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Abstract

We investigate the complexity of probabilistic inference from knowledge bases that
encode probability distributions on finite domain relational structures. Our interest
here lies in the complexity in terms of the domain under consideration in a specific
application instance. We obtain the result that assuming NETIME#ETIME this
problem is not polynomial for reasonably expressive representation systems. The
main consequence of this result is that it is unlikely to find inference techniques
with a better worst-case behavior than the commonly employed strategy of con-
structing standard Bayesian networks over ground atoms (knowledge based model
construction).
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1 Introduction

A recent development in probabilistic reasoning in Al is the emergence of
various systems for the specification of probability distributions on relational
structures, or, in the terminology of Friedman et al. (1999), the construction
of probabilistic relational models (Ngo & Haddawy 1997, Jaeger 1997, Koller
& Pfeffer 1998). These systems have evolved out of earlier frameworks that
were developed as specification languages for structurally uniform classes of
Bayesian networks (Poole 1993, Breese 1992, Saffiotti & Umkehrer 1994).
Given a particular probabilistic query, a specification in such a language would
serve as the blueprint for the automatic generation of a Bayesian network
in which the probability of the query then is computed. This method has
been called knowledge based model construction (Wellman, Breese & Goldman
1992).



Initially, only representation languages were considered that are based on some
form of probabilistic Horn clauses. Ignoring many particular features present in
the representation languages proposed by various authors, these probabilistic
Horn clauses are essentially of the form

p(u,v) < q(u,v) )

p(u,v) € r(u), s(v)

where p,q,r,s are relation symbols, and u,v, w logical variables. The intu-
itive meaning of e.g. the first clause is: for all u, v, the conditional probabil-
ity of p(u,v) given that q(u,v) holds is 0.3. Given constants a,b for which
we have evidence q(a,b) the rule allows us to compute a posterior probabil-
ity of 0.3 for p(a,b) * (if (1) expresses statistical knowledge, this computa-
tion would be an instance of direct inference, cf. (Bacchus 1990)). This coin-
cides with the interpretation of similar rules in certain probabilistic logics (Ng
& Subrahmanian 1992, Lakshmanan & Sadri 1994). The difference between
knowledge based model construction and its outgrowths on the one hand, and
probabilistic logics on the other emerges when we consider conditional proba-
bilities that are not fully determined by the rules. The conditional probability
p:= P(p(a,b) | q(a,b),r(a),s(b)), for instance, is not defined by either of the
rules in (1). Moreover, only the trivial bounds [0, 1] are strictly implied for
p by instantiations of the rules (1) with a,b,c. In most probabilistic logics,
therefore, one will be unable to derive from (1) any nontrivial bounds for p.

In purely propositional settings, Bayesian networks have proven to be more
useful in practice than propositional probabilistic logics (Nilsson 1986, Frisch
& Haddaway 1994) because they define a unique probability distribution on
the set of propositional models (i.e. truth assignments), and therefore (at
the cost of a greater specification effort) allow us to derive a unique prob-
ability value for every query. It is natural to extend this approach to cer-
tain forms of first-order probabilistic information, and to develop tools for
defining probability distributions on models for first-order logic. In knowledge
based model construction this is done by interpreting the probabilistic rules
(1) as rules for the construction of standard Bayesian networks over ground
atoms. Given a ground query P(p(a,b) | q(a,b),r(a),s(b)) =? the model
construction will yield a Bayesian network containing nodes for the atoms
p(a,b),q(a,b),r(a),s(b) (and possibly a large number of additional nodes),

! As long as no constant symbols appear in the rules, the same will be true for
constants ¢, d for which we have the same evidence q(c,d). Most concrete represen-
tation systems provide for constants in the rules, so that the probabilities entailed
by the rules are not necessarily invariant under substituting different constants.For
the purpose of the present paper we may focus on rules without constants, because
our main result is a lower complexity bound, which, obviously, also is applicable to
richer systems admitting constant symbols.



and thereby determine a unique value for P(p(a,b) | q(a,b),r(a),s(b)). As
noted above, the intended semantics of the rules (1) alone will not uniquely
determine the desired probabilities, so that it is clear that at some point ad-
ditional information or assumptions — not directly expressed by (1) — must
enter the construction process. Essentially, these additional assumptions have
to determine how the conditional probabilities in clauses with the same head
are to be combined to obtain the conditional probability of the head given the
conjunction of the bodies of the various clauses.

