 
� � p�  s

and by lemma ������ we have 
� � p��  s�� for some s�� � Pa��s� and

a � Chan �s��

�  a!p�� Assume 
� � p��  s�� for all s�� � Pa��s��� By lemma ������ we

have 
� � p��  s�� for all s�� � Pa��s�� By induction a � Chan �s��

and 
� � p�  s� and Pa��s�� 	 � By the non�structural rule we have


� � p�  s and by lemma ������ we have Pa��s� 	  and a � Chan �s��

p � p� j p� By lemma ������ there exist sorts s� and s� such that 
� � p�  s� and


� � p�  s� and IOmatch �s�� s�� and � s� � s� � s� If p� j p�
�
�� p�� j p�

then

either p�
�
�� p�� by a shorter inference and p

� � p�� j p�� An argument similar

to the one given for p � p� " p� applies�

or p�
�
�� p�� by a shorter inference and p

� � p� j p��� An argument similar to

the one given for p � p� " p� applies�

or p�
�
�� p�� and p�

�
�� p�� by shorter inferences and p� � p�� j p

�
�� Assume

w�l�o�g� that �  a!r� By induction a � Chan �s�� and 
� � p��  s�

and 
� � r  s�� for some s
�
� � Pa��s��� From IOmatch �s�� s�� we have

whenever s�� � Pa��s�� then 
� � r  s��� By induction a � Chan �s��

and 
� � p��  s� and Pa��s�� 	 � It follows that 
� � p�� j p
�
�  s� � s��

By the non�structural rule we have 
� � p�� j p
�
�  s�

p � p�nb By lemma ������ there exists a sort s� such that 
� � p�  s� and � s�nb �

s� If p�nb
�
�� p� then p�

�
�� p�� by a shorter inference and p

� � p�nb� We have

the following possible forms of �

�  � By induction 
� � p��  s� and 
� � p��nb  s�nb� By the non�structural

rule we have 
� � p��nb  s�

�  a#p�� Then a 	 b� By induction a � Chan �s�� and 
� � p��  s� and


� � p��  s�� for some s�� � Pa��s��� Since a 	 b we have a � Chan �s�nb�

and Pa��s��  Pa��s�nb�� From 
� � p��nb  s�nb and the non�structural

rule we have 
� � p��  s and by lemma ������ we have 
� � p��  s�� for

some s�� � Pa��s� and a � Chan �s��

�  a!p�� Assume 
� � p��  s�� for all s�� � Pa��s��� By lemma ������ and if

a 	 b we have Pa��s��  Pa��s�nb� we get 
� � p��  s�� for all s�� � Pa��s��

By induction a � Chan �s�� and 
� � p��  s� and Pa��s�� 	 � By the

non�structural rule we have 
� � p��  s and by lemma ������ we have
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Pa��s� 	  since Pa��s��  Pa��s�nb� if a 	 b� We also get a � Chan �s�

since a 	 b�

p � p��S� An argument similar to the argument for the case when p � p�nb applies�

p � x Trivial since x 	��

��� Observational Equivalence

When ��actions are interpreted as unobservable internal actions the bisimulation

equivalence between processes is too distinctive� To re	ne the bisimulation equiva�

lence we need the following derived transition relations based on observable actions

De�nition �	�

p
�
 � p�� � p�

�
��

�
�

�
�� p��

p
�
 � p� � p

�
��

�
p�

where p
�
��

��
�� p�� means �p��p

�
�� p� & p�

��
�� p�� and

�
��

�
is the re�exive

and transitive closure of
�
���

Intuitively we may read p
a�p�
 � p�� as �after a 	nite number of internal actions

p is in a state where it can receive a process p� on a and in doing so end up in a

state p���� If p
�
 � p�� we know that p has at least one � �transition and

�
 ��

�
��

�
�

The above de	nition of derived transition relations follows �Mil��b� and �Abr���

as opposed to the more common de	nition p
a�p�
 � p�� � p

�
��

� a�p�
��

�
��

�
p��� The

de	nition we use facilitates the proofs of congruence properties and we have been

unable to prove these with the usual de	nition of derived transition relations�

Weak higher order bisimulation equivalence or observational equivalence may

now be de	ned

De�nition �	� A weak higher order bisimulation R is a binary relation on Pr

such that whenever pRq and � � �Act f�g� � f�g then�

�i
 Whenever p
�
 � p�� then q

��
 � q� for some q�� �

� with �
bbR�

�

and p�Rq�

�ii
 Whenever q
�
 � q�� then p

��
 � p� for some p�� �

� with

�
� bbR� and p�Rq�



Chapter � Operational Theory of CHOCS ��

Where
bbR  f��� ���  ��  a!p��& �

�  a!q��& p��Rq��� � ��  a#p��& �
�  

a#q��& p��Rq��� � ��  �
�  ��g�

Two processes p and q are said to be weak higher order bisimulation equivalent i

there exists a weak higher order bisimulation R containing �p� q�� In this case we

write p � q�

We may de	ne WHB�R� for R � Pr� as the set of pairs �p� q� satisfying clause

�i� and �ii� above� It is easy to see that WHB is a monotone endofunction and that

there exists a maximal 	xed point for WHB� This equals ��

Proposition �	� � is an equivalence

Proof� As proposition ������

Bisimulation equivalence is more discriminating than observational equivalence

which is a direct consequence of the following proposition�

Proposition �	� p � p� � p � p�

Proof� The relation R  f�p� q�  p � qg is a weak higher order bisimulation
which follows from p

�
�� p� implies p

�
 � p��

As a consequence of proposition ����� we know that � satis	es the equations of

propositions ������ to ������� Moreover � satis	es the following

Proposition �		 p � ��p�

Proof� The relation R  f�p� ��p�g � Id is a weak higher order bisimulation�
To see this observe that

if p
�
 � p� then ��p

�
�� p

�
 � p� thus ��p

�
 � p� and ��� �� �

ccId �
bbR and

�p�� p�� � Id � R�

Also if ��p
�
 � p� then

either �  � thus ��p
�
��

�
p� and

either p�  ��p in which case p
�
 � p which is a matching move since ��� �� �bbR and �p� ��p� � R�

or ��p
�
�� p

�
��

�
p� in which case p

�
��

�
p� and since ��� �� �

bbR and

�p�� p�� � Id � R we have a matching move�

or �  � and � 	 � thus ��p
�
�� p

�
 � p� and then p

�
 � p� which is a matching

move since ��� �� �
ccId � bbR and �p�� p�� � Id � R�
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The observational equivalence � does not enjoy the property of being a congru�

ence with respect to the operators of CHOCS� As for CCS it is the �nondetermin�

istic� choice operator which presents problems as may be seen from the following

counter example 	rst presented in �Mil���

Example �	� ��nil � nil but a#�nil" ��nil 	� a#�nil" nil since a#�nil" ��nil
�
 �

nil but a#�nil" nil
�

	 � nil�

More surprisingly perhaps is that � is not in general preserved by parallel compo�

sition which may be seen from the following example

Example �	
 Let p�  b!x��a#�nil"x� and q�  b#���nil��nil and q�  b#�nil��nil�

Then p� � p� and q� � q� but p� j q� 	� p� j q� since p� j q�
�
�� �a#�nil" ��nil� j nil

whereas p� j q�
�
�� �a#�nil " nil� j nil and as we saw above these two states are

incomparable� In this example the states distinguishing p� j q� from p� j q� occur

after just one transition� but it is easy to generalize the example to any depth of

transition�

Let Pr� be the set of processes constructed according to the syntax of de	nition

����� but without the use of the "�operator� Let P�  �Pr��Act���� where

Act
�  Names�f!� #g�Pr

��f�g and let CPr� and CP� be de	ned in the obvious

way�

Proposition �	� � is a congruence relation on Pr
��

�� p�q��x� � p�q��x� if q� � q�

�� a!x�p � a!x�q if p�r�x� � q�r�x� for all r

�� a#p��p � a#q��q if p � q and p� � q�

�� ��p � ��q if p � q

�� p j p� � q j q� if p � q and p� � q�

�� pna � qna if p � q

�� p�S� � q�S� if p � q

We prove this proposition by showing that � is a congruence relation on CPr�

and then lift the de	nition of � to open expressions in the standard way

De�nition �	�

p � q i �r�p�r�x� � q�r�x�

where x  FV �p�  FV �q� and r is closed�
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The proof of the congruence property of � on CPr� closely follows the proof of

the congruence property of �� It is useful to have the following alternative de	nition

of weak higher order bisimulation

De�nition �	�� An alternative weak higher order bisimulation R is a binary

relation on Pr such that whenever pRq and � � Act then�

�i
 Whenever p
�
�� p�� then q

e��
 � q� for some q�� �

� with e� bbRe��
and p�Rq�

�ii
 Whenever q
�
�� q�� then p

e��
 � p� for some p�� �

� with e�� bbRe�
and p�Rq�

Where e�  
�����

� if �  �
a!p if �  a!p
a#p if �  a#p

If there exists an alternative weak higher order bisimulation R containing �p� q� we

write p �� q�

We may de	ne AWHB�R� for R � Pr� as the set of pairs �p� q� satisfying clause

�i� and �ii� above� It is easy to see that AWHB is a monotone endofunction and that

there exists a maximal 	xed point for AWHB� This equals ���

Proposition �	�� �  ��

Proof�

�� �� To see this we show that R�  f�p� q�  p � qg is an alternative weak

higher order bisimulation�

This is easily established since if p
�
�� p� then p

�
 � p�� Thus q

�
 � q� withe� bb�� and p� � q� since p � q� De	ne �

�  � if �  �� ��  a!p�� if �  a!p�� and

�
�  a#p�� if �  a#p��� Then q

e��
 � q� which is a matching move�

A symmetric argument applies if q
�
�� q��

�� �� To see this we show that R�  f�p� q�  p �� qg is a weak higher order

bisimulation�

This is easily established since if p
�
 � p� then

either �  � and p  p�� In this case q
�
 � q� and since e�  � we have �

cc���

and p� �� q and we have a matching move�

or �  � and p
�
��

�
p�� Then q

e�
 � q� with e�cc��e� and p� �� q� since p �� q�

This establishes a matching move�
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or �  a!p�� and p
a�p��
 � p�� Then q

a�p��
 � q� � q

ga�p��
 � q� with ga!p��cc�� ga!p�� and

p� �� q� since p �� q� This establishes a matching move�

or �  a#p�� and we may argue as in the previous case�

If q
�
 � q� a symmetric argument applies�

De�nition �	��

Let WCR
�  f�p�q��x�� p�q��x��  p � Pr

� & x  FV �p� & q� � q� & qi � CPr
�g

and let WCR
�� be the transitive closure of WCR

��

Note if q� � q� then �x�q��x�� x�q��x�� �WCR
� and we write �q�� q�� �WCR

��

Lemma �	��

If p � CPr
� and p

a�r
�� p� and �r� r�� � WCR

�� for some r� then p
a�r�
�� p�� and

�p�� p��� �WCR
���

Proof� As lemma ������

With these preliminaries in hand we may now prove the congruence property of

� on Pr��

Proof� �of proposition ������ To see �� we show that the relation WCR
�� is an

alternative weak higher order bisimulation� First for �p�� p�� � WCR
� we show

that Whenever p� � p�q��x�
�
�� p� then p� � p�q��x�

e��
 � p�� with �e�� e��� � dd

WCR
��

and �p�� p��� �WCR
��� We proceed by induction on the length of the inference used

to establish the transition p�q��x�
�
�� p� and cases of the structure of p� The only

case which di�ers slightly from the proof of proposition ����� is the following

p � p� j p� If p�q��x�
�
�� p� then

either p��q��x� � p��q���x
��

�
�� p�� by a shorter inference and p� � p�� j

p��q��x� � p�� j p��q
�
��x

�� where xi  FV �pi� and qi� is the respective

projection of q�� By induction p��q��x� � p��q���x
��
e��
 � p��� with �e�� e��� �dd

WCR
�� and �p��� p

��
�� � WCR

��� Since �p��� p
��
�� � WCR

�� there exist

p
� q
��
� � q

��
� and x�

�

such that p�� � p
�q�
�

� �x
��� and p��� � p
�q�

�

� �x
��� with

FV �p
�  x�
�

and q�
�

� � q�
�

� � We may assume x�
�

� x�   since if

x�
�

�x� 	  we proceed by choosing y such that y��FV �p
��x�
�

�x��  

and we have p
�q�
�

i �x
��� � �p
�y�x�

�

���q�
�

i �y� by proposition ������ If e��  �

and p���  p��q���x
�� then p��q���x

�� � p
�q�
�

� �x
��� otherwise we use the

operational semantics for parallel and we have
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�p� j p���q��x� � �p��q��x�� j �p��q��x��
e��
 � p��� j p��q

�
��x

��� Thus p�� j

p��q
�
��x

�� � �p
 j p���q
��
� � q���x

�� � x�� and p��� j p��q
�
��x

�� � �p
 j p���q
��
� �

q���x
�� � x�� and ��p
 j p���q�

�

� � q���x
�� � x��� �p
 j p���q�

�

� � q���x
�� � x��� �

WCR
���

or p��q��x�
�
�� p�� and we may argue as above�

or �  � and w�l�o�g p��q��x�
a�r
�� p�� and p��q��x�

a�r
�� p�� by shorter inferences

and p� � p�� j p
�
�� By induction p��q��x�

a�r� � p��� with �r� r�� � WCR
��

and �p��� p
��
�� � WCR

�� and p��q��x�
a�r� � p��� with �r� r�� � WCR

�� and

�p��� p
��
�� �WCR

��� Thus p��q��x��
�
��

�
�p�

a�r��� p��� for some p�� By lemma

������ we have p�
a�r��� p���� with �r�� r�� �WCR

�� and �p���� p
���
� � �WCR

���

Therefore p��q��x��
�
��

�
�p�

a�r��� p���� � p��q��x�
a�r� � p���� � �Note that we

need to know that p��� is the state immediately after the input�transition

in order to apply lemma ������ as we did above� It is an open question

if the proposition can be proved if p��� occurs after a sequence of internal

moves i�e� if we had used the usual de	nition of
�
 ��� By the operational

semantics for parallel �p� j p���q��x�
�
 � p���� j p���� Since �p��� p

���
� � �

WCR
�� there exist p
� q��� q

�
� and x

� such that p�� � p
�q���x
�� and p���� �

p
�q���x
�� with FV �p
�  x� and q�� � q�� and since �p

�
�� p

��
�� � WCR

��

there exist p�� q
�
�� q

�
� and x

� such that p�� � p��q���x
�� and p��� � p��q���x

��

with FV �p��  x� and q�� � q��� We may assume x
� � x�   since if

x� � x� 	  we proceed by choosing y such that y � �FV �p
��FV �p���

x� � x��   and we have p
�q�i�x
�� � �p
�y�x����q�i �y� by proposition

������ Therefore we have p�� j p
�
� � �p
�q

�
��x

��� j �p��q���x
��� � �p
 j

p���q
�
� � q���x

� � x�� and p���� j p��� � �p
�q
�
��x

��� j �p��q
�
��x

��� � �p
 j

p���q�� � q���x
� � x�� and �p�� j p

�
�� p

���
� j p

��
�� �WCR

���

Next we show that if �p�� p�� � WCR
�� and p�

e�
 � p��� then p�

e��
 � p��� and

�e�� e��� � dd
WCR

�� and �p���� p
��
�� � WCR

��� This follows by induction on �m�n� in

the lexicographic order on ��� where m is the number of ���transitions used in

establishing p�
e�
 � p��� and n is the length of the transitive sequence used to establish

�p�� p�� � WCR
��� The base case ��� �� is trivial since pi

�
 � pi for i � f�� �g and

�p�� p�� � WCR
�� The case ��� n " �� follows by induction and the base case� To

prove the inductive step it is useful to prove the case ��� n� for all n� The case ��� ��

follows from the 	rst step above� The inductive step ��� n" �� follows by applying

the 	rst step above to the 	rst pair in the transitive sequence and induction on

the remaining n pairs� To see the case �m " �� n� for all n� we use induction on

�m�n� for all n and apply the result for ��� n� for all n for the last transition in the

sequence�
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The overall result then follows by induction on the length of the transitive se�

quence� The base case n  � follows from the 	rst step above and the inductive

step follows by applying the 	rst step above to the 	rst pair �p�� p�� �WCR
� of the

sequence p� � � � pn�� reducing its length by �� then applying the induction hypothesis

and the second step above to the rest of the sequence p� � � � pn���

�� to �� follow by constructions similar to those given in the proof of �� to �� in

proposition ������

The above result only applied to processes in Pr�� We may obtain a congruence

relation on Pr containing � using techniques presented in �Mil��� Mil����

De�nition �	��

p �c q i �C�C�p�� C�q�

where C is a context�

Generally a context is an expression with zero or more �holes� to be 	lled by an

expression� We write C�p� for C� � with p exchanged for � �� We deliberately use the

word exchange instead of substitute since according to the de	nition of substitution

�de	nition ������ change of bound variables is taken care of� whereas free variables

in p may become bound in C�p��

Proposition �	�	 �� �c is a congruence

�� if � is a congruence and p � q � p � q then p � q� p �c q�

Corollary �	�� p � q� p �c q�

Note that we do not have to de	ne �c on closed expressions 	rst and then lift

it to open expressions since a!x� � � � a!xn�� � is just a special context�

The de	nition of observational congruence yields that �c is the largest con�

gruence containing �� The de	nition is rather awkward to work with and it is

useful to 	nd alternative descriptions� A �standard� alternative characterization of

observational congruence 	rst presented in �Mil��� is in terms of "�contexts

De�nition �	�
 p �� q i �r�p" r � q " r

It is surprising to observe that this de	nition is not in general a congruence

relation on Pr as may be seen from the following example

Example �	�� Let p�  b!x��a#�nil"x� and q�  b#���nil��nil and q�  b#�nil��nil�

Then p� �� p� and q� �� q� but p� j q� 	� p� j q� since for all r we have

�p� j q�� " r
�
�� �a#�nil " ��nil� j nil whereas �p� j q�� " r

�
�� �a#�nil" nil� j nil

and as we saw in example ����� these two states are incomparable�
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At 	rst this may seem quite surprising� but the power of sending and receiving

processes in communication might suggest that the congruence property should al�

ways hold for the communicated processes since these might turn up at any stage

and that we therefore should look for a recursive formulation of observational con�

gruence�

As an attempt to de	ne a bisimulation�like predicate characterizing observa�

tional congruence we propose the following de	nition inspired by �Abr��b��

De�nition �	�� An irre�exive weak higher order bisimulation R is a binary

relation on Pr such that whenever pRq and � � Act then�

�i
 Whenever p
�
�� p�� then q

��
 � q� for some q�� �

� with e� bbRe��
and p�Rq�

�ii
 Whenever q
�
�� q�� then p

��
 � p� for some p�� �

� with e�� bbRe�
and p�Rq�

If there exists an irre�exive weak higher order bisimulation R containing �p� q�

we write p �i q�

Note that this de	nition only di�ers from de	nition ������ by insisting that

whenever p
�
�� p�� then q

��
 � q� and not q

e��
 � q�� This mean that any � �transition

of p must be matched by at least one � �transition of q and vice versa�

We may de	ne IWHB�R� for R � Pr� as the set of pairs �p� q� satisfying clause

�i� and �ii� above� It is easy to see that IWHB is a monotone endofunction and that

there exists a maximal 	xed point for IWHB� This equals �i�

Proposition �	�� �i is a congruence relation on Pr�

�� �i is an equivalence�

�� p�q��x� �
i p�q��x� if q� �

i q�

�� a!x�p �i a!x�q if p�r�x� �i q�r�x� for all r

�� a#p��p �i a#q��q if p �i q and p� �i q�

�� ��p �i ��q if p �i q

�� p " p� �i q " q� if p �i q and p� �i q�

�� p j p� �i q j q� if p �i q and p� �i q�

�� pna �i qna if p �i q
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�� p�S� �i q�S� if p �i q

The proof that �i is an equivalence follows from the same kind of arguments

given for proposition ����� and proposition ������ We prove �i is a congruence

relation on CPr and then lift the de	nition of �i to open expressions in the standard

way� The proof of the congruence property of �i on CPr follows the proof of

congruence property of � on CPr��

De�nition �	��

Let IWCR  f�p�q��x�� p�q��x��  p � Pr & x  FV �p� & q� �
i q� & qi � CPrg

and let IWCR
� be the transitive closure of IWCR�

Note if q� �i q� then �x�q��x�� x�q��x�� � IWCR and we write �q�� q�� � IWCR�

Lemma �	��

If p � CPr and p
a�r
�� p� and �r� r�� � IWCR

� for some r� then p
a�r�
�� p�� and

�p�� p��� � IWCR
��

Proof� As lemma �����

Proof� �of proposition ������� The proof of �� follows the proof of proposition
������� i�e� we show that the relation IWCR

� is an irre�exive weak higher order

bisimulation� First for �p�� p�� � IWCR we show Whenever p� � p�q��x�
�
�� p�

then p� � p�q��x�
��
 � p�� with �e�� e��� � dd

IWCR
� and �p�� p��� � IWCR

�� To do this we

proceed by induction on the number of inferences used to establish the transition

p�q��x�
�
�� p� and cases of the structure of p� The only case which did not occur

in the proof of proposition ����� is the following

p � p� " p� If p�q��x�
�
�� p� then

either p��q��x�
�
�� p� by a shorter inference� By induction p��q��x�

��
 � p��

with �e�� e��� � dIWCR
� and �p�� p��� � IWCR

�� Since p��q��x�
��
 � p��

implies that at least one transition takes place we can apply the opera�

tional semantics for choice and we have �p�" p���q��x�
��
 � p�� which is a

matching move�

or p��q��x�
�
�� p� and we may argue as above�

As in the proof of proposition ������� we establish that if �p�� p�� � IWCR
� and

p�
�
 � p��� then p�

��
 � p��� and �e�� e��� � ddIWCR

� and �p���� p
��
�� � IWCR

�� This follows

by induction on �m�n� in the lexicographic order on ��� where m is the number of
�
���transitions used in establishing p�

�
 � p��� and n is the length of the transitive

sequence used to establish �p�� p�� � IWCR
��
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The overall result then follows by an argument similar to the argument given

for ������� i�e� by induction on the length of the transitive sequence�

�� to �� follow by constructions similar to those given in the proof of �� to �� in

proposition ������

Corollary �	�� p �i q � p �c q

Proof� It is easy to establish that p �i q � p � q� The proposition then
follows from the congruence property of �i and proposition ������

We may now turn to the algebraic properties of �i� Since p � q � p �i q the

algebraic laws for � also apply for �i� In addition �i satis	es the following � �law

Proposition �	��

p" ��p �i ��p

Proof� We show that the relation

R  f�p" ��p� ��p�  p � CPrg � Id

is an irre�exive weak higher order bisimulation�

To see this observe that if p " ��p
�
�� p� then

either p
�
�� p� and ��p

�
 � p� with �e�� e�� � ccId � bbR and �p�� p�� � Id � R�

or ��p
�
�� p� and �  � and ��p

�
�� p� with �e� � e�� � bbR and �p�� p�� � Id � R�

Also if ��p
�
�� p� then p�  p and �  � and p " ��p

�
�� p� with �e� � e� � � bbR and

�p�� p�� � Id � R�

However� the following � �laws are not valid for �i

�� a!x���p �i a!x�p

�� a#p����p �i a#p��p

�� ����p �i ��p

�� a!x��p" ��q� " a!x�q �i a!x��p" ��q�

�� a#p���p" ��q� " a#p��q �i a#p���p" ��q�

�� ���p" ��q� " ��q �i ���p " ��q�

The 	rst three laws correspond to the � �law a���p �c a�p of CCS �Mil���� In

fact this law is not valid for �i even without process passing since if p  nil then

a#���p
a�
�� ��p and a#�nil

a�
 � nil with a#

cc�ia# but ��nil 	�i nil since ��nil
�
�� nil

whereas nil
�

	 �� The last three laws are not valid for �i because of the de	nition

of
�
 �� This fact was noticed by Walker for CCS in �Wal����

It is an open question if the following � �laws are valid for �c
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�� a!x���p �c a!x�p

�� a#p����p �c a#p��p

�� ����p �c ��p

So far I have been unsuccessful in either validating or refuting these� If they were

invalid we should be able to 	nd a context C such that C�pre���p� 	� C�pre�p� where

pre is either a!x� a#p� or � � Example ������ suggests that we look for a context which

�strips o�� the initial action pre and sends ��p respectively p into the troublesome

context a#�nil"� �� However� it does not seem to be possible to de	ne such a context

in CHOCS since the processes we send are inactive until received and instantiated

for a free variable� It is worth noting that if we had the following operational rule

from �Nie���
p�

�
�� p��

a#p��p
�
�� a#p���p

we could refute the above � �laws�

��� Recursion

We have seen that almost all properties of CCS carry over to CHOCS but since

CHOCS includes higher order constructs one would expect to 	nd it more powerful

and indeed it is� In CCS the recursion operator recx�p is the only operator capable

of introducing in	nite behaviours� recx� is a variable binder and FV and � � � have

to be extended according to this

FV �recx�p�  FV �p� fxg

and

�recy�p��q�x� �

�������������������

rec y��p�q�x�� if y 	 x and
y 	� FV �q�

rec z���p�z�y���q�x�� for some z 	 y
and z 	 x
and not free in
q nor p otherwise

In CCS recursive processes have the following operational semantics

p�recx�p�x�
�
�� p�

recx�p
�
�� p�

This inference rule basically says that a recursive process has the same deriva�

tions as its unfoldings� In CHOCS we can �program� a recursion construct to

obtain in	nite behaviours� To a certain extent this construct resembles the Curry

paradoxical combinator Y � �  ��x�� ��xx����x�� ��xx�� which is often referred to as

the Y combinator in the ��Calculus�
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De�nition ��� Let Wx� � be the context�

a!x��� ���x j a#x�nil�na�x��

and let Yx� � be the context�

�Wx� � j a#�Wx� ���nil�na

Note that if FV �p� � fxg then

Yx�p�
�
�� �p��x j a#x�nil�na�x��Wx�p��x� j nil�na � �p�Yx�p��x� j nil�na

� �p�Yx�p��x��na � �pna��Yx�p��x�

By proposition ����� we have �pna��Yx�p��x� � p�Yx�p��x� if p  L and a 	� L�

Note how Yx� � needs a ��transition to unwind the �recursion�� This resembles

the unwinding of recursion in the inference rule of recursion in TCCS �HenNic���

recx�p� p�recx�p�x�� where � may be read as
�
���

Theorem ��� Yx�p� � recx����pna�

Corollary ��� If p  L and a 	� L then Yx�p� � recx�p

Proof� if p  L and a 	� L then pna � p by proposition ����� and ��p � p by
proposition ������ We need to prove that recx�p � recx�q if p � q� We may rely

on the proof in �Mil��� for CCS which only needs minor changes to take the process

passing into account�

In �Tho��� the following alternative Y �context was presented

Yx� �  �a!x��� � j a#x�nil� j a#�a!x��� � j a#x�nil���nil�na

This context is limited to processes where x does not occur free in a sending

position �i�e� does not occur free in any subsubexpression p� of the form q  b#p��p��

where q is a subexpression of p�� With the Y �context of de	nition ����� we may

program systems which recursively send out copies of themselves�

Example ��� Let p � b#x�x then according to the inference rules of de�nition

����� Yx�p� has the following derivations�

Yx�p�

��

�b#x�x�Yx�p��x� j nil�na
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�b�Yx�p

�Yx�p� j nil�na

��

��b#x�x�Yx�p��x� j nil�na j nil�na

�b�Yx�p
���

This is almost a speci�cation of a computer virus� Think of the behaviour of

Yx�p� where p  ethernet#x��x j delete all files#�nil� and the consequences such a

program could have in a network of computers connected via an ethernet�

To prove theorem ����� we need a bit of technical machinery and we extend the

result about bisimulation up to � from �Mil��� Mil��� to take the process passing

into account�

De�nition ��	 A binary relation R on Pr is a higher order bisimulation up to

� if whenever pRq and � � Act then�

�i
 Whenever p
�
�� p�� then q

��
�� q� for some q�� �

� with

� d�R��
� and p� �R� q�

�ii
 Whenever q
�
�� q�� then p

��
�� p� for some p�� �

� with

�
� d�R�� and p� �R� q�

Where d�R�  f��� ���  ��  a!p�� & �
�  a!q�� & p�� � R � q��� � ��  

a#p�� & �
�  a#q�� & p�� �R� q��� � ��  �

�  � �g�

Note that �R� is relation composition�

Proposition ��� d�R�  $� $R $�

Proof� If � d�R��
� there are three cases

�  a!p then �
�  a!p� and p �R� p�� Thus there exist p��� p

��
� such that p � p���

p��Rp
��
� and p

��
� � p�� Clearly a!p$�a!p��� a!p

�
�
$Ra!p��� and a!p

��
� $�a!p

� and we have

� $� $R $��
��

�  a#p and we may argue as above�

�  � then �
�  � and � $�� and � $R� and � $� $R$�� �

If � $� $R $��
� then there are three cases
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�  a!p then �
�  a!p� and there exists �� and �

�
� such that �$���� �� $R�

�
� and �

��
� $��

��

We must have ��  a!p� and �
�
�  a!p�� and p � p�� p�Rp�� and p�� � p� thus

p �R� p� and we have � d�R��
��

�  a#p and we may argue as above�

�  � then �
�  � and � d�R��

��

Lemma ��
 If R is a bisimulation up to �� then �R� is a bisimulation�

Proof� Assume �p� q� ��R �� This means that for some p�� q� we have p �
p�Rq� � q� Thus if p

�
�� p� then p�

���� p�� with �$��� and p� � p��� Since R is a

bisimulation up to � we know that q�
��
��� q�� with ��

d�R��
�
� and p�� �R� q�� and

since q� � q we have q
��
�� q� with �

�
� $��

� and q�� � p�� By transitivity of � we have

p� ��R�� p� which implies p �R� p� and �$� d�R�$��
� which implies � d�R��

�

by proposition ����� and transitivity of $� �which is easily established as a corollary

of proposition ������� Thus we have established a matching move for q�

If q
�
�� q� a symmetric argument to the above applies�

Proposition ��� If R is a bisimulation up to � then R ���

Proof� Since � R � is a bisimulation we know that � R ���� Id �� so
R ��R� which proves the proposition�

With this machinery in hand we may now prove theorem �����

Proof� For this proof we need the following property of substitution

if x 	 y then p�p��x��p���y� � p�p���y��p��p���y��x�

and a simple corollary

if x 	 y and p�� p�� are closed then p�p��x��p���y� � p�p���y��p��x�

which is easily established by structural induction on p� �They are not corollaries

of proposition ����� since we have to take recursive processes into account��

Then the relation

R  f�q�recx����pna��x�� q�Yx�p��x��  FV �q� � fxgg

is a bisimulation up to �� To prove this we show that

if q�recx����pna��x�
��
�� q� then q�Yx�p��x�

���
�� q��

with ���� ���� � d�R� and �q�� q��� ��R�

�i�e� we show ���� ���� � $�� ����� �
��
�� � $R� ������ �

��� � $�� �q�� q��� ��� �q
�
�� q

��
�� � R and

�q���� q
��� �� for some �

�
�� �

��
�� q

�
� and q

��
���
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We prove this by induction on the length of the inference used to establish

the transition q�recx����pna��x�
��
�� q� and cases of the structure of q� In the case

where q has the form a!y�q� or recy�q� we need the above properties of substitution�

The theorem then follows by choosing q � x� �The proof follows the pattern of the

proof of proposition ��� of �Mil����� q may have the following structure

q � nil Trivial since both nil�recx����pna��x� 	� and nil�Yx�p��x� 	��

q � b!y�q� Assume y 	 x �otherwise use 	�conversion on y��

If q�recx����pna��x�
��
�� q�� then �

�  b!r for some r

and q� � q��recx����pna��x��r�y� � q��r�y��recx����pna��x� since

q�recx����pna��x� � �b!y�q���recx����pna��x� � b!y��q��recx����pna��x��

and recx����pna� is closed�

Note that since r is closed FV �q��r�y�� � fxg�

Also q�Yx�p��x�
��
�� q��  �q��Yx�p��x���r�y� � �q��r�y���Yx�p��x�

since Yx�p� is closed and y 	 x�

This is a matching move since ���� ��� � $Id � $� � d�R�

and �q�� q��� � R ��R��

q � b#q��q� If q�recx����pna��x�
��
�� q� then

�
�  b#�q��recx����pna��x�� and q�  �q��recx����pna��x�� since

q�recx����pna��x� � �b#q��q���recx����pna��x� �

b#�q��recx����pna��x����q��recx����pna��x���

Also q�Yx�p��x�
���
�� q�� where �

��  b#�q��Yx�p��x�� and q
��  q��Yx�p��x��

This is a matching move and ���� ���� � $R � d�R� and �q�� q��� � R ��R��

q � q� " q� If q�recx����pna��x� � q��recx����pna��x� " q��recx����pna��x�
��
�� q�

then

either q��recx����pna��x�
��
�� q� by a shorter inference�

By induction q��Yx�p��x�
���
�� q�� with ���� ���� � d�R� and �q�� q��� ��R��

By the inference rules for choice

q�Yx�p��x� � q��Yx�p��x� " q��Yx�p��x�
���
�� q��

which is a matching move�

or q��recx����pna��x�
��
�� q� and we may argue as above�

q � q� j q� If q�recx����pna��x� � q��recx����pna��x� j q��recx����pna��x�
��
�� q�

then

either q��recx����pna��x�
��
�� q�� by a shorter inference

and q� � q�� j �q��recx����pna��x���
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By induction q��Yx�p��x�
���
�� q��� with ��

�� ���� � d�R� and �q��� q
��
�� ��R��

Thus there exists r� such that q�� � r��recx����pna��x� and

r��recx����pna��x�Rr��Yx�p��x� and r��Yx�p��x� � q��� �

By the inference rules for parallel composition

q�Yx�p��x� � q��Yx�p��x� j q��Yx�p��x�
���
�� q��� j �q��Yx�p��x���

By de	nition ����� we have

q� j �q��recx����pna��x�� � r��recx����pna��x� j q��recx����pna��x�

� �r� j q���recx����pna��x�

and q� j �q��Yx�p��x�� � r��Yx�p��x� j q��Yx�p��x� � �r� j q���Yx�p��x��

Clearly ��r� j q���recx����pna��x�� �r� j q���Yx�p��x�� � R

and we have established a matching move�

or q��recx����pna��x�
��
�� q�� and we may argue as above�

or �
�  � and q��recx����pna��x�

�
�� q�� and q��recx����pna��x�

�
�� q��

by shorter inferences and q� � q�� j q
�
��

By induction q��Yx�p��x�
���
�� q��� with ��� �

��� � d�R� and �q��� q
��
�� ��R��

Thus there exists r� such that q�� � r��recx����pna��x�

and r��recx����pna��x�Rr��Yx�p��x� and r��Yx�p��x� � q��� �

Also q��Yx�p��x�
���
�� q��� with ��� �

��� � d�R� and �q��� q
��
�� ��R��

Thus there exists r� such that q�� � r��recx����pna��x� and

r��recx����pna��x�Rr��Yx�p��x� and r��Yx�p��x� � q��� �

Then by the inference rules for parallel composition

q�Yx�p��x� � q��Yx�p��x� j q��Yx�p��x�
�
�� q��� j q

��
� �

By de	nition ����� we have

q�� j q
�
� � r��recx����pna��x� j r��recx����pna��x�

� �r� j r���recx����pna��x� and q
��
� j q

��
� � r��Yx�p��x� j r��Yx�p��x� � �r� j

r���Yx�p��x��

Clearly ��r� j r���recx����pna��x�� �r� j r���Yx�p��x�� � R

and we have established a matching move�

q � q�nb If q�recx����pna��x� � q�nb�recx����pna��x� �

�q��recx����pna��x��nb
��
�� q�

then q��recx����pna��x�
��
�� q�� by a shorter inference and q

� � q��nb�

If ��  c!r or �
�  c#r then c 	 b�

By induction q��Yx�p��x�
���
�� q��� with ��

�� ���� � d�R� and �q��� q
��
�� ��R��

Thus there exists r� such that

q�� � r��recx����pna��x� and r��recx����pna��x�Rr��Yx�p��x� and r��Yx�p��x� �

q��� �

By the inference rules for restriction
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q�Yx�p��x� � q�nb�Yx�p��x� � �q��Yx�p��x��nb
���
�� q��  q���nb�

By de	nition ����� we have

q��nb � �r��recx����pna��x�nb� � �r�nb��recx����pna��x�

and q��nb � �r��Yx�p��x��nb � �r�nb��Yx�p��x��

Clearly �q�� q��� ��R� which is a matching move�

q � q��S� If q�recx����pna��x� � q��S��recx����pna��x� �

�q��recx����pna��x���S�
��
�� q�

then q��recx����pna��x�
��
��� q�� by a shorter inference and q

� � q���S�

and �
�
�  S���� where S�a!p�  S�a�!p� S�a#p�  S�a�#p and S�� �  � �

By induction q��Yx�p��x�
���
��� q��� with ��

�
�� �

��
�� �

d�R� and �q��� q
��
�� ��R��

Thus there exists r� such that q�� � r��recx����pna��x�

and r��recx����pna��x�Rr��Yx�p��x� and r��Yx�p��x� � q����

By the inference rules for renaming

q�Yx�p��x� � q��S��Yx�p��x� � �q��Yx�p��x���S�
���
�� q��  q��� �S� where �

��  

S�������

By de	nition ����� we have

q���S� � �r��recx����pna��x��S��� �r��S���recx����pna��x�

and q���S� � �r��Yx�p��x���S� � �r��S���Yx�p��x��

Clearly �q�� q��� ��R� and ���� ���� � d�R�

since ����� �
��
�� �

d�R� implies �S������ S��
��
��� �

d�R� which is easily estab�

lished�

q � x If q�recx����pna��x� � x�recx����pna��x� � recx����pna�
��
�� q�

then �
�  � and q� � �pna��recx����pna��x��

Also

q�Yx�p��x� � Yx�p�
�
�� q��  �p�Yx�p��x� j nil�na

� �p�Yx�p��x��na � �pna��Yx�p��x��

Clearly ��pna��recx����pna��x�� �pna��Yx�p��x�� � R thus �q�� q��� ��R��

q � rec y�q� Assume y 	 x �otherwise use 	�conversion on y��

Then q�recx����pna��x� � �recy�q���recx����pna��x� �

rec y��q��recx����pna��x��
��
�� q�

since recx����pna� is closed�

Then q��recx����pna��x��recy��q��recx����pna��x���x�

� q��recy�q��y��recx����pna��x�
��
�� q�

by a shorter inference�

By induction �on q��recy�q��y�� we have

q��recy�q��y��Yx�p��x� � q��Yx�p��x��recy��q��Yx�p��x���x�
���
�� q��
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with ���� ���� � d�R� and �q�� q��� ��R��

By the inference rule for recursion

rec y��q��Yx�p��x�� � �recy�q���Yx�p��x�
���
�� q��

which is a matching move�

We also have to prove that if q�Yx�p��x�
��
�� q� then q�recx����pna��x�

���
�� q��

with ���� ���� � d�R� and �q�� q��� ��R�� This is straightforward and follows the

pattern of the above argument�

This proof is limited to the case where at most x is free in q� The extension to

the case where there are other free variables is now routine� using the de	nition of

higher order bisimulation for open terms from de	nition �������

��� Transition Systems with Divergence

In previous sections we have only studied transition systems of the form P  

�Pr�Act��� and the notion of higher order bisimulation� In this section we add a

fourth component� a divergence predicate�

In the study of concurrent systems divergence plays an essential r$ole since diver�

gent processes may inde	nitely do internal actions and thus prevent any external

communications and should therefore be distinguished from stopped processes� Al�

though we shall not study the prospects of using divergent processes as unspeci	ed

parts in a partial speci	cations technique it is worth noting that the formalisms

introduced in this section provide the necessary machinery to enable the use of the

partial speci	cation techniques presented in �Wal��� LarTho����

To formalize the notion of divergence we adopt the technique presented in

�HenPlo��� Mil��b� Abr��� Wal��� and extend the semantic model of labelled tran�

sition systems with a unary basic divergence predicate on processes ��

Transition systems now take the form P  �Pr�Act��� ��� The notion of con�

vergence � is de	ned as the negation of divergence i�e� p �� 
p ��

We may now de	ne the notion of a higher order prebisimulation� This predicate

on labelled transition systems with divergence is the extension of bisimulation to

take the additional structure of divergence into account�

De�nition �
� A higher order prebisimulation R is a binary relation on Pr

such that whenever pRq and � � Act then�

�i
 Whenever p
�
�� p�� then q

��
�� q� for some q�� �

� with � bR�
�

and p�Rq�
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�ii
 Whenever p � then q � and if q
�
�� q�� then p

��
�� p� for

some p�� �
� with �

� bR� and p�Rq�

Where bR  f��� ���  ��  a!p�� & �
�  a!q�� & p��Rq��� � ��  a#p�� & �

�  

a#q�� & p��Rq��� � ��  �
�  � �g�

If there exists a higher order prebisimulation R containing �p� q� we write p �

B q�

As for higher order bisimulation we may de	ne higher order prebisimulation as

the maximal 	xed point of a functional on Pr�� We de	ne HPB�R� for R � Pr� as

the set of pairs �p� q� satisfying clause �i� and �ii� above� It is easy to see that HPB

is a monotone endofunction and that there exists a maximal 	xed point for HPB�

This equals �

B�

Proposition �
� �

B is a preorder

Proof� Re�exivity follows from the fact that Id  f�p� p� j p � Prg is a higher
order prebisimulation�

Transitivity follows from the fact that composition of higher order prebisimulations

yields a higher order prebisimulation�

We let �B denote the equivalence generated by �

B ��

B��
� Clearly p �B q �

p � q�

In the coming sections we shall make use of an alternative �and more explicit�

characterization of higher order prebisimulation� This is done by giving a decreasing

sequence of relations on Pr� given by

De�nition �
�

� p �� q is always true �i�e� �� Pr � Pr


� p �k�� q i �� � Act�

�i
 Whenever p
�
�� p�� then q

��
�� q� for some q�� �

� with

�c�k�� and p� �k q
�

�ii
 Whenever p � then q � and if q
�
�� q�� then p

��
�� p�

for some p�� �
� with �

�c
�k� and p� �k q

�

Where c�k  f��� ���  ��  a!p�� & �
�  a!q�� & p���kq

��� � ��  a#p�� & �
�  

a#q�� & p���kq
��� � ��  �

�  � �g�

�i�e� �k�� HPB��k�
� Let �� 
T
k �k and �� �� ���

���
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This decreasing sequence is bounded below by �

B and we have �k��k����

B for

all k�

De�nition �
� A transition system P  �Pr�Act��� �� is said to be image �nite

i�

�p � Pr�f��� p���  p
�
�� p��g �nite

Note that this is equivalent to de	ning image 	niteness as

�p � Pr��a � Names�f�p�� p���  p
a�p�
�� p��g�f�p�� p���  p

a�p�
�� p��g�fp��  p

�
�� p��g 	nite

since the set f��� p���  p
�
�� p��g has the same cardinality as the set

f�p�� p���  �a � Names�p
a�p�
�� p��g�f�p�� p���  �a � Names�p

a�p�
�� p��g�fp��  p

�
�� p��g�

The above de	nition of image 	niteness is stronger than the usual de	nition of image

	niteness given by de	nition ������ The stronger version is necessary to facilitate

the proof of the next proposition�

Proposition �
	 If P  �Pr�Act��� �� is image �nite then �� �

B

Proof� We prove this proposition by showing that if P  �Pr�Act��� �� is image
	nite thenHPB is anticontinuous� It then follows from classic 	x point theory �Tar���

that it has got a maximal 	xed point on a complete lattice� Pr� is a complete

lattice ordered by subset inclusion and we have ukHPB
k�Pr��  

T
kHPB

k�Pr���

where HPB�  Id and HPBk��  HPBk � HPB� Since �

B is de	ned as the maximal

	xed point of HPB on Pr� we have �

B ���

To see that HPB is anticontinuous we must prove HPB�
T
kRk�  

T
kHPB�Rk� where

R� � R� � R
 � � � � Rn � � � � is a decreasing chain of binary relations over Pr�

The ����direction follows directly from monotonicity of HPB and
T
kRk � Ri for

all i � �� For the ����direction� let �p� q� �
T
kHPB�Rk�� If p

�
�� p�� we must 	nd

a matching move for q� i�e� �
� and q�� such that q

��
�� q�� with ��� ��� � dT

k Rk and

�p��� q��� �
T
k Rk�

Thus for all k there exist �
�
k and q��k such that q

��k�� q��k with ��� �
�
k� �

cRk and

�p��� q��k� � Rk�

By the image 	niteness condition on Pr there is only 	nitely many pairs ���k� q
��
k��

This means that there exists a pair ���� q��� such that ��� ��� � cRk and �p��� q��� � Rk

for in	nitely many k � �� Since Rk is decreasing in k we have ��� ��� � cRk and

�p��� q��� � Rk for all k � � and thus �p��� q��� �
T
kRk�

If �p� q� �
T
kHPB�Rk� then if p � also q � and if q

�
�� q�� we may 	nd a matching

move for p by an argument as above�
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We brie�y turn our attention to CHOCS and see how the new structure of

divergence may be used� First we make an extension of the syntax

p  � � � (

where ( is a new constant� This new process should be thought of as the always

divergent process with no actions� The operational semantics of CHOCS is then

de	ned by the transition relation de	ned in de	nition ����� and the divergence

predicate de	ned below� Note that since ( has no actions we do not need to alter

the transition relation� The divergence predicate is de	ned syntax directed as the

maximal relation satisfying the following axioms and rules

De�nition �
�

( �

p �

p " p� �

p� �

p" p� �

p �

p j p� �

p� �

p j p� �

p �

pna �

p �

p�S� �

Note that this de	nition yields that only CHOCS processes with unguarded (
s

are divergent�

Proposition �

 �

B is a precongruence�

Proof� We may prove this for closed expressions as for the congruence properties
of �� We may then lift this result to open expressions�

Since the equivalence �B implies � this equivalence satis	es the laws of section

���� In addition �

B satis	es the following law

Proposition �
� ( �

B p

Proof� The relation R  f�(� p�  p � Prg is a higher order prebisimulation� To
see this observe that ( 	� and ( �� Thus clause �i� and �ii� of de	nition ����� are

trivially satis	ed�

Except for ( we do not have any other basic divergent processes in CHOCS� This

is opposed to CCS where recursive processes with unguarded recursion variables

may be basic divergent as well� This makes the study of basic divergence in the

context of CHOCS rather trivial� though we shall use the basic divergence in the

formulation of a denotational theory for CHOCS in chapter ��

When � �transitions are interpreted as internal�unobservable moves� as in the

theory of observational equivalence� we may interpret a process with the potential

of evolving into a process possessing the capability of an in	nite sequence of � �

transitions as divergent� This is e�g� the case when simulating unguarded recursion

Yx�x� � rec x���x�

To formalize this we de	ne the following derived divergence predicate
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De�nition �
� Let the relation � on Pr be the largest relation satisfying�

p� � �p
�
 � p� & p� �� or p

�
��

�

where p
�
��

�
� �fpng�p  p� & �n�pn

�
�� pn���

We interpret p� as p may diverge� The notion of convergence is de	ned as the

negation of divergence i�e� p� � 
�p���

We may use this predicate to formulate a notion of weak higher order prebisim�

ulation

De�nition �
�� A weak higher order prebisimulation R is a binary relation on

Pr such that whenever pRq and � � �Act f�g� � f�g then�

�i
 Whenever p
�
 � p�� then q

��
 � q� for some q�� �

� with �
bbR�

�

and p�Rq�

�ii
 Whenever p� then q� and if q
�
 � q�� then p

��
 � p� for

some p�� �
� with �

� bbR� and p�Rq�

Where
bbR  f��� ���  ��  a!p��& �

�  a!q��& p��Rq��� � ��  a#p��& �
�  

a#q��& p��Rq��� � ��  �
�  ��g�

If there exists a weak higher order bisimulation R containing �p� q� we write p � q�

We may de	ne WHPB�R� for R � Pr� as the set of pairs �p� q� satisfying clause

�i� and �ii� above� It is easy to see thatWHPB is a monotone endofunction and that

there exists a maximal 	xed point for WHPB� This equals ��

Proposition �
�� � is a preorder

Proof� As proposition ������

As for the theory of observational equivalence weak higher order prebisimualtion

is not a congruence with respect to the " operator of CHOCS� We could carry

through a program as in section ��� and prove precongruence properties of the

"�free processes and also generate a congruence along the lines of section ��� by

de	ning p �

c q i� �C�C�p� � C�q�� We shall not pursue this since the techniques

are tedious� but straightforward generalizations of the results from section ����

Proposition �
�� � � �

�� � �

Thus the equational properties of � are also satis	ed by the equivalence gener�

ated by �� In addition it satis	es the following law
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Proposition �
�� ���p" (� � p" (

Proof� We show that the relation

R  f����p" (�� p" (�g � Id

is a weak higher order prebisimulation�

To see this observe that if p " (
�
 � p� then this is because p

�
 � p� and then

���p" (�
�
 � p� which is a matching move�

Also ���p"(�� and p"(� thus clause �ii� of de	nition ������ is trivially satis	ed�

��	 Finite CHOCS

In this section we de	ne a 	nite version of CHOCS� We introduce a new operator

a!Fp��p� called 	nite input pre	x� Informally we use this construct to approximate

the input pre	x a!x�p� by 'p�Pra!
Fp�p��p�x� following ideas for encoding value

passing in SCCS from �Mil����

Let FPr be the set of processes built according to the following syntax

De�nition ���

p  nil a!Fp��p� a#p��p� ��p� p� " p� p� j p� p�na p��S� ( x

where a � Names� x � V and S  Names� Names�

Let CFPr be the set of processes built without the use of variables� CFPr is

the set of closed Finite CHOCS processes� Note that since there is no variable

binding construct in Finite CHOCS we may interpret FPr as the free '�algebra

T��V � generated by V and the following �one�sorted� signature '�

De�nition ��� Let '  f'ngn�� where 'n is the set of operation symbols of

arity n in '�

'�  fnil�(g

'�  f na  a � Namesg �

f �S�  S  Names� Namesg �

f�� g

'�  fa!F �  a � Namesg �

fa# �  a � Namesg �

f"� jg

'n  � n � �



Chapter � Operational Theory of CHOCS ��

We de	ne a subsignature '� � ' by omitting the operators for restriction�

renaming and parallel composition� CFPr is the term algebra T� induced by the

operators in '�

The operational semantics for Finite CHOCS is given as a labelled transition

system with divergence

De�nition ��� Let� be the smallest subset of FPr�FAct�FPr� where FAct  

Names� f!� #g � FPr � f�g� closed under the rules�

pre�xing� a!Fp��p
a�p�
�� p a#p��p

a�p�
�� p ��p

�
�� p

choice�
p

�
�� p�

p " q
�
�� p�

p
�
�� p�

q " p
�
�� p�

parallel�
p

�
�� p�

p j q
�
�� p� j q

p
�
�� p�

q j p
�
�� q j p�

p
�
�� p�� q

�
�� q��

p j q
�
�� p�� j q��

restriction�
p

a�p�
�� p��

pnb
a�p�
�� p��nb

� a 	 b
p

a�p�
�� p��

pnb
a�p�
�� p��nb

� a 	 b
p

�
�� p��

pnb
�
�� p��nb

renaming�
p

a�p�
�� p��

p�S�
S�a	�p�
�� p���S�

p
a�p�
�� p��

p�S�
S�a	�p�
�� p���S�

p
�
�� p��

p�S�
�
�� p���S�

Also let � be the maximal relation on FPr satisfying the following rules�

( �

p �

p " p� �

p� �

p" p� �

p �

p j p� �

p� �

p j p� �

p �

pna �

p �

p�S� �

Table ������ Operational semantics for Finite CHOCS
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We now have transition systems FP  �FPr�FAct��� �� and

FCP  �T��CFAct��� ��� where CFAct  Names� f!� #g � CFPr � f�g� implicitly

de	ned above�

The following proposition gives a more explicit description of these systems

Proposition ��� For all p�� p� � FPr�

�i��a� nil � �b� nil 	�

�ii��a� ( � �b� ( 	�

�iii��a� a!Fp��p� �

�b� a!Fp��p�
�
�� p �� �  a!p� & p  p�

�iv��a� a#p��p� �

�b� a#p��p�
�
�� p �� �  a#p� & p  p�

�v��a� ��p� �

�b� ��p�
�
�� p �� �  � & p  p�

�vi��a� �p� " p�� � �� p� � or p� �

�b� p� " p�
�
�� p �� p�

�
�� p or p�

�
�� p

Parallel composition�

�vii��a� �p� j p�� � �� p� � or p� �

�b� �p� j p��
�
�� p �� either �p����p�

�
�� p��� & p�� � p��� j p�

or �p����p�
�
�� p��� & p�� � p� j p���

or �  � & ���� p���� p
��
��p�

��
�� p��� & p�

��
�� p���

Restriction�

�viii��a� �p�na� � �� p� �

�b� �p�na�
�
�� p�� �� �  b!p� & �p����p�

b�p�
�� p��� & b 	 a & p�� � p���na

or �  b#p� & �p����p�
b�p�
�� p��� & b 	 a & p�� � p���na

or �  � & �p����p�
�
�� p��� & p�� � p���na

Renaming�

�ix��a� �p��S�� � �� p� �

�b� �p��S��
�
�� p�� �� �  b!p� & �p����p�

a�p�
�� p��� & b  S�a� & p�� � p����S�

or �  b#p� & �p����p�
a�p�
�� p��� & b  S�a� & p�� � p����S�

or �  � & �p����p�
�
�� p��� & p�� � p����S�
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Proof� By induction on the number of inferences used to establish p � and
p

�
�� p���

Proposition ��	 �� �p � FPr�p is image �nite�

�� �p� q � FPr�p �

B q �� p �w q

Proof� �� follows easily from proposition ����� and �� follows from ��� and propo�
sition �����

For Finite CHOCS we may �eliminate� the use of the restriction� renaming and

parallel composition constructs modulo higher order bisimulation� i�e� the following

equations hold for renaming and restriction

Proposition ���

(�S� �B (

�a!Fp��p��S� �B S�a�!Fp��p�S�

(na �B (

�a!Fp��p�nb �B

�
a!Fp��pnb if b 	 a
nil otherwise

For parallel composition we have the following version of the expansion theorem

Proposition ��


if p  'iai!Fp�i�pi " 'jaj#p�j�pj �"(�
and q  'kbk!F q�k�qk " 'lbl#q�l�ql �"(�
then p j q �B 'iai!Fp�i��pi j q� " 'jaj#p

�
j ��pj j q�"

'kbk!F q�k��p j qk� " 'lbl#q�l��p j ql�"
'�i�l	�f�i�l	 � ai�bl � p�i�q

�

l
g���pi j ql�"

'�j�k	�f�j�k	 � aj�bk � p�
j
�q�

k
g���pj j qk� �"(�

where �"(� means that the summand ( is optional� 'i�i�pi describes the sum

���p� " � � �" �n�pn when n � � and nil if n  ��

Note that communication only takes place when both port names and the value

�process� communicated are equal�

In SCCS �Mil��� Milner introduced a generalized choice operator 'i�Ipi where

I is a countable index set� The operational semantics of this construct is de	ned

by the following rule

pi
�
�� p

'i�Ipi
�
�� p
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With this construct we can encode value passing in pure synchronization using the

following constructs for input pre	x a!x�p � 'vav�pfv�xg and a#v�p � av�p for

output pre	x� Using this strategy we may attempt to encode process passing in the

following way a!x�p � '
p��Pra!

Fp��p�p��x� only using the 	nite input pre	x and

eliminating the use of variables� Clearly a!x�p � 'p��Pra!
Fp��p�p��x�� but the index

set is unfortunately self referential�

If we restrict the index set I to a 	nite set we do not need to introduce a new

operator� we can merely use 'Ipi as shorthand notation for pi� " � � � " pin where

fi�� � � � � ing  I is an enumeration of I�

We shall use this fact in the approximation of a!x�p in Finite CHOCS�

De�nition ���

Lev�  f(g

Levn��  f'i�Ipi  I is �nite and pi is either (� a!Fp��p�� a#p��p� or ��p�

where p�� p� � Levng � Levn

Note that if Names is 	nite then each set Levn is 	nite� Then for any process

in CHOCS we de	ne its n
th approximation pn in Finite CHOCS as follows

De�nition ���

p�  ( for all p

We de�ne pn�� structurally�

niln��  nil

(n��  (

�a!x�p��
n��  'p�Levna!

Fp�pn� �p�x�

�a#p��p��
n��  a#pn� �p

n
�

���p��
n��  ��pn�

�p� " p��
n��  pn� " pn�

�p� j p��
n��  pn� j p

n
�

�p�na�
n��  pn�na

�p��S��
n��  pn� �S�

xn��  x
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If p is closed then pn � CFPr� The approximation pn does not necessarily reside

in Levn since pn� �p�x� where p � Levn may introduce elements in Lev�n� but we may

state the following relationship between p and it approximation pn

Proposition ���� Assume Names is �nite� then�

�n�p �n p
n

Proof� It is laborious to prove directly that �n�p �n pn� Instead we prove it
indirectly by adapting the technique presented in �Hen���

Let F � Names be a 	nite set and TF be the set of closed terms which contains

no occurrences of any operator a!F � a!� a# where a 	� F � De	ne AF
�  f(g� Assume

there exists a 	nite set AF
n � FPr such that for every p � TF there exists some

element pn � AF
n such that p �n p

n� Let AF
n��  f'i�Ipi  I is 	nite and pi is either

(� a!Fp��p�� a#p��p� or ��p� where a � F � p�� p� � AF
n � i 	 j  � pi 	 pjg� Note

that AF
n�� � FPr and AF

n�� is 	nite� For any p let

pn��  'fa!Fpn� �p
n
�  p

a�p��� p�g"

'fa#pn� �p
n
�  p

a�p��� p�g"

'f��pn�  p
�
�� p�g"

f(  p �g

Note that pn is well de	ned under the assumption that Names is 	nite and

pn�� � ANames and p �n�� p
n���

This proposition will be an important cornerstone in the full abstraction theorem

for CHOCS which we establish in chapter �� The assumption about Names being

	nite might seem a bit too restrictive from a theoretical point of view� �From an

implementational point of view it is quite reasonable�� However� none of the results

we have or are going to present about CHOCS need to assume that Names is in	nite�

In the theory of CCS there is at least one theorem �Mil��� Wal��� which needs the

assumption that Names is in	nite� This theorem shows that the observational

congruence can be characterized in terms of "�contexts� Since this is not the case

for CHOCS �see example ������� we have not found any use for assuming Names

in	nite�
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Using CHOCS

A process calculus should possess the capability of describing computational phe�

nomena in a way which enables analyses of both existing and new systems� In

this chapter we apply CHOCS to three examples� The 	rst example is the un�

typed ��Calculus� We show how to simulate various reduction strategies from

the ��Calculus by translations into CHOCS� We shall see that some of the most

interesting properties of the ��Calculus are carried over via the translations� We

also study the relationship between abstracting equivalences for the ��Calculus and

CHOCS� The main theorems of this section are the full abstraction results �under

certain restrictions of observations� for the call�by�name ��Calculus and for the

call�by�value ��Calculus presented in theorem ������ respectively theorem �������

The second example consists of a semantics for an imperative programming

language P studied in both �Mil��� and �Mil���� We show how we may solve the

problem of giving semantics to concurrent procedure invocations with various pa�

rameter mechanisms�

The third example is a description of a fault tolerant editor system inspired by

the general presentation of such systems in �Pra���� We show how we may specify

and analyze such a system using CHOCS�

��� CHOCS and the �
Calculus

CCS is a powerful language� it is capable of expressing all Turing de	nable functions

by encoding of Turing machines �Mil���� Since CCS is a sublanguage of CHOCS

this must be true for CHOCS as well� But the nature of CHOCS is much closer to

the ��Calculus and in this section we study their relationship�

The language of the ��Calculus consists of variables� function abstraction and

function application

De�nition ��� The set of ��terms ) is de�ned inductively as follows�

��
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�� x � )

�� M � )� ��x�M� � )

�� M�N � )� �M N� � )

where x � V �a set of variables
�

The operator �x� is a variable binder� This introduces a notion of free and

bound variables�

De�nition ��� The set of free variables FV �M� of a term M is de�ned struc�

turally on M as�

FV �x�  fxg

FV ��x�M�  FV �M� fxg

FV �M N�  FV �M� � FV �N�

A variable x occurring in a term M is bound in M if x 	� FV �M��

A very important concept in the ��Calculus is the notion of substitution� We

may substitute a termM � for a free variable occurring in a termM provided we do

not bind free variables in M �� This is captured in the following de	nition

De�nition ��� Substitution M �y  M �� is de�ned structurally on M as�

x�y  M ��  

�
M � if y  x
x otherwise

��x�M��y  M ��  

���������������

�x�M if x  y
�x��M �y  M ��� if y 	 x and

x 	� FV �M ��
�z���M �x  z���y  M ��� otherwise
z 	� FV �M� � FV �M �� � fxg � fyg

�M N��y  M ��  �M �y  M ��� �N �y  M ���

A termM is closed if FV �M�  � The set of closed terms is denoted by )��

Note that the above de	nition di�ers slightly from the de	nition of substitution

given in �Bar��� where all bound variables are assumed to be di�erent and the sets

of bound and free variables are assumed not to intersect�

We shall use the following standard terms
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De�nition ���

I  �x�x

K  �x��y�x

Y  �f���x�f�xx����x�f�xx��

(  ��x�xx���x�xx�

The ��Calculus has a rich theory as documented in e�g� �Bar���� consisting of

concepts such as conversion� reduction� theories and models�

We focus on the various notions of reduction �sometimes referred to as evaluation

strategies� and the notions of convergence and equivalence�

First we study the perhaps simplest reduction�evaluation�conversion strategy�

the call�by�name or lazy reduction strategy� Formally the theory of the Lazy���

Calculus is based on the notion of convergence to principal weak head normal form�

De�nition ��	 The relation M�N is de�ned inductively over )� as�

�x�M��x�M
M��x�P P �x  N ��Q

M N�Q

This relation induces an �unlabelled� transition system �)����� As noted in

�Abr��a� the relation � is itself too �shallow� to yield information about the

behaviour of a term under all experiments� Motivated by the theory of concurrency

�Abr��a� introduces the notion of applicative �bi�simulation which may be obtained

as the maximal 	xed point of the following functional

De�nition ��� Let R be a binary relation on )� then

�M�N� � AB�R� i M��x�M � � N��x�N � &

�P � )���M ��x  P �� N ��x  P �� � R

R is an applicative simulation i R � AB�R�� If there exists an applicative

simulation R containing �M�N� we write M �B N � We use �B to denote the

equivalence induced by �B�

We now give a simple translation of the ��Calculus and we will show that the

evaluation strategy enforced by this encoding coincides with lazy reduction�
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De�nition ��
 We de�ne �� ��  )� CHOCS structurally�

�� ��x��  x

�� ���x�M ��  i!x�i#��M ���nil

�� ��M N ��  ���M ���o�i� j o#��N ���o!x�x�no

Note that for any M � ) ��M ��  fig and that application only needs two

communication channels� Since the function �� ��  ) � CHOCS has no additional

arguments we may view it as a de	nition of a set of derived operators in CHOCS�

Clause �� shows how we may view parallel composition as a generalization of

function application� However� we need a rather elaborate protocol to ensure that

we do not mix arguments in applications and we therefore feed the arguments

sequentially� A tempting de	nition of the clause for application is ��M N ��  ���M �� j

i#��N ���nil�ni� Unfortunately this de	nition does not work since the restriction ni

prevents application to other arguments as in e�g� M N N �� A di�erent approach

is presented in �Bou��� where a special operator takes care of this problem� The

cost of this is a complication of the de	nition of equivalence between processes�

In the following we shall see that some of the most interesting properties of the

��Calculus are carried over via the translation� First we make clear the connection

between substitution in the ��Calculus and in CHOCS�

Lemma ���

��M �x  N ��� � ��M �����N ���x�

Proof� By structural induction on M �

Using this lemma we may show that ��conversion in the ��Calculus is �pre�

served� by the translation

Proposition ���

����x�M�N �� � ��M �x  N ���

Proof� We demonstrate how the left hand side of this equation may do an initial
series of internal ��moves to a process equivalent to the right hand side�

����x�M�N ��  ��i!x�i#��M ���nil��o�i� j o#��N ���o!x�x�no

��

��i#���M �����N ���x���nil��o�i� j o!x�x�no
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��

�nil�o�i� j ���M �����N ���x���no

�

��M �����N ���x�

Since ��M ��  fig for all M � ) we may use the properties of proposition ������

and proposition ����� to infer the conclusion of this proposition�

The connection to the theory of concurrency for the applicative �bi�simulation

predicate may at 	rst seem somewhat arti	cial� but we shall attempt to make it

more explicit in the following� Notice that in general we do not have the full ��

conversion i�e� � � �x�M x  M if x 	� FV �M� but if M has the form �y�M �

we have ���x���y�M �� x�� � ���x�M �y  x��� � ��M �� which is easy to establish using

the properties of proposition ����� and lemma ������ This restricted version of ��

conversion is close to the restricted version valid in the Lazy���Calculus of �Abr��a��

Furthermore connections to the Lazy���Calculus are strengthened by the following

proposition

Proposition ���� ��(�� � recx���x � Yx�x�

This shows that the standard unsolvable term ( of the ��Calculus yields a

divergent process in CHOCS� i�e� a process only capable of performing an in	nite

series of internal moves� These preliminary suggestions may be explored as follows

Theorem ����

�� ��M �� � ��N �� � M �B N

�� M �B N 	� ��M �� � ��N ��

Proof�

�� follows from proposition ������ and theorem ������ which we prove later�

�� follows from the following counter example also studied in �Mil����

Let M  �x�x ��y�x * ( y� * and N  �x�x �x * ( � * where *  Y K�

Ong shows that M �B N in �Ong���� Let c  i!x�i#�x�o�i� j i#nil���I����nil�

Then ��M ��
i�c
 � q�

i�p
 � for any p� but ��N ��

i�c
 � q�

i�p

	 �� In fact c implements

the convergence test used as a counter example for the full abstraction result

of the canonical model of the Lazy���Calculus discussed in �Abr��a�� Another

troublesome process is p  i!x�i#�i!y�i#�x�o�i� j y�o�i� j i#nil���I����nil��nil which

implements the parallel convergence test�
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This theorem states that the equivalence on ��terms induced by � is stronger

than �B� This is because � also takes processes which are not translations of ��

terms into account as e�g� c above� but using a restricted version of the observational

equivalence introduced in section ��� we can obtain an equivalence on translated

terms which coincides with �B�

De�nition ���� A weak higher order bisimulation restricted to ��observations

R is a binary relation on Pr such that whenever pRq and � � �Act f�g� � f�g

then�

�i
 Whenever p
�
 � p�� then q

��
 � q� for some q�� �

� with

� bR��
� and p�Rq�

�ii
 Whenever q
�
 � q�� then p

��
 � p� for some p�� �

� with

�
� bR�� and p�Rq�

Where bR�  f��� ���  ��  a!��P �� & �
�  a!��P �� � P � )�� � ��  a#p��& �

�  

a#q��& p��Rq��� � ��  �
�  ��g�

Two processes p and q are said to be ��observational equivalent i there exists a

weak higher order bisimulation restricted to ��observations R containing �p� q�� In

this case we write p �� q�

If we think of observational equivalence as experimenting with the system by

selecting a channel and supplying a process or receiving a process we now restrict

ourselves to supply only processes which are translations of ��terms�

Proposition ���� �� is an equivalence

Proof� It is straightforward to see that Id  f�p� p�  p � Prg is a weak higher
order bisimulation restricted to ��observations and RT  f�q� p�  �p� q� � Rg

is a weak higher order bisimulation restricted to ��observations if R is� Finally

composition of weak higher order bisimulations restricted to ��observations are

again weak higher order bisimulations restricted to ��observations�

Proposition ���� � implies ��

We now turn our attention to proving that the notion of applicative bisimu�

lation on ��terms and the notion of weak higher order bisimulation restricted to

��observations on translated ��terms coincide�

Lemma ���	 Let ��)��  fq  �M � )�q � ��M ��g� Then if q � ��)�� and q
i���P 
�� q�

for some q� then q � ���x�M ��� for some M ��

Proof� Obvious� since only translated ��terms of the form �x�M have
i���P 
���

transitions�
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Lemma ���� if ��M ��
i���P 
 � q for some q then ��M �� � ���x�M ��� for some M ��

Proof� By de	nition ����� we have ��M ��
i���P 
 � q � ��M ��

�
��

�
q�

i���P 
�� q� From

this it is obvious that q� � ��M �� and therefore q� � ��)��� Since q�
i���P 
�� q we have

q� � ���x�M ��� for some M � by lemma ������ and we therefore have ��M �� � ���x�M ����

Corollary ���
 if ��M ��
i���P 
 � q then q � i#��M ��x  P ����nil for some M ��

Proof� Assume ��M ��
i���P 
 � q then by lemma ������ we have ��M �� � ���x�M ��� for

someM �� By� we have ���x�M ���
i���P 
�� i#��M ��x  P ����nil� Since ��M �� � ���x�M ��� we

must have q � i#��M ��x  P ����nil�

Lemma ���� M��x�M � � ��M �� � ���x�M ���

Proof� By induction on the number of inferences used to establish M��x�M �

and cases of the structure of M �

M � x Then M��x�M � can not hold and the lemma holds trivially�

M � �x�M � Then M��x�M � by an inference of length one�

We also have ���x�M ��� � ���x�M ����

M �M �� N �� If M��x�M � then� by de	nition of � � this is only the case if

M ����x�Q and Q�x  N �����x�M � for some Q by shorter inferences� Ap�

plying the induction hypothesis we have ��M ���� � ���x�Q�� and ��Q�x  N ����� �

���x�M ���� Using the congruence properties of � with respect to the operators

used on translated ��terms we can infer that

��M �� N ����  ���M �����o�i� j o#��N �����o!x�x�no � ����x�Q���o�i� j o#��N �����o!x�x�no

 ����x�Q� N ���� � ��Q�x  N ����� � ���x�M ��� which proves the lemma in this

case�

These properties will enable us to see the relationship between convergence to

principal weak head normal form and ��experiments on translated ��terms�

Lemma ���� M��x�M � � �P��q���M ��
i���P 
 � i#q�nil & q �� ��M ��x  P ���

Proof� By induction on the number of inferences used to establish M��x�M �

and cases of the structure of M �

M � x Then M��x�M � can not hold and the lemma holds trivially�
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M � �x�M � ThenM��x�M � by an inference of length one� We also have �P���M ��  

i!x�i#��M ����nil
i���P 
�� i#��M ��x  P ����nilwhich establishes the lemma in this case�

M �M �� N �� AssumeM��x�M �� Then� by de	nition of � � we must haveM ����x�Q

and Q�x  N �����x�M � for some Q by shorter inferences� Applying the in�

duction hypothesis we have

�i� �P��q���M ����
i���P 
 � i#q�nil & q �� ��Q�x  P ���

�ii� �P��q���Q�x  N �����
i���P 
 � i#q�nil & q �� ��M ��x  P ���

By lemma ������ we have ��M ���� � ���x�Q��� Therefore� by lemma ������ we

can infer that ��M �� N ���� � ��Q�x  N ������ By �ii� we have ��Q�x  N �����
i���P 
 �

i#q�nil & q �� ��M ��x  P ���� This establishes the lemma in this case�

Lemma ���� �P���M ��
i���P 
 � i#q�nil & q �� ��M ��x  P ��� � M��x�M � for some

M ��

Proof� By induction on the number of inferences used to establish ��M ��
i���P 
 � q

and cases of the structure of M �

M � x Then ��M ��
i���P 
 � i#q�nil can not hold and the lemma holds trivially�

M � �x�M � Clearly ��M ��
i���P 
 � i#q�nil & q �� ��M ��x  P ���� Also �x�M ���x�M �

which yields the lemma in this case�

M �M �� N �� Assume that for someM � the following holds ��M ��
i���P 
 � i#q�nil & q ��

��M ��x  P ��� for all P � Then by de	nition of � �and �� this is only the

case if ��M ����
�
��

�
q�

i���N ��
�� q�� and �q���o�i� j o!x�x�no

��P 
 � i#q�nil by shorter

inferences� By lemma������ we have q� � ���x�M ����� for someM ��� and therefore

q�� � i#��M ����x  N ����nil��� This shows we are able to establish ��M ����x  

N ���
i���P 
 � q��� � i#q�nil by a number of inferences not higher than the number

used to establish �q���o�i� j o!x�x�no
i���P 
 � i#q�nil� By the induction hypothesis

we then have M ����x�M ��� and M ����x  N �����x�M �� By de	nition ����� we

then have M �� N ����x�M � which establishes the lemma in this case�
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The above properties give the essential keys to our main theorem of this section�

Theorem ���� ��M ���� ��N �� �� M �B N �

Proof�

� To see this we show that the relation R  f�M�N�  ��M �� �� ��N ��g is an

applicative �bi�simulation� The result then follows from symmetry of ���

To see that R is an applicative �bi�simulation observe that if M��x�M � for

some M � then by lemma ������ we have �P��q���M ��
i���P 
 � i#q�nil & q ��

��M ��x  P ���� Since ��M ���� ��N �� we know that ��N ��
i���P 
 � i#q��nil with q �� q

��

By lemma ������ and corollary ������ we know that ��N �� �� ���x�N ��� for some

N � and q� �� ��N ��x  P ���� Then from lemma ������ we can infer that

N��x�N �� Clearly �P��M ��x  P �� N ��x  P �� � R which yields the theorem

in this direction�

� To see this we show that the relation R  R� � f�i#p�nil� i#q�nil�  �p� q� �

R�g � f�nil� nil�g where R�  f�p� q�  �M��N�p �� ��M �� � q �� ��N �� � M �B

Ng is a weak higher order bisimulation restricted to ��observations� To see

this observe that if �p� q� � R� then if p
i���P 
 � p� then for some M we have

��M ��
i���P 
 � p�� By lemma ������ and corollary ������ we have ��M �� �� ���x�M ���

and p� �� i#��M ��x  P ����nil� So by lemma ������ we have M��x�M �� To

	nd a matching move for q we look at N � Since M �B N we know that

N��x�N � and �P�M ��x  P � �B N ��x  P �� By lemma ������ we have

��N ��
i���P 
 � i#q��nil & q� �� ��N ��x  P ���� Since q �� ��N �� we know that q

i���P 
 � q��

with q�� �� i#q��nil� This is a matching move since �p�� q��� � R� We do not

need to check if p
a�p�
 � p�� since we assume p �� ��M �� for someM and p

a�p�
 � p��

is impossible� The theorem in this direction then follows by a symmetric

argument for q�

From a concurrency point of view the Lazy���Calculus is not very interesting

since the calculus enforces sequential evaluation in application� we 	rst evaluate the

function until it reaches a weak head normal form� then we do ��reduction and the

argument is then evaluated �every time� when needed�

It would be interesting to investigate which properties are necessary to encode

the full ��reduction strategy as de	ned in �Bar��� by the following rules

De�nition ����

��x�M� N ��M �x  N �
M ��M �

M N ��M � N
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N �� N �

M N ��M N �

M ��M �

�x�M �� �x�M �

As we have seen in lemma ����� the translation of ��Calculus given in de	nition

����� �preserves� ��reduction� but it does not seem to be possible to mimic the last

two of the above rules in CHOCS with the semantics given in de	nition ������

In �Bou��� Boudol presents a calculus which features operators from both the ��

Calculus and CCS� The calculus is called the ��Calculus� Boudol gives a translation

of the ��Calculus which is very similar to the one given by de	nition ������ but the

evaluation strategy is a bit more eager since he has the following inference rule for

output�pre	x
p�

�
�� p��

a#p��p
�
�� a#p���p

which means that the argument in the application is allowed to have internal activity

of its own� The e�ect of this is that the evaluation strategy is similar to the Lazy�

��Calculus� but a bit eager too� In �Nie��� Nielson introduces a merge between the

typed ��Calculus and CSP� This language is called TPL� The operational semantics

for this language is very close to a merge of the call�by�value typed ��Calculus and

the operational semantics for CHOCS with the above rule from �Bou��� included

together with the following rule

p
�
�� p��

a#p��p
�
�� a#p��p��

For the translation of the Lazy���Calculus this will have no e�ect since it is

constructed such that the output pre	x is only used in the context a#p�nil and nil

has no transitions� But perhaps these rules together with the following rule for

input�pre	x
p

�
�� p��

a!x�p
�
�� a!x�p��

will bring the evaluation closer to full ��reduction! For example ���x�(�� � ��(�� since

���x�(��� and any transition from ��(�� can be matched by ���x�(��� However� all the

above suggested extensions to the CHOCS semantics seem to violate the idea that

the pre	xes are primitives for sequential behaviour� It is hard to see how changing

the CHOCS semantics would a�ect the general theory� but as already mentioned

in section ��� the rule employed by both Boudol and Nielson will mean that the

theory of observational congruence will be a�ected�
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Another question related to the subject of reduction strategies in the ��Calculus

is the matter of which abstracting equivalence of the ��Calculus to relate to ab�

stracting equivalences in CHOCS�

The standard theory � as presented in �Bar��� may be related to the translation

�� ��  )� CHOCS and the properties of CHOCS by the following theorem

Theorem ���� if � � M  N then ��M ��� ��N ���

Proof� By structure of � � M  N

The converse does not hold in general� but � induces an equality relation on

) and it is straightforward to verify that the relation R  f�M�N�  ��M �� �

��N ��� M�N � )g is a compatible congruence relation� Proposition ������ shows

that �  f���x�M�N�M �x  N ��  M�N � )g � R and therefore  �� R� The

notion of ��equality is important� but in the standard theory of the ��Calculus it is

the notion of head normal form� based on B�ohm trees� which yields the meaning of

a ��term� Terms without a head normal form are identi	ed� But  R �even with the

suggested extensions to the CHOCS semantics� distinguishes more ��terms than

the standard theory since e�g� ���x�(�� 	� ��(�� because ���x�(��
��p
�� whereas ��(��

��p

	��

We have not pursued this any further but this opens a range of possibilities for

future studies�

Both the Lazy���Calculus and the standard theory for the ��Calculus contain

the full ��reduction rule� But there are interesting reduction strategies which only

partly adapt the ��rule� One such interesting reduction strategy for the ��Calculus

is call�by�value reduction� Formally we may put the theory of the call�by�value

��Calculus on a similar footing to the Lazy���Calculus and de	ne an unlabelled

transition system �)���v� based on the call�by�value convergence predicate de	ned

by the following rules

De�nition ���� The relation M�vN is de�ned inductively over )� as�

�x�M�v�x�M
M�v�x�P N�vQ P �x  Q��vL

M N�vL

Thus both function and argument in an application have to converge to an ab�

straction before application takes place� The above rule suggests that both function

and argument may be evaluated concurrently�

As an abstracting equivalence we may adapt the applicative �bi�simulation of

de	nition ����� by using �v instead of � thus generating a preorder �v and a derived

equivalence �v� Note that the two preorders �B and �v are incomparable since

I �B KI( 	�B ( and I 	�v KI( �v (�
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We now give a simple translation of the ��Calculus and we will show that the

evaluation strategy enforced by this encoding coincides with call�by�value reduction�

De�nition ���	 We de�ne �� ��v  )� CHOCS structurally�

�� ��x��v  x

�� ���x�M ��v  i#�i!x�i#��M ��v�nil��nil

�� ��M N ��v  ���M ��v�a�i� j ��N ��v�b�i� j a!x�b!y��x�c�i� j c#�i#y�nil��c!x�x�nc�nanb

where i� a� b� c are distinct�

Note that for anyM � ) ��M ��v  fig but application now needs four communi�

cation channels as opposed to only two in the translation of the Lazy���Calculus�

We have to ensure that the substitution properties of the ��Calculus are carried

over by this translation

Lemma ����

��M �x  N ���v � ��M ��v���N ��v�x�

Proof� By structural induction on M �

Using this lemma we may show that the restricted ��conversion for the call�by�

value ��Calculus is �preserved� by the translation

Proposition ���


����x�M���y�N���v � ��M �x  ��y�N����v

Proof� We demonstrate how the left hand side of this equation may do an initial
series of internal ��moves to a process equivalent to the right hand side�

����x�M���y�N���v  

��i#�i!x�i#��M ��v�nil��nil��a�i� j ���y�N ��v j a!x�b!y��x�c�i� j c#�i#y�nil��c!x�x�nc�nanb

��

�nil�a�i� j �i#�i!y�i#��N ��v�nil��nil��b�i� j

b!y���i!x�i#��M ��v�nil��c�i� j c#�i#y�nil��c!x�x�nc�nanb

��

�nil�a�i� j nil�b�i� j ��i!x�i#��M ��v�nil��c�i� j c#�i#�i!y�i#��N ��v�nil��nil��c!x�x�nc�nanb
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�nil�a�i� j nil�b�i� j ��i!x�i#��M ��v�nil��c�i� j c#����y�N ��v��c!x�x�nc�nanb

��

�nil�a�i� j nil�b�i� j ��i#���M ��v�����y�N ��v��x���nil��c�i� j c!x�x�nc�nanb

��

�nil�a�i� j nil�b�i� j �nil�c�i� j ��M ��v�����y�N ��v��x��nc�nanb

�

��M ��v�����y�N���v�x�

Since ��M ��v  fig for all M � ) we may use the properties of proposition ������

and proposition ����� to infer the conclusion of this proposition�

As for the Lazy���Calculus we may state the relationship between �v and � of

translated ��terms

Theorem ����

�� ��M ��v � ��N ��v � M �v N

�� M �v N 	� ��M ��v � ��N ��v

Proof�

�� follows from proposition ������ and theorem ������ which we present later�

�� follows from the counter example

Let L�  �x���x I��xK�� and L�  �x�����y�y �xK���x I��� These two terms

are equivalent under �v� However� there is a di�erence in the way they use

x �or rather an argument substituted for x when L� and L� are applied�� L�

will concurrently evaluate both occurrences of x whereas L� will evaluate the

second occurrence of x before reaching the 	rst occurrence� We may use this

property to distinguish the two terms when we translate them into CHOCS�

To illustrate this point consider the following process

troubles  i#�i!x�i#��I��v�nil��nil

"d!x�i#x�nil" d#�i!x�i#��K��v�nil��i#�i!x�i#��K��v�nil��nil
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and consider the following context

C� �  �� ��a�i� j troubles�b�i� j a!x�b!y��x�c�i� j c#�i#y�nil��c!x�x�nc�nanbnd

Then C���L���v�
�
��

�
p� � ��K��v as expected� But the two occurrences of

troubles may non�deterministically communicate with one another and then

C���L���v�
�
��

�
p�� � ��I��v� Also C���L���v�

�
��

�
p� � ��K��v as expected� but

C���L���v�
�

	�
�

p�� � ��I��v since the only active occurrence of troubles will be

prevented from choosing to communicate via d�

This theorem states that the equivalence on ��terms induced by � is stronger

than �v� This is because � also takes processes which are not translations of ��

terms into account as e�g� troubles above� We may apply the same technique

as we used for the Lazy���Calculus and introduce a version of the observational

equivalence which only takes inputs of translated ��terms into account and we show

that this equivalence coincides with �v on translated terms�

De�nition ���� A weak higher order bisimulation restricted to �v�observations

R is a binary relation on Pr such that whenever pRq and � � �Act f�g� � f�g

then�

�i
 Whenever p
�
 � p�� then q

��
 � q� for some q�� �

� with

� bR�v�
� and p�Rq�

�ii
 Whenever q
�
 � q�� then p

��
 � p� for some p�� �

� with

�
� bR�v� and p�Rq�

Where bR�v  f��� ���  ��  a!��P ��v& �
�  a!��P ��v � P � )�� � ��  a#p��& �

�  

a#q��& p��Rq��� � ��  �
�  ��g�

Two processes p and q are said to be �v�observational equivalent i there exists a

weak higher order bisimulation restricted to �v�observations R containing �p� q�� In

this case we write p ��v q�

Proposition ���� ��v is an equivalence

Proposition ���� � implies ��v

We can prove the following theorem using the above de	nition of �v�observational

equivalence and proposition ������ together with an analysis �similar to lemma

������ to lemma ������� of the relationship between transitions in the call�by�value

��Calculus and transitions for the translated terms�
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Theorem ���� ��M ��v ��v ��N ��v �� M �v N �

Proof�

� To see this we show that the relation R  f�M�N�  ��M ��v ��v ��N ��vg is an

applicative �bi�simulation� The result then follows from symmetry of ��v�

� To see this we show that the relation R  R��f�i!x�i#p�nil� i!x�i#q�nil�  �p� q� �

R�g � f�i#p�nil� i#q�nil�  �p� q� � R�g � f�nil� nil�g where R�  f�p� q� 

�M��N�p ��v ��M ��v � q ��v ��N ��v � M �v Ng is a weak higher order bisimu�

lation restricted to �v�observations�

��� CHOCS as a Metalanguage

In this section we study how CHOCS may be used as a metalanguage in the def�

inition of the semantics of programming languages� The study is a case analysis

of a simple imperative toy language� called P � 	rst studied in �Mil���� The mean�

ing of the language P is given in a phrase�by�phrase style resembling denotational

language de	nitions though we shall not give any semantic domains� The language

P is devised in such a way that a programmer is partly protected from unwanted

deadlocks� This is obtained through a disciplined form of communication between

components sharing some resources� In �Mil��� Milner points out the di�culties of

describing procedures in P using CCS� It is not obvious that CCS or the extension

of CCS justi	ed by the developments in �Mil��� can describe concurrent procedure

invocations satisfactorily� In �EngNie��� Engberg and Nielsen show how CCS with

labels as 	rst class objects may be used to describe concurrent procedure invoca�

tions� unfortunately their solution is very complicated and it does not look like

procedure descriptions of sequential programming languages� We show how proce�

dures in P may be handled straightforwardly in a way resembling how procedures

in sequential imperative languages are handled in denotational descriptions based

on the ��Calculus� Most of the de	nitions not concerning procedures may be found

in �Mil���� but for the sake of completeness we present the full language de	nition�

To allow for other values in CHOCS than process values we use the technique of

�Mil��� and introduce a D�indexed family of actions a!d� a#d� d � D for each value

domain D� Due to the fact that only 	nite sums of processes can be handled in the

version of CHOCS presented in this thesis we restrict our attention to 	nite value

domains as e�g� the set of booleans and 	nite subsets of the integers� We let 	!x�p



Chapter �� Using CHOCS ��

abbreviate �d�D��d�pfd�xg where fd�xg means exchanging all occurrences of x in p

by d as e�g� ��x��	x�nilfd�xg � �d�D��d��	d�nil� We shall use the following construct

from 
Mil���� If b is a boolean valued expression in x then let ��x�if b then p else p��

be encoded by �x�D�b��x�p� �x�D��b��x�p
�� We should not confuse ��x�p with

��x�p since the �rst is a convenient shorthand notation and the latter is part of the

CHOCS syntax�

Alternatively we could extend the syntax and semantics of CHOCS to include

other types of values like in the FACILE language 
GiaMisPra��� or TPL 
Nie����

This is beyond the scope of this thesis and the above encoding of values will su�ce

for the presentation in this section�

The toy language P

Programs in P are built from declarations D� expressions E and commandsC� using

assignments to program variables X� Some set of functions F is assumed and for

the cause of simplicity we do not consider types of expressions� P has the following

abstract syntax�

Declarations� D ��� var X D�D proc P value X� result X �� is C
Expressions� E ��� X F E�� � � � � En�
Commands� C ��� X �� E C�C if E then C else C �

while E do C C par C � input X output E
skip begin D�C end call P E�X�

Table ������ Syntax of P

In the study of concurrent programming languages a question of interest is how

to evaluate programs like�

begin

var X�

X �� ��

X �� X � � parX �� X � ���

outputX

end

The semantics presented here will yield the answers � or �� Readers are referred

to 
Mil��� for a discussion of an alternative speci�cation to rule out the answer ��

To give a smooth de�nition of the semantics of P we need some auxiliary de��

nitions�
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To each variable X we associate a register RegX � Generally it follows the pattern�

Loc � ��x�Regx�

Regy� � ��x�Regx� � �	y�Regy�

and thus for X we will have LocX � Loc
�X �X�� ��� Initially we write in

a value� thereupon we can read this value on � or overwrite the contents of Loc

via �� We have written the above de�nition in an equation style to make it more

readable� The proper CHOCS de�nition is� Loc � ��x�h	x�nil j Reg�nh where

Reg � YReg
h�x���x�h	x�Reg � �	x�h	x�Reg�� j YKeep
h�x�h	x�Keep�� The second

component of this process takes care of the parameters in the recursion of the above

equations� This is in fact a general technique for simulating the parameterized

recursion of 
Mil����� We also associate a register to each procedure P � It may be

de�ned in the same way as above with x substituted with x�

To each n�ary function symbol F we associate a function f which is represented

by�

bf � ���x�� � � � �n�xn��	f�x����xn��nil

Constants will thus be represented as e�g� btrue � �	true�nil� The result of evaluating

an expression is always communicated via �� It is therefore useful to de�ne�

p result p� � p j p��n�

We adopt the protocol of signaling successful termination of commands via �

and it is therefore convenient to de�ne�

done � �	�nil

p before p� � p
���� j ���p��n� � new �

p par p� � p
����� j p
�
����� j ��������done� ��������done�n��n�� ��� �� new �

We now give the semantics of P by the translation into CHOCS shown in table

������

Declarations�



varX�� � LocX



D�D��� � 

D�� j 

D���



proc P valueX� result Y is C�� � LocP j �P 	 procedure process ��nil�n�P �

j Transform
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where procedure process �

�Pv�x��X 	x�done� before 

C�� before �Y �x��Pv 	x�done�

j LocX j LocY �n�Xn�Y n�Xn�Y �
�PX � �PX ���X � �X ��

and Transform � YTran
�X ��PX ��x��X �	x�T ran� �X ��X ��x��PX �	x�T ran�

Expressions�



X�� � �X�x��	x�nil



F E�� � � � � En��� � 

E���
����� j � � � j 

En��
�n��� j bf �n�� � � � n�n

Commands�



X �� E�� � 

E�� result ��x��X�x�done�



C�C ��� � 

C�� before 

C ���



if E then C else C ��� � 

E�� result ��x�if x then 

C�� else 

C ����



while E do C�� � Yw


E�� result ��x�if x then 

C�� before w� else done��



C par C ��� � 

C�� par 

C ���



inputX�� � 	�x��X 	x�done



outputE�� � 

E�� result ��x�o	x�done�



skip �� � done



beginD�C end�� � 

D�� j 

C���nLD



call P E�Z��� � 

E�� result ��x��Pv 	x�done�

par �P �x�x� par �Pv�x��Z	x�done��n�Pvn�Pv

Table ������ Semantics of P

In the equation for 

begin D�C end�� we let nLD abbreviate restriction with re�

spect to � and � channels for all variables and procedures declared in D� The

procedure de�nition creates a location to store the procedure process� The restric�

tion n�P ensures that this process cannot be overwritten after the de�nition� The

�rst parameter to a procedure is the argument and it will use call�by�value param�

eter mechanism� The second parameter is a result variable� The procedure process

needs two locations� one for each parameter� These locations are kept local by the

restrictions n�Xn�Y n�Xn�Y � To ensure static binding of variables in a procedure
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body the procedure process is enclosed by a renaming of all read and write signals

to variable locations� This is done simply by tagging the signals with the name of

the procedure� The tagged signals are able to escape the restriction nLD of any

block except the block where the procedure is de�ned� The Transform process�

located in the block where the procedure is de�ned� transforms the tagged signals

back to untagged read and write signals� These will of course a�ect the variable

locations in this environment� The value to the value parameter is communicated

via �Pv � and the result of the procedure is communicated via �Pv � These signals

are not a�ected by the embracing renaming� The procedure call �rst evaluates

the argument then reads the location LocP to get a copy of the procedure process�

Note how each procedure process is self�contained with local environments for the

parameters� If a recursive call to the procedure P occurs in the body C a new copy

of the procedure process will be obtained� This is true for concurrent activations of

the same procedure as well and we have�



begin proc P value X� result Y � is C�

call P E�Z� par call P E�� Z �� end��

�



begin var X� var Y �X �� E�C�Z �� Y end

par begin var X� var Y �X �� E��C�Z � �� Y end��

which may be veri�ed by expanding the semantic clauses�

Another common parameter mechanism used in imperative programming lan�

guages is the call�by�reference mechanism� This mechanism can be modelled in

CHOCS by the following semantic de�nitions�



proc P ref X� is C�� � LocP j �P 	 procedure process ��nil�n�P � j Transform

where procedure process � 

C��
�Pv �Pv��X �X �
�PX � �PX ���X � �X � ��



call P Y ��� � �P �x�x
�Y �Y ��Pv �Pv ��

Note how this parameter mechanism works� we just link the register associated with

the parameter in the call with the procedure process via renaming� This is obtained

by the inner renaming in the procedure body which ensures that read and write

signals to the formal parameter escape the outer renaming� This has the e�ect that

they are linked to the actual parameter in the calling environment�
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We can also describe the call�by�name parameter mechanism in CHOCS� To do

so we need to rede�ne the semantics for variables used as formal parameters in

call�by�name procedure de�nitions as�



X�� � �X�req���X�x��	x�nil

The �X�req� signal in the above de�nition will be used as a request signal when X

occurs as a call�by�name parameter in a procedure� We now present the de�nition

of call�by�name procedure de�nitions and procedure calls�



proc P nameX� is C�� � LocP j �P 	 procedure process ��nil�n�P � j Transform

where procedure process � 

C��
�P�req �Pv��X�req �X �
�
P
X � �PX ���X � �X ���



call P E��� � �P �x�x j Yw
�P�req	�

E�� result ��x��Pv 	x�w���n�P�reqn�Pv

Note that the de�nition of procedure de�nitions is almost the same as for the

call�by�reference parameter mechanism� Since we only read the value of a call�

by�name formal parameter we do not have to consider any �X signals since these

are write signals and will not occur in well formed programs� The real di�erence

arises in the procedure call where any use of the parameter X in the procedure

body yields a request signal �X�req� which is renamed to a �P�req� signal in the

procedure de�nition� Each time this triggers the Yw
� � �� construction to evaluate

the argument 

E�� and deliver the result via �Pv before it restores itself� Note that

every time there is a request for 

E�� it is evaluated from scratch�

If 

E�� does not have any side e�ects� as in the P semantics� it is unnecessary to

evaluate the value of 

E�� every time a reference to the call�by�name parameter is

made� Instead we may store the value of 

E�� after the �rst evaluation and then just

supply the stored value� This parameter mechanism is known as lazy evaluation

and may be de�ned as�



proc P lazyX� is C�� � LocP j �P 	 procedure process ��nil�n�P � j Transform

where procedure process � 

C��
�P�req �Pv��X�req �X �
�
P
X � �PX ���X � �X ���



call P E��� � �P �x�x j �P�req 	�

E�� result ��x��Pv 	x��Loc	x�nil�

j �Loc�x�Yw
�P�req	��Pv 	x�w��n�Loc�n�P�reqn�Pv

Note that in both the above two parameter mechanisms we may have concurrent

requests to the call�by�name respectively lazy parameter which could mean a mix�

up of values� This does not happen since the �X�req signal acts as a semaphore

around the actual parameter�
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All the above parameter mechanisms need the Transform process to ensure

static binding of variables� This is due to the dynamic nature of the restriction

operator i�e� processes sent out of the scope of the restriction operator are not

a�ected by the operator� The block structure of P ensures that the Transform

processes work but for general modelling of programming languages it might be

of importance to have a restriction operator with a static nature� We comment

further on this in chapter � where we review the semantics of P � It is interesting to

note that if we omit the Transform process and the renamings it carries we will

encounter procedure invocations with the various parameter mechanisms above� but

with dynamic binding of variables in the procedure body�

The language P presented in this section bears much resemblance to the im�

perative concurrent language studied in 
HenPlo���� A challenging exercise left for

future studies is the question of giving P a labelled transition system semantics di�

rectly using structural operational semantics 
Plo���� This should be a reasonable

task since P has much in common with the language studied in 
HenPlo���� This

would then lead on to an investigation of full abstraction between the structural

operational semantics and the semantics of P presented in this section�

��� A Fault Tolerant Editor

A simple command editor like ed in the Unix operating system� is provided in

almost every programming environment� The editor takes in a �le� accepts a series

of commands and by the end of the session outputs the updated �le� The commands

can be grouped into two categories� altering commands� like insert a letter and

delete a line and non�altering commands� like search for a word and scroll� Such

an editor could be speci�ed as follows�

PEditor � infile�� PEdit

PEdit � �ialtopi�� PEdit � �inonaltopi��PEdit� exit��outfile	�nil

Unfortunately this is a very simplistic or idealized editor� Most users of such

editors have experienced that the editor crashes due to events or faults� out of

the user�s control� If the user is �lucky� the alterations made to the �le during

the editing session are lost and if unlucky the �le is lost as well� To recover the

lost work most operating systems provide a log system which monitors the user�s

actions by storing every command� The editing session can then be recovered

simply by fetching the stored commands and running them again� Note that in the

�rst instance the commands to the editor are treated as values stored in the log
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system� but when we rerun the stored commands they are treated as a program�

The following description in CHOCS speci�es a fault tolerant editor system� as in

the editor above� we have ignored the �le being edited to simplify the description

and focus on the log system�

FEditor � infile�� FEdit j Logsys j Demon j Updater�nintops

FEdit � �ialtopi��intaltopi	�log	intaltopi	�Stop�� FEdit

��inonaltopi�� FEdit � exit��outfile	�nil� fail	�nil

Updater � �iintaltopi��Updater

Demon � fail��restart	�Demon

Logsys � Emptylog j UpdateLog j Restartlog

Emptylog � LogStop�

Logx� � writelog�y�Logy� � readlog	x�Logx�

Updatelog � log�x�readlog�y�writelog	y before x��Updatelog

Restartlog � restart��readlog�x�x before  FEdit j Restartlog��

Stop � d	�nil

x before y � x j d��y�nd

where nintops is shorthand for nintop� � � � nintopnnreadlognwritelognrestartnfail�

We have simpli�ed the description by considering the log system as part of the

editor system� A more elaborate version would allow the user to restart the system

and faults to occur at any level of interaction� We have speci�ed both PEditor

and FEditor using a recursive de�nition� This is justi�ed by the simulation of

recursion results of section ����

An interesting point to note about the above system is how the log system

collects a program by piecing together a sequential program consisting of each

command typed in by the user of the editor� This program can then be run in

the event of a fault occurring�

We can prove that the ideal editor and the fault tolerant editor are observational

equivalent and we may thus regard the ideal editor as a speci�cation and the fault

tolerant editor as an implementation� To see this observe that the following relation

is a weak higher order bisimulation�

R � fnil � nilnintops��

outfile	�nil � outfile	�nil�nintops��
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 PEditor � FEditor ��

 PEdit �  FEdit j Logsys

j Demon j Updater�nintops��

 PEdit � intaltopi	�log	intaltopi	�Stop�� FEdit

j Logsys j Demon j Updater�nintops��

 PEdit � log	intaltopi	�Stop�� FEdit

j Logsys j Demon j Updater�nintops��

 PEdit �  FEdit j Logcurstat�

j readlog�y�writelog	y before intaltopi	�Stop���Updatelog

j Restartlog� j Demon j Updater�nintops��

 PEdit � nil j � � � j nil�� �z �
m

j Logsys

j restart	�Demon j Updater�nintops��

 PEdit � nil j � � � j nil�� �z �
m

j Logcurstat� j Updatelog

j readlog�x�x before FEdit �� j Demon j Updater�nintops��

 PEdit � nil j � � � j nil�� �z �
m

j Logcurstat� j Updatelog

j curstat before  FEdit j Restartlog���

j Demon j Updater�nintops��

 PEdit � nil j � � � j nil�� �z �
m

j Logcurstat� j Updatelog

j FEdit j Restartlog� j Demon j Updater�nintops�g

where m 
 � and m denotes the number of fail	� signals which have occurred

so far in the execution of FEditor and curstat is either Stop� corresponding to

FEditor being in its initial state or curstat is a sequence

intaltopi	�Stop before previousstat� where previousstat is a sequence like curstat�

For presentation purposes we have omitted intermediate states caused by the before

construct� These can be added but they clutter the presentation unnecessarily� Thus

PEditor � FEditor � However� FEditor � PEditor but PEditor �� FEditor

since PEditor� whereas FEditor�� The fault tolerant editor FEditor may do an

in�nite sequence of internal actions due to fail	 signals occurring in�nitely often�

Readers familiar with the studies of restartable systems presented in 
Pra��� will

notice that FEditor resembles the systems studied by Prasad in section  ���� of

his thesis� But note that we do not need to parameterize the state of the system
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by pairs of the initial state and current state� we only need to program a memory

system in CHOCS or reuse the memory cells de�ned in the previous section�� store

each command as they arrive from the user bit by bit and read this program from

the memory and run it whenever we need to restart the system�

The faults� signalized by fail	 signals� are simpli�ed in the above system� They

only occur when the editor is in a state where it is ready to receive instructions

from the user� A more re�ned version could allow faults to occur at any level� We

could specify this by adding a fail	�nil process after any guard e�g� use�

�ialtopi��intaltopi	�log	intaltopi	�Stop�� FEdit � fail	�nil� � fail	�nil�

or we could use the displace operator �j from 
Pra��� and simply exchange the

�fail	�nil component of FEdit by�j fail	�nil� The introduction of faults at other

levels calls for a more elaborate protocol for adding to the memory of the current

state of the editor to ensure that the last instruction to the editor does not get

lost between the internal updating and the storage of the instruction� We shall not

elaborate further on this but leave it for future studies� For a discussion of fault

tolerant systems in general we refer to 
Pra��� where a thorough discussion of their

description in CCS is presented�
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Denotational Theory of CHOCS

So far we have only studied the semantics of CHOCS from an operational point of

view� In this chapter we construct a denotational semantics for the language� One

of the main bene�ts of denotational semantics is its compositional nature which en�

ables a compositional way of reasoning about CHOCS processes� The denotational

semantics also highlights certain features of the operational semantics as we shall

see in the latter part of this chapter�

We begin this chapter by reviewing the de�nitions and the results from Domain

Theory upon which we build a denotational semantics for CHOCS� In section  ��

we de�ne a domain equation in which the denotational semantics for CHOCS will

reside� The main result of this section is an �internal full abstraction� result show�

ing that if we impose a labelled transition system view on the domain equation

the operational preorder of higher order prebisimulation and the domain ordering

coincide� As a step towards de�ning a denotational semantics for CHOCS we de�ne

a denotational semantics for �nite processes in section  ��� The main theorem of

this section is the full abstraction result for �nite processes in theorem  ����� Most

of the results in section  �� and  �� are built on section � and � of 
Abr��a� and

are mainly adaptations of the Domain Equation for Synchronization Trees and the

Full Abstraction for SCCS to the setting of Higher Order Communication Trees and

CHOCS� We de�ne a denotational semantics for all CHOCS processes and extend

the full abstraction result in section  � � The main theorem of this section is the

limited� full abstraction result presented in theorem  � ��� The result is limited to

the case where the set of port names Names is assumed to be �nite and is stated in

terms of the preorder ��� These restrictions are due to the well known impossibility

of modelling unbounded nondeterminism in the Plotkin Power Domain� Finally in

section  �� we use the denotational semantics to obtain a very simple proof of the

simulation of recursion result from section ����

���
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��� Domains and Denotational Semantics

In this section we present a short review of the de�nitions and results from Do�

main Theory upon which we build a denotational semantics for CHOCS� It is hard

though possible� see e�g� 
Sch���� to give an overview of this subject without using

a bit of category theory jargon and we shall do so freely�

The denotational semantics we are going to construct will reside in a domain

of an appropriate �shape�� This domain will be an object of the category CPO

or rather the subcategory SFP� The category CPO is a very important �tool�

for making meanings of programs and programming languages� It has been exten�

sively studied in 
Plo��b� and this reference together with section ��� of 
Nie� �

have been our main sources for this section� Two important characteristics of the

category CPO is that it admits recursive de�nitions both of its elements and of

domains themselves� It also supports a rich type structure and we present the type

constructions that we use in this thesis in the latter part of this section�

First we review a few of the basic de�nitions from Domain Theory�

De�nition ����� A relation v on a set D is a partial ordering upon D i� v is�

re�exive� antisymmetric and transitive�

We call a set with a partial ordering a partially ordered set�

De�nition ����� An element e of a partially ordered set D is a least element �or

a bottom element� denoted � i� e v d for all d 	 D�

De�nition ����� If it exists	 a join a t b of two elements a and b in a partially

ordered set D is an element such that�

�� a v a t b and b v a t b

�� for all d 	 D� a v d and b v d implies a t b v d

De�nition ����� For X 
 D a subset of a partially ordered set D a least upper

bound
F
X denotes the element of D such that�

�� for all x 	 X we have x v
F
X

�� for all d 	 D if x 	 X and x v d then
F
X 
 d

De�nition ����� A subset X of a partially ordered set D is a chain if

�� X is nonempty
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�� for all a� b 	 X either a v b or b v a

Often the elements of a chain are enumerated and the chain is denoted by fdngn�

De�nition ����	 A function f � D � E from a partially ordered set D to a

partially ordered set E is monotone i� d� v d� � fd�� v fd���

De�nition ����
 A monotone function f � D � E from a partially ordered set

D to a partially ordered set E is continuous i� for any chain X 
 D� f
F
X� �F

ffx� � x 	 Xg�

De�nition ����� A partially ordered set is a complete partially ordered set �or a

cpo� i� D has a least element � and has least upper bounds for all chains�

De�nition ����� Let D be a cpo� An element b 	 D is compact or 
nite if�

whenever X 
 D is a chain and b v
F
X then b v d for some d 	 X� We write

KD� for the set of 
nite elements of D�

De�nition ����� A function f � D � E from a cpo D to a cpo E is strict i�

f�� ���

A functional� is a continuous function f � D� D� usually D is a domain of the

form A� B� but it does not have to be�

De�nition ������ An element d of a partially ordered set D is a 
xed point for a

functional F � D � D if F d� � d� A 
xed point d for a functional F is a least


xed point i� for all 
xed points e for F we have d v e�

Theorem ������ For any functional F � D� D on a cpo there exists a least 
xed

point fix F given by

fix F �
G
fF i�� � i  �g

where F ��� �� and F i�� � F F i����

De�nition ������ The category CPO is the category whose objects are complete

partial ordered sets �cpo�s� with continuous functions as morphisms�

�This terminology is used in �Sch���� As pointed out to me by S� Abramsky this is non�standard
terminology
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Formally a category consists of a set of objects and for each two objects D� and

D� a set of morphisms f � D� � D�� There has to be a composition of morphisms

as in f � g � D� � D� which is the composition of f � D� � D� and g � D� � D��

For each object D there has to be an identity morphism IdD � D � D� Composition

and identity have to satisfy the associative law� f � g� �h � f � g �h� respectively

the identity laws� f � IdD � f and IdD � f � f � It is easily checked that these

criteria are satis�ed for CPO 
Plo��b��

Analogous to the notion of morphisms between objects of categories we may

consider �functions� between categories� These are called functors�

De�nition ������ A functor F consists of two maps� one from objects D of cate�

gory D to objects F D� of category E and one that sends a morphism f � D� � D�

of category D to a morphism F f� � F D��� F D�� of category E� It must satisfy

the composition law� F f �g� � F f��F g� and the identity law� F IdD� � IdF �D��

Functors are extensively used in the de�nition of recursive� domain equations�

To do so we may draw upon an analogy between cpo�s and categories� A cpo�

category is a category where the set of morphisms between any two objects forms

a cpo and where composition is continuous with respect to the partial order�

De�nition ������ A functor between two cpo�categories is locally continuous �mono�

tonic� if its e�ect upon morphisms is continuous �monotonic�� Continuity for a

functor F means F 
F
n fn� �

F
n F fn� for all chains ffngn of continuous func�

tions�

For a continuous functor the analogy to a �xed point of a continuous function

on a cpo is captured by�

De�nition �����	 The pair D�!� is a 
xed point for a continuous functor F

over some category i� D is an object and ! � F D� � D is an isomorphism� �An

isomorphism ! in a category is a morphism ! � D � E for which there exists an

inverse !�� � E � D such that ! � !�� � IdD and !�� � ! � IdE

De�nition �����
 A pair D�!� is an initial 
xed point of a continuous functor F

over some cpo�category i� it is a 
xed point and for every 
xed point D��!�� there

exists precisely one embedding e � D � D� such that e � ! � !� � F e��

An embedding in a cpo�category is a morphism e � D� � D� for which there

exists another morphism eu � D� � D� such that eu � e � IdD� and e � eu v IdD��

There are constructs analogous to the notions of chain and least upper bounds�

these are called directed sequences and limiting cones�
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De�nition ������ A directed sequence is a pair fDngn� fengn� where each Dn is

an object and each en � Dn � Dn�� is a morphism�

De�nition ������ A limiting cone� for a directed sequence fDngn� fengn�� is a

pair D� frngn� where D is an object and each rn is a morphism satisfying rn �

Dn � D and rn�� � en � rn� �D is called the limit of the directed sequence�

We may use this to de�ne a construction FIX F for a continuous functor� corre�

sponding to fix F for a continuous function�

De�nition �����

FIX F � fDngn� fengn�

where D� � U �the one point domain f�g� and Dn�� � F Dn�� e� �� and

en�� � F en��

In the subcategory CPO�E of CPO where all functions are embeddings this

construct generates a cone� Let D� frngn� be the limiting cone for FIX F then

D�!� where ! �
F
n rn�� � F rn�u is an initial �xed point of F �

However� initial �xed points for continuous functors need not be unique� though

they are all isomorphic� but it is common to say the initial �xed point about the