In early approaches (Breese 1992) this information was supplied implicitly
by certain implementation details of the construction algorithm, and conse-
quently the primary representation language did not possess a declarative se-
mantics independent from the network construction process. Haddawy (1994)
and Ngo and Haddawy (1997) have argued that this is unsatisfactory, and have
proposed representation systems with additional syntactic constructs that in
the knowledge base declare how several applicable clauses are to be combined.

Relational Bayesian networks (Jaeger 1997, Jaeger 1998) can be understood
as a representation formalism that goes one step further by compiling sets of
clauses (1), and the necessary additional conventions for their combination,
into a single functional expression F', so that the knowledge base now consists
of exactly one declaration of the form

r(v) = F(Sla"- askav)a (2)
for each relation symbol r (we use boldface letters v,a, ... as an abbrevia-
tion for tuples (vq,...,vg), (a1, ... ,q),... of variables or constants). Formal

semantics for this set of declarations then can be defined in a straightforward
manner. Another related framework that uses a representation language differ-
ent from probabilistic Horn clauses are the probabilistic frame-based systems
of Koller and Pfeffer (1998).

Once one has taken the step to supply the primary representation formalism
with descriptive semantics independent from any construction algorithm for
standard Bayesian networks, the question arises whether standard Bayesian
networks are still needed at all. Their role now has changed from being the
subject of our primary representation to being merely a tool of inference: if
there were more efficient ways to compute the answer to a probabilistic query
than by constructing a Bayesian network over ground atoms, we would be
happy to dispense with Bayesian networks altogether. To emphasize this shift
of perspective, we refer as auxiliary network construction to the process of
constructing standard Bayesian networks as an inference technique for repre-
sentation languages with independent semantics.

It does not seem to be unreasonable to expect more efficient inference tech-
niques than auxiliary network construction to exist, because this approach



amounts to a complete “propositionalization” of first-order information. For
logic inference problems from (deterministic) Horn-clauses we know that we
can avoid this, and, for example, by unification and resolution deduce from

p(v) « q(v,w)

q(a,u) «

that p(a) holds, without first constructing all the ground atoms p(c), q(c, ¢), ...
for all constants ¢, ¢, ... in the language.

It is natural to look for corresponding techniques for probabilistic inference
from first-order probabilistic rules like (1) or (2) — techniques that compute
probabilities by manipulating more abstract logical expressions than ground
atoms. In this paper we show that it is very unlikely that with such algorithms
we can obtain inference techniques that are more efficient than auxiliary net-
work construction.

2 Model Representation Systems

It is our aim to derive our complexity results in as general terms as possible,
showing their applicability to a great variety of different representation sys-
tems. In order to do this, we have to abstract from the concrete syntactical
constructs used in various systems, and analyze these systems in terms of their
semantic expressiveness.

To achieve this goal we develop in this section the general concept of a proba-
bilistic model representation system, which (very loosely) can be seen as spe-
cialized counterpart of the general concept of a logic. Just as different logics
can be compared, and their complexity be analyzed, by considering the classes
of models they can define, we derive results for model representation systems
in terms of the class of models they can describe, where models now are prob-
ability distributions.

First, we have to describe the structure of the models that are defined by
the representation systems we deal with. To motivate the following definition,
consider again the case of probabilistic Horn clauses as the representation
language. It is clear that, e.g., the semantics of knowledge base (1) will be
used to assign probability values to sentences such as p(a,b) A s(b). However,
it is not enough to say that the semantics of a knowledge base is given by a



probability distribution over sentences: to see why, consider the two rules

p(v) < q(v,u)
0.8
%

where the second clause means that the marginal probability of q(v,u) is 0.8.
Also assume that the semantical conventions adopted (perhaps via some addi-
tional declarations in the knowledge base) make the conditional probability of
p(a) increase in the number of valid instantiations for v in q(a, u). In particu-
lar, we would have P(p(a) | q(a,b)) < P(p(a) | a(a,b),q(a,c)). But more than
that, since each possible instantiation of u in q(a, u) has a positive probability
of 0.8 of being valid, the probability of p(a) should also increase in the number
of possible instantiations, whether or not they appear in the evidence. Thus,
the probability of p(a) as defined by the given rules, can only be determined
with respect to a certain (finite) domain D of elements that we can substitute
for v and w.

Consequently, the semantics of a knowledge base does not consist of a single
probability distribution over sentences, but of one distribution for each (finite)
domain D. Formally, a probability distribution on sentences containing rela-
tion symbols from a vocabulary S and constants from D is most conveniently
represented by a distribution on the set of all structures (or models) that in-
terpret the symbols in S over D. We denote the set of these structures by
Modp(S). As the particular names of the elements of D should be irrelevant,
we may restrict attention to the case where D = n = {0,1,...,n — 1} for
some n € N (we here avail ourselves of the set-theoretic convention to identify
the number n € N with the set {0,... ,n —1}).

Definition 1 A finite domain probabilistic relational model representation
system M consists of

o A syntax that defines for every relational vocabulary S = {r1,... ,rx} a set
M(S) of well-formed model representations.

o A semantics that assigns to every ® € M(S) and every n € N a probability
measure P® on Mod,(S).

Note that a probabilistic model representation system differs from a proba-
bilistic logic in that it is required that every model representation ® defines
for every n a unique measure on Mod,(S), whereas a theory ® in a proba-
bilistic logic will usually define a (possibly empty) set of such measures. It
should also be noted that most existing systems are somewhat more general
than described in definition 1 in that they allow for a set R of predefined, de-
terministic relations on the domain, so that the semantics maps R-structures
over n to probability measures over S-expansions of the R-structure.



In the sequel we simply write “model representation system” and “vocabulary”
for “finite domain probabilistic relational model representation system” and
“relational vocabulary”, respectively.

Next we describe minimal requirements for the expressiveness of model rep-
resentation systems. Our complexity results will hold for those systems that
satisfy these requirements.

The first requirement is very simple: we should be able to represent the uni-
form distribution on Mod,(S). The second requirement is to have the ability
to condition the probability that v belongs to some relation r on certain
logical properties of v with respect to other relations si,ss,.... In a clause
based representation language, for instance, this requirement will demand the
availability of rules of the form

r(v)f-a(v,s,...,s;), (3)
where a(v,s,...,s;) is some logical expression in the variables v and the
relation symbols sy, ... , sg. Our minimal requirement will be that rules of this

form are available for a being an equality constraint v; = v;, a conjunction
s1(v") A sg(v"), a negated atom —s(v), and an existentially quantified atom
Jws(v,w). Of these types of rules only the case of a being a conjunction is
readily recognized as being provided by existing systems for knowledge based
model construction. Existential quantification, on the other hand, might look
like a rather strong assumption about a system’s expressiveness. It should be
noted, however, that a rule like

r(v)«—s(v, w)

together with the common convention that multiple instantiations of the right
hand side of a rule are to be combined by noisy-or, just amounts to existential
quantification.

The following definition formulates the availability of rules like (3) in syntax-
independent, general semantic terms. In this definition, and in the remain-
der of the paper, we need some notation for restrictions of structures to
sub-vocabularies, and restrictions of measures to sub-algebras: when .#' €
Mod,(S") and S C S', then .#'[S denotes the S-structure over domain n that
has the same interpretations of the symbols in S as .Z'. Conversely, a struc-
ture .# € Mod,,(S) can be identified with the subset {.#' | .#'|S = #} C
Mod,,(S"). When P’ is a probability measure on Mod,(S’), then P'[Mod,(S)
denotes the probability measure P on Mod,(S) defined by P(.#) = P'({.#" |
M'|S = M}),and P'(- | #) denotes the conditional distribution on Mod,,(S’)
given {#' | #'|S = 4 }. We use the notation v’ C v to express that all vari-
ables in the tuple ©' are variables that also appear in v.



Definition 2 A model representation system M allows first-order condition-
ing if

e For every vocabulary S there exists ® € M(S) such that P® is the uniform
distribution on Mod,(S) for all n € N.

o For every vocabulary S, every ® € M(S), every k-ary r ¢ S, for v =
(v1,...,ux), and for every expression a(v) of one of the four forms
=0 (1<4,7<k),

- 51(V') A s2(v") (s1,82 € S;v',v" C o),

- s(v') (s €S, v Cw),

- Jus(v',w) (s €S, v' Cw)

there ezists ®* € M(S U {r}), such that ¥n € N:

P Mod,(S) = P2, (4)

n

and for alln € N, all 4 € Mod,(S), and all m € n*:

P (x(m) | ) = (1) ; Z; aim; (5)

The conditions of definition 2 demand that the probability of r(v) can be
conditioned on very simple logical properties of v. For relational Bayesian
networks it is straightforward to show that, in fact, r(v) can be conditioned
on arbitrary first-order expressible properties of v (Jaeger 1997). For systems
based on probabilistic Horn rules, on the other hand, it is not so obvious that
with rules (3) for simple formulas @ we can also encode more complicated
conditions like

r(v) +— —~Jw(s;(v',w)) V ss(v"). (6)

The following lemma, which is instrumental to the proof of theorem 4 in
the next section, shows that the elementary requirements of definition 2 are
sufficient to guarantee that rules like (6) can be encoded.