�xed point generated for FIX F �

In denotational semantics it is quite common to write domains as recursive

de�nitions like D � F D� involving functors such as F � With the above machinery

we may solve such equations� A solution to recursive domain equation is simply

taken to be the initial �xed point for its de�ning functor� This means that we only

solve the domain equation up to isomorphism since the initial �xed point is de�ned

in terms of isomorphisms and we write D �� F D� to emphasize this�

The domain equation we present in the next section will use the Plotkin Power

Domain and we therefore need to work in a category closed under this construction�

We will use SFP 
Plo��� Plo��b��

De�nition ������ The category SFP �Sequences of Finite Posets� has as objects

those cpo�s D which are limits of directed sequences fDngn� fpngn� of 
nite cpo�s

Dm� Its morphisms are the continuous functions with the usual composition�

The only thing we need to know about SFP� apart from the above� is that it

admits recursive domain equations and it is closed under the constructs of Cartesian

product� separated sum and the Plotkin Power Domain�
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Cartesian Product

Let D and D� be domains� The Cartesian product D�D� is the domain of pairs of

elements with �rst component from D and second component from D�� We write

d� d�� for elements ofD�D� where d 	 D and d� 	 D�� D�D� is ordered component

wise i�e��

d�� d
�
�� vD�D� d�� d

�
��� d� vD d� " d�� vD� d��

We may turn the Cartesian product into a functor�

Given

f � D� � D�
� and g � D� � D�

�

then

�f� g� � D� �D� � D�
� �D�

�

is given by

�f� g�d�� d�� � fd�� gd��

Separated Sum

Let A be a countable set and fDaga�A be a family of A�indexed domains� The

separated sum
P

a�ADa is the domain formed by the disjoint union of the Da�s

and adjoining a bottom element� We write ha� di for the elements of the disjoint

union and � for the bottom element of the separated sum� We order the domain

as follows�

x v�
P

a�A
Da� y � x �� or 
x � ha� di " y � ha� d�i " d vDa d

��

Separated sum may be treated as a functor�

Given a family of functions�

fa � Da � Ea

Then X
a�A

fa �
X
a�A

Da �
X
a�A

Ea

is de�ned by�


X
a�A

fa� � � �


X
a�A

fa�ha� di � ha� fadi
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Note that for each a 	 A� the function�

Da �
X
a�A

Da

d ��� ha� di

is continuous�

The Plotkin Power Domain

Let D be a domain� We say that a subset X 
 D is closed if X � X� where

X� � Con � ClX� and ConX� � fd � �d�� d� 	 X�d� v d v d�g and Cl is the

closure operation associated with the Lawson Topology see 
Plo��b��� The Plotkin

Power Domain P 
D� over D is de�ned as the set of nonempty closed subsets of D�

The elements of P 
D� are given by fX 
 D � X �� ��X � X�g� The Plotkin Power

Domain P 
D� over D is ordered by the Egli�Milner order�

X vEM Y � �x 	 X��y 	 Y�x v y " �y 	 Y��x 	 X�x v y

We shall make use of a number of continuous operations associated with the Plotkin

Power Domain�

P is functorial�

Given

f � D� E

then

Pf � P 
D�� P 
E�

is de�ned by

PfX� � ffx� � x 	 Xg�

Other useful operations are�

Singleton�

fj � jg � D � P 
D�

de�ned by�

fj d jg � fdg� � fdg

Union�

� � P 
D�� � P 
D�

de�ned by

X � Y � X � Y �� � ConX � Y �
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Big Union� �
� P 
P 
D��� P 
D�

de�ned by �
#� � 

�
#�� � Con

�
#�

and Tensor Product�

Given

f � Dn � D

Then

fyP 
D�n � P 
D�

is de�ned by

fyX� � � �Xn� � ffx� � � � xn� � xi 	 Xig
�

The Tensor Product has the property�

fyX� � � �Xi �X
�
i � � �Xn� � fyX� � � �Xi � � �Xn� � fyX� � � �X

�
i � � �Xn�

for � � i � n�� For n � � we have fy � Pf �

��� A Domain Equation for Higher Order Com�

munication Trees

With the machinery from the previous section in hand we are now ready to con�

struct a Domain in which the denotational semantics for CHOCS will reside� As

in 
Abr��a� we shall use the Plotkin Power Domain with the empty set adjoined�

We use the empty set to denote the process nil i�e� the convergent process with

no action�� The empty set is added to the Plotkin Power Domain without being

related to anything but itself under the Egli�Milner ordering and we write P �
D�

for the Plotkin Power Domain over D with the empty set adjoined� The elements

of P �
D� are given by fX 
 D � X � X�g � P 
D� � f�g with the ordering�

X v Y � X � f�g or X vEM Y

The operations on P 
D� described above may be extended to P �
D�� and ��
U

and

fj � jg are continuous on P �
D�� For P �f to work we need to assume that f is strict

and for fy to work we need to assume that f is strict in each argument� We write

fj d jA jg where d 	 D and A is some sentence� meaning fj d jg if A is true� and �

otherwise�
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De�nition ����� Let Names �the set of port names� be a countable set and let

Ev � Names�f	� �g�f�g �ranged over by e�� Then D� the domain of higher order

communication trees� is de
ned as the initial solution of the domain equation�

D �� P �

X
e�Ev

De�

where Da	 � D �D� Da
 � D �D and D� � D�

This domain equation is essentially that of 
Abr��a� with the structure of actions

taken into account� We write � for the bottom element of
P

e�EvDe and fj�jg for

the bottom element of P �

P

e�EvDe��

The structure of D is recursive and may be unpacked by the following two parts�

�� Let ! and !�� be a speci�ed isomorphism pair such that�

D
���

��
��
�
P �


X
e�Ev

De�

We shall treat D �� P �

P

e�EvDe� as identity and thus elide the use of ! and

!��� They can be put back in without any di�culties� but they will clutter

the presentation�

�� Initiality� As described in the following�

De�nition ����� We de
ne a sequence of functions�

�k � D � D

as follows�

�� � x�fj�jg

�k�� � P �
X
e�Ev

fe

Where fa	 � ��k� �k�� fa
 � ��k� �k� and f� � �k�

D is the �internal colimit� of the �k i�e��

Proposition ����� The following properties hold�

�i� Each �k is continuous and �k v �k��

�ii�
F
k �k � idD
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�iii� �k � �k � �k

�iv� �d�� d� 	 D�d� v d� � �k��kd� v �kd�

We may think of elements d of D as �nite and$or in�nite� trees� �kd cuts the

tree to a depth of k� �kD is the set of all trees with depth at most k�

The following de�nition gives an inductive de�nition of the set of elements d of

D which only have depth k�

De�nition �����

LEV� � fj�jg

LEVk�� � fha�� d��� d
��
��i � a 	 Names� d��� d

��
� 	 LEVkg

�fha	� d��� d
��
��i � a 	 Names� d��� d

��
� 	 LEVkg

�fh�� d���i � d��� 	 LEVkg�
�

�LEVk

Proposition �����

�k�LEVk � �kD

Proof� By induction on k�

k � �

LEV� � fj�jg � ��D

k � �

LEVk�� � fha�� d��� d
��
��i � a 	 Names� d��� d

��
� 	 LEVkg

�fha	� d��� d
��
��i � a 	 Names� d��� d

��
� 	 LEVkg

�fh�� d���i � d��� 	 LEVkg�
�

�LEVk

� fha�� d��� d
��
��i � a 	 Names� d��� d

��
� 	 �kDg

�fha	� d��� d
��
��i � a 	 Names� d��� d

��
� 	 �kDg

�fh�� d���i � d��� 	 �kDg�
�

��kD

by the induction hypothesis

� fha�� �kd
�
�� �kd

��
��i � a 	 Names� d��� d

��
� 	 Dg
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�fha	� �kd
�
�� �kd

��
��i � a 	 Names� d��� d

��
� 	 Dg

�fh�� �kd
��
�i � d��� 	 Dg��

��kD

� �k��D

Corollary ����	

D �
G
k

LEVk

The elements of each of the LEVk�s are compact elements of D� We may give

an explicit description of the compact elements of D�

De�nition ����
 We de
ne KD� 
 D inductively�

� � 	 KD�
� fj�jg 	 KD�
� a 	 Names� d�� d� 	 KD� � fj ha�� d�� d�i jg 	 KD�

fj ha	� d�� d�i jg 	 KD�
fj h�� d�i jg 	 KD�
d� � d� 	 KD�

Proposition ����� KD� is exactly the set of compact elements of D�

Proof� Follows from standard results see 
Plo��� Plo��b���

Proposition ����� 
S
fLEVk � k  �g�� � KD��

Proof� For each k� LEVk 
 KD� follows from de�nition  ��� � de�nition  ����
and proposition  ���� The opposite direction follows by showing that each element

of KD� is an element of LEVk for some k� This is done by induction on the

construction of elements of KD��

Base cases � 
 LEVk for all k and fj�jg 
 LEVk for all k�

Inductive step Assume d�� d� 	 KD� and d�� d� 	 LEVk for some k� Then�

fj ha�� d�� d�i jg 	 LEVk��

fj ha	� d�� d�i jg 	 LEVk��

fj h�� d�i jg 	 LEVk��

d� � d� 	 LEVk 
 LEVk��
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D as a Transition System

Consider D as a transition system D�Act��� ���

� d ���	 d

� d
a	d�
�� d�� � ha�� d�� d���i 	 d

� d
a
d�
�� d�� � ha	� d�� d���i 	 d

� d
�
�� d� � h�� d�i 	 d

We can now show that D is �internally fully abstract� i�e��

Proposition �����

�d�� d� 	 D�d� �
B d� �� d� v d�

Proof� The proof of this proposition follows the pattern of the proof of proposition
���� in 
Abr��a�� We shall prove�

i� �k�d� �k d� � �kd� v �kd�

ii� v 
 �
B

Clearly i� implies ��
v and since �
B
�� we have �

B�v�

To see that i� holds we proceed by induction on k�

k � � Since d� �� d� always holds and clearly ��d� v ��d� holds� and we have

d� �� d� � ��d� v ��d�� This establishes the base case�

k � � Assume d� �k�� d�� Now d� � � and d� �k�� d� implies d� � �� d� � fj�jg

implies d� v d� so we may assume that d� �� � �� d�� It is su�cient to prove

d� vEM d��

We have �k��d� � X� where

X � fha�� �kd
�
�� �kd

��
��i � ha�� d��� d

��
��i 	 d�g �

fha	� �kd
�
�� �kd

��
��i � ha	� d��� d

��
��i 	 d�g �

fh�� �kd
��
�i � h�� d���i 	 d�g �

f� ��	 d�g

and similarly �k��d� � Y �� Now
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� ha�� d��� d
��
��i 	 X

� d�
a	d���� d���

� �d��� d
��
��d�

a	d���� d��� " d�� �k d
�
� " d��� �k d

��
�

� �d��� d
��
��d�

a	d���� d��� " �kd
�
� v �kd

�
� " �kd

��
� v �kd

��
� by the induction hypothesis

� �ha�� �kd��� �kd
��
��i 	 Y�ha�� �k� d��� �kd

��
��i v ha�� �k� d��� �kd

��
��i

and similarly for ha	� �k� d��� �kd
��
��i 	 X and we have

� h�� d��i 	 X

� d�
�
�� d��

� �d���d�
�
�� d�� " d�� �k d

�
�

� �d���d�
�
�� d�� " �kd

�
� v �kd

�
� by the induction hypothesis

� �h�� �kd��i 	 Y�h�� �k� d��i v h�� �k� d��i

Also

� ��	 X

� ��	 d�

� ��	 d� " 

d�
a	d���� d��� � �d��� d

��
��d�

a	d���� d��� " d�� �k d
�
� " d��� �k d

��
��

" 
d�
a
d���� d��� � �d��� d

��
��d�

a
d���� d��� " d�� �k d
�
� " d��� �k d

��
��

" 
d�
�
�� d�� � �d��� d

��
��d�

�
�� d�� " d�� �k d

�
���

� ��	 Y " 

�ha�� �kd��� �kd
��
��i 	 Y�

�ha�� �kd��� �kd
��
��i 	 X��kd

�
� v �kd

�
� " �kd

��
� v �kd

��
��

" 
�ha	� �kd��� �kd
��
��i 	 Y�

�ha	� �kd��� �kd
��
��i 	 X��kd

�
� v �kd

�
� " �kd

��
� v �kd

��
��

" 
�h�� �kd��i 	 Y��h�� �kd��i 	 X��kd
�
� v �kd

�
���

by the induction hypothesis

Furthermore we have shown X vEM Y which implies X� vEM Y ��

To see ii� we show that v is a higher order bisimulation� Observe that�

� d� v d�

� 

�ha�� d��� d
��
��i 	 d���ha�� d��� d

��
��i 	 d��d

�
� v d�� " d��� v d����
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" 
�ha	� d��� d
��
��i 	 d���ha	� d��� d

��
��i 	 d��d

�
� v d�� " d��� v d����

" 
�h�� d��i 	 d���h�� d
�
�i 	 d��d

�
� v d���

" ��	 d� � ��	 d� " 
�ha�� d��� d
��
��i 	 d���ha�� d��� d

��
��i 	 d��

d�� v d�� " d��� v d����
" 
�ha	� d��� d

��
��i 	 d���ha	� d��� d

��
��i 	 d��

d�� v d�� " d��� v d����
" 
�h�� d��i 	 d���h�� d��i 	 d��d

�
� v d����

� �a 	 Names� 

d�
a	d���� d��� � �d��� d

��
��d�

a	d���� d��� " d�� v d�� " d��� v d���� "


d�
a
d���� d��� � �d��� d

��
��d�

a
d���� d��� " d�� v d�� " d��� v d���� "


d�
�
�� d�� � �d���d�

�
�� d�� " d�� v d��� "

d� � � d� � " 
d�
a	d���� d��� � �d��� d

��
��d�

a	d���� d��� " d�� v d�� " d��� v d���� "


d�
a
d���� d��� � �d��� d

��
��d�

a
d���� d��� " d�� v d�� " d��� v d���� "


d�
�
�� d�� � �d���d�

�
�� d�� " d�� v d����

This result shows that the denotational domain and the labelled transition sys�

tem model are equally expressive� The above result is syntax free and therefore

not compositional� We need syntax to introduce compositionality and this is the

subject of the next section�

��� A Denotational Semantics for Finite CHOCS

In section ��� we saw that the syntax of Finite CHOCS induces a term algebra

T�� By standard results 
Gog etal��� there exists a unique ��homomorphism A

 �� �

T� �� A for any ��algebra A�

We now use this result to form a denotational semantics D

 �� in the domain

D for �nite CHOCS� It su�ces to de�ne each operation in � as a function of the

appropriate arity over D�

De�nition �����

nilD � �

%D � fj�jg

a�D � � d�� d�� 	 D �D�fj ha�� d�� d��i jg

a	D � � d�� d�� 	 D �D�fj ha	� d�� d��i jg

�D� � d 	 D�fj h�� di jg

�D � �
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Restriction�

naD � �F 	 
D� D��
�
�P �gaF �

where ga � 
D� D� � 

P

e�EvDe � D� is de
ned by

gaF � � fj�jg

gaF hb�� d�� d��i �

�
fj hb�� d�� Fd��i jg if b �� a
� otherwise

gaF hb	� d�� d��i �

�
fj hb	� d�� Fd��i jg if b �� a
� otherwise

gaF h�� di � fj h�� Fdi jg

Renaming�


S�D � �F 	 
D� D��P �gSF �

where gS � 
D � D�� 

P

e�EvDe �
P

e�EvDe� is de
ned by

gSF � � �

gSF ha�� d�� d��i � hSa��� d�� Fd��i

gSF ha	� d�� d��i � hSa�	� d�� Fd��i

gSF h�� di � h�� Fdi

Parallel Composition�

jD � �F 	 
D �D � D��
�
�P �lF � rF � cF �

where l� r� c � 
D� � D�� 

P

e�EvDe�� � D� are de
ned by

lF x��� � lF �� x� � fj�jg

lF ha�� d�� d��i� x� � fj ha�� d�� F d�� fj x jg��i jg

lF ha	� d�� d��i� x� � fj ha	� d�� F d�� fj x jg��i jg

lF h�� di� x� � fj h�� F d� fj x jg�i jg

and

rF x��� � rF �� x� � fj�jg

rF x� ha�� d�� d��i� � fj ha�� d�� F fj x jg� d���i jg

rF x� ha	� d�� d��i� � fj ha	� d�� F fj x jg� d���i jg

rF x� h�� di� � fj h�� F fj x jg� d�i jg
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and

cF x� y� �

����	
���

fj�jg if x �� or y ��
fj h�� F d�� d���i jg if x � ha�� d�� d��i and y � ha	� d�� d���i

or x � ha	� d�� d��i and y � ha�� d�� d
�
��i

� otherwise

We need to check that the above functions are well de�ned� This follows since

all functions are strict bistrict� and in fact they are all continuous which is easily

checked from their de�nitions�

We denote the continuous ��algebra de�ned above by D��

Restriction� renaming and parallel composition are de�ned recursively� This

corresponds to the fact that they may be �eliminated� for �nite CHOCS processes

modulo higher order bisimulation see section �����

It follows from proposition  ����� and de�nition  ���� that

Proposition ����� The semantic function

D

 �� � T� �� D�

cuts down to surjections

T� ��� KD� and T�� ��� KD�

Finite CHOCS thus provides a syntax for the �nite elements of D� We shall

later in proposition  ���� and  ����� see how this statement can be strengthened to

the elements of Levk of section ��� and LEVk of section  ���

As for the operational semantics for �nite CHOCS we may relate the denota�

tional operators to the transition system view of D� In the following we shall abuse

the notation from the operational description of CHOCS and we write� d
�
�� d��

if � � a�d� " d
a	d�
�� d�� or � � a	d� " d

a
d�
�� d�� or � � � " d

�
�� d�� and we

use the notation � for actions of the form a�d� or a	d� with the following meaning�

a�d� � a	d� and a	d� � a�d��
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Proposition ����� For all d�� d� 	 KD��

i�a� nilD � b� nilD ��

ii�a� %D � b� %D ��

iii�a� a�Dd�� d�� �

b� a�Dd�� d��
�
�� d �� � � a�d� " d � d�

iv�a� a	Dd�� d�� �

b� a	Dd�� d��
�
�� d �� � � a	d� " d � d�

v�a� �Dd�� d�� �

b� �Dd��
�
�� d �� � � � " d � d�

vi�a� d� �D d�� � �� d� � or d� �

b� d� �D d�
�
�� d �� d�

�
�� d or d�

�
�� d

Parallel composition�

vii�a� d� jD d�� � �� d� � or d� �

b� d� jD d��
�
�� d �� � � a�d� " ���i� e

�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � a�e�i " e�� v d� v e��

" e��� j
D d� v d�� v e��� j

D d�

or ���i� e
�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � a�e�i " e�� v d� v e��

" d� jD e��� v d�� v d� jD e���

or � � a	d� " ���i� e
�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � a	e�i " e�� v d� v e��

" e��� j
D d� v d�� v e��� j

D d�

or ���i� e
�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � a	e�i " e�� v d� v e��

" d� jD e��� v d�� v d� jD e���
or � � � " �e��i i � �� ���d�

�
�� e��i

" e��� j
D d� v d�� v e��� j

D d�
or �e��i i � �� ���d�

�
�� e��i

" d� jD e��� v d�� v d� jD e���
or ���i� e

��
i � f

��
i i � �� ���

d�
��i�� e��i " d�

��i�� f ��i
" e��� j

D f ��� v d�� v e��� j
D f ���
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Restriction�

viii�a� d�naD� � �� d� �

b� d�naD�
�
�� d�� �� � � b�d� " ���i� e

�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � b�e�i " b �� a " e�� v d� v e��

" e���na
D v d�� v e���na

D

or � � b	d� " ���i� e
�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � b	e�i " b �� a " e�� v d� v e��

" e���na
D v d�� v e���na

D

or � � � " �e��i i � �� ���d�
�
�� e��i

" e���na
D v d�� v e���na

D

Restriction�

ix�a� d�
S�D� � �� d� �

b� d�
S�D�
�
�� d�� �� � � b�d� " ���i� e

�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � a�e�i " b � Sa�

" e�� v d� v e��
" e���
S�

D v d�� v e���
S�
D

or � � b	d� " ���i� e
�
i� e

��
i i � �� ���d�

��i�� e��i
" �

�
i � a	e�i " b � Sa�

" e�� v d� v e��
" e���
S�

D v d�� v e���
S�
D

or � � � " �e��i i � �� ���d�
�
�� e��i

" e���
S�
D v d�� v e���
S�

D

Proof� i�� v� are immediate from de�nition  �����
vi� is derived from d� �D d� � d� � d� � Cond� � d���

For vii� we de�ne

# � ffha�� d��� d
��
� j

D d��ig � ha�� d��� d
��
��i 	 d�g

�ffha	� d��� d
��
� j

D d��ig � ha	� d��� d
��
��i 	 d�g

�ffh�� d��� j
D d��ig � h�� d���i 	 d�g

�ffha�� d��� d� j
D d����ig � ha�� d��� d

��
��i 	 d�g

�ffha	� d��� d� j
D d����ig � ha	� d��� d

��
��i 	 d�g

�ffh�� d� j
D d����ig � h�� d���i 	 d�g

�ffh�� d��� j
D d����ig � ha�� d��� d

��
��i 	 d� " ha	� d��� d

��
��i 	 d�g

�ffh�� d��� j
D d����ig � ha	� d��� d

��
��i 	 d� " ha�� d��� d

��
��i 	 d�g

�ff�g ��	 d� or �	 d�g
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and

! � fha�� d��� d
��
� j

D d��i � ha�� d��� d
��
��i 	 d�g

�fha	� d��� d
��
� j

D d��i � ha	� d��� d
��
��i 	 d�g

�fh�� d��� j
D d��ig � h�� d���i 	 d�g

�fha�� d��� d� j
D d����i � ha�� d��� d

��
��i 	 d�g

�fha	� d��� d� j
D d����i � ha	� d��� d

��
��i 	 d�g

�fh�� d� j
D d����i � h�� d���i 	 d�g

�fh�� d��� j
D d����i � ha�� d��� d

��
��i 	 d� " ha	� d��� d

��
��i 	 d�g

�fh�� d��� j
D d����i � ha	� d��� d

��
��i 	 d� " ha�� d��� d

��
��i 	 d�g

�f� ��	 d� or �	 d�g

Now

d� j
D d�� � Con

�
#��

� Con
�

#��� by 
Plo��� p�  ��

� Con
�

#� since d 	 KD�

� Con!�

and vii� is derived from this description�

viii� and ix� are derived similarly�

Proposition ����� For all p 	 T��p �B D

p���

Proof� Let us de�ne a height function on T� in the following way�

ht�p�� � � � � pn�� � supfhtpi� � � � i � ng� �

Note that both p� and p� contribute to the height of p in a�Fp��p� and a	p��p�� As

an easy consequence of proposition  ����� we have�

p
a	p�
�� p�� �� htp�� � htp� " htp��� � htp�

p
a
p�
�� p�� �� htp�� � htp� " htp��� � htp�

p
�
�� p�� �� htp��� � htp�

The proposition is proved by induction on htp�� and the structure of p� The

cases arising from the operators in �� are obvious from the close match of moves as

can be seen from proposition ���� and proposition  ����� We give the case where�
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p � p� j p�

Firstly�

p � �� p� � or p� � by proposition ���� 
�� D

p��� � or D

p��� � by induction hypothesis
�� D

p��� jD D

p���� � by proposition  ����
�� D

p� jD p��� �

Next�

p
a	p�
�� p��

�� p�
a	p�
�� p��� " p�� � p��� j p�

or p�
a	p�
�� p��� " p�� � p� j p���

by proposition ���� 

�� �d���d
��
��D

p���

a	d���� d��� " p� �
B d�� " p��� �

B d���
by induction hypothesis on p�

or �d���d
��
��D

p���

a	d���� d��� " p� �
B d�� " p��� �

B d���
by induction hypothesis on p�

�� p��� j p� �
B D

p��� j p���

by induction hypothesis on p��� j p�
� D

p����� j

D D

p���

�
B d��� j

D D

p���
by proposition  ����� and monotonicity of jD

or p� j p��� �
B D

p� j p�����

by induction hypothesis on p� j p���
� D

p��� jD D

p�����

�
B D

p��� jD d���

by proposition  ����� and monotonicity of jD

�� �d�� d���D

p��
a	d�
�� d�� " p� �

B d� " p�� �
B d��

Similarly� we can show

p
a	p�
�� p�� �� �d�� d���D

p��

a	d�
�� d�� " d� �

B p� " d�� �
B p��

If p
a
p�
�� p�� we may argue as above with � replaced with 	�
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p
�
�� p��

�� p�
�
�� p��� " p�� � p��� j p�

or p�
�
�� p��� " p�� � p� j p���

or ����p�
��
�� p��� " p�

��
�� p��� " p�� � p��� j p

��
�

by proposition ���� 

�� �d����D

p���
�
�� d��� " p��� �

B d���
by induction hypothesis on p�

or �d����D

p���
�
�� d��� " p��� �

B d���
by induction hypothesis on p�

or �
� � a�p� " ��d��� d

��
��D

p���

a	d���� d��� " p� �
B d�� " p��� �

B d���
by induction hypothesis on p�

" D

p���
a
d���� d��� " p� �

B d�� " p��� �
B d���

by induction hypothesis on p�
p� �B D

p��� v d�i� i � �� ��
by induction hypothesis on p�

D

p���
a	Dp���
�� d��� " D

p���

a
Dp���
�� d���

since D

p�� is convex closed
or � � a	p� and we may argue as above with � substituted for 	

�� p��� j p� �
B D

p��� j p���

by induction hypothesis on p��� j p�
� D

p����� j

D D

p���

�
B d��� j

D D

p���
by proposition  ����� and monotonicity of jD

or p� j p��� �
B D

p� j p�����

by induction hypothesis on p� j p���
� D

p��� jD D

p�����

�
B D

p��� jD d���

by proposition  ����� and monotonicity of jD

or p��� j p
��
� �

B D

p��� j p
��
���

by induction hypothesis on p��� j p
��
�

� D

p����� j
D D

p�����

�
B d��� j

D d���
by proposition  ����� and monotonicity of jD

�� �d���D

p��
�
�� d�� " p�� �

B d��

Similarly� we can show

p
�
�� p�� �� �d���D

p��

�
�� d�� " d�� �

B p��
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Also�

D

p��
a	d�
�� d��

�� �d�i� d
��
i i � �� ���D

p���

a	d�i�� d��i
" d�� v d� v d�� " d��� j

D D

p��� v d�� v d��� j
D D

p���

by proposition  ����

or �d�i� d
��
i i � �� ���D

p���

a	d�
i�� d��i

" d�� v d� v d�� " D

p��� jD d��� v d�� v D

p��� jD d���
by proposition  ����

�� �p�i�p
��
i i � �� ���p�

a	p�i�� p��i " p�� �
B d��� d

�
� �

B p�� " p��� �
B d���� d

��
� �

B p���
by induction hypothesis on p�

or �p�i�p
��
i i � �� ���p�

a	p�i�� p��i " p�� �
B d��� d

�
� �

B p�� " p��� �
B d���� d

��
� �

B p���
by induction hypothesis on p�

�� p
a	p���� p��� j p� " p��� j p� �

B D

p��� j p��� � D

p����� j
D D

p��� �

B d
by induction hypothesis on p��� j p�

or p
a	p���� p� j p��� " p� j p��� �

B D

p� j p����� � D

p��� jD D

p����� �
B d

by induction hypothesis on p� j p���

and similarly d �
B p��� j p� or d �

B p� j p����

If D

p��
a
d�
�� d�� we may argue as above with � substituted for 	�

D

p��
�
�� d��

�� �d��i i � �� ���D

p���
�
�� d��i " d��� j

D D

p��� v d�� v d��� j
D D

p���

or �d��i i � �� ���D

p���
�
�� d��i " D

p��� j

D d��� v d�� v D

p��� j
D d���

or �d�i� d
��
i � e

��
i i � �� ���D

p���

a	d�
i�� d��i " D

p���

a
d�
i�� e��i

" d��� j
D e��� v d�� v d��� j

D e���

or �d�i� d
��
i � e

��
i i � �� ���D

p���

a
d�i�� d��i " D

p���
a	d�i�� e��i

" d��� j
D e��� v d�� v d��� j

D e���
by proposition  ����

�� �p��i i � �� ���p�
�
�� p��i " p��� �

B d���� d
��
� �

B p���
by induction hypothesis on p�

or �p��i i � �� ���p�
�
�� p��i " p��� �

B d���� d
��
� �

B p���
by induction hypothesis on p�

or �p�i� p
��
i � q

��
i i � �� ���p�

a	p�i�� p��i " p�
a	p�i�� q��i "

p�� �
B d��� d

�
� �

B p�� " p��� �
B d���� d

��
� �

B p��� " q��� �
B e���� q

��
� �

B e���
by induction hypothesis on p� and p�

�� p
�
�� p��� j p� " p��� j p� �

B D

p��� j p��� � D

p����� j
D D

p��� �

B d
by induction hypothesis on p��� j p�

or p
�
�� p� j p��� " p� j p��� �

B D

p� j p����� � D

p��� jD D

p����� �
B d

by induction hypothesis on p� j p���
or p

�
�� p��� j q

��
� " p� j q��� �

B D

p��� j q
��
� �� � D

p����� j

D D

q����� �
B d

by induction hypothesis on p��� j q
��
�
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and similarly d �
B p��� j p� or d �

B p� j p��� or d �
B p��� j q

��
��

The cases where p � p�na or p � p�
S� can be derived similarly�

Altogether we have p �B D

p���

Theorem ����� �Full Abstraction for 
nite processes� For all p�� p� 	 T��

p� �
B p� �� D

p��� v D

p���

Proof� Follows from proposition  ����� and proposition  ��� �

Proposition ����	 Assume Names is 
nite� then

�k��p 	 Levk��d 	 LEVk�D

p�� � d

Proof� By induction on k�

k � �

Lev� � f%g� D

%�� � fj�jg 	 LEV�

k � � If p 	 Levk�� then

either p 	 Levk and by induction there is a d 	 LEVk 
 LEVk�� such that

D

p�� � d and we are through

or p has the form �i�Ipi where I is a �nite index set and pi has one of the

following forms� a�Fp�i�p
��
i � a	p

�
i�p

��
i � ��p

�
i or %� where p�i� p

��
i 	 Levk and

a 	 Names� By induction there is d�i� d
��
i 	 LEVk such that D

p�i�� � d�i

and D

p��i �� � d��i � Then D

a�Fp�i�p
��
i �� � a�DD

p�i���D

p��i ��� � a�Dd�i� d

��
i � 	

LEVk�� and D

a	p�i�p
��
i �� � a	DD

p�i���D

p��i ��� � a	Dd�i� d

��
i � 	 LEVk�� and

D

��p�i�� � �DD

p�i��� � �Dd�i� 	 LEVk�� and D

%�� � fj�jg 	 LEV� 


LEVk��� Since �i�Ipi is shorthand for p� � � � �� pn where f�� � � � � ng is

an enumeration of I we have D

�i�Ipi�� � D

p���� � � ��D

pn�� 	 LEVk���

This proves the proposition in this case�
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Proposition ����
 Assume Names is 
nite� then

�k��d 	 LEVk��p 	 Levk�D

p�� � d

Proof� By induction on k�

k � �

Lev� � f%g� D

%�� � fj�jg 	 LEV�

k � � Then

either d 	 LEVk and by induction there exists a p 	 Levk 
 Levk�� such

that D

p�� � d and we are through�

or

d � fha�� d�� d���i � a 	 Names� d�� d�� 	 LEVkg

�fha	� d�� d���i � a 	 Names� d�� d�� 	 LEVkg

�fh�� d�i � a 	 Names� d� 	 LEVkg

�fd � d 	 LEVkg�
�

By induction there exist p�� p�� 	 Levk such that D

p��� � d� and D

p���� �

d��� If Names is �nite we may write d as the union of singleton sets

fj ha�� d�� d���i jg� fj ha	� d�� d���i jg� or fj h�� d��i jg and for each such set

de�ne pi as a�Fp��p��� a	p��p�� or ��p�� respectively� Clearly D

pi�� � di and

pi 	 Levk��� Then de�ne p as �pi� Clearly D

p�� � d and p 	 Levk��

and we are through�

��� A Denotational Semantics for CHOCS

The semantics given in the previous section only applies to �nite processes� We now

use these results to extend the denotational semantics to the CHOCS language�

The semantic function has to take free variables to be bound by input pre�x�

into account and therefore takes an environment � � V � D as an argument� We

use the standard notation �
d�x� for updating an environment� The environment

�
d�x� is the same as � except on x where it returns d�
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De�nition ����� D

 �� � CHOCS � DV � D

D

nil��� � �

D

%��� � fj�jg

D

a�Fp��p���� � a�DD

p�����D

p�����

D

a�x�p���� � FDd�D

p����
d�x��

� 
�
fa�Dd�D

p����
d�x�� � d 	 Dg��

D

a	p��p���� � a	DD

p�����D

p�����

D

��p���� � �DD

p�����

D

p� � p���� � D

p�����
D D

p����

D

p� j p���� � D

p����� j
D D

p�����

D

p�na��� � D

p�����na
D

D

p�
S���� � D

p�����
S�
D

D

x��� � �x�

where F � D 	 P �
D��f 	 
D � D��
U
P �d�a�Dd� fd���D�

Note that the semantics of input pre�x is given as the Big Union of all possible

sets of triples ha�� d� 

p����
d�x��i where d 	 D� re&ecting that any value d could

be received� Alternatively we could say that input pre�x has a choice of any value

d 	 D which is similar to the intuition in the operational semantics of CHOCS�

We need to check that the above de�nition is sound i�e� that D

 �� is continuous

in its environment argument� The proof of this is similar to the proof of continuity

of the denotational semantics for the �Calculus as presented in 
Bar� ��

Proposition ����� d�D

p���
d�x� is continuous�

Proof� We proceed by structural induction on p� The only nontrivial cases are�

p � a�y�p� De�ne G � FD� Then�

D

p���
d�x� � Ge�D

p����
d�x�
e�y��

� Ge�fd� e��

for some f � Clearly f is continuous in each argument separately by the induc�

tion hypothesis and thus continuous� Let gd� � Ge�fd� e�� then g � G� 'f

and 'f � curryf � Then clearly g is continuous since G� f � curry and � are

continuous�
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p � y

gd� � D

y���
d�x� �

�
d if x � y
�y� otherwise

Clearly gd� is continuous�

All other cases follow straightforwardly from structural induction� We give one case

for illustration�

p � p� j p�

gd� � D

p� j p����
d�x� � D

p����
d�x� j
D D

p����
d�x� � g�d� j

D g�d�

By induction g�� g� are continuous and jD is continuous in both arguments�

Thus g is continuous�

Before proceeding to extend the full abstraction result for �nite CHOCS to the

CHOCS language we present the following useful relation between the syntactic

substitution as de�ned in de�nition ����� and updating of environments�

Proposition �����

D

p
q�x����� D

p���
D

q����x�

Proof� We proceed by structural induction on p�
p � nil

D

nil
q�x����� D

nil��� � nilD � D

nil���
D

q����x�

p � %

D

%
q�x���� � D

%��� � %D � D

%���
D

q����x�

p � a�y�p� Assume y �� x and y �	 fvq� otherwise use ��conversion on y��

D

a�y�p��
q�x���� � D

a�y�p�
q�x�����

by the de�nition of D

 ��

� FDd�D

p�
q�x����
d�y��

by the induction hypothesis

� FDd�D

p����
d�y�
D

q���
d�y��x��

since y �� x and y �	 fvq�

� FDd�D

p����
D

q����x�
d�y��

by the de�nition of D

 ��

� D

a�y�p����
D

q���x�
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p � y if y � x then

D

y
q�x����� D

q���� D

y���
D

q����x�

p � y if y �� x then

D

y
q�x����� D

y��� � �y� � �
D

q����x�y� � D

y���
D

q����x�

All other cases follow straightforwardly from structural induction� We give one case

for illustration�

p � p� j p�

D

p� j p��
q�x���� � D

p�
q�x�� j p�
q�x�����

by the de�nition of D

 ��

� D

p�
q�x����� j
D D

p�
q�x�����

by the induction hypothesis

� D

p�����
D

q����x� jD D

p�����
D

q����x�

by the de�nition of D

 ��

� D

p� j p����
D

q����x�

In section ��� we de�ned a set of operational approximations pn to p� We now

de�ne a set of denotational approximations anp��� These are given relative to an

environment ��

De�nition ����� For every p 	 Pr � FPr and every n we de
ne anp�� 	 D

a�p�� � fj�jg for any p

an��nil�� � �

an��%�� � fj�jg

an��a�
Fp��p��� � a�Danp���� anp����

an��a�x�p��� � FLEVnd�anp���
d�x��

� 
�
fa�Dd� anp���
d�x�� � d 	 LEVng�

�

an��a	p��p��� � a	Danp���� anp����

an����p��� � �D�anp����

an��p� � p��� � anp���� �
D anp����
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an��p� j p��� � anp���� j
D anp����

an��p�na�� � anp����na
D

an��p�
S��� � anp����
S�
D

an��x�� � �x�

Note that if �x� 	 KD� for every x 	 FV p� then anp�� 	 KD��

The above de�nition is sound by arguments similar to those given for D

 ���

The following proposition establishes the relationship between the operational

approximation pn and the denotational approximation anp� of p�

Proposition ����� For all n and p and any environment �� D

pn��� � anp���

Proof� We proceed by induction on n�

n � � Trivial since for all p and �� D

p���� � fj�jg � a�p���

n� � For the induction step we use a subinduction on the structure of p�

p � nil

D

niln����� � D

nil��� � � � an��nil��

p � %

D

%n����� � D

%��� � %D � an��%��

p � a�x�p�

D

a�x�p��
n����� � D

�p�Levna�

Fp�pn� 
p�x����

by de�nition of pn and de�nition of D

 ��

� 
�
fa�D

p���� 

pn�
p�x����� � p 	 Levng�

�

by proposition  � ��

� 
�
fa�D

p���� 

pn����


p����x�� � p 	 Levng�

�

by the induction hypothesis

� 
�
fa�D

p���� anp���


p����x�� � p 	 Levng�

�

by proposition  ���� and proposition  ����

� 
�
fa�Dd� anp���
d�x�� � d 	 LEVng�

�

by the de�nition of anp��

� an��a�x�p���
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p � x

D

xn����� � D

x��� � �x� � an��x��

All other cases follow straightforwardly from structural induction� We give

one case for illustration�

p � p� j p�

D

p� j p��
n����� � D

pn� j p

n
� ���

by de�nition of pn and de�nition of D

 ��

� D

pn� ���� j
D D

pn� ����

by the induction hypothesis

� anp���� j
D anp����

by the de�nition of anp��

� an��p� j p���

Proposition ����	 For all p and �� D

p��� �
F
n anp���

Proof� By structural induction on p�

p � nil

D

nil��� � � �
G
n

annil��

p � %

D

%��� � fj�jg �
G
n

an%��

p � a�x�p�

D

a�x�p���� � FDd�D

p����
d�x��

by the de�nition of D

 ��

� FDd�
G
n

anp���
d�x��

by the induction hypothesis

�
G
n

FDd�anp���
d�x��

by continuity of F



Chapter  � Denotational Theory of CHOCS �� 

�
G
n

F 
G
m

LEVm�d�anp���
d�x��

by corollary  ����

�
G
n

G
m

FLEVmd�anp���
d�x��

by continuity of F

�
G
n

FLEVnd�anp���
d�x��

by 
Plo��b�

�
G
n

an��a�x�p���

by the de�nition of anp��

�
G
n

ana�x�p���

p � x

D

x��� � �x� �
G
n

anx��

All other cases follow straightforwardly from structural induction� We give one case

for illustration�

p � p� j p�

D

p� j p���� � D

p����� j
D D

p�����

by de�nition of D

 ��

� 
G
n

anp���� j
D 
G
n

anp����

by the induction hypothesis

�
G
n

anp���� j
D anp�����

by continuity of jD

�
G
n

an��p� j p���

by the de�nition of anp��

�
G
n

anp� j p���
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We may now combine all the results obtained so far and state the main theorem

of this section�

Theorem ����
 �Full Abstraction for CHOCS processes� Assume that the set Names

is 
nite� then�

p �� q �� D

p�� v D

q��

Proof�

p �� q �� �n�p �n q

by de�nition �����

�� �n�pn �n q
n

by proposition ������

�� �n�pn �
B qn

by proposition  ����

�� �n�D

pn�� v D

qn��

by proposition  � ��

�� �n�anp� v anq�

by continuity

��
G
n

anp� v
G
n

anq�

by proposition  � ��

�� D

p�� v D

q��

The full abstraction result for CHOCS processes is limited in two ways� It

only applies under the assumption that the set of port names Names is �nite� As

discussed in section ��� this is not a signi�cant constraint and from an implemen�

tational point of view it is quite natural� The other limitation is that the theorem

is stated in terms of the preorder �� and not in terms of �
B� This restriction is

due to the well known impossibility of modelling unbounded nondeterminism in

the Plotkin Power Domain� We may consider the preorder �� as representing the

��nitary� part of �
B in line with the view of Abramsky 
Abr��a� Abr��a��



Chapter  � Denotational Theory of CHOCS ���

��� Recursion

Let us use the denotational semantics of CHOCS to obtain a much simpler proof

of the simulation of recursion theorem i�e��

recx���pna� � Yx
p�

Let 

recx�p��� � fix d�

p���
d�x� i�e� we give a least �xed point semantics to

recursion� and let us demonstrate that

���

Yx
p���� � 

recx���pna����

To see this we apply the semantic equations given in de�nition  � ���

D

Wx
p���� � FDd�D

p
x j a	x�nil�na�x����
d�x��

� 
�
fa�Dd�D

p
x j a	x�nil�na�x����
d�x�� � d 	 Dg��

D

Yx
p����

� D

Wx
p���� j
D a	DD

Wx
p����� ���na

D

� 
�
fa�Dd�D

p
x j a	x�nil�na�x����
d�x� jD a	DD

Wx
p����� ��� � d 	 Dg��

�a	DD

Wx
p�����D

Wx
p���� j
D ��

��DD

p
x j a	x�nil�na�x����
D

Wx
p�����x�� j
D ���naD

� �DD

p
x j a	x�nil�na�x����
D

Wx
p�����x��na
D�

� �DD

p���


x j a	x�nil�na�x����
D

Wx
p�����x��x�na
D�

� �DD

p���
D

Yx
p�����x��na
D�

� �DD

pna���
D

Yx
p�����x��

� D

��pna����
D

Yx
p�����x�

Since we have chosen the initial solution to the domain equation we have

D

Yx
p���� � fix d�D

��pna����
d�x�� � D

recx���pna����
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Plain CHOCS

In the previous three chapters we have studied the CHOCS calculus and shown

how CCS can be extended with processes as �rst class objects� We have seen that

we can model rather important computational phenomena such as recursion and

the �Calculus� But some peculiarities may arise due to the dynamic binding of

port names in processes sent and received� Port names that intuitively would be

considered restricted or bound can become unbound and vice versa as e�g�

b�x�x j q�� j b	p��p�na�
�
�� p� j q j pna� ����

b�x�x j q�na�� j b	p��p�
�
�� p� j q�na� j p ����

In ���� any occurrence of a in p� becomes unbound after the communication

even though we would expect them to be bound if we analyze the system before the

communication� In ���� we have the opposite situation� Now any occurrence of a

in p� unbound before the communication would be bound after the communication�

These examples show that sending the process p� amounts to passing the text of p��

This is closely related to the treatment of function parameters in LISP as originally

de�ned by McCarthy and often referred to as dynamic binding� This parameter

mechanism is complicated to work with when analyzing the behaviour of programs

from their text�

The approach in the previous three chapters was chosen because the semantics

of CHOCS could be given as a straightforward extension of the CCS semantics

and because it yielded simple algebraic laws� However� some of the laws included

reference to the sort of the process i�e� the set of port names the process might

use�� The calculation of the sort is either a costly calculation needing to run the

process or even worse needing all possible runs of the process� or a very rough

approximation to the actual sort� This approximation often yields in�nite sort for

processes intuitively having �nite sort�

���
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Inspired by the idea presented in 
EngNie��� MilParWal��� of the restriction

operator pna being a scope binder� which intuitively should bind all occurrences of

a in p� we now present a calculus of higher order communicating systems with static

binding of port names by restriction� We call this calculus Plain CHOCS�

We are looking for a calculus which has the property that scope extrusion� as

we call the technique to take care of the problem in ���� above� will automatically

take care of a static binding mechanism for the restriction operator� For example

���� becomes�

b�x�x j q�� j b	p��p�na�
�
�� p�fb�ag j q j pfb�ag�nb ����

where fb�ag is a label substitution such that b does not belong to the set of free

names in q and the restriction will therefore not bind any port in q only in p and p��

Also scope intrusion� as we call the problem in ����� will be taken care of by a new

de�nition of process substitution which takes the static nature of the restriction

operator into account� Therefore ���� above becomes�

b�x�x j q�na�� j b	p��p�
�
�� x j q�na�
p��x� j p � p� j qfb�ag�nb� j p �� �

where fb�ag is a label substitution such that b does not belong to the set of free

names in p� and the restriction will therefore not bind any port in p� only in q� It

turns out that it is interesting to have the capability of describing a kind of dynamic

binding of port names of processes received in communication� This is obtained by

allowing free names to be renamed to bound names upon reception of a process�

b�x�x
a �� a�� j fa��agq�na��� j b	p��p�
�
�� p�
a �� a�� j fa��agq�na�� j p ����

where a� does not belong to the set of free names of p� and q� This construction

simulates the behaviour described in ����� However� we cannot program the be�

haviour described in ���� since in Plain CHOCS a bound name remains bound and

can never become unbound again�

To illustrate these concepts� before presenting a formal syntax and semantics

of the Plain CHOCS calculus� we �rst study a small example� In this example we

shall rely on the knowledge of CHOCS and the above remarks�

Example ���� The example consists of a simple userresource system similar to

the system studied in �EngNie���� The system is constructed from a number of

users� a resource manager and a resource� In this example the resource is a process

which takes in a number and multiplies it by �� A resource is obtained on the c

channel� then put into use in parallel with the user process� Note how free names

of the resource are renamed and bound when received by the user process�
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U� � c�x�x
b �� a� j a	��a�y�d�	y�nil�na

U� � c�x�x
b �� a� j a	��a�y�d�	y�nil�na

RM � c	R��fin��RM�nfin

R � b�x�b	
� � x��fin	�nil

SY S � U� j U� j RM�nc

The fin	 signal from the resource R tells the resource manager RM when the

resource has 
nished its task for a user� The resource manager can then �recursively�

restore itself and thus provide a resource for other users� The restriction of fin

ensures that there is a private communication channel between resource and resource

manager which cannot be interfered by any user process�

It is interesting to observe how the system executes and how scope extrusion

takes care of preserving private links with the sending process� We give an example

of one execution sequence where U� gets the resource 
rst�

SY S � U� j U� j RM�nc

�� Since U�
c�x
��U ����xb	�a�ja
��a	y�d�
y�nil�na and RM

c�ffingR

�� RM ��fin	�RM

U� j R
b �� a� j a	��a�y�d�	y�nil�na j fin��RM�nfin�nc

�� Since Rb	�a�
b�x
��b
��x��f in
�nil and a
��a	y�d�
y�nil

a��
��a	y�d�
y�nil

U� j b	
� � ���fin	�nil�
b �� a� j a�y�d�	y�nil�na j fin��RM�nfin�nc

�� Since b
�����f in
�nil
b���
��fin
�nil and a	y�d�
y�nil

a�y
��d�
y�nil

U� j fin	�nil�
b �� a� j d�	���nil�na j fin��RM�nfin�nc

�d�
�� Since d� 
���nil
d����
�� nil

U� j fin	�nil�
b �� a� j nil�na j fin��RM�nfin�nc

�� Since fin
�nil
fin�
��nil and fin	�RM

fin�
��RM

U� j nil
b �� a� j nil�na j RM�nfin�nc

��
���

This derivation of transitions illustrates how the system may evolve� However�

the linear representation of the system in the Plain CHOCS syntax does not show

very well how the underlying process network dynamically recon
gures itself� As an

attempt to illustrate this the following cartoon is intended to show how the system

evolves spacially when going through the 
rst of the above transitions�
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RM �RM

R

U�U� U ��U�

fin

finfin
c

c

c

cc
b

b

aaaaa
d�d� d�d�

Fig ������ Dynamic recon
guration of userresource system�

We have adopted the convention from the process diagrams in �MilParWal���

and displayed private links inside the circles representing processes and public links

along the edges of the connections� The box around the resource R is symbolizing

the renaming of the public name b to the private name a which is not a process� but

more like an encapsulation construct�

It is interesting to note that should a user make copies of the received resource

i�e�� U� � c�xx
b �� a� j x
b �� a� j a	 �a�y�d�	y�nil�nc then the resource manager

will restore itself after the 
rst copy has 
nished its task� Since the signal is private

between the resource manager and the particular copy of the resource sent to U� the

signal from the �second� copy will be ignored �or rather the �second� copy will be

in the state fin	�nil which is equivalent to nil since no process is able to match this

signal�� U� will nondeterministically send out either � or �� on d� depending on

whether only one copy of the resource or both copies are used�

Note that the number of users and resources is not hard wired into the system� As

for the system studied in �EngNie��� we may add any number of users or resources

without changing the structure of the overall system e�g��

SY S� � U� j � � � j Un j RM� j � � � RMm�nc

The above system is very simple� but it easily generalizes to systems with a queue

system for resource requests from users� multiple resources or even systems where the

resource is returned to the resource manager instead of just stopping and allowing

a new copy to be used� Some quite elaborate examples of userresource systems

with the above facilities which use process passing have been studied by Cozens in

�Coz���� This work presents a promising motivation for the use of process passing

in system description�
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��� Syntax and Semantics

The syntax of Plain CHOCS is essentially that of �dynamic� CHOCS with a re�

stricted renaming construct�

Processes are built from the inactive process nil� three types of action pre�xing�

often referred to as input� output and tau pre�x� nondeterministic� choice� parallel

composition� restriction� renaming and variables to be bound by input pre�x� We

presuppose an in�nite set Names the set of port names� ranged over by a� b� c� ��

and an in�nite set V of process variables ranged over by x� y� z� ��� We denote by

Pr the set of expressions built according to the following syntax�

p ��� nil a�x�p a	p��p ��p p � p� p j p� pna p
a �� b� x

To avoid heavy use of brackets we adopt the following precedence of operators�

restriction or renaming 
 pre�x 
 parallel composition 
 choice�

We shall write p
S� for p
a �� b� where S � a �� b and let DomS� � fag and

ImS� � fbg� The operator na acts as a kind of �binder for port names elements

of Names� in a sense to be formalized later� e�g� we have a notion of ��convertibility

of restricted names� To formalize this we de�ne the set of free names fnp� of a

process p�

De�nition ����� We de
ne free names fnp� structurally on p�

fnnil� � �

fna�x�p� � fag � fnp�

fna	p��p� � fag � fnp�� � fnp�

fn��p� � fnp�

fnp � p�� � fnp� � fnp��

fnp j p�� � fnp� � fnp��

fnpna� � fnp� fag

fnp
S�� � fnp� �DomS� � ImS�

fnx� � �

The set of free names of processes constructed using the renaming construct

carries a potential overhead since it is not necessarily the case that the names in

DomS� � ImS� are going to be used� but the overhead is necessary since we may

receive processes in communication with free names which will be renamed by S�

The free names of Plain CHOCS processes are going to play an important r'ole in the
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de�nition of the semantics of the language and as we shall see in the next section�

where we de�ne a notion of equivalence� the free names are the windows through

which we can observe the processes� As opposed to the static sort of dynamic

CHOCS we point out that processes to be sent contribute to the free names of the

overall system whereas the empty set of free names is ascribed to process variables�

We may need to syntactically substitute one port name for another� Using the

above de�nition we may now de�ne a label substitution�

De�nition ����� First for a� b� c 	 Names let

fb�cga �

�
b if c � a
a otherwise

Then label substitution fb�cgp is de
ned structurally on p�

fb�cgnil � nil

fb�cga�x�p� � fb�cga��x�fb�cgp�

fb�cga	p��p� � fb�cga�	fb�cgp���fb�cgp�

fb�cg��p� � ��fb�cgp�

fb�cgp� p�� � fb�cgp� � fb�cgp��

fb�cgp j p�� � fb�cgp� j fb�cgp��

fb�cgpna� �

�
pna if a � c
fb�cgfd�agp��nd otherwise for some d �	 fnpna� � fbg

fb�cgp
a �� a��� � fb�cgp�
fb�cga� �� fb�cga���

fb�cgx� � x

Input pre�x is a variable binder� This implies a notion of free and bound vari�

ables�

De�nition ����� We de
ne the set of free variables FV p� structurally on p�

FV nil� � �

FV a�x�p� � FV p� fxg

FV a	p��p� � FV p� � FV p��

FV ��p� � FV p�

FV p� p�� � FV p� � FV p��

FV p j p�� � FV p� � FV p��
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FV pna� � FV p�

FV p
S�� � FV p�

FV x� � fxg

A variable which is not free i�e� does not belong to FV p� is said to be bound in

p�

An expression p is closed if FV p� � �� Closed expressions are referred to as

processes� The set of closed expressions is denoted by CPr�

To allow processes received in communication to be used we need a way of

substituting the received processes for bound variables� We shall use the de�nition

of label substitution to avoid unintentional binding of free names when processes

are substituted�

De�nition ����� The substitution p
q�x� is de
ned structurally on p�

nil
q�x� � nil

a�y�p�
q�x� �

��	
�


a�y�p
q�x�� if y �� x and y �	 FV q�
a�z�p
z�y��
q�x�� otherwise

z �	 FV p� � FV q� � fx� yg

a	p��p�
q�x� � a	p�
q�x���p
q�x��

��p�
q�x� � ��p
q�x��

p � p��
q�x� � p
q�x�� � p�
q�x��

p j p��
q�x� � p
q�x�� j p�
q�x��

pna�
q�x� � fd�agp�
q�x��nd for some d �	 fnpna� � fnq��

p
S��
q�x� � p
q�x��
S�

y
q�x� �

�
q if x � y
y otherwise

The only di�erence between the above de�nition of substitution and the one

given for dynamic CHOCS in de�nition ����� is in the clause for restriction� In the

above de�nition we ensure that we do not restrict names in q�

Here are a few useful properties of substitution�

Proposition �����

�� If x �� y then p
p��x�
p���y� � p
p���y�
p�
p���y��x��

�� p
p��x� � p if x �	 FV p��

Proof� The proof of �� is easily established by structural induction on p� Then
�� is a corollary of ��



Chapter �� Plain CHOCS �  

With the above machinery in hand we may now give the operational semantics

for Plain CHOCS� The operational semantics is given in terms of a labelled transi�

tion system in the style of 
Plo���� The transition relation � is a family of binary

labelled relations
�
�� between elements of CPr processes� and CPr� 
CPr� CPr�

either processes or functions from processes to processes� of the form p
�
�� p��

The action � may have one of the following forms� a�x� a	Bp� � � where a 	 Names�

B 
 Names� x 	 V and p 	 CPr� Let the bound names bn of an action be de�ned

as�

bn�� �

�
B if � � a	Bp�

� otherwise

In the de�nition of the semantics of Plain CHOCS it is convenient to write pnB

where B 
 Names is a �nite set� pnB is shorthand for pnb� � � �nbn where B �

fb�� � � � � bng and p if B � ��

De�nition ����	

Let � be the smallest transition relation closed under the rules of table ������

input a�x�p
a	x
�� p

output a	p��p
a
�p

�

�� p

tau ��p
�
�� p

choice
p

�
�� p��

p � q
�
�� p��

par
p

�
�� p��

p j q
�
�� p�� j q

� bn��  fnq� � �

ren
p

a	x
�� p��

p
S�
S�a�	x
�� p��
S�
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p
a
Bp

�

�� p��

p
S�
S�a�
Bp��� p��
S�

� B  DomS� � ImS�� � �

p
�
�� p��

p
S�
�
�� p��
S�

res
p

a	x
�� p��

pnb
a	x
�� p��nb

� a �� b

p
a
Bp

�

�� p��

pnb
a
Bp�nb�� p��nb

� a �� b� b �	 fnp��  fnp����

p
�
�� p��

pnb
�
�� p��nb

open
p
a
Bp

�

�� p��

pnc
a
B�fdg�fd�cgp��

�� fd�cgp��
�a��c�d ��fn�pnc��c��fn�p���fn�p���� B

com�close
p

a	x
�� p� q

a
Bq
�

�� q��

p j q
�
�� p�
q��x� j q���nB

�B  fnp�� � �

non�struct
p
a
Bp��� p��

p
a
B�p

�

�� p��
�B��fn�p��fn�p�����B���fn�p��fn�p����

The choice� par� com�close rules have symmetric counterparts�

Table ������ Operational semantics for Plain CHOCS

The structure of this transition system is tailored to cater for the behaviour we

have in mind for systems like those described by ���� and �� � in the introduction

to this chapter� but it also carries some philosophy of its own� The three kinds of

actions yield the following types of transitions or observations�

Input action p
a	x
�� p�� this kind of transitions may be interpreted as� �the process

p is capable of receiving on channel a�� We only allow transitions of this kind

where p 	 CPr and p� 	 CPr � CPr� We want to model input transitions

in such a way that no further observations are possible until a value is sup�

plied� The reason for this is both technical and philosophical� Technically it

ensures that we do not �rewrite� to open terms which� without care� could

lead to confusion of free variables e�g�� a�x�x j b�x�x
b	x
�� a�x�x j x

a	x
�� x j x�

Philosophically it follows a point of view of only observing systems by atomic

observations or combinations of atomic observations� The input observations
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consist of observing that input on channel a is possible and the systems readi�

ness to accept a value� To make further observations about this process we

have to supply a value say q 	 CPr and observe the system p�
q�x� with this

value� A more suggestive notation would perhaps be p
a	
�� x�p�� but it is

not essential in the present calculus since x only acts as a place holder� We

have chosen the notation p
a	x
�� p� since p� is describable in the Plain CHOCS

syntax� We could extend the above transition system to open expressions� To

avoid confusion of variables introduced by the input�rule we would have to

ascribe the par�rule by the additional constraint FV p���  FV q� � �� We

have not done this since the theory of equivalence will be de�ned in terms of

closed expressions and extended to open expressions using the de�nition for

closed expressions�

Output actions �with scope extrusion� p
a
Bp

�

�� p�� � if B � � this kind of tran�

sitions may be interpreted as� �the process p can output the process p� on

channel a and in doing so become p���� To observe this action we observe

that output on channel a is possible� to make further observations we have to

observe both the value p� and the resulting state p��� If p� and p�� share some

private channels these will be in the set B and a scope extrusion is necessary�

We observe this by the combined observation as for normal output actions

together with the additional observation of the scope extrusion� A more sug�

gestive notation for output transitions might be p
a

�� B� p�� p���� We refer to

p� as the emitted process and p as the emitting process or rather p�� since this

is the state of the system after emitting p��

Silent actions p
�
�� p�� this kind of transitions may be interpreted as� �the pro�

cess p can do an internal or silent move and in doing so become the process

p��� Silent actions arise from communications between two processes� Since

communications are the only computations in our calculus these are in a sense

the real computations of the system� � �transitions may of course arise from

processes of the form ��p as well�

The input� output and com�close rules form the basis for inferring a communi�

cation between two agents� In the rules of table ����� all transitions of the form

p
a	x
�� p� have the property that p 	 CPr and p� 	 CPr � CPr and all transitions

of the form p
a
Bp��� p�� have the property p� p�� p�� 	 CPr� therefore p�
q��x� 	 CPr in

the com�close rule� This set of rules gives an operational description where input is

modelled as a function and communication acts as a generalized application� This

is very di�erent from the nature of inferring communication in dynamic CHOCS
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or in CCS with value passing 
Mil����� In dynamic CHOCS we have the following

three rules as the basis for inferring communication�

a�x�p
a	p�
�� p
p��x� a	p��p

a
p�
�� p

p
a	p�
�� p�� q

a
p�
�� q��

p j q
�
�� p�� j q��

Note that in these rules the transition relation is always between elements of

CPr� One way of interpreting the above rules is to say that the process with input

pre�x knows all the possible values it can receive� What it does is to o�er a an

in�nite� choice between all the possible new states and when the communication

takes place it is only a signal from the output process to the input process telling

which value to use choose�� The value is not really transmitted� This viewpoint

is further strengthened by the elegant� way of encoding value passing in SCCS as

described in 
Mil���� In 
MilParWal��� a scheme similar to the above for inferring

communication has been termed early instantiation� referring to the fact that the

instantiation of the free variable takes place in the axiom for input pre�x as opposed

to the scheme used in table ������ The scheme we are using has been termed late

instantiation� though there is a di�erence since processes are allowed to o�er new

transitions after an input transition� This calls for some machinery to ensure that

free variables are not confused� We have chosen the late instantiation scheme with

the restriction that p� 	 CPr � CPr in p
a	x
�� p� for the reasons given above�

late instantiation also seems necessary for the scope opening and closing rules for

the restriction operator� The rules concerning the restriction operator have several

alternatives� e�g� in dynamic CHOCS this operator does not bind names in the

process emitted but only in the emitting process as the examples in the introduction

show� Another possibility would be the following rule

p
a
p�
�� p��

pnb
a
�p�nb�
�� p��nb

a �� b

i�e� the res�rule without the side condition b �	 fnp��  fnp���� This approach

would ensure that bound names would be bound both in the emitted process and

in the emitting process� but it is too restrictive since they can not use the local

channel to communicate with one another since the nb encapsulates the process�

To elaborate on this we follow the ideas of 
EngNie��� MilParWal��� and adopt the

restriction rule above� but with the mentioned side condition� We also introduce

two new rules� open and com�close� The opening rule signals that in the emitted

process there are some bound names� names which are shared with the emitting

process� The com�close rule ensures that exported restrictions are reintroduced
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upon reception� The condition on this rule ensures that we do not bind free names

in the receiving processes� When B � � this rule is just a communication rule�

We conclude this section by listing a few useful properties of the transition

system de�ned in table �����

Proposition ����


�� If p
a
Bp��� p�� and b �	 fnp� � B then p

a
��B fcg	�fbg	 fb�cgp
�

�� fb�cgp�� for any

c 	 B�

�� If p
a
Bp��� p�� then p

a
B�p
�

�� p�� for some B� with B  fnp�� � fnp���� �

B�  fnp�� � fnp���� and B� 
 fnp��  fnp��� and B�  fnp� � ��

�� If p
a	x
�� p� then fnp�� 
 fnp��

 � If p
a
Bp

�

�� p�� then fnp�� 
 fnp� �B and fnp��� 
 fnp� �B

�� If p
�
�� p� then fnp�� 
 fnp��

Proof� By induction on the length of the inference used to establish the transition
and cases of the structure of p�

��� Bisimulation and Equivalence

In the previous section we presented the operational semantics for Plain CHOCS

in terms of a labelled transition system� The structure of this transition system

resembles a merge between the applicative transition systems of 
Abr��� and the

higher order communication trees used in the semantics for CHOCS in chapter

�� The transition relation � forms the basis for the observations we can make

about processes� but it is in itself too shallow to use as a distinguishing equivalence�

Instead we use the notion of bi�simulation 
Par��� Mil��� rede�ned to the kind of

observations the transition allows�

De�nition ����� An applicative higher order simulation R is a binary relation

on CPr such that whenever pRq and a 	 Names then�

�i� Whenever p
a	x
�� p�� then q

a	y
�� q� for some q�� y and

p�
r�x�Rq�
r�y� for all r 	 CPr

�ii� Whenever p
a
Bp

�

�� p��� then q
a
Bq

�

�� q�� for some q�� q�� with

B  fnp� � fnq�� � � and p�Rq� and p��Rq��
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�iii� Whenever p
�
�� p�� then q

�
�� q� for some q� with p�Rq�

A relation R is an applicative higher order bisimulation if both it and its inverse

are applicative higher order simulations�

Two processes p and q are said to be bisimulation equivalent i� there exists an

applicative higher order bisimulation R containing p� q�� In this case we write

p
�
� q�

The �rst clause of this predicate is essentially the clause for applicative bi�simu�

lation in the Lazy��Calculus as de�ned in 
Abr���� It can be interpreted as saying

that if p can do an input on channel a and become the function p�� then q must

match this by being able to input on channel a and become the function q� and for

all values arguments� we can receive on this channel the resulting process together

with this value should continue to simulate each other� The second clause with

B � � and the third clause are similar to the clauses of higher order bisimulation

de�ned in de�nition ������ The second clause supports a kind of black box view of

the processes being sent� If p can output a process p� on channel a and in doing so

become p��� then q should be able to output some q� on channel a and in doing so

become q�� and p� and q�� as well as p�� and q�� should be equivalent� The second clause

with B �� � is a generalization of the clause for scope extrusion in the strong ground

bisimulation de�ned in 
MilParWal���� B is a set of private channels between p�

and p��� These channels are exported from their original scope and are intended to

become restricted upon reception�

Now for R 
 Pr� we can de�ne AHBR� as the set of pairs p� q� satisfying

for all a 	 Act the clauses i� to iii� and their symmetric counterparts above�

From this de�nition it follows immediately that R is a bisimulation just in the

case R 
 AHBR�� Also� AHB is easily seen to be a monotone endofunction on the

complete lattice of binary relations over CPr� under subset inclusion� Standard

�xed point results� due to Tarski 
Tar���� yield that a maximal �xed point for AHB

exists and is de�ned as
S
fR � R 
 AHBR�g� This maximal �xed point actually

equals
�
��

Proposition �����
�
� is an equivalence

Proof� Re&exivity and symmetry are straightforward since the relation Id �
fp� p� � p 	 CPrg is an applicative higher order bisimulation and the relation

RT � fq� p� � p� q�g is an applicative higher order bisimulation ifR is an applicative

higher order bisimulation� Transitivity follows from the fact that if R and S are

applicative higher order bisimulations then R � S is an applicative higher order

bisimulation� To see this observe that if p�� p�� 	 R � S and p�
a	x
�� p�� then for
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some p� such that p�� p�� 	 R and p�� p�� 	 S we have p�
a	y
�� p�� for some p���

y and p��
r�x�� p
�
�
r�y�� 	 R for all r and we have p�

a	z
�� p�� for some p��� z and

p��
r�y�� p
�
�
r�z�� 	 S for all r� Thus p��
r�x�� p

�
�
r�z�� 	 R � S for all r�

If p�
a
Bp

�
��� p��� then for some p� such that p�� p�� 	 R and p�� p�� 	 S and B  

fnp�� � fnp��� � � and B  fnp�� � fnp��� � � which implies B  fnp�� �

fnp��� � � we have p�
a
Bp

�
��� p��� for some p��� p

��
� such that p��� p

�
�� 	 R and p���� p

��
�� 	

R and we have p�
a
Bp

�

�� p��� for some p��� p

��
� such that p��� p

�
�� 	 S and p���� p

��
�� 	 S�

Thus p��� p
�
�� 	 R � S and p���� p

��
�� 	 R � S�

If p�
�
�� p��� then for some p� such that p�� p�� 	 R and p�� p�� 	 S we have

p�
�
�� p��� for some p��� such that p���� p

��
�� 	 R and we have p�

�
�� p��� for some p���

such that p���� p
��
�� 	 S� Thus p���� p

��
�� 	 R � S�

Lemma ����� If p
�
� q and b �	 fnp� � fnq� then fb�agp

�
� fb�agq�

Before relating the process constructions of Plain CHOCS to the underlying

semantic equivalence
�
� we present a technical construction called an applicative

higher order bisimulation up to restriction� This construction resembles the higher

order bisimulation up to � presented for CHOCS in section ����

De�nition ����� An applicative higher order simulation up to restriction R is a

binary relation on CPr such that whenever pRq and a 	 Names then�

�i� If b �	 fnp� � fnq� then fb�agpRfb�agq

�ii� Whenever p
a	x
�� p�� then q

a	y
�� q� for some q�� y and

p�
r�x�Rq�
r�y� for all r 	 CPr

�iii� Whenever p
a
Bp

�

�� p��� then q
aB
q

�

�� q�� for some q�� q�� with

B  fnp� � fnq�� � �� p�Rq� and p��Rq��

�iv� Whenever p
�
�� p�� then q

�
�� q� for some q� and either

p�Rq� or for some p��� q�� and b� p� � p��nb� q� � q��nb and

p��Rq��

A relation R is an applicative higher order bisimulation up to restriction if both

it and its inverse are applicative higher order simulations up to restriction�

Lemma ����� If R is an applicative higher order bisimulation up to restriction

then R 

�
��
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Proof� We show that the relation Rn �
S
n��Rn where

R� � R

Rn�� � fpnb� qnb� � p� q� 	 Rn� b 	 Namesg

is an applicative higher order bisimulation�

First we show by induction on n that if pRnq and c �	 fnp� � fnq� then

fc�agpRnfc�agq�

For n � � this is immediate from the de�nition of applicative higher order bisim�

ulation up to restriction� Suppose n 
 � and pnbRnqnb where pRn��q and c �	

fnpnb� � fnqnb�� If a � b then fc�agpnb� � pnbRnqnb � fc�agqnb�� If a �� b

then fc�agpnb� � fc�agfb��bgp��nb�Rnfc�agfb��bgq��nb� � fc�agqnb�

Next we show by induction on n that if pRnq then

i� Whenever p
a	x
�� p�� then q

a	y
�� q� for some q�� y and

p�
r�x�Rnq�
r�y� for all r 	 CPr

ii� Whenever p
a
Bp

�

�� p��� then q
a
Bq

�

�� q�� for some q�� q�� with

B  fnp� � fnq�� � �� p�Rnq� and p��Rnq��

iii� Whenever p
�
�� p�� then q

�
�� q� for some q� and p�Rnq�

n � � This case is immediate from the fact that R� is an applicative higher order

bisimulation up to restriction and from the de�nition of Rn�

n 
 � Suppose pRnq where p � p�nb and q � q�nb�

�� If p
a	x
�� p� this must have been inferred by the res�rule and p�

a	x
�� p��

with a �� b and p� � p��nb� Then for some q��� y we have q�
a	y
�� q��

and p��
r�x�R
nq��
r�y� for all r 	 CPr� Then q

a	y
�� q� � q��nb and for all

r 	 CPr and some c �	 fnp��nb� � fnq��nb� � fnr� we have p�
r�x� �

fc�bgp���
r�x��ncR
nfc�bgq���
r�x��nc � q�
r�x��

�� Suppose B  fnp� � fnq�� � �� If p
a
Bp

�

�� p�� and this has been inferred

by the res�rule then p�
a
Bp

�
��� p��� with a �� b and b �	 B � fnp��� fnp

��
���

and p� � p��nb and p�� � p���nb� So for some q��� q
��
� we have q�

a
Bq
�
��� q��� and

p��R
nq�� and p���R

nq��� � Thus q
a
Bq

�

�� q�� with q� � q��nb and q�� � q���nb and

p�Rnq� and p��Rnq���

If p
a
Bp��� p�� and this has been inferred by the open�rule then p�

a
B�p
�
��� p���



Chapter �� Plain CHOCS ���

with a �� b� B � B� �fcg and b 	 fnp���� fnp
��
�� and c �	 fnp�nb��B�

and p� � fc�bgp�� and p�� � fc�bgp���� So for some q��� q��� we have

q�
a
B�q

�
��� q��� and p��R

nq�� and p���R
nq��� � Thus q

a
Bq
�

�� q�� with q� � fc�bgq�� and

q�� � fc�bgq��� and p�Rnq� and p��Rnq���

If p
a
Bp

�

�� p�� and this has been inferred by the non�struct�rule then p
a
B�p

�

��

p�� with B� fnp���fnp���� � B fnp���fnp����� So for some q�� q��

we have q
a
B�q

�

�� q�� and p�Rnq� and p��Rnq��� Thus B� fnq��� fnq���� �

B  fnq�� � fnq���� and q
a
Bq

�

�� q�� and we already know p�Rnq� and

p��Rnq���

�� If p
�
�� p� then p�

�
�� p�� and p� � p��nb� Then q�

�
�� q�� and p��R

nq���

Thus q
�
�� q� � q�� and p�Rnq��

Let x � x�� � � � � xn� be a vector of variables of length n and xi �� xj if i �� j� We also

consider x as a set of variables fx�� � � � � xng and we write x 
 FV p� which means

that the set x is a subset of FV p�� Let p
q�x� mean � � � p
q��x��� � � ��
qn�xn�� We

only consider substitutions of compatible vectors� i�e� of vectors of the same length�

Let q�
�
� q� mean q�j

�
� q�j for all qij 	 qi� i 	 �� � and let qi 	 CPr mean qij 	 CPr

for all qij 	 qi�

Proposition ����	
�
� is a congruence relation on processes �closed expressions��

�� p
q��x�
�
� p
q��x� if q�

�
� q� and x 
 FV p�

�� a�x�p
�
� a�x�q if p
r�x�

�
� q
r�x� for all r

�� a	p��p
�
� a	q��q if p

�
� q and p�

�
� q�

 � ��p
�
� ��q if p

�
� q

�� p � p�
�
� q � q� if p

�
� q and p�

�
� q�

�� p j p�
�
� q j q� if p

�
� q and p�

�
� q�

�� pna
�
� qna if p

�
� q

�� p
S�
�
� q
S� if p

�
� q
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Proof�

�� We prove this by showing that the relation ACR�� the re&exive and transitive

closure of ACR� where

ACR � fp
q��x�� p
q��x�� � p 	 Pr " x 
 FV p� " q�
�
� q� " qi 	 CPrg�

is an applicative higher order bisimulation up to restriction�

Note if q�
�
� q� then x
q��x�� x
q��x�� 	 ACR� and we write q�� q�� 	 ACR��

We only show that ACR� is an applicative higher order simulation up to restric�

tion� symmetry of ACR� then yields the result� To see that ACR� is an applica�

tive higher order simulation up to restriction we show that if p�� p�� 	 ACR

then pi � p
qi�x� and�

i� If b �	 fnp
q��x�� � fnp
q��x�� then

fb�agp
q��x��ACR
�fb�agp
q��x��

ii� Whenever p
q��x�
a	x
�� p�� then p
q��x�

a	y
�� q� for

some q�� y and p�
r�x�ACR�q�
r�y� for all r 	 CPr

iii� Whenever p
q��x�
a
Bp

�

�� p��� then p
q��x�
a
Bq

�

�� q�� for

some q�� q�� with B  fnp� � fnq�� � �� p�ACR�q�

and p��ACR�q��

iv� Whenever p
q��x�
�
�� p�� then p
q��x�

�
�� q� for

some q� and either p�ACR�q� or for some p��� q�� and b�

p� � p��nb� q� � q��nb and p��ACR�q��

If p� q� 	 ACR� then there is a sequence p� � � � pn such that p� p�� 	 ACR�

pi� pi��� 	 ACR for � � i � n and pn� q� 	 ACR� The result then follows by

induction on the length of the transitive sequence p� � � � pn of ACR��

First i� is easily proved by structural induction on p using lemma ����� in the

case p � y�

Next we show ii��iv� simultaneously� We proceed by induction on the length

of the inference used to establish the transitions of p
q��x� and cases of the

structure of p� We only need to consider transitions inferred by use of the

structural rules since we may transform any derivation of a transitions into

an equivalent one where we use the non�struct�rule excatly once after each

application of a structural rule�

p � nil Trivial since p
qi�x� ���
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p � a�y�p� Assume y �	 x otherwise use ��conversion on y�� Then p
qi�x� �

a�y�p�
qi�x�� and p
qi�x�
a	y
�� p�
qi�x�� Since FV p�� 
 x � fyg� and

y �	 x we have p�
q��x��
r�y� � p�
q�� r�x� y�ACR
�p�
q�� r�x� y� �

p�
q��x��
r�y� for all r 	 CPr� since r
�
� r and qi are closed�

p � a	p��p� Then p
qi�x�
a
��p�qi�x���� p�
qi�x��

and p�
q��x�ACR
�p�
q��x� and p�
q��x�ACR

�p�
q��x�

p � ��p� An argument similar to the argument given in the case above yields

this case�

p � p� � p� If p
q��x�
�
�� p� then

either p�
q��x�
�
�� p� by a shorter inference� There are three cases

depending on the structure of �� We show the case when � � a�x�

By induction p�
q��x�
a	z
�� p�� and p�
r�x�ACR�p��
r�z� for all r 	 CPr�

By the operational semantics for choice we have p��p��
q��x�
a	z
�� p��

which is a matching move�

or p�
q��x�
�
�� p� and we may argue as above�

p � p� j p� If p
q��x�
�
�� p� then

either p�
q��x�
�
�� p�� by a shorter inference and p� � p�� j p�
q��x��

There are three cases depending on the structure of ��

� � a�x Then by induction p�
q��x�
a	z
�� p��� and p��
r�x�� p

��
�
r�z�� 	

ACR� for all r 	 CPr� Then by the operational semantics for

parallel we have p� j p��
q��x� � p�
q��x�� j p�
q��x��
a	z
�� p��� j

p�
q��x�� Since p��
r�x�� p
��
�
r�z�� 	 ACR� for all r 	 CPr there

exist p�� q�
�

� � q
��
� and x� for each r 	 CPr such that p��
r�x� �

p�
q
��
� �x

�� and p���
r�z� � p�
q
��
� �x

�� with FV p�� 
 x� and q�
�

�
�
� q�

�

� �

We may assume x�  x � � since if x�  x �� � we proceed by

choosing y such that y  FV p�� � x� � x� � � and we have

p�
q
��
i �x

�� � p�
y�x���
q�
�

i �y� by proposition ������ Thus p�� j

p�
q���x��
r�x� � p��
r�x� j p�
q
�
��x� � p� j p��
q�

�

� � q
�
��x

� � x� and

p��� j p�
q
�
��x��
r�z� � p���
r�z� j p�
q

�
��x� � p� j p��
q�

�

� � q
�
��x

� � x�

and p� j p��
q�
�

� � q���x
� � x�� p� j p��
q�

�

� � q���x
� � x�� 	 ACR�

for each r 	 CPr by proposition ����� since r and q�
�

i and q�i are

all closed�

� � a	Bp� Then B  fnp�
q��x�� � �� By induction p�
q��x�
a
Bp���� p���

with p�� p��� 	 ACR� and p��� p
��
�� 	 ACR� and B fnp�
q��x���

fnp�
q��x��� � �� Thus B  fnp�
q��x�� � � and by the opera�

tional semantics for parallel p�
q��x� j p�
q��x�
a
Bp

��

�� p��� j p�
q��x��
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Since �p��� p
��
�� � ACR� there exist p�� q�

�

� � q
��
� and x� such that p�� �

p��q�
�

� �x
�	 and p��� � p��q�

�

� �x
�	 with FV �p�� � x� and q�

�

�
�
� q�

�

� 
 We

may assume x� �x � � since if x� �x �� � we proceed by choosing

y such that y � �FV �p�� � x� � x� � � and we have p��q�
�

i �x
�	 �

�p��y�x�	��q�
�

i �y	 by proposition �
�
�
 Thus �p�� j p��q
�
��x	� � �p� j

p���q
��
� � q���x

� � x	 and �p��� j p��q
�
��x	� � �p� j p���q

��
� � q���x

� � x	

and ��p� j p���q�
�

� � q
�
��x

� � x	� �p� j p���q�
�

� � q���x
� � x	� � ACR�


� � � and we may argue as above


or p��q��x	
�
	
 p�� and we may argue as above


or � � � and w
l
o
g
 p��q��x	
a�x
	
 p�� and p��q��x	

a�Br
�

	
 p�� by shorter

inferences and p� � �p���r
��x	 j p���nB and B � fn�p��� � �
 By in�

duction p��q��x	
a�Br

��

	
 p��� with �r�� r��� � ACR� and �p��� p
��
�� � ACR�

and p��q��x	
a�z
	
 p��� with �p���r�x	� p

��
��r�z	� � ACR� for all r � CPr


By proposition �
�
 we may assume that B � fn�p���� � �
 By the

operational semantics for parallel �p� j p���q��x	
�
	
 �p����r

���z	 j

p����nB
 To see that p���r
��x	 j p��ACR

�p����r
���z	 j p��� and thus show�

ing that ACR� is an applicative higher order bisimulation up to re�

striction we observe that �p���r�x	� p
��
��r�z	� � ACR� for all r � CPr�

in particular this is true for r�
 Clearly p����r
��z	ACR�p����r

���z	 since

r�ACR�r�� and if �r�� r��� � ACR� then r� � r��q��x	 and r
�� � r��q��x	

for some r� with FV �r�� � x and q�
�
� q� for some closed qi


Then p����r
��z	 � p����r��q��x	�z	 � �p����r��z	��q��x	 and p����r

���z	 �

p����r��q��x	�z	 � �p����r��z	��q��x	 since FV �p
��
�� � fzg and FV �r�� � x

we have FV �p����r��z	� � x and ��p����r��z	��q��x	� �p
��
��r��y	��q��x	� �

ACR�
 Thus �p���r
��x	� p����r

���z	� � ACR�
 Therefore there exist p��

q��� q
�
� and x� such that p���r

��x	 � p��q���x
�	 and p����r

���z	 � p��q���x
�	

with FV �p�� � x� and q��
�
� q��
 Also� since �p��� p

��
�� � ACR� there

exist p�� q��� q
�
� and x� such that p�� � p��q���x

�	 and p��� � p��q���x
�	

with FV �p�� � x� and q��
�
� q��
 We may assume x� � x� � � since if

x��x� �� � we proceed by choosing y such that y��FV �p���FV �p���

x� � x�� � � and we have p��q�i �x
�	 � �p��y�x�	��q�i �y	 by proposition

�
�
�
 Therefore we have p���r
��x	 j p�� � �p��q

�
��x

�	� j �p��q
�
��x

�	� �

�p� j p���q��� q
�
��x

��x�	 and p����r
��z	 j p��� � �p��q���x

�	� j �p��q���x
�	� �

�p� j p���q���q
�
��x

��x�	 and �p���r�x	 j p
�
�� p

��
��r�z	 j p

��
�� � ACR�
 �Note

that if we have to introduce a �new� y it is because two or more oc�

currences of the same xi refer to di�erent qi�s after the transition
�

p � p�nb Then p�qi�x	 � ��fdi�bgp���qi�x	�ndi for some di �� fn�p�nb��fn�qi�


By �i� we may assume b � d� � d� �� fn�p�nb� � fn�q�� � fn�q��
 If
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p�q��x	
�
	
 p�� then if

� � a�x Then p��q��x	
a�x
	
 p�� by a shorter inference and p� � p��nb and

a �� b
 By induction p��q��x	
a�z
	
 p�� �p

�
��r�x	� p

�
��r�z	� � ACR� for all

r � CPr
 By the operational semantics for restriction �p�nb��q��x	
a�z
	


p��nb
 Since �p
�
��r�x	� p

�
��r�z	� � ACR� for all r � CPr there exist p��

q�� q� and x for each r such that p�� � p��q��x	 and p�� � p��q��x	

with FV �p�� � x and q�
�
� q� and �p��nb� � �p�nb��q��x	 and �p��nb� �

�p�nb��q��x	 thus �p
�
�nb� p

�
�nb� � ACR�


� � a�Bp
� Then

either p��q��x	
a�Bp

�
�	
 p��� by a shorter inference and p� � p��nb� p

�� � p���nb�

b �� a� b �� B� b �� fn�p����fn�p
��
��
 Then by induction p��q��x	

a�Bp
�
�	
 p���

with �p��� p
�
�� � ACR� and �p���� p

��
�� � ACR� and B � �fn�p��q��x	� �

fn�p��q��x	�� � �
 Then by the res�rule we have �p��q��x	�nb
a�Bp

�
�
nb

	


p���nb and we may argue as above that �p��nb� p
�
�nb� � ACR� and

�p���nb� p
��
�nb� � ACR�


or p��q��x	
a��
B
p�
�	
 p��� by a shorter inference and p� � fd�bgp��� p

�� �

fd�bgp���� b �� a� b �� B�� b � fn�p��� � fn�p����� B � B� � fdg�

d �� B� � fn��p��qi�x	�nb�
 Then by induction p��q��x	
a��
B
p�
�	
 p���

with �p��� p
�
�� � ACR� and �p���� p

��
�� � ACR� and B � � �fn�p��q��x	� �

fn�p��q��x	�� � �
 If b � fn�p��� � fn�p���� then by the open�rule we

have �p��q��x	�nb
a�Bfd�bgp

�
�	
 fd�bgp��� and by �i� we have

�fd�bgp��� fd�bgp
�
�� � ACR� and �fd�bgp���� fd�bgp

��
�� � ACR�
 If b ��

fn�p����fn�p
��
�� then by the non�struct�rule we have �p��q��x	�nb

a�Bp
�
�	


p��� and p�� � fd�bgp�� and p��� � fd�bgp��� and by �i� we have

�fd�bgp��� fd�bgp
�
�� � ACR� and �fd�bgp���� fd�bgp

��
�� � ACR�


� � � and we may argue as above


p � p��S	 If p�q��x	 � �p��q��x	��S	
�
	
 p�� then if

� � a�x we have p��q��x	
b�x
	
 p��� by a shorter inference and a � S�b� and

p�� � p����S	
 By induction p��q��x	
b�z
	
 p��� and p����r�x	ACR

�p����r�z	

for all r � CPr
 Then �p��q��x	��S	
a�z
	
 p����S	 with �p����r�x	��S	 �

�p����S	��r�x	ACR
��p����S	��r�z	 � �p����r�z	��S	 for all r � CPr


� � a�Bp� we have p��q��x	
b�Bp��	
 p��� by a shorter inference and a � S�b�

and B � �Dom�S� � Im�S�� � � and p� � p�� and p�� � p����S	


By induction p��q��x	
b�Bp��	
 p��� and p��ACR

�p�� and p���ACR
�p���
 Then

�p��q��x	��S	
a�Bp��	
 p����S	 with p��ACR

�p�� and p����S	ACR
�p����S	


� � � this case is similar to the above
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p � y By assumption FV �p� � x thus x � �y� and if p�q��x	 � q�
�
	
 q�� then

if

� � a�x we have p�q��x	 � q�
a�z
	
 q�� for some q�� and z
 Since q�

�
� q� we

have �q���r�x	� q
�
��r�z	� �

�
� for all r � CPr and thus �q���r�x	� q

�
��r�z	� �

ACR� for all r � CPr

� � a�Bp� we have p�q��x	 � q�
a�Bq

��
�	
 q�� for some q�� and q��� 
 Since q�

�
� q�

we have �q��� q
�
�� �

�
� and �q��� � q

��
�� �

�
� and thus �q��� q

�
�� � ACR� and

�q��� � q
��
�� � ACR�

� � � A similar argument as above applies


Thus in each case we have a matching move for p�q��x	


�
 This is proved by showing that the relation R� � R�
�
�� where�

R � f�a�x�p� a�x�q� � FV �p� � FV �q� � fxg��r � CPr�p�r�x	
�
� q�r�x	g

is an applicative higher order bisimulation Note that the relation R� consists

of two parts� one part covers the structure we are interested in and the second

component is a kind of closure to cover the processes sent and received
 The

second component is necessary since the processes sent and received do not

necessarily have the structure of the �rst part


That the above relation is indeed an applicative higher order bisimulation is

easily established


Assume �p� q� � R�
 Then

either p
�
� q and we are done since if p

�
	
 p� then q

��
	
 q� for some q�� ��
 If

� � a�x then �
� � a�y and for all r � CPr we have �p��r�x	� q��r�y	� �

�
��

R�
 If � � a�Bp�� then �
� � a�Bq�� and we have B � �fn�p� � fn�q�� � �

and �p��� q���
�
�� R� and �p�� q��

�
�� R�
 If � � � then �

� � � and we have

�p�� q��
�
�� R�


or p � a�x�p� and q � a�x�q�
 If a�x�p�
�
	
 p� then � � a�x
 Then a�x�q�

a�x
	


q� and by assumption p��r�x	
�
� q��r�x	 for all r � CPr which implies

�p��r�x	� q��r�x	� � R�


�
 follows from ��a�x�y���p� p����x� y�	� �a�x�y���q� q����x� y�	� � ACR if p
�
� q and

p�
�
� q� and x �� y


�
 follows from ����x��p�x	� ���x��q�x	� � ACR if p
�
� q


�
 follows from ��x � y���p� p����x� y�	� �x� y���q� q����x� y�	� � ACR if p
�
� q and

p�
�
� q� and x �� y
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�
 follows from ��x j y���p� p����x� y�	� �x j y���q� q����x� y�	� � ACR if p
�
� q and

p�
�
� q� and x �� y



 follows from �x�p�x	� x�q�x	� � ACR if p
�
� q and the fact that ACR� is an

applicative bisimulation up to restriction


�
 follows from ��x�S	��p�x	� �x�S	��q�x	� � ACR if p
�
� q


The congruence result easily generalizes to open terms by standard techniques

by de�ning p
�
� q i� �r� � � � rn�p�r� � � � rn�x� � � � xn	

�
� q�r� � � � rn�x� � � � xn	 where

x� � � � xn are the free variables of p and q and r� � � � rn are closed terms
 This is

equivalent to the following de�nition� p
�
� q i� a�x�� � � � a�xn�p

�
� a�x�� � � � a�xn�q


��� Algebraic Laws

From establishing bisimulations between Plain CHOCS processes we may show that

two processes are equivalent� but this technique often involves quite an amount of

ingenuity in the construction of a bisimulation relation
 Instead we may prefer the

more well known techniques of algebraic reasoning
 A lot of interesting properties

of Plain CHOCS may be inferred from equational reasoning
 This kind of reasoning

may of course be combined with establishing bisimulations directly


The �rst set of laws concerns the choice operator and shows that nil is a zero

for � and that � is idempotent� commutative and associative


Proposition �����

p� nil
�
� p

p� p
�
� p

p� p�
�
� p� � p

p � �p� � p���
�
� �p � p�� � p��

Proof� This follows from showing that the following relations are higher order
applicative bisimulations�

R� � f�p � nil� p�g � Id

R� � f�p � p� p�g � Id

R� � f�p � p�� p� � p�g � Id

R� � f�p � �p� � p���� �p � p�� � p���g � Id
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To see this observe that for �r� q� � Ri� i � f�� �� �� �g we have either �r� q� � Id and

if r
�
	
 r� then r � q

�
	
 q� � r� and we have a matching move or �r� q� belongs to

the �rst part of Ri and if r
�
	
 r� then this must have been inferred by the rules

for choice
 Then also q
�
	
 r� which is a matching move


We now proceed with some properties of the restriction operator and its inter�

play with the other operators
 To smooth the presentation of equations we intro�

duce a fourth �derived� pre�x� an output pre�x with scope extrusion� a�Bp�
 Thus

a�Bp
��p is shorthand notation for �a�p��p�nB with the obvious operational semantics�

a�Bp��p
a�Bp

�

	
 p
 We shall always assume that B � fn�p�� � fn�p�


Proposition �����

pna
�
� p if a �� fn�p�

pnanb
�
� pnbna

�p� p��na
�
� pna� p�na

�a�x�p�nb
�
� a�x��pnb� if a �� b

�a�x�p�nb
�
� nil if a � b

���p�nb
�
� ���pnb�

�a�Bp
��p�nb

�
� a�B�p

�nb���pnb� if a �� b and b �� fn�p�� � fn�p�

�a�Bp
��p�nb

�
� a�B�fbgp

��p if a �� b and b � fn�p�� � fn�p�

�a�Bp
��p�nb

�
� nil if a � b

Proof� The proposition follows from showing that the following relations are
applicative higher order bisimulations�

R� � f�pna� p� � p � CPr� a �� fn�p�g

R� � f�pnanb� pnbna� � p � CPrg � Id

R� � f��p � p��na� pna� p�na� � pi � CPrg � Id

R� � f��a�x�p�nb� a�x��pnb�� � a�x�p � CPr� a �� bg � Id

R	 � f��a�x�p�nb� nil� � a�x�p � CPr� a � bg

R
 � f����p�nb� ���pnb�� � p � CPrg � Id

R� � f��a�Bp
��p�nb� a�B�p

�nb���pnb�� � p� p� � CPr� a �� b� b �� fn�p�� � fn�p�g � Id

R� � f��a�Bp
��p�nb� a�B�fbgp

��p� � p� p� � CPr� a �� b� b � fn�p�� � fn�p�g � Id

R � f��a�Bp
��p�nb� nil� � p� p� � CPr� a � bg
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We must include Id in relation R� to R� and R
 to R�
 For relation R�� R�

and R
 to R� this is clear since if �p� q� � Ri� i � f�� �� �� � �g then after the �rst

transition p
�
	
 p� and a �rst matching transition q

��
	
 q� we will have �p�� q�� � Id


For R� it is necessary to include Id since the restrictions may disappear due to

applications of the open�rule


The following theorem states an expected property of restriction� namely that

the restricted name may be ��converted without a�ecting the behaviour of the

process involved


Theorem ����� pna
�
� �fb�agp�nb if b �� fn�p�

Proof� This theorem follows by showing that the relation

R � f�pna� �fb�agp�nb� � p � CPr� b �� fn�p�g � Id

is an applicative higher order bisimulation


The Id component of this relation is necessary in case of scope extrusion due to

an application of the open�rule in which case the restrictions will disappear and a

respectively b will be substituted with a new name c �� fn�p� � fbg
 The matching

moves are easily established by appealing to proposition �
�



Before presenting any additional laws we need to introduce a concept related

to the concept of an applicative higher order bisimulation up to restriction
 The

new concept is called an applicative higher order bisimulation up to
�
� and allows

a relaxation of applicative higher order bisimulation in the sense that the relation

only has to satisfy the applicative higher order bisimulation properties up to the

closure property of
�
��

De�nition ����� An applicative higher order simulation up to
�
� is a binary

relation R on CPr such that whenever pRq and a � Names then�

�i� Whenever p
a�x
	
 p�� then q

a�y
	
 q� for some q�� y and

p��r�x	
�
� R

�
� q��r�y	 for all r � CPr

�ii� Whenever p
a�Bp

�

	
 p��� then q
a�Bq

�

	
 q�� for some q�� q�� with

B � �fn�p�� fn�q�� � � and p�
�
� R

�
� q� and p��

�
� R

�
� q��

�iii� Whenever p
�
	
 p�� then q

�
	
 q� for some q� with p�

�
�

R
�
� q�

A relation R is an applicative higher order bisimulation up to
�
� if both it and

its inverse are applicative higher order simulations up to
�
��
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Lemma ����� If R is an applicative higher order bisimulation up to
�
� then R �

�
��

Proof� Follows by arguments very similar to the arguments given for lemma
�
�
�

De�nition ����	 An applicative higher order simulation up to
�
� and restriction

R is a binary relation on CPr such that whenever pRq and a � Names then�

�i� If b �� fn�p� � fn�q� then fb�agp
�
� R

�
� fb�agq

�ii� Whenever p
a�x
	
 p�� then q

a�y
	
 q� for some q�� y and

p��r�x	
�
� R

�
� q��r�y	 for all r � CPr

�iii� Whenever p
a�Bp

�

	
 p��� then q
aB�q

�

	
 q�� for some q�� q�� with

B � �fn�p� � fn�q�� � �� p�
�
� R

�
� q� and p��

�
� R

�
� q��

�iv� Whenever p
�
	
 p�� then q

�
	
 q� for some q� and either

p�
�
� R

�
� q� or for some p��� q�� and b� p�

�
� p��nb� q�

�
� q��nb

and p��Rq��

A relation R is an applicative higher order bisimulation up to
�
� and restriction

if both it and its inverse are applicative higher order simulations up to restriction�

Lemma ����
 If R is an applicative higher order bisimulation up to
�
� and restric�

tion then R �
�
��

Proof� Let Rn
�

� �
S
n�� Rn where

R� �
�
� R

�
�

Rn�� �
�
� f�pna� qna� � �p� q� � Rn� a � Namesg

�
�

The argument that Rn
�

� is an applicative higher order bisimulation follows the same

pattern as the proof of lemma �
�
�
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With this machinery in hand we may now prove the following interplay between

the restriction operator and parallel composition�

Proposition ����� p�na j p�
�
� �p� j p��na if a �� fn�p��

Proof� This proposition is proved by showing that the relation

R � f�p�na j p�� �p� j p��na� � pi � CPr� a �� fn�p��g � Id

is an applicative higher order bisimulation up to
�
� and restriction
 To see this we

show that when �p� q� � R and p
�
	
 p� then q

��
	
 q� with a move which satis�es

the conditions of applicative higher order bisimulation up to
�
� and restriction
 If

�p� q� � Id the case is obvious so assume that p � p�na j p� and q � �p� j p��na and

a �� fn�p��


If p
�
	
 p� this transition must have been inferred in the following way�

either this has been inferred from the par�rule and p�
�
	
 p��� and p� � p�na j p���


There are three cases�

� � b�x then b �� a since a �� fn�p��
 Then by the par�rule and the res�

rule we have �p� j p��na
b�x
	
 �p� j p����na and for all r � CPr we have

�p�na j p�����r�x	
�
� �fd�agp��nb j p����r�x	R�fd�agp� j p

��
��r�x	�nd

�
� ��p� j

p����na��r�x	 for some d �� fn�p�� � fn�p�� � fn�r�


� � b�Bp�� then b �� a and we may assume B � �fag � fn�p��� � �
 Then by

the par�rule and the res�rule we have �p� j p��na
b�Bp��na	
 �p� j p����na which

is a matching move since a �� fn�p�� �B and therefore p��na
�
� p��


� � � and we may argue as in the above case


or this transition has been inferred by the par�rule and p�na
�
	
 p��� and this has

been inferred from the res�rule and p�
�
	
 p���� and p� � p��� j p�
 There are

three cases�

� � b�x then p��� � p���� na and b �� a
 Then by the par�rule and the res�

rule we have �p� j p��na
b�x
	
 �p���� j p��na
 This is a matching move

since for all r � CPr we have �p���� na j p���r�x	
�
� ��fd�agp���� ��r�x	�nb j

p�R��fd�agp���� ��r�x	 j p��nd
�
� ��p���� j p��na��r�x	 for some d �� fn�p�� �

fn�p�� � fn�r�


� � b�Bp�� then p�
b�Bp

����
�	
 p���� and b �� a and

either a �� fn�p����� � � fn�p���� � in which case p�� � p����� na and p��� � p���� na


Then by the par�rule and the res�rule we have �p� j p��na
b�Bp��	
 �p���� j

p��na which is a matching move
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or a � �fn�p����� � � fn�p���� �� B in which case p�� � p����� and p��� � p����
and B � B� � fag for some B� with a �� B�
 We may assume

B� � fn�p�� � �
 Then by the par�rule and the open�rule we have

�p� j p��na
b�Bp

�
�	
 p���� j p� which is a matching move


� � � and we may argue as in the above case


or � � � and the transition has been inferred by the com�close�rule and p�na
b�x
	


p��na which has been inferred by the res�rule and p�
b�x
	
 p�� with b �� a and

p�
b�Bp

�
�	
 p��� and p� � ��p��na��p

�
��x	 j p

��
��nB
 We may assume B � fn�p�� �

� and a �� fn�p���
 Thus by the com�close�rule and the res�rule we may

infer that �p� j p��na
�
	
 �p���p

�
��x	 j p

��
��nBna which is a matching move

since �p���p
�
��x	 j p

��
��nBna

�
� �p���p

�
��x	 j p

��
��nanB by proposition �
�
� and

��p��na��p
�
��x	 j p

��
��R�p

�
��p

�
��x	 j p

��
��na


or � � � and the transition has been inferred by the com�close�rule and p�na
b�Bp

�
�	
 p���

which has been inferred by the res�rule and p�
b�Bp

����
�	
 p���� and b �� a and

a �� fn�p����� � � fn�p���� � and p�� � p����� na and p��� � p���� na and p�
b�x
	
 p��� and p� �

�p��� j p
��
��p

�
��x	�nB
 We assumeB�fn�p���� � �
 Then by the com�close�rule and

the res�rule we have �p� j p��na
�
	
 �p���� j p

��
��p

����
� �x	�nBna which is a matching

move since �p���� j p����p
����
� �x	�nBna

�
� �p���� j p�����p

����
� �na�x	�nanB by proposition

�
�
� and proposition �
�
� �and an argument by structural induction on p���
which is straightforward since by the assumptions either p���� na

�
� p���� or p����� na

�
�

p����� � and p��� j p
��
��p

�
��x	R�p

���
� j p

��
���p

����
� �na�x	�na


or � � � and the transition has been inferred by the com�close�rule and p�na
b�Bp

�
�	


p��� which has been inferred by the open�rule and p�
b�B�p

����
�	
 p���� and b �� a

and a � fn�p����� � � fn�p���� � and p�� � p����� and p��� � p���� and B � B� � fag

for some B� with a �� B� and p�
b�x
	
 p��� and p� � �p��� j p

��
��p

�
��x	�nB
 We

assume B� � fn�p���� � �
 Then by the com�close�rule and the res�rule we

have �p� j p��na
�
	
 �p���� j p����p

����
� �x	�nB�na which is a matching move since

�p���� j p����p
����
� �x	�nB�na

�
� �p���� j p����p

����
� �x	�nB by proposition �
�
� and p��� j

p����p
�
��x	Rp

���
� j p

��
��p

����
� �x	


We omit the proof for the cases showing R�� is an applicative higher order simula�

tion up to
�
� and restriction
 The arguments in these cases are very similar to the

above and follow almost from symmetry


The next set of laws shows some expected properties of the parallel operator
 It

would perhaps have been more natural to present these laws before the laws of re�

striction and its interplay with other operators� but to prove the law of associativity

for the parallel operator we need some of the above properties
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Proposition �����

p j nil
�
� p

p� j p�
�
� p� j p�

p� j �p� j p��
�
� �p� j p�� j p�

Proof� This proposition is proved by showing that the �rst two of the following
relations are applicative higher order bisimulations and that the last relation is an

applicative higher order bisimulation up to
�
� and restriction�

R� � f�p j nil� p� � p � CPrg � Id

R� � f�p� j p�� p� j p�� � pi � CPrg � Id

R� � f�p� j �p� j p��� �p� j p�� j p�� � pi � CPrg � Id

The Id component in each of the above relations is necessary to cover the cases when

processes are communicated since these processes might not have the structure of

the �rst part of the relation
 To see that the above relations are indeed applicative

higher order bisimulations respectively applicative higher order bisimulations up

to
�
� and restriction we analyze each relation in turn
 �The Id part of the above

relations is obvious
�

R� Any transitions of p j nil must have been inferred from a transition of p and

the rule for parallel composition since nil has no transitions� thus p has a

matching move for each move of p j nil and vice versa


R� This is easily established by noting that both rules �par and com�close� involving

the parallel operator are symmetric


R� The proof that this relation is an applicative higher order bisimulation up to
�
� and restriction is surprisingly complicated
 This is due to the fact that

the communication of processes may introduce restrictions and thus alter

the structure of the term
 To illustrate this point we show the case when

p� j �p� j p��
�
	
 p� and this transition has been inferred by the com�close�rule

and p�
b�x
	
 p�� and �p� j p��

b�Bp
��

	
 p��� and this is due to an application of the par�

rule and p�
b�Bp

��

	
 p�� with B � fn�p�� � � and p��� � p�� j p� and p� � �p���p
���x	 j

�p�� j p���nB
 Then by the com�close�rule p� j p�
�
	
 �p���p

���x	 j p���nB and by

the par�rule �p� j p�� j p�
�
	
 �p���p

���x	 j p���nB j p�
 Since B � fn�p�� we can

apply proposition �
�
� and �p���p
���x	 j p���nB j p�

�
� ��p���p

���x	 j p��� j p��nB
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and we have established a matching move which satis�es the conditions of

an applicative higher order bisimulation up to
�
� and restriction
 There are

�ve other similar cases� one when p� does an output transition and p� does

an input transition� two when p� and p� communicate and two when p� and

p� communicate
 These cases follow the same pattern of argument as above


The only three remaining cases are when either of the three components does

a transition on its own but in each case a matching move can be established

by two applications of the par�rule


Using the above properties we may now present a law of interplay between

parallel composition and restriction which will look more familiar to readers with

knowledge of CCS


Theorem ����� �p� j p��na
�
� p�na j p�na if a �� fn�p�� � fn�p��

Proof� If a �� fn�p�� � fn�p�� then a can not be a free name in both p� and
p�
 Suppose a �� fn�p��
 Then by proposition �
�
� and proposition �
�
� we have

�p� j p��na
�
� p�na j p�

�
� p�na j p�na
 The other case where a �� fn�p�� follows by a

similar argument after commuting p� and p� using proposition �
�
�


We now present some expected properties of renaming�

Proposition ������

nil�S	
�
� nil

p�S	
�
� p�S	�S	

p�S	nb
�
� pnb�S	 if b �� Dom�S� � Im�S�

�p� � p���S	
�
� p��S	 � p��S	

�p� j p���S	
�
� p��S	 j p��S	

�a�x�p��S	
�
� S�a��x��p�S	�

���p��S	
�
� ���p�S	�

�a�Bp
��p��S	

�
� S�a��Bp

���p�S	� if B � �Dom�S� � Im�S�� � �

Proof� The proposition follows from showing that the following relations are
applicative higher order bisimulations�

R� � f�nil�S	� nil�g

R� � f�p�S	� p�S	�S	� � p � CPrg
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R� � f�p�S	nb� pnb�S	 � p � CPr� b �� Dom�S� � Im�S�g � Id

R� � f��p� � p���S	� p��S	 � p��S	� � pi � CPrg � Id

R	 � f��p� j p���S	� p��S	 j p��S	� � pi � CPrg � Id

R
 � f��a�x�p��S	� S�a��x��p�S	�� � a�x�p � CPrg � Id

R� � f����p��S	� ���p�S	�� � pi � CPrg � Id

R� � f��a�Bp
��p��S	� S�a��Bp

���p�S	�� �

p� p� � CPr� B � �Dom�S� � Im�S�� � �g � Id

The Id component in relations R� to R� serves to cover processes being sent
 In

addition the Id component of relation R� covers the case when the restriction dis�

appears due to an application of the open�rule
 It is relatively straightforward to

�nd matching moves for each relation and we omit the details
 �The proof for re�

lation R	 relies on the fact that p�S	
�
� p�S	�S	 and this is easily established since

S � �a �
 b	 and either a � b in which case p�S	
�
� p or a �� b in which case the

second renaming will have no e�ect
�

We have not listed any immediate interplay between �nondeterministic� choice

and parallel composition
 This is due to the fact that the two operators in general

do not commute� but there is a restricted interplay between them�

Proposition ������ Let x � fx� � � � xng� y � fy� � � � yng and x � y �� � and Aj �

fn�q� � � and Bl � fn�p� � � then
if p � �iai�xi�pi � �jaj�Aj

p�j �pj
and q � �kbk�yk�qk � �lbl�Bl

q�l�ql
then p j q

�
� �iai�xi��pi j q� � �jaj�Aj

p�j��pj j q��
�kbk�yk��p j qk� � �lbl�Bl

q�l��p j ql��
��i�l��f�i�l� � ai�blg���pi�q

�
l�xi	 j ql�nBl�

��j�k��f�j�k� � aj�bkg���pj j qk�p
�
j�yk	�nAj

where �i�i�pi describes the sum ���p� � � � �� �n�pn when n � � and nil if n � ��

knowing this notation is unambiguous because of proposition ��	�
�

Proof� Assume the premisses of the proposition
 Let rhs denote the right hand
side of the above equation
 Let