Lemma 3 Let M be a model representation system that allows first-order
conditioning. Let ® be a model representation for a vocabulary S, r ¢ S a
k-ary relation symbol, and ¢(v) a first-order S-formula whose free variables
are among v = (vy, ... ,v;). Then there exists a model representation ®% for
a vocabulary S® O S U {r}, such that for all n

P2’ | Mod, ($) = P, (7)

n



and for alln € N, all .4 € Mod,(S), and all m € n*:

1 4 =od(m
P (e(m) |y = O )
0 if 4 1= $(m)
In particular, for all m € n*:
P’ (x(m)) = P2 (p(m)). (9)

PROOF. First note that (7) and (8) directly imply (9). We prove the exis-
tence of ®¢ with (7) and (8) by induction on the structure of ¢.

First, assume that ¢ is of the form s(v') for some s € S, v’ C v. Then the
lemma follows from the case a(v) = s(v') A s(v') in definition 2. The case for
¢ of the form v; = v; is similar.

Now consider ¢(v) of the form ¢(v) A x(v). According to the induction hy-
pothesis, the lemma holds for ¢ and x. Applying the induction hypothesis
first to ¢, let r, be a new k-ary relation symbol, and let ®¥ be a model
representation for a vocabulary S¥ O S U {ry}, such that

P2 IMod,(S) = P2,

n

and for all .# € Mod,(S), m € n*:

if =yY(m
P rylm) [y = L)

! 0 else.

Now we apply the induction hypothesis to y and the already constructed ®¥.
This gives us a model representation ®X for a vocabulary SX O S¥ containing
another new k-ary relation symbol r,, such that

Py IMod,(S) = (P [Mod,(S¥))[Mod,(S)
— P*Mod,(S)
= P2



and for all .Z € Mod,,(5¥), m € n*:

1if A m
P em) ) = {1 =x(m)

1if 2SS = x(m)
0 else.

Given ®X we now can use the case @ = ry(v) A r,(v) of definition 2 to find a
final model representation ®? for the vocabulary S¢ = SX U {r}, such that

P2’ Mod,(S) = (P2’ [Mod,(5%))[Mod,(S)
— P® Mod,(S)
= P2

and for all .Z € Mod,,(5%), m € n*:

lit A FEry(m)Ary(m
I b = xy(m) A xy(m)

Lif 1S £ $(m) A x(m)

0 else.

The last identity establishes (8) for .# € Mod,(.S).
The case for ¢(v) of the form —(v) is dealt with in a similar manner.

Finally, consider ¢(v) of the form Jwi (v, w). We apply the induction hypoth-
esis to a relation symbol ry of arity £+ 1 and the formula ¢ (v, w) to obtain a
model representation ®¥. We then obtain ®? by applying definition 2 for the
case a(v) = Jwry(v,w) to r and Y. O

3 Complexity: Deterministic, Exact Inference

Given a model representation system M we now are interested in the complex-
ity of answering probabilistic queries, i.e. of computing P®(¢$(m)) for a model
representation ®, a domainsize n, and a proposition ¢(m). Obviously, with the
assumptions we have made we cannot derive exact bounds for the complexity
of this computation, because these would depend on many specific features
of the system M that we have left unspecified. Our aim here, therefore, only
is to investigate one specific aspect of the overall computational complexity,



namely its dependence on the domainsize n. The dependency on this param-
eter is of particular interest, because it is with regard to this parameter that
we would expect to obtain a gain in efficiency by replacing auxiliary network
construction with more sophisticated inference techniques: when ® and ¢(m)
are fixed, then the number of nodes in an auxiliary network constructed to
compute P?(¢(m)) will usually be polynomial in n, and the complexity of
inference exponential in n (because, in general, we will also have in the auxil-
iary network a polynomial growth of the maximal number of parents of single
nodes). It is not obvious that this exponential blowup in n is inherent in
the problem, and cannot be avoided by other inference techniques. Note, in
particular, that the well-known complexity results for inference in Bayesian
networks (Cooper 1990) are not applicable here, because we cannot represent
a suitable class of Bayesian networks that shows that inference is NP-hard
in the network size as the set of auxiliary networks constructed for a set of

queries P®(¢(m)) (n € N; @, ¢ fixed).

Thus, we here will be concerned with the complexity of computing P?(¢(m))
as a function of n with ® and ¢(m) being fixed. Moreover, following a com-
mon strategy, we will first concentrate on the simpler problem of deciding
whether P?(¢(m)) > 0. Formally, our problem then becomes that of deciding
predicates of the form

NONZERO(®, $(m)) := {n € N | P*(¢(m)) > 0}

defined by model representations ® (in some representation system M), and a
formula ¢(m) containing constants my,... ,my € N (use the convention that
P2(¢(m)) = 0 when m; > n for some i < k, and therefore ¢(m) cannot not
be interpreted over the domain n). For arbitrary subsets A C N we use A"™
and AP to denote the sets of unary and binary encodings, respectively, of
the members of A. Since we are interested in the complexity in terms of n of
deciding NONZERO(®, ¢(m)), not in terms of log(n), we really are talking
about the complexity of deciding NONZERO(®, ¢(m))™, when complexity is
measured in input size.

Adopting the notation of Johnson (1990), we denote by (N)ETIME the class
of subsets of {0,1}* that can be decided in (nondeterministic) time O(2°")
for some ¢ > 0. Note that this class is distinct from (N)EXPTIME, which
is characterized by time bounds of the form O(2") (¢ > 0). We can now
formulate our main theorem.

Theorem 4 Let M be a model construction system that allows first-order
conditioning. [f NETIME#ETIME, then there exist an S-model representation
® in M, and a ground S-atom r(m) such that NONZERO(®,r(m))™ ¢ P.

The proof of theorem 4 is quite straightforward using lemma 3 and established
results due to Jones and Selman (1972) on the connection between the class

10



NETIME and spectra of first-order sentences. We briefly review the relevant
definitions and results here.

The spectrum of a first-order sentence ¢ in the vocabulary S is the set {n €
N | 3.4 € Mod,(S) : # = ¢}, i.e. the set of all finite cardinalities for which
¢ has a model. A subset of N is called a spectrum if it is the spectrum of some
first-order sentence ¢ (over an arbitrary vocabulary — but note that without
loss of generality we can assume a relational vocabulary). The result of Jones
and Selman (1972) that we shall use is: a subset A of N is a spectrum iff
APn ¢ NETIME.

Proof of theorem 4 Let M be as stated in the theorem, and assume that
AP ¢ NETIME \ ETIME. By Jones and Selman’s (1972) theorem there
exists a first-order sentence 3 in a relational vocabulary S, such that A is
the spectrum of 9. Let ® be a model representation for S such that P is the
uniform distribution on Mod,(S) for all n € N. By lemma 3 there exists a
model representation ®¢ for S O S, such that S? contains a unary relation
symbol r, and (7) and (9) hold. Since the right hand side of (9) is nonzero iff
n is in the spectrum of ¢, we obtain

NONZERO(®%, z(m)) = A.
By the assumption AP ¢ ETIME it follows that

A"™ = NONZERO(®?, r(m))™ ¢ P.

Our proof of theorem 4 relies crucially on the requirement of definition 2 that
we can condition on equality constraints. If we deleted the case o = v; = v;
from definition 2 then our arguments would only show that we can encode as
sets of the form NONZERO(®, r(m)) spectra of first-order sentences without
equality. These, however, are simply sets of the form N\ {1,2,... k — 1k},
which can be decided in constant time.

Theorem 4 gives us a lower complexity bound for some NONZERO(®, r(m)).
For most concrete model construction systems proposed so far, on the other
hand, we have the upper bound NONZERO(®, r(m))eNP for all &, r(m).
This suggests to check whether NONZERO(®, r(m)) might be an NP-complete
problem for some representation system M, and suitable ® r(m). A general
result in complexity theory, however, says that this is unlikely to be the case.

Theorem 5 If P#NP then NONZERO(®, r(m))™ is not NP-complete for
any representation system M, model representation ®, and query r(m).

11



PROOF. This follows immediately from results of Mahaney (1986) that so-
called sparse sets cannot be NP-complete if P#NP. All sets in unary encoding
(also called tally languages) are examples of sparse sets. [

While it is customary to simplify questions about the complexity of computing
a function to a simpler decision problem, it is of course the complexity of
computing the value of P?(r(m)) that we are ultimately interested in. In
practice, one will usually not need to compute the precise probability value,
but only an approximation with a certain given precision. This leads us to the
subject of approximate inference, which we deal with in the following section.

4 Approximate Inference

Following Dagum and Luby (1993), we may distinguish between four principal
variants of approximate inference: the approximation may be within a specified
absolute or relative error, and the approximation algorithm may be either
determanistic or randomaized.

When lower complexity bounds for the computation of exact probabilities P(-)
are derived by a reduction to a decision problem of the form P(-) > 07 (as we
did here, and as did Cooper (1990) for standard Bayesian network inference),
then we cannot gain much by turning from exact inference to approximate
inference with a bounded relative error, because an approximation of P(-)
with a bounded relative error will still show whether P(-) > 0 or P(-) = 0. For
this reason we here concentrate on computing approximations z for P (r(m))
with a bound € on the absolute error, i.e. a number z that satisfies
2 € [Py (r(m)) — €, PP (r(m)) + €.

n

We first turn to deterministic approximations. It turns out that now the com-
plexity of computing P®(r(m)) can be as well-behaved as one might hope —
at least in theory.

Theorem 6 There exist model construction systems that allow first-order
conditioning such that for every model representation ®, every ground atom
r(m), and every € > 0 the complezity (in n) of computing an approzimation
of P®(r(m)) with absolute error at most € is O(1).

PROOF. In (Jaeger 1998) it is shown that for a certain subclass of rela-
tional Bayesian networks the probabilities P®(r(m)) converge to some limit
as n — oo for every network ® in that subclass, and every query r(m). The

12



subclass identified in (Jaeger 1998) is rich enough to allow first-order condi-
tioning.

Now assume that ® and r(m) are such that P®(r(m)) — p € [0,1] asn — oo,
and let ¢ > 0 be given. Then there exists ny € N, such that P?(r(m)) €
[p — €,p+ €] for all n > ng. Thus, we obtain an algorithm for computing an
e-approximation of P®(r(m)) by exact computation of P¥(r(m)) (using any
available algorithm) when n < ng, and by simply outputting p when n > ny.
The time requirement of this procedure is asymptotically constant in n. O

Clearly this result is of theoretical rather than practical interest, because nei-
ther does it tell us how to compute the number ngy, nor does it provide any
bound on the constant characterizing the time requirement. Furthermore, the
theorem is not applicable for representation systems in which P2 (r(m)) need
not converge.

In practice, randomized approximation algorithms can be particularly well-
suited for computing probabilities P®(r(m)). To see why, consider an algo-
rithm that produces random samples .#; € Mod,,(S) according to the distribu-
tion P®. As in logic sampling for standard Bayesian networks (Henrion 1988)
we could use the fraction of structures .#; with .#; = r(m) in a random sam-
ple A, ... ,.#, as an estimate for P®(r(m)). This is usually not the best use
we can make of the sample .7, . .. ,.#,, though: when the distribution P is
invariant under renaming (as we have always assumed), then we have

P(r(m)) = E; ([[x(v)])), (10)
where by ||r(v)|| we denote the fraction of tuples m that satisfy r(m) in a
structure .2 € Mod,(S), and by E® the expected value under the distribu-
tion P®. Therefore, we also gain an estimate for P2 (r(m)) by averaging over
the structures 4, ... ,.#, the values of |r(v)||. The variance of the random
variable ||r(v)]| is at most as large as that of the indicator variable for r(m),
and usually decreasing in n. Depending on how fast the variance of ||r(v)]|
decreases the reduction of the size of a random sample needed to estimate
P?(r(m)) with given error and confidence bounds can offset the increased
complexity of sampling a single structure .#;. In the best case we will really
obtain a time requirement that is constant in n.

5 Conclusion

The purpose of this paper was twofold: first, we wanted to develop a conceptual
framework that permits us to treat in a unified way a number of systems that

13



have been proposed in the literature for integrating some first-order reasoning
capabilities into Bayesian networks. We here have obtained this unified view
by characterizing such systems entirely in terms of their semantics, without
imposing any restrictions on the specific syntax used.

Our main objective then was to derive within this general setting results on
the complexity of probabilistic inference as a function of the size of the specific
domain to which the generic knowledge is applied. This is a new complexity
problem that is distinctive of the emergent class of probabilistic relational
model representation systems. It does not appear in probabilistic logics, be-
cause there entailment always is with regard to all models of a knowledge base,
not the models over a specific domain. It also is distinct from complexity ques-
tions about inference in standard Bayesian networks, because there a change
of the domain (by way of a different set of nodes in the network) always is
accompanied by a new model representation (i.e. a new network).

Our complexity problem is of particular interest, because polynomial bounds
here would have shown that there are more efficient ways for probabilistic
inference than auxiliary network construction — an inference technique