R � f�p j q� rhs�g � Id

Then R is an applicative higher order bisimulation
 For each transition of p j q we

may �nd a matching transition of rhs and vice versa


If p j q
�
	
 r then
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either p
�
	
 p� and r � p� j q
 If � � ai�xi then p� � pi for some i and

rhs
�
	
 pi j q which is a matching move since xi �� FV �q�


If � � aj�Aj
p�j then p� � pj for some j and rhs

�
	
 pj j q which is a matching

move


or q
�
	
 q� and r � p j q�
 Then similar arguments as above apply


or � � � 
 Then

either p
ai�xi	
 pi and q

bl�Blq
�
l	
 ql and r � �pi�q�l�xi	 j ql�nBl and ai � bl
 Then

rhs
�
	
 r which is a matching move


or q
bk�xk	
 qk and p

aj�Ajp
�
j

	
 pj and r � �pj j qk�p�j�yk	 j qk�nAj and aj � bk


Again rhs
�
	
 r which is a matching move


If rhs
�
	
 r then a similar case analysis as above will yield matching moves for

p j q


We can not hope that these equations form a basis for a sound and complete

proof system for Plain CHOCS
 One reason for this is hinted in the translation

given in the next section from Plain CHOCS into Mobile Processes �MilParWal��	


This translation needs parallel composition under the scope of recursion to work


In �Mil��	 Milner shows how this combination could be used to simulate a Turing

machine
 Another reason is that we may encode recursion using the constructs of

Plain CHOCS
 In fact the protocol we use is the one de�ned in �Tho��	�

De�nition ������ Let Yx� 	 be the following context�

�a�x��� 	 j a�x�nil� j a��a�x��� 	 j a�x�nil���nil�na

To see how this construction works consider the following example also presented

in �Tho��	�

Example ������ Let p � b��x then according to the inference rules of de�nition

��
�� Yx�p	 has the following derivations�

Yx�p	 � �a�x��b��x j a�x�nil� j a��a�x��b��x j a�x�nil���nil�na

�

�b���a�x��b��x j a�x�nil�� j a��a�x��b��x j a�x�nil���nil j nil�na

b�

�a�x��b��x j a�x�nil� j a��a�x��b��x j a�x�nil���nil j nil�na

�

�b���a�x��b��x j a�x�nil� j a��a�x��b��x j a�x�nil���nil� j nil j nil j nil�na
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b�
���

Note how Yx� 	 needs a �transition to unwind the �recursion�� This resembles

the unwinding of recursion in the inference rule of recursion in TCCS �HenNic����

rec x�p� p�rec x�p�x	� where � may be read as
�
	
�

As mentioned in section ��� this protocol only simulates recursion in �dynamic�

CHOCS when x is not free in a sending position� But because of the static nature of

the restriction operator in Plain CHOCS we may use the above construct to program

systems which recursively send out copies of themselves�

Let p � b�x�x then according to the inference rules of de�nition ��
�� Yx�p	 has

the following derivations�

Yx�p	 � �a�x��b�x�x j a�x�nil� j a��a�x��b�x�x j a�x�nil���nil�na

�

�b��a�x��b�x�x j a�x�nil����a�x��b�x�x j a�x�nil�� j a��a�x��b�x�x j a�x�nil���nil j nil�na

b�fag�a�x��b�x�xja�x�nil��

�a�x��b��x j a�x�nil� j a��a�x��b��x j a�x�nil���nil j nil�

After this transition we have a scope extrusion on a but when the �copy� �a�x��b�x�x j

a�x�nil�� is received the com�close�rule will ensure that this �copy� can communicate

with a��a�x��b��x j a�x�nil���nil and thus continue the �recursive unfolding� of p�

As in section �
� we may introduce a recursion operator recx�p with the follow�

ing operational semantics�

p�recx�p�x	
�
	
 p�

recx�p
�
	
 p�

recx� is a variable binder and fn� f � g� FV and � � 	 have to be extended to

cater for the new operator


We cannot prove a simulation of recursion theorem for Plain CHOCS as directly

as theorem �
�
� for �dynamic� CHOCS
 This is because when we send out copies

of the recursive process we have to do a scope extrusion for a in the Y construct to

keep a connection to the remaining part and keep the �recursion� going� whereas

the recursion construct does not need to do a scope extrusion and the two terms

are incomparable until they are received and we have closed the scope in the Y

construct


However� we conjecture the following relationship�
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Conjecture ������ If x is not free in a sending position in p and a �� fn�p� then

Yx�p	
�
� recx���p

It would be interesting to formulate an equivalence theory where the kind of

distributed property of a system linked by internal channels such as the above Y

construct is taken into account
 I imagine that such a theory would have to use the

ideas of context dependent bisimulation described by Larsen in �Lar ��	


��� Plain CHOCS and Mobile Processes

In this section we compare the approach taken in this thesis of sending processes

to that of sending labels as described in �EngNie��� MilParWal��	
 We shall not

embark on a discussion of which is the best or the correct way of expressing mobility

in concurrent systems� since we feel that both approaches have their justi�cations


This is further strengthened by showing that the calculi may simulate each other


The description of Plain CHOCS in Mobile Processes uses the capability of

changing the interconnection structure of processes describable in Mobile Processes

in a very disciplined way
 Whenever a process is sent in Plain CHOCS a link to

a trigger construct �which provides copies of the process to be sent� is sent in the

Mobile Processes translation
 To a certain extent this resembles invocations of

procedures in conventional programming languages
 The triggering of a copy of the

process to be sent and the instantiation of its names could correspond to a new

activation record for a procedure and instantiations of its parameters


The description of Mobile Processes in Plain CHOCS is done by passing very

small processes around
 These small processes are essentially one element bu�ers

which simulate the behaviour of channels


We brie y review the �!Calculus as presented in �MilParWal��	
 This calculus

is a description tool for Mobile Processes with link passing as a means for expressing

process networks with dynamically changing interconnection structure


Processes are built from the following range of constructs� The inactive process

�� three types of pre�xes� input pre�x x�y�� output pre�x xy and � pre�x� �non�

deterministic� choice� parallel composition� restriction� match and recursion


This is summarized by the syntax of the ��Calculus�

p ��� � x�z��p xy�p ��p p� p� p j p� �y�p �x � y	p recX�p X

Here X � V ar �a set of variables to be bound by the recursion construct�
 In

�MilParWal��	 agent identi�ers are used to express recursion� but we prefer the

equivalent but more explicit recursion construct above
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In the �!Calculus the communicable values are links or rather names of links�

thus x� y above belong to the set Names of port names
 The constructs of input

pre�x and restriction bind port names in their scope
 The set of free names of a

process is denoted by fn�p�� the set of bound names of a process is denoted by

bn�p� and the set of names of a process is n�p� � bn�p� � fn�p�


We may substitute one label for another and label substitution in the �!Calculus

follows the pattern of label substitution in Plain CHOCS
 We have to take care not

to bind free names by input pre�x or restriction
 If the names coincide we do

��conversion�

fz��zg�x�y��p� � fz��zgx�y����fz��zg�fy��ygp�� where y� �� fn��y�p� � fz�g

fz��zg��y�p� � �y���fz��zg�fy��ygp�� where y� �� fn��y�p� � fz�g

Free and bound �recursion� variables are de�ned as usual and substitution of

processes is the usual one taking care of not accidentally binding free names by

restriction and free recursion variables by the recursion construct


The dynamic behaviour of processes is de�ned in terms of an operational se�

mantics given as a labelled transition system
 Processes may evolve by performing

actions of the following kind� input actions x�y�� free output actions ay� � actions

and bound output actions x�y�
 Actions are ranged over by �
 A name occurring

in brackets in an action is said to be a bound name and the set of bound names

of an action is denoted by bn���
 fn��� denotes the set of free names of an action

and n��� denotes the set of all names of an action
 c��� denotes x in � � x�y� and

� � x�y�


In the following we give the operational semantics for the ��Calculus as presented

in �MilParWal��	
 Formally the operational semantics is given as the smallest rela�

tion
�
	
 satisfying the following rules�

TAU�ACT� ��p
�
	
 p

OUTPUT�ACT� xy�p
xy
	
 p

INPUT�ACT� x�z��p
x�w�
	
 fw�zgp �w �� fv��z�p�

SUM�
p

�
	
 p�

p � q
�
	
 p�
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MATCH�
p

�
	
 p�

�x � x	p
�
	
 p�

REC�
p�rec X�p�X	

�
	
 p�

rec X�p
�
	
 p�

PAR�
p

�
	
 p�

p j q
�
	
 p� j q

� bv��� � fv�q� � �

COM�
p

xy
	
 p� q

x�z�
	
 q�

p j q
�
	
 p� j q�fy�zg

CLOSE�
p

x�w�
	
 p� q

x�w�
	
 q�

p j q
�
	
 �w��p� j q��

RES�
p

�
	
 p�

�y�p
�
	
 �y�p�

� y �� v���

OPEN�
p

xy
	
 p�

�y�p
xw
	
 fw�ygp�

� y �� x�w �� fv��y�p��

Table �
�
�
 Operational semantics for the ��Calculus
 Rules involving the binary

operators � and j additionally have symmetric forms


To compare terms in the �!Calculus we use a generalization of the notion of

bisimulation called strong ground bisimulation�

De�nition ����� A strong ground simulation R is a binary relation on CPr such

that whenever pRq then�

�i� Whenever p
x�y�
	
 p� and y �� n�p� � n�q�� then q

x�y�
	
 q� for

some q� and fw�ygp�Rfw�ygq� for all w � Names

�ii� Whenever p
xy
	
 p�� then q

xy
	
 q� for some q� and p�Rq�

�iii� Whenever p
x�y�
	
 p� and y �� �n�p� � n�q��� then q

x�y�
	
 q�

for some q� with p�Rq�

�iv� Whenever p
�
	
 p�� then q

�
	
 q� for some q� with p�Rq�

A relation R is a strong ground bisimulation if both it and its inverse are strong

ground simulations�

Two processes p and q are said to be strong ground bisimulation equivalent i� there

exists a strong ground bisimulation R containing �p� q�� In this case we write p
�
� q�
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In �MilParWal��	 the relation
�
� is shown to be an equivalence relation and

it has the expected congruence properties with respect to the constructs of the

�!Calculus
 It also satis�es a set of expected properties�

p � �
�
� p

p � p
�
� p

p � q
�
� q � p

p � �q � r�
�
� �p � q� � r

�x�p
�
� p if x �� fn�p�

�x��y�p
�
� �y��x�p

�x��p� q�
�
� �x�p� �x�q

�x���p
�
� ���x�p if x �� n���

�x���p
�
� � if x � c���

p j �
�
� p

p j q
�
� q j p

�x��p j q�
�
� �x�p j q if x �� fn�q�

p j �q j r�
�
� �p j q� j r

The relation
�
� is however not preserved by arbitrary label substitutions
 A no�

tion of strong bisimulation equivalence � is introduced in �MilParWal��	 as p � q

i� fa�bgp
�
� fa�bgq for all label substitutions fa�bg
 We shall not concern our�

selves with this relation since the strong ground bisimulation relation su"ces for

the presentation in this section


Before turning to translations between the �!Calculus and Plain CHOCS we

present a useful construct and show a few facts about this
 We shall need commu�

nications which carry no parameters
 This could be modelled by presupposing a

special name 	 which is never bound and we write x�p in place of x	�p and x�p in

place of x�y��p where y is not free in p


De�nition ����� Let

b� p � recX�b��p j X�

where b �� n�p� and X �� FV �p��

This construction is intended to provide copies of p when triggered by b actions

e
g�

�b��b�nil j b�nil j b� p�
�
	


�
	
 �b��nil j nil j p j p j b� p�

�
� p j p
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This construct satis�es several interesting properties�

Lemma ����� if pi
b

�
� i � f�� �g and b �� n�q� then

LHS � �b��p� j b� q� � �b��p� j b� q�
�
� �b���p� � p�� j b� q� � RHS

Proof� First note that the pi�s are allowed to trigger b� q� but we assume that
only b� q

b
	
 q j b � q
 We use b as a private name in both summands of LHS

and in RHS� this is convenient and obtainable by a suitable ��conversion on the

private names


To prove the lemma we show that the relation�

R � f�LHS�RHS�g � Id

is a strong ground bisimulation


To see this observe that if LHS
�
	
 r then

either �b��p� j b� q�
�
	
 r and this is because

either p�
�
	
 p�� with � �� b and r � �b��p�� j b� q�


Then RHS
�
	
 �b��p�� j b� q� which is a matching move


or p�
b
	
 p�� with � � � and r � �b��p�� j q j b� q�


Then RHS
�
	
 �b��p�� j q j b� q� which is a matching move


or �b��p� j b� q�
�
	
 r and an argument as above applies


Also if RHS
�
	
 r then

either p�
��
	
 p�� with

either �� � � �� b and r � �b��p�� j b� q�


Then LHS
�
	
 �b��p�� j b� q� which is a matching move


or �� � b and � � � and r � �b��p�� j q j b� q�


Then LHS
�
	
 �b��p�� j q j b� q� which is a matching move


or p�
��
	
 p�� and an argument as above applies


We have abused the notation slightly when � �� b in the above proof since we should

analyze each case of �� a�x�� ab� a�c� or � 
 We shall not do so since it is not hard

�only elaborate� and each case follows the general pattern
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Lemma ����� if p�i
b

�
 for all derivatives p�i of pi� i � f�� �g and b �� fn�q� then

LHS � �b��p� j b� q� j �b��p� j b� q�
�
� �b���p� j p�� j b� q� � RHS

Proof� To prove the lemma we show that the relation�

R � f�LHS�RHS�g

is a strong ground bisimulation


To see this observe that if LHS
�
	
 r then

either �b��p� j b� q�
�
	
 r� and r � r� j �b��p� j b� q� and this is because

either p�
�
	
 p�� with � �� b and r� � �b��p�� j b� q�


Then RHS
�
	
 �b��p�� j p� j b� q� which is a matching move


or p�
b
	
 p�� with � � � and r� � �b��p�� j q j b� q�


Then RHS
�
	
 �b��p�� j p� j q j b� q� which is a matching move


or �b��p� j b� q�
�
	
 r� and an argument as above applies


or p�
�
	
 p�� and p�

�
	
 p�� and � � � and r � �b��p�� j b � q� j �b��p�� j b �

q�� where � is an action with opposite polarity of � �MilParWal��	
 Then

RHS
�
	
 �b��p�� j p

�
� j b� q� which is a matching move


Also if RHS
�
	
 r we may argue in a similar way as above


Lemma ����� if p�i
b

�
 for all derivatives p�i of pi� i � f�� �g and b �� fn�q� and

c �� fn�p�� � fn�p�� � fn�q� then

LHS � �c� �b��p� j b� q�� j �b��p� j b� q�
�
� �b��c� p� j p� j b� q� � RHS

Proof� To prove the lemma we show that the relation�

R � f�LHS�RHS�g

is a strong ground bisimulation up to
�
� �strong ground bisimulation up to

�
� is

de�ned similarly to the de�nition of bisimulation up to � in �Mil��	�


To see this observe that if LHS
�
	
 r then

either � � c and r � �b��p� j b � q� j �c � �b��p� j b � q�� j �b��p� j b � q�
�
�

�c � �b��p� j b � q�� j �b��p� j p� j b � q� which follows by lemma �
�
�


Then RHS
c
	
 �b��p� j c� p� j p� j b� q� which is a matching move
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or � �� c and �b��p� j b � q�
�
	
 r� and r � c � �b��p�� b � q� j r� and this is

because

either p�
��
	
 p�� with � � �� �� b and r� � �b��p�� j b � q�
 Then RHS

�
	


�b��c� p� j p�� j b� q� which is a matching move


or p�
b
	
 p�� with � � � and r� � �b��p� j q j b� q�
 Then RHS

�
	
 �b��c�

p� j p� j q j b� q� which is a matching move


Also if RHS
�
	
 r we may argue in a similar way as above


We now turn to the question of translations between Plain CHOCS and Mo�

bile Processes
 First we give a translation of Plain CHOCS without the renaming

construct into Mobile Processes
 This subset of Plain CHOCS corresponds very

closely to the informal idea of encoding process passing in Mobile Processes de�

scribed in �MilParWal��	
 This translation carries no additional parameters which

shows that Plain CHOCS programs can be viewed as a set of derived operators in

Mobile Processes


De�nition ����	 �� 		 � P lainCHOCS 
MP

��nil		 � �

��a�x�p		 � a�x����p		

��a�p��p		 � �b��ab����p		 j b� ��p�		��� b �� fn�p� � fn�p�� � fag

����p		 � ����p		

��p� p�		 � ��p		 � ��p�		

��p j p�		 � ��p		 j ��p�		

��pna		 � �a���p		

��x		 � x��

Note how a process variable in Plain CHOCS is translated into a process which

is only capable of synchronizing on the x channel and then stop
 This is exactly the

idea described in �MilParWal��	 of an executor to trigger the start of the process


An interesting point to note about the above translation is that only a rather

special kind of recursion is needed
 We only need a construction which provides

�copies� of the process to be sent
 This construction resembles a Kleene�star opera�

tor
 Combining this with conjecture �
�
�� �which would show that general recursion

may be simulated in Plain CHOCS� we see that using this Kleene�star operator and
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the dynamic interconnection mechanism provided by Mobile Processes we may sim�

ulate recursion in e
g
 CCS
 In fact we do not need to appeal to conjecture �
�
��

to show this� The lemmas above su"ce to prove �z��z�� j z � p�z���X	�
�
� rec ��p

if z �� fn�p�


Note that this translation ensures static scope for the restriction operator since

the process p� being �sent� stays in the �sending� environment e
g�

��a�x��x j x� j �a�p��p�nc		 � a�x���x�� j x��� j �c��a�b����b� ��p�		� j ��p		��

�

�b��b�� j b�� j �c���b� ��p�		� j ��p		��

�

�b��b�� j � j �c����p�		 j �b� ��p�		� j ��p		��

�

�b��� j � j �c����p�		 j ��p�		 j �b� ��p�		� j ��p		��
�
�

�c����p�		 j ��p�		 j ��p		�

In this example we see how the recursion in the translation of the output pre�x

ensures that a su"cient number of copies of the process to be passed is provided


As we can see from the above example the translated terms need an additional

�!move to simulate the substitution
 Let us specify this at the Plain CHOCS level

by introducing a notion we call �!substitution � � 	� 
 This substitution is de�ned as

�p�x	� � ���p�x	
 In the following two propositions let 	
 be a transition relation

de�ned as the transition relation of de�nition �
�
�� but with � � 	� instead of

� � 	 in the com�close�rule
 Let
�
�� be the applicative higher order bisimulation

equivalence de�ned as in de�nition �
�
� relative to the new transition system with

�!substitution instead of the usual substitution in clause �i�
 Using these de�nitions

we can now formally relate the two calculi
 In the following
�
� is the strong ground

bisimulation de�ned in �MilParWal��	


Proposition ����
 ��p�q�x	�		
�
� �b����p		fb�xg j b� ��q		� where b �� fn�p� � fn�q�

Proof� By structural induction on p using lemma �
�
� to lemma �
�
�


p � nil ��nil�q�x	�		 � by de�nition of � � 	�
��nil		 � by de�nition of �� 		

�
�
� by algebraic laws

�b���fb�xg j �b� ��q		��
�
� by de�nition of �� 		

�b����nil		fb�xg j �b� ��q		��
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p � a�y�p� Assume y �� x and y �� FV �q� �otherwise use ��conversion�
���a�y�p���q�x	�		 � by de�nition of � � 	�
��a�y��p��q�x	��		 � by de�nition of �� 		

a�y�����p��q�x	��		
�
� by I
H


a�y���b����p�		fb�xg j �b� ��q		��
�
� since b �� fn�p�

�b��a�y�����p�		fb�xg j �b� ��q		���
�
� since y �� FV �q� and y �� x

�b���a�y����p�		�fb�xg j �b� ��q		�� � by de�nition of �� 		
�b�����a�y�p�		�fb�xg j �b� ��q		��

p � a�p��p� ���a�p��p���q�x	�		
� by de�nition of � � 	�
��a��p��q�x	����p��q�x	��		
� by de�nition of �� 		
�b��ab���b� ��p��q�x	�		� j ��p��q�x	�		��
�
� by I
H
 �b �� fn�p�� � fn�p�� � fn�q��
�b��ab���c���b� �c����p�		fc�xg j �c� ��q		���
j �c����p�		fc�xg j �c� ��q		�����
�
� by lemma �
�
�

�b��ab��c���b� ��p�		fc�xg� j ��p�		fc�xg j �c� ��q		���
�
� since c �� a and c �� b� otherwise use ��conversion on c
�c��b��ab���b� ��p�		fc�xg� j ��p�		fc�xg j �c� ��q		���
� by de�nition of f � g
�c��b��ab����b� ��p�		� j ��p�		�fc�xg j �c� ��q		���
�
�
�c���b��ab����b� ��p�		� j ��p�		�fc�xg� j �c� ��q		���
�
� since b �� fn�q�
�c����a�p��p�		fc�xg j �c� ��q		��

p � p� � p� ���p� � p���q�x	�		
� by de�nition of � � 	� and by de�nition of �� 		
��p��q�x	�		 � ��p��q�x	�		
�
� by I
H

�b����p�		fb�xg j �b� ��q		��� �b����p�		fb�xg j �b� ��q		��
�
� by lemma �
�
�

�b�����p�		fb�xg� ��p�		fb�xg� j �b� ��q		��
� by de�nition of f � g
�b����p�� p�		fb�xg j �b� ��q		��

p � p� j p� ���p� j p���q�x	�		
� by de�nition of � � 	� and by de�nition of �� 		
��p��q�x	�		 j ��p��q�x	�		
�
� by I
H

�b����p�		fb�xg j �b� ��q		�� j �b����p�		fb�xg j �b� ��q		��
�
� by lemma �
�
�

�b�����p�		fb�xg j ��p�		fb�xg� j �b� ��q		��
� by de�nition of f � g
�b����p� j p�		fb�xg j �b� ��q		��
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p � p�na Assume a �� fn�q� otherwise use ��conversion

���p�na��q�x	�		 � by de�nition of � � 	�
���p��q�x	��na		 � by de�nition of �� 		

�a����p��q�x	�		�
�
� by I
H


�a��b����p�		fb�xg j �b� ��q		��
�
� since a �� fn�q�

�b���a����p�		fb�xg� j �b� ��q		�� � by de�nition of f � g
�b����p�na		fb�xg j �b� ��q		��

p � y if y �� x then
��y�q�x	�		 �
��y		 �

y��
�
�

�b���y���fb�xg j �b� ��q		��

if y � x then
��y�q�x	�		 �
����q		 �

����q		
�
�

�b���y���fb�xg j �b� ��q		��

Proposition �����

�
 if p
a�x
	
 p� then ��p		

a�x�
	
 ��p�		

�
 if p
a�Bp

�

	
 p�� then ��p		
a�b�
	
 q

�
� �b�� � � � �bn��b � ��p�		 j ��p��		� where B �

fb�� � � � � bng for some q�

�
 if p
�
	
 p� then ��p		

�
	
 ��p�		

�
 if q
�
� ��p		 and q

a�x�
	
 q� then p

a�x
	
 p� for some p� with q�fb�xg

�
� ��p�		fb�xg

for all b � Names�

�
 if q
�
� ��p		 then q

ab

�
�

�
 if q
�
� ��p		 and q

a�b�
	
 q� then p

a�Bp�	
 p�� with q�
�
� �b�� � � � �bn��b� ��p�		 j ��p��		�

for some B� p�� p�� where B � fb�� � � � � bng�


 if q
�
� ��p		 and q

�
	
 q� then p

�
	
 p� with q�

�
� ��p�		 for some p��

Proof�

�
 By induction on the length of the inference used to establish p
a�x
	
 p� observing

the structure of the process p
 The cases when p � nil� p � a�p��p� and p � ��p�

are trivial since p
a�x

�
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p � a�x�p� Then a�x�p�
a�x
	
 p� by the input�rule and p� � p�
 Also ��a�x�p�		 �

a�x����p�		
a�x�
	
 ��p�		 by the INPUT�ACT�rule


p � p� � p� If p
a�x
	
 p� then

either p�
a�x
	
 p� by a shorter inference� and by induction we have ��p�		

a�x�
	


��p�		 and by the SUM�rule we have ��p� � p�		
a�x�
	
 ��p�		


or p�
a�x
	
 p� by a shorter inference� and by induction we have ��p�		

a�x�
	


��p�		 and by the SUM�rule we have ��p� � p�		
a�x�
	
 ��p�		


p � p� j p� If p
a�x
	
 p� then

either p�
a�x
	
 p�� and p

� � p�� j p� by a shorter inference� and by induction

we have ��p�		
a�x�
	
 ��p��		 and by the PAR�rule we have ��p� j p�		

a�x�
	
 ��p�		


or p�
a�x
	
 p�� and p

� � p� j p�� by a shorter inference� and by induction we

have ��p�		
a�x�
	
 ��p��		 and by the PAR�rule we have ��p� j p�		

a�x�
	
 ��p�		


p � p�nb If p
a�x
	
 p� then p�

a�x
	
 p�� with a �� b and p� � p��nb by a shorter

inference� and by induction we have ��p�		
a�x�
	
 ��p��		 and by the RES�rule

we have ��p�nb		
a�x�
	
 ��p�		


�
 By induction on the length of the inference used to establish p
a�Bp

�

	
 p�� observing

the structure of the process p
 The cases when p � nil� p � a�x�p� and p � ��p�

are trivial since p
a�Bp

�

�
 


p � a�p��p� Then a�p��p�
a��p�	
 p� by the output�rule
 Also ��a�p��p�		

a�b�
	
 �b �

��p�		� j ��p�		 by the INPUT�ACT�rule


p � p� � p� If p
a�Bp�	
 p�� then

either p�
a�Bp

�

	
 p�� by a shorter inference� and by induction we have

��p�		
a�b�
	
 p���

�
� �b�� � � � �bn���b� ��p�		� j ��p��		� and by the SUM�rule we

have ��p� � p�		
a�b�
	
 p���

�
� �b�� � � � �bn���b� ��p�		� j ��p��		�

or p�
a�Bp

�

	
 p�� by a shorter inference� and by induction we have

��p�		
a�b�
	
 p���

�
� �b�� � � � �bn���b� ��p�		� j ��p��		� and by the SUM�rule we

have ��p� � p�		
a�b�
	
 p���

�
� �b�� � � � �bn���b� ��p�		� j ��p��		�

p � p� j p� If p
a�Bp

�

	
 p�� then

either p�
a�Bp�	
 p��� and p�� � p��� j p� by a shorter inference� and by induc�

tion we have ��p�		
a�b�
	
 p����

�
� �b�� � � � �bn���b� ��p�		� j ��p���		� and by the

PAR�rule we have ��p� j p�		
a�b�
	
 p���

�
� �b�� � � � �bn���b � ��p�		� j ��p���		� j

��p�		
�
� �b�� � � � �bn���b� ��p�		� j ��p��		� �using a suitable ��conversion�
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or p�
a�Bp

�

	
 p��� and p
�� � p� j p��� by a shorter inference� and by induction we

have ��p�		
a�b�
	
 p����

�
� �b�� � � � �bn���b � ��p�		� j ��p���		� and by the PAR�

rule we have ��p� j p�		
a�b�
	
 p���

�
� ��p�		 j �b�� � � � �bn���b � ��p�		� j ��p���		�

�
� �b�� � � � �bn���b� ��p�		� j ��p��		� �using a suitable ��conversion�


p � p�nd If p
a�Bp

�

	
 p�� then

either p�
a�B�p

�

	
 p��� by a shorter inference and d � �fn�p�� � fn�p����� B

and B � B� � fdg and a �� d and p�� � p���
 By induction we have

��p�		
a�b�
	
 p����

�
� �b�� � � � �bk���b� ��p�		� j ��p���		� and by the RES�rule we

have ��p�nd		 � �d����p�		�
a�b�
	
 p���

�
� �d��b�� � � � �bn���b� ��p�		� j ��p���		�


or p�
a�Bp

�
�	
 p��� by a shorter inference and d �� fn�p�� � fn�p���� and a �� d

and p� � p��nd
 and p�� � p���nd
 By induction we have ��p�		
a�b�
	


p����
�
� �b�� � � � �bk���b � ��p�		� j ��p���		� and by the RES�rule we have

��p�nd		 � �d����p�		�
a�b�
	
 p���

�
� �d��b�� � � � �bn���b � ��p�		� j ��p���		�

�
�

�b�� � � � �bn���b� �d���p��		� j �d���p
��
�		�


�
 By induction on the length of the inference used to establish p
�
	
 p� observing

the structure of the process p
 The cases when p � nil� p � a�x�p� and

p � a�p��p� are trivial since p
�

�



p � ��p� Then p
�
	
 p� by the tau�rule and p� � p�
 Also ��p		 � ����p�		

�
	
 ��p�		

by the TAU�ACT�rule


p � p� � p� If p
�
	
 p� then

either p�
�
	
 p� by a shorter inference� and by induction we have ��p�		

�
	


��p�		 and by the SUM�rule we have ��p� � p�		
�
	
 ��p�		


or p�
�
	
 p� by a shorter inference� and by induction we have ��p�		

�
	


��p�		 and by the SUM�rule we have ��p� � p�		
�
	
 ��p�		


p � p� j p� If p
�
	
 p� then

either p�
�
	
 p�� and p

� � p�� j p� by a shorter inference� and by induction

we have ��p�		
�
	
 ��p��		 and by the PAR�rule we have ��p� j p�		

�
	
 ��p�		


or p�
�
	
 p�� and p

� � p� j p
�
� by a shorter inference� and by induction we

have ��p�		
�
	
 ��p��		 and by the PAR�rule we have ��p� j p�		

�
	
 ��p�		


or p�
a�x
	
 p�� and p�

a�Bp
�
�	
 p��� by shorter inferences and p� � �p���p

�
��x	� j

p����nB
 By induction and propositions �
�
�
� and �
�
�
� we have

��p�		
a�x�
	
 ��p��		 and ��p�		

a�b�
	
 �b�� � � � �bn���b � ��p��		� j ��p

��
�		�
 Then by

the CLOSE�rule we have ��p� j p�		
�
	
 �b����p�		fb�xg j �b�� � � � �bn���b�

��p��		� j ��p
��
�		��

�
� �b�� � � � �bn���b����p�		fb�xg j �b � ��p��		� j ��p

��
�		�� �
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���p���p
�
��x	� j p

��
��nB		 by proposition �
�
 and assumingB�fn�p�� � �

�otherwise use ��conversion�


or p�
a�x
	
 p�� and p�

a�Bp
�
�	
 p��� and we may argue as above


p � p�nb If p
�
	
 p� then p�

�
	
 p�� by a shorter inference� and by induction we

have ��p�		
�
	
 ��p��		 and by the RES�rule we have ��p�nb		 � �b����p�		�

�
	


�b����p�		� � ��p�		


�
 Assume q
�
� ��p		 and q

a�x�
	
 q�
 Then ��p		

a�x�
	
 q�� for some q�� with q�fb�xg

�
�

q��fb�xg for all b � Names since q
�
� ��p		


We proceed by induction on the length of the inference used to establish ��p		
a�x�
	


q�� observing the structure of p


If ��p		
a�x�
	
 q�� then p must have one of the following forms�

p � a�x�p� In this case ��p		
a�x�
	
 ��p�		
 By the input�rule we have a�x�p�

a�x
	
 p�

which proves the lemma in this case


p � p� � p� In this case

either ��p�		
a�x�
	
 q�� by a shorter inference and by induction p�

a�x
	
 p�� and

q��fb�xg
�
� ��p��		fb�xg for all b � Names
 By the sum�rule we have

p� � p�
a�x
	
 p�� and q��fb�xg

�
� ��p��		fb�xg for all b � Names


or ��p�		
a�x�
	
 q�� by a shorter inference and by induction p�

a�x
	
 p�� and

q��fb�xg
�
� ��p��		fb�xg for all b � Names
 By the sum�rule we have

p� � p�
a�x
	
 p�� and q��fb�xg

�
� ��p��		fb�xg for all b � Names


p � p� j p� In this case

either ��p�		
a�x�
	
 q��� by a shorter inference and q

�� � q��� j ��p�		
 By induction

p�
a�x
	
 p�� and q��fb�xg

�
� ��p��		fb�xg for all b � Names
 By the par�

rule we have p� j p�
a�x
	
 p�� j p� and q��fb�xg

�
� ��p�� j p�		fb�xg for all

b � Names


or ��p�		
a�x�
	
 q��� by a shorter inference and q�� � ��p�		 j q���
 By induction

p�
a�x
	
 p�� and q��

�
� ��p��		
 By the par�rule we have p� j p�

a�x
	
 p� j p��

and q��fb�xg
�
� ��p� j p��		fb�xg for all b � Names


p � p�nc In this case ��p�		
a�x�
	
 q��� and a �� c
 By induction p�

a�x
	
 p�� and

��p�		fb�xg
�
� q���fb�xg for all b � Names
 By the res�rule we have p�nc

a�x
	


p��nc and q��fb�xg
�
� ��p��nc		fb�xg for all b � Names


�
 From the de�nition of �� 		 it is easy to see that ��p		
ab

�

 Since q
�
� ��p		 this must

be true for q




Chapter �� Plain CHOCS ���

�
 Assume q
�
� ��p		 and q

a�b�
	
 q�
 Then ��p		

a�b�
	
 q�� with q�

�
� q��� since q

�
� ��p		


We proceed by induction on the length of the inference used to establish ��p		
a�b�
	


q�� observing the structure of p


If ��p		
a�b�
	
 q�� then p must have one of the following forms�

p � a�p��p� From the output�rule we have p
a��p�	
 p� and from the OUTPUT�

ACT�rule we have ��p		
a�b�
	
 �b � ��p�		� j ��p�		 which proves the lemma in

this case


p � p� � p� either ��p�		
a�b�
	
 q�� by a shorter inference and by induction we

have p�
a�Bp

�
�	
 p��� and q��

�
� �b�� � � � �bn���b � ��p��		� j ��p

��
�		�
 Then

p��p�
a�Bp

�
�	
 p��� by the sum�rule and by the SUM�rule we have ��p		

a�b�
	


q�� which proves the lemma in this case


or ��p�		
a�b�
	
 q�� and an argument as above applies


p � p� j p� either ��p�		
a�b�
	
 q��� by a shorter inference and q��

�
� q��� j ��p�		
 By

induction we have p�
a�Bp

�
�	
 p��� with q

��
�

�
� �b�� � � � �bn���b� ��p��		� j ��p

��
�		�


By the par�rule we have p� j p�
a�Bp��	
 p��� j p� and by the PAR�rule and

RES�rule we have ��p� j p�		
a�b�
	
 q��

�
� �b�� � � � �bn���b � ��p��		� j ��p

��
� j

p�		� by a suitable ��conversion such that B � fn�p�� � �


or ��p�		
a�b�
	
 q��� and symmetric arguments as above yield the result


p � p�nd Then ��p�		
a�b�
	
 q��� by a shorter inference and a �� d and q�� � �d��q����


By induction we have p�
a�Bp

�
�	
 p��� with q

��
�

�
� �b�� � � � �bn���b� ��p��		� j ��p

��
�		�


If d �� fn�p��� � fn�p
��
�� then by the res�rule we have p�nd

a�Bp
�
�
nd

	
 p���nd and

by the RES�rule we have ��p		
a�b�
	
 q��

�
� �b�� � � � �bn��d���b� ��p��		� j ��p

��
�		�

�
�

�b�� � � � �bn���b� �d���p��		� j �d���p
��
�		�


If d � �fn�p����fn�p
��
��� B then by the open�rule we have p�nd

a�B�fdgp
�
�

	
 p���

and by the RES�rule we have ��p		
a�b�
	
 q��

�
� �b�� � � � �bn��d���b � ��p��		� j

��p���		�



 Assume q
�
� ��p		 and q

�
	
 q�
 Then ��p		

�
	
 q�� with q�

�
� q�� since q

�
� ��p		


We proceed by induction on the length of the inference used to establish ��p		
�
	


q�� observing the structure of the process p


If ��p		
�
	
 q�� then p must have one of the following forms�

p � ��p� Then by the tau�rule we have p
�
	
 p� and by the TAU�rule ��p		

�
	


��p�		 which proves the lemma in this case


p � p� � p� either ��p�		
�
	
 q�� by a shorter inference
 By induction we have

p�
�
	
 p�� with q��

�
� ��p��		
 By the sum�rule p� � p�

�
	
 p�� and by the
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SUM�rule we have ��p� � p�		
�
	
 q��

or ��p�		
�
	
 q�� and a similar argument as above applies


p � p� j p� either ��p�		
�
	
 q��� by a shorter inference and q�� � q��� j ��p�		


By induction we have p�
�
	
 p�� with q���

�
� ��p��		
 By the par�rule

p� j p�
�
	
 p�� j p� and by the PAR�rule we have ��p� j p�		

�
	
 q��� j

��p�		
�
� ��p�� j p�		

or ��p�		
�
	
 q��� and an argument as above applies


or ��p�		
a�x�
	
 q�� and ��p�		

a�b�
	
 q�� by shorter inferences and q

�� �
� �b��q��fb�xg j

q���� modulo the appropriate ��conversions
 By proposition �
�
�
� we

have p�
a�x
	
 p�� with q��fb�xg

�
� ��p��		fb�xg for all b � Names and by

proposition �
�
�
� we have p�
a�Bp

�
�	
 p��� with q��

�
� �b�� � � � �bn���b �

��p��		� j ��p
��
�		�
 By the com�close�rule we have p� j p�

�
	
 �p���p

�
��x	� j

p����nB assumingB�fn�p��� � � �otherwise use a suitable ��conversion�


By the COM�rule we have

��p� j p�		
�
	
 q��

�
� �b����p��		fb�xg j �b�� � � � �bn���b � ��p��		� j ��p

��
�		��

�
� ���p���p

�
��x	� j p

��
��nB		 according to proposition �
�



or ��p�		
a�b�
	
 q�� and ��p�		

a�x�
	
 q�� which is a symmetric case to the above


p � p�nb Then ��p�		
�
	
 q��� with q�� � �b��q���� by a shorter inference
 By

induction p�
�
	
 p�� with q

�
�

�
� ��p��		
 By the res�rule we have p�nb

�
	
 p��nb

and by the RES�rule we have ��p�nb		
�
	
 ��p��nb		


The above proposition shows a strong connection between transitions of pro�

cesses in Plain CHOCS and their translations into Mobile Processes
 We have so

far been unsuccessful in proving that the translation preserves equivalence but we

conjecture that this holds under certain restrictions on the observations we allow

ourselves i
e
�

Conjecture ����� p
�
�� q � ��p		

�
� ��q		

An immediate attempt to prove the above conjecture is to show that the realtion�

R� � f�q�� q�� � �p�� p��q�
�
� ��p�		� q�

�
� ��p�		� p�

�
�� p�g

is a strong ground bisimulation and that the relation

R� � f�p�� p�� � ��p�		
�
� ��p�		g

is an applicative higher order bisimulation w
r
t
 � � 	� 
 Unfortunately this attempt

has so far been unsuccessful
 The reason for this is that for relation R� I have
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been unable to prove that if q�
a�x�
	
 q�� then q�

a�x�
	
 q�� and q��fb�xg

�
� q��fb�xg

for all b � Names from p�
a�x
	
 p�� and p�

a�x
	
 p�� and p���r�x	�

�
�� p���r�x	� for all

r
 ��p���r�x	� 		
�
� ��p���r�x	� 		 does not seem to imply ��p��		fb�xg

�
� ��p��		fb�xg for all

b � Names
 For relation R� I have been unable to prove that if p�
a�Bp

�
�	
 p��� then

p�
a�Bp

�
�	
 p��� and p��

�
�� p

�
� and p���

�
�� p

��
� from q�

a�b�
	
 q��

�
� �b�� � � � �bn��b� ��p��		 j ��p

��
�		�

and q�
a�b�
	
 q��

�
� �b�� � � � �bn��b � ��p��		 j ��p

��
�		� and q��

�
� q��
 It does not seem to be

possible to infer from �b � ��p��		 j ��p
��
�		�

�
� �b � ��p��		 j ��p

��
�		� that ��p

�
�		

�
� ��p��		 and

��p���		
�
� ��p���		


The above only applies to the sublanguage of Plain CHOCS where the renaming

operator has been omitted
 The type of systems we can describe in this language

is limited in the sense that there is no real need for passing the process in the

communication since the receiving process can do no more than copy it and start

each copy at di�erent times
 This is re ected in the above translation in the sense

that the process to be �sent� stays in the sending environment and the �receiving�

process only receives a link which can be used to trigger copies of the �received�

process
 The renaming construct allows us to change the way we communicate with

each copy by renaming some of the free names to locally bound names
 This may

be incorporated into the translation by extending the translation function by a list

of names L i
e
�

De�nition ����� �� 		 � P lainCHOCS 
 Names� 
MP

��nil		L � �

��a�x�p		L � a�x����p		L

��a�p��p		L � �b��ab����p		L j b�L�� ��p�		L��� b �� fn�p� � fn�p�� � fag � L

����p		L � ����p		L

��p� p�		L � ��p		L� ��p�		L

��p j p�		L � ��p		L j ��p�		L

��pna		L � �d���fd�agp		L where d �� fn�pna� � L

��p�a �
 b			L � fb�ag���p		L�

��x		L � xL��

where b�L��p means b�l��� � � � b�ln��p and bL�p means bl�� � � � bln�p

for L � fl�� � � � � lng�

When translating a Plain CHOCS expression p we then instantiate L to a list

consisting of the elements of fn�p� to obtain the desired e�ect
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Let us consider the following small example to give an idea about how the above

translation works�

Assume fa� bg � fn�p� � fn�p�� � fn�p��� and b� �� fa� bg


��a�x��x�b �
 b�	 j b��x�p�nb� j a�p��p��		�a�b�
�

a�x���b���xab��� j b��x����p		�a�b�� j �c��ac���c�a��b�� ��p�		�a�b�� j ��p
��		�a�b���

�

�c���b���cab��� j b��x����p		�a�b�� j �c�a��b�� ��p�		�a�b�� j ��p
��		�a�b��

�

�

�c���b���� j b��x����p		�a�b� j �fa�agfb��bg���p�		�a�b���� j �c�a��b�� ��p�		�a�b�� j ��p��		�a�b��
�
�

�b���b��x����p		�a�b� j �fa�agfb
��bg���p�		�a�b���� j ��p

��		�a�b�

Note that if p� has any b�ports they will be renamed to b� and thus be pri�

vate between b��x����p		�a�b� and ��p�		�a�b�
 The translated terms need a sequence of

� �transitions to establish the connection between the �receiving� process and the

�copy� it is �receiving�
 This sequence has the same length as the parameter L


In the above example we needed two � �transitions and in general we will need as

many � �transitions as the cardinality of the set fn�p�


We now turn to the question of encoding label passing using process passing


This may seem as an arti�cial question� but as a theoretical result it is of inter�

est since it will provide a basis for discussion of the expressive power of the two

approaches


The idea in the translation below is that instead of sending a channel a we send

a wire �a 	 chan� de�ned as i��a�x�c��nil� o��c�x�a�x�nil
 This wire has a multi�

purpose plug c and a switch to indicate in which direction the wire is to be used
 We

assume c� i� o are distinct names not used in the Mobile Processes expression being

translated
 When this wire is received it is plugged into the receiving process by

the localizing constructions� �� � � �c �
 c�	�i �
 i�	�o �
 o�	 � � ��nc�ni�no�
 The receiving

process will choose in which direction to use this wire by sending an o� signal for

output or an i� signal for input
 The wire will be private to the sending and receiving

processes in the case of a bound name in the Mobile Processes expression
 This is

ensured by a scope extrusion caused by the static restriction operator


Mobile Processes �MilParWal��	 was developed from ECCS �EngNie��	 by sim�

plifying the notions of values� labels and variables into one concept called names


This� however� presents a problem when translating Mobile Processes into Plain

CHOCS since a name in a process p may act as a name of a link �as e
g
 y in
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y�x��p� or it may act as a variable �as e
g
 x in y�x��p� or it may act as a local link

name �as e
g
 x in �x��p�
 To overcome this di"culty we �rst translate all free names

and all names bound by input pre�x into process variables
 Then we instantiate the

process variables corresponding to free names in the Mobile Processes expression

to names in Plain CHOCS
 Names bound by restriction will be allocated names in

Plain CHOCS in the �rst translation step


De�nition ������ �� 		� �MP 
 P lain CHOCS is de�ned structurally�

���		� � nil

��x�y��p		� � �x�c �
 c�	�i �
 i�	�o �
 o�	 j i���c��y���p		��nc
�ni�no�

��xy�p		� � �x�c �
 c�	�i �
 i�	�o �
 o�	 j o���c��y���p		��nc
�ni�no�

����p		� � ����p		�

��p� p�		� � ��p		�� ��p�		�

��p j p�		� � ��p		� j ��p
�		�

���x��p�		� � ���p		���a	 chan��x	�na� where a has not been used before

�� 		� �MP 
 P lain CHOCS is de�ned as�

��p		� � �� � � ���p		���a� 	 chan��x�	� � � ����an 	 chan��xn	

where FV ���p		�� � fx�� � � � � xng and a� � � � an are allocated by some � 	 � mapping

between V and Names �usually established by the �	 � mapping between fn�p� and

FV ���p		����

We have omitted the match construct of Mobile Processes
 This can be elim�

inated in the Mobile Processes expression according to �MilParWal��	
 Recursion

could be translated using the Yx� 	 construction from the previous section


It is easy to see from the above de�nition that the label passing in the Mobile

Processes is mimiced by the translation only requiring two additional communica�

tions for each use of the wire� i
e�

��a�x��p		�
�
� ��a�x�����p		�

��ab�p		�
�
� ����a��b	 chan����p		�

We may state this more precisely�



Chapter �� Plain CHOCS ��

Proposition ������

�
 if p
a�x�
	
 p� then ��p		

�
	


a�x�
	


�
	
 ��p�		

�
 if p
ab
	
 p� then ��p		

�
	


�
	


a���b�chan�	
 ��p�		

�
 if p
a�b�
	
 p� then ��p		

�
	


�
	


a�fbg�b�chan�
	
 ��p�		

�
 if p
�
	
 p� then ��p		

�
	
 ��p�		 or ��p		

�
	


�
	


�
	


�
	


�
	
 ��p�		

Proof� By induction on the length of the inference used to establish the transition
of p observing the structure of p


We conjecture the following relationship between Mobile Processes and their

translations into Plain CHOCS�

Conjecture ������ if p
�
� q then ��p		�

�
� ��q		�� where

�
� is a suitable formulation of

weak higher order applicative bisimulation�

We can not hope for the implication to hold in the opposite direction since

the translation may introduce non�determinism not present in the original term

e
g� Consider the following term p � �a��b��a�x��c�x��� � b�x��� j ac��� then p
�
�

��c�x��� �
�
� p � ��� whereas ��p		

�
� ������������c�x���nil� ���

�
� ��p� ���		


To see how the translation works we study the following small system consisting

of two components
 Initially the �rst component is ready to receive a channel on

a and the second component is ready to send the b�channel on a
 Upon receiving

a channel the �rst component is ready to send a bound channel d on the newly

received channel
 The second component is ready to receive this channel
 The

end result is that the second component receives a private d�channel from the �rst

component


��a�x���d��xd�P � j ab�b�x��Q		
�
�

��a�x������d��xd�P �		 j ����a��b	 chan����b�x��Q		
�
	


�
	


�
	


�
	


�
	


����d��xd�P �		��b	 chan��x	 j ��b�x��Q		�
�
�

������b��d	 chan����P 		��b	 chan��x	�nd j ��b�x�����Q		�
�
	


�
	


�
	


�
	


�
	


����P 		��b	 chan��x	 j ��Q		��d	 chan��x	�nd�
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Comparing the two translations presented in this section we see that the two

calculi Mobile Processes and Plain CHOCS are equally expressive in the sense that

they may simulate one another
 However� the translations are rather ad hoc
 It

would be of interest if this comparison could be formulated in a more general frame�

work for comparison
 In a private communication Chen Liang has told me that he

is working on such a generalized framework and he is using the translations between

Plain CHOCS and Mobile Processes as an example
 His framework is built on a

category theoretical characterization of transition systems and the translations are

expressed as functors


��� Plain CHOCSObject Oriented Programming

Over the past two decades object oriented programming has grown into a strong

discipline in the world of industrial programming
 One reason for the success of

this programming notion is the link with ideas of structured programming
 Object

oriented programming allows problems to be broken down into �objects� of man�

ageable size
 There is to date no unifying de�nition of what exactly an object is and

what an object does although over the years much e�ort has been devoted to �nding

such de�nitions
 It seems as if each object oriented programming language �and

even each object oriented programmer� seems to have its �his#her� own de�nition

of an object


This having been said� there seems to be a consensus that an object is regarded

as an encapsulating entity and there are strong analogies to the ideas of abstract

data types
 Thus objects encapsulate �things� and users access these �things�

via �methods� which are the terms used for the diverse access strategies used in

object oriented programming
 The idea behind the method paradigm is to present

the user with an interface through which objects can be accessed and at the same

time hide the way the objects are implemented
 Most present day object oriented

programming languages have roots in ideas presented in the SIMULA language

�DahMyhNyg��	 designed in the late sixties and ideas presented in the Smalltalk

language �GolRob��	 have had substantial in uence


The object oriented approach has mostly grown out of an imperative sequen�

tial programming discipline as a structuring device for large scale programs� but

recently it has been recognized as a useful tool in the description and construction

of distributed and concurrent systems �Atk��	
 As we shall see in this section there

seems to be a strong analogy between the idea of objects and processes� encapsula�

tion and restriction� method call and communication via named channels
 We shall

also see that it is possible to make connections between concurrency theory and
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inheritance� which for many object oriented programmers seems to be a vital part

of the de�nition of what can be characterized as object oriented programming


Many object oriented programming languages do not have a formal seman�

tics but rely on �thorough� verbal descriptions of the semantics
 Recently some

more thorough studies of semantics foundations of object oriented programming

languages have emerged� POOL �Ame�	 and Dragoon �Atk��	 are very good ex�

amples of how far the current state of a�airs for real life programming languages

has reached


In this section we study the connection between concurrency and object ori�

ented programming in more details
 We do this via a small toy language O
 We

may consider O as a prototype core of most imperative concurrent object oriented

programming languages
 In O we may de�ne a class of objects and instantiate

objects to be of a de�ned class
 In each class we may de�ne a number of methods

and a thread of control
 This thread of control is the primary means for concur�

rency since objects may be started and executed in parallel
 The parallelism is

asynchronous and synchronization is obtained by method calls
 O was inspired by

the toy language P studied in �Mil��	 and in section �
�� and the thread of control

in each object is similar to the sequential part of P 
 The language O is untyped

and we only consider type meaningful programs
 We assume that objects are de�

clared before they are created� that all objects are created before started and that

all objects are started only once


The semantics of O is described in Plain CHOCS in a phrase�by�phrase style re�

sembling a denotational semantics
 However� we do not give any semantic domains


Instead we may view the O semantics as a set of derived operators in Plain CHOCS

since the translation carries no parameters
 Plain CHOCS only caters for process

values in communication
 To allow for other values in Plain CHOCS than process

values we use the technique of �Mil��	 and introduce a D!indexed family of actions

a�d� a�d� d � D for each value domain D
 Due to the fact that only �nite sums of

processes can be handled in the version of Plain CHOCS presented in this thesis we

restrict our attention to �nite value domains as e
g
 the set of booleans and �nite

subsets of the integers
 We let ��x�p abbreviate �d�D��d�pfd�xg where fd�xg means

exchanging all occurrences of x in p by d as e
g
 ��x�
�x�nilfd�xg � �d�D��d�
�d�nil


We shall use the following construct from �Mil��	� If b is a boolean valued expression

in x then let ��x��if b then p else p�� be encoded by �x�D�b��x�p� �x�D��b��x�p
�


We should not confuse ��x�p with ��x�p since the �rst is a convenient shorthand

notation and the latter is part of the Plain CHOCS syntax
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The language O

Programs in O are built from declarations D� expressions E and commands C�

using assignments to program variables X
 Variables Y always refer to objects and

variables Z refer to classes
 Some set of functions F is assumed and for the cause

of simplicity we do not consider types of expressions
 O has the following abstract

syntax�

Declarations� D ��� var X obj Y D�D
method P �ref X� is C class Z is D body C

Expressions� E ��� X F �E�� � � � � En�
Commands� C ��� X �� E C�C if E then C else C �

while E do C skip begin D�C end

Y�create Z Y�start Y�call P �X�

Table �
�
�� Syntax of O

To give a smooth de�nition of the semantics of O we need some auxiliary de��

nitions


To each variable X we associate a register RegX 
 Generally it follows the pattern�

Loc � ��x�Reg�x�

Reg�y� � ��x�Reg�x� � ��y�Reg�y�

and thus for X we will have LocX � Loc�� �
 �X	�� �
 �X 	
 Initially we write in

a value� thereupon we can read this value on � or overwrite the contents of Loc

via �
 We have written the above de�nition in an equation style to make it more

readable
 The proper Plain CHOCS de�nition is� Loc � ���x�h�x�nil j Reg�nh

where Reg � YReg�h�x����x�h�x�Reg � ��x�h�x�Reg�	 j YKeep�h�x�h�x�Keep	
 The

second component of this process takes care of the parameters in the recursion

of the above equations
 �This is in fact a general technique for simulating the

parameterized recursion of �Mil��	�
 We also associate a register to each class Z�

each object Y and each method P 
 It may be de�ned in the same way as above

with x substituted with x


To each n!ary function symbol F we associate a function f which is represented

by�

bf � ���x�� � � � �n�xn���f�x����xn��nil

Constants will thus be represented as e
g
 btrue � ��true�nil
 The result of evaluating

an expression is always communicated via �
 It is therefore useful to de�ne�

p result p� � �p j p��n�



Chapter �� Plain CHOCS ���

We adopt the protocol of signaling successful termination of commands via 

and it is therefore convenient to de�ne�

done � ��nil

p before p� � �p� �
 
	 j 
��p��n
 � 
 �� fn�p� � fn�p��

We now give the semantics of O by the translation into Plain CHOCS shown in

table �
�
�


Declarations�

��varX		 � LocX

��obj Y 		 � LocY

��D�D�		 � ��D		 j ��D�		

��method P �ref X� is C		 � ��LocP j �P �� method process ��nil�n�P �

��class Z is D body C		 � ��LocZ j �Z�� class process ��nil�n�Z�

where method process � ��C		��X �
 �Pv 	��X �
 �Pv 	

and class process � ���D		��Pv �
 �ZPv 	��Pv �
 �ZPv 	 j ��C		�nVD

Expressions�

��X		 � �X�x���x�nil

��F �E�� � � � � En�		 � ���E�		�����	 j � � � j ��En		��n��	 j bf �n�� � � � n�n

Commands�

��X �� E		 � ��E		 result ���x��X�x�done�

��C�C �		 � ��C		 before ��C �		

��if E then C else C �		 � ��E		 result ��x��if x then ��C		 else ��C �		�

��while E do C		 � Yw���E		 result ��x��if x then ���C		 before w� else done�	

��skip 		 � done

��beginD�C end		 � ���D		 j ��C		�nLD

��Y�create Z		 � �Z�x��Y ��x��
Z
Pv �
 �YPv 	��

Z
Pv �
 �YPv 	��done
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��Y�start 		 � �Y �x��x� �
 
	 j 
��done�n


��Y�call P �X�		 � �YP �x��x��
Y
Pv �
 �X 	��

Y
Pv �
 �X 	� �
 
	 j 
��done�n


Table �
�
�� Semantics of O

In the de�nition of class process we let nVD abbreviate restrictions with respect

to all variables and objects declared in D and in the equation for ��beginD�C end		

we let nLD abbreviate restriction with respect to � and � channels for all variables�

objects� classes and methods declared in D
 The method and class de�nitions each

create a location to store the method process respectively the class process
 The

restrictions n�P respectively n�Z ensure that these processes cannot be overwritten

after their de�nitions


Note that if we disregard the object oriented part of O we have essentially a

language de�nition similar to the de�nition of P from section �
�
 However� if we

compare the semantic de�nition of procedures in P with the semantic de�nition of

methods in O we note that the Transform process needed to ensure static binding

of variables in the P semantics is no longer present in the O semantics
 This is not

because we advocate dynamic binding for variables in the object oriented paradigm


It is because the static nature of the restriction operator in Plain CHOCS will ensure

that static binding is obtained
 The static nature will ensure �by a scope extrusion�

that any variable reference is kept with the de�ning environment
 Assignments to

variables may be nondeterministic since two or more methods may refer to the same

variable and we can have situations where one method reads the value currently

stored then another method writes a new value before the �rst method overwrites

the current value
 As for the semantic description of P we can avoid this problem

by surrounding each variable with a semaphore construct


A class is de�ned as a process stored in a register
 The class process behaves

like a block except that we can invoke the methods de�ned in the declaration part


These will execute concurrently with the thread de�ned by the command part of

the class process
 A class is a passive entity in the sense that it is stored in a

register
 An object Y of class Z is just a copy of the class process stored in another

register
 It becomes active when started by the Y�start command which reads

the register and activates the process by the �Y �x��x � � �� construct
 Each method

is also just a process stored in a register
 When a method is called the register
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is read and a copy of the method process is activated
 The renaming surrounding

the variable x ensures a call�by�reference parameter mechanism in the method call


This parameter mechanism seems to be most in line with current trends in object

oriented programming� but we can also de�ne call�by�value� call�by�name and lazy

parameter mechanisms for method calls in O using the same approach as in the

de�nition of parameter mechanisms in P discussed in section �
�


The semantic de�nition of O has not taken the object oriented paradigm to its

extreme where everything is an object
 We have kept a distinction between objects�

values and methods
 We can go a bit further and describe how objects can be

passed in method call
 To some object oriented programmers this is the true spirit

of the object oriented paradigm
 Let us see how object passing in method call can

be described semantically�

��method P �obj Y � is C		 � ��LocP j �P �� method process ��nil�n�P �

where method process � ��C		��YPv �
 �Pv 	��
Y
Pv �
 �Pv 	

��Y�call P �Y ��		 � �YP �x��x��Pv �
 �Y
�

Pv
	��Pv �
 �Y

�

Pv
	 before done�

Passing an object in a method call works very similar to the call�by�reference

parameter mechanism for normal method calls
 We simply rename the method calls

of the formal parameter to method calls of the actual parameter


Another phenomenon often connected with object oriented programming lan�

guages is the concept of inheritance
 This is often considered the main structuring

mechanism
 We may describe this semantically as follows�

��class Z inherits Z � is D body C		 � ��LocZ j �Z �� class process ��nil�n�P �

and class process � ��Z��x��x��Z
�

Pv �
 �ZPv 	��
Z�

Pv �
 �ZPv 	 before ���D		��Pv �


�ZPv 	��Pv �
 �ZPv 	 j ��C		�nVD�

This describes that the class Z inherits the methods and the thread of control

of class Z �
 All methods of Z � are renamed to methods of Z and the thread of

control of Z � is sequentially composed with that of Z
 It is easy to generalize this

to multiple inheritance simply by sequentially composing each inheritance class
 In

some object oriented programming languages programmers are allowed to rede�ne

inherited methods
 This is easily obtained by restricting the � and � channels of

the rede�ned method from the inheritance class and rede�ning it in the declaration

part of the class


This section represents a small step towards a semantic description of object ori�

ented programming in Plain CHOCS
 Except for a few syntactic di�erences the core
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of POOL �Ame�	 is very similar to O
 There are many interesting and challenging

aspects in investigating a comparison of the semantics of POOL with the semantics

of O more thoroughly and perhaps establishing a translation of POOL into Plain

CHOCS and thus provide a basis for a formal comparison
 These prospects are left

for future studies




Chapter �

Conclusion

The aim of this thesis has been to provide a thorough investigation into the foun�

dations of calculi for higher order communicating systems
 I have aimed at putting

this study on the same kind of principles as the studies of functions using the �!

Calculus
 The achievements reported in this thesis do of course not compare to

those achieved for the �!Calculus but they are a �rst step towards exploring the

expressive power of calculi for higher order communicating systems
 I have tried to

follow the path of simplicity and minimality and I have tried to carefully select a

small set of operators �as small as possible in fact� which can be used to express

complicated and sophisticated operators
 This provides a minimal syntax �in the

sense of �Mil��	� for the calculus and I have investigated several semantic models


The �rst part of this thesis described the CHOCS calculus with an operational

semantics given as an extension of the operational semantics for CCS with value

passing
 We have shown how the fundamental notions of bisimulation and obser�

vational equivalence may be extended to take processes sent and received in com�

munication into account
 We have shown that these equivalences satisfy almost the

same set of algebraic laws known from CCS only needing some obvious new laws for

process communication
 As an interesting point to note we have shown how process

communication may be used to simulate recursive behaviour
 We have also shown

how to de�ne a denotational semantics for CHOCS and we have shown that this

semantics� with mild restrictions� is fully abstract with respect to the operational

semantics
 These restrictions are due to the well known impossibility of modelling

unbounded nondeterminism in the Plotkin Power Domain
 It is a challenging task

to see if the Plotkin Power Domain for countable nondeterminism �Plo��	 could be

used to resolve this problem for a denotational semantics for CHOCS


���



Chapter �� Conclusion ���

��� Loose Ends

The study of calculi for higher order communicating systems presented in this thesis

has touched on most of the usual subjects of process calculus and successfully

extended these results to take processes sent and received in communication into

account
 Only one major study has been �neglected�� most process calculi study

the subject of process logic
 One outstanding representative for this approach is the

so�called Hennessy�Milner�Logic �HML� for CCS �HenMil��	
 So far we have not

presented any results about process logic� but HML may be extended to a version

relevant for CHOCS
 This logic takes processes sent and received in communication

into account and we therefore introduce binary modal operators which correspond

to the unary modal operators of HML


Let the language L of formulae be the least set such that�

�
 T � L

�
 F�F � � L � ha�i�F�F ��� ha�i�F�F ��� F � F � � L

�
 F � L � h� iF� �F � L

The satisfaction relation j�� P � L is the least relation such that�

�
 p j� T for all p � Pr

�
 p j� F � F � i� p j� F and p j� F �

�
 p j� �F i� not p j� F

�
 p j� ha�i�F�F �� i� for some p�� p��� p
a�p�
	
 p�� and p� j� F and p�� j� F �

�
 p j� ha�i�F�F �� i� for some p�� p��� p
a�p�
	
 p�� and p� j� F and p�� j� F �

�
 p j� h� iF i� for some p��� p
�
	
 p�� and p�� j� F �

Theorem 	���� If P is image �nite then

p � q i� L�p� � L�q�

where L�p� � fF � p j� Fg�

Proof� The proof of this theorem follows the corresponding proof for HML given
in �HenMil��	
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It is an interesting subject for further studies to see if this extension of HML can

be reconstructed using the domain logic framework of �Abr�a	 along the lines of the

reconstruction of HML in �Abr��a	
 From the domain equation� D �� P ��
P

e�EvDe	�

where Da� � D � D� Da� � D � D and D� � D� de�ned in Chapter �� we may

generate a domain logic using the framework based on Stone Duality presented in

�Abr�a	
 Once this study is completed it is a natural next step to investigate if

and how this domain logic and the denotational semantics may be used to give a

compositional proof system for CHOCS along the lines of �Sti�	 and �Win��	


��� Technical Choices and Open Questions

Throughout this thesis several technical choices have been made during the develop�

ment of the theory� often these choices have been motivated by technical necessity

to make the theory work or they have been made from �gut� feeling about the in�

tuition behind the theory
 But wherever choices are made alternatives exist
 I have

tried to list the most obvious ones and explain their implications at the appropriate

point in the text but one choice has been bigger and deserves more attention and

may turn out to be a worth�while path for future studies


The choice relates to the question of the observational theory for CHOCS
 This

theory is based on the de�nition of p
�

�� p�� as p
�
	


� �
	
 p�� motivated by technical

necessity
 I have not been able to prove congruence properties about weak higher

order bisimulation with the more common de�nition of p
�

�� p�� as p
�
	


� �
	


�
	


�

p��
 Of course this does not imply that it is not possible to do so and philosophically

there should be no reason for not doing so
 This is not the case for an observational

theory for Plain CHOCS however
 For technical reasons we would have to de�ne
a�x
���

�
	


� a�x
	
 since

a�x
	
� Pr � �Pr 
 Pr	 and it would not make sense to write

a�x
���

�
	


� a�x
	


�
	


�

 We could de�ne the output transitions as

a�p�
���

�
	


� a�p�
	


�
	


�

but this would introduce an unnecessary asymmetry
 In general the formulation of

an observational theory for Plain CHOCS is an open and interesting question


We have not solved the problem of �nding an alternative description of the

largest congruence containing higher order observational equivalence
 What we have

shown is that we can de�ne an irre exive weak higher order bisimulation predicate

and prove that this equivalence is a congruence
 There are a few suggestions to how

to proceed
 One could de�ne a recursive bisimulation�like version of the congruence�

De�nition 	���� A weak higher order context bisimulation R is a binary relation

on Pr such that whenever pRq and � � Act and C is a context then�

�i� Whenever C�p	
�

�� p�� then C�q	
��
�� q� for some q�� �

�

with e� bbRe�� and p�Rq�
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�ii� Whenever C�q	
�

�� q�� then C�p	
��
�� p� for some p�� �

�

with e�� bbRe� and p�Rq�

If there exists a weak higher order context bisimulation R containing �p� q� we

write p �C q�

It is relatively easy to see that the relation�C is a congruence relation containing

�
 However� �C also contains the following relation�

De�nition 	���� A weak higher order plus bisimulation R is a binary relation on

Pr such that whenever pRq and � � Act and r � Pr then�

�i� Whenever p � r
�

�� p�� then q � r
��
�� q� for some q�� �

�

with e� bbRe�� and p�Rq�

�ii� Whenever q � r
�

�� q�� then p � r
��
�� p� for some p�� �

�

with e�� bbRe� and p�Rq�

If there exists a weak higher order plus bisimulation R containing �p� q� we write

p �� q�

This relation generalizes the usual de�nition of �� to a recursively de�ned

predicate on Pr�
 Unfortunately this immediately refutes the law pre���p �c pre�p�

where pre is any of the pre�xes a�x� a�p� or � and thus leaves open the question of

the validity of this law for �c


It is interesting to see if the approach of denotational semantics may help an�

swering this question
 It seems possible to de�ne a denotational semantics which

is fully abstract with respect to an operational semantics built on the notion of ir�

re exive higher order bisimulation
 Abramsky has recently discovered how this can

be used in the context of SCCS to get to full abstraction with respect to the obser�

vational congruence by �factoring� out the denotational semantics by the equation�

pre���p �c pre�p �Abr��b	


The second part of this thesis has provided an alternative operational semantics

for the calculus of higher order communicating systems
 We have called this study

Plain CHOCS since it exhibits a static nature for the operators of restriction and

renaming
 The study of Plain CHOCS is still in a rather preliminary stage
 There

are various tasks to be continued
 As mentioned above there is the immediate task

of establishing an observational theory for Plain CHOCS
 Another major challenge

is to establish a denotational theory
 The operational modelling of input suggests

that input should be modelled by function space D 
 D� but the behaviour is
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also dependent on the set of bound names exported in scope extrusion� thus one

suggestion for a denotation domain worth investigating is�

D �� P ���a�Names�Names
 D	
 D � �a�NamesNames�D �D �D	

In the context of Plain CHOCS there is a very interesting variant of the applicative

higher order bisimulation which deserves to be explored�

De�nition 	���� A variant applicative higher order simulation R is a binary

relation on CPr such that whenever pRq and a � Names then�

�i� Whenever p
a�x
	
 p�� then for all r � CPr there is some q��

y such that q
a�y
	
 q� and p��r�x	Rq��r�y	

�ii� Whenever p
a�p�

B	
 p��� then q
a�q�

B	
 q�� for some q�� q�� with

B � �fn�p� � fn�q�� � � and p�Rq� and p��Rq��

�iii� Whenever p
�
	
 p�� then q

�
	
 q� for some q� with p�Rq�

A relation R is a variant applicative higher order bisimulation if both it and its

inverse are applicative higher order simulations�

If there exists a variant applicative higher order bisimulation R containing �p� q� we

write p
�
�

�
q�

This relation is obtained by commuting the quanti�ers in the �rst clause of

de�nition �
�
�
 The relation
�
�

�
is interesting since it is stronger than the applicative

higher order bisimulation relation
 A similar variation of strong ground bisimulation

was suggested in �MilParWal��	 and it was shown that in the context of Mobile

Processes the variant relation is strictly stronger
 It is an open question if the

inclusion is strict in the context of Plain CHOCS


��� Applications

The calculi studied in this thesis are idealized cores for the study of process passing

in communicating systems and we have shown how other values� including higher

order functions� sequential programs and objects may be encoded
 Several examples

throughout this thesis have shown that there are systems which naturally may be

described in terms of communicating systems passing processes in communication


Even so it is my opinion that we need other types of values as primitive constructs

in the language for real programming languages and large scale speci�cations
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Both the formalisms of LOTOS �BolBri�	 and SMoLCS �AstReg�	 have non�

process values as algebraic data types incorporated in their speci�cation languages


This seems to be an appropriate way of specifying communicable values from the

point of algebraic reasoning about values� but it o�ers little from the point of an

operational description of their behaviour
 Therefore in my opinion non�process

values should be introduced together with an operational semantics and an appro�

priate integration of equivalences should be studied which could form a basis for

algebraic reasoning along the ideas of laws presented in this thesis
 These ideas

have partly been pursued in TPL �Nie��	 and more thoroughly studied in FACILE

�GiaMisPra��	
 It is my hope that the calculi studied in this thesis may serve as a

foundational tool for future multi�paradigm programming languages
 Already both

TPL and FACILE use foundational models similar to the higher order communica�

tion trees studied in detail in the �rst part of this thesis


The introduction of non�process values calls for a notion of types
 Both FACILE

and TPL are equipped with type structures� but in my opinion the FACILE type

structure which assigns the type code to process values is too restrictive since there

is no reference to the sort of the process� and the type structure of TPL which has

no distinction between process expressions and other expressions is too  exible
 A

suggestion for a type structure is a merge between the FACILE type structure and

the sort system described in section �
� which should be pursued in the future


Design of a new multi�paradigm language with non�process values and processes

as communicable values seems to be a major challenge
 The theory presented in

this thesis is hopefully a useful tool� but for real life programming languages there

is also the inevitable question of how to implement them on real computers
 The

translation of Plain CHOCS into Mobile Processes presented in section �
� gives

some ideas about how process passing could be implemented on a lower level using

processes on dynamically recon�gurable networks
 This again calls for a study of

an implementation strategy for such processes
 Some hints are given in �Mil��	

where a Chemical Abstract Machine �BerBou��	 for Mobile Processes is considered


A more thorough study of implementations of processes on dynamically recon�g�

urable networks will appear in �Let��	
 Another suggestion is to use the frame�

work of Chemical Abstract Machines directly as demonstrated for the ��Calculus

in �BerBou��	
 All the above approaches towards implementations are relatively

abstract
 To get closer to a real implementation I think it is necessary to consider

implementations in an occam�like� language on a Transputer�like machine architec�

ture �INM��	
 This is one of the tasks that the ProCos Project under the ESPRIT

Basic Research Action ���� �Bj$��	 aims at doing for multi�paradigm languages

�
occam is a trademark of INMOS Limited�
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based on a CSP#occam#Transputer approach
 However� occam does not seem to be

quite adequate for implementing a multi�paradigm programming language built on

the ideas of CHOCS because it does not allow one to describe dynamically recon�g�

urable networks� such networks can only be simulated using large static networks


Another promising machine architecture is the Alice machine �DarRee��	
 This ma�

chine has a network of processors linked via a kind of telephone exchange mechanism

which allows physical connections between processors to be changed dynamically


One problem I foresee with implementations on either a Transputer or an Alice

machine architecture is that they both seem to require large blocks of sequential

sub�computations to e"ciently utilize the computing power of each processor in

the network
 However� the translation of Plain CHOCS into Mobile Processes and

more generally the results on simulation of functional languages reported in �Let��	

indicate that we should be looking for a machine architecture where there are very

small blocks of sequential sub�computations and where the basic computation is re�

con�guring the network
 It will be a major challenge to see how this can be realized

in practice
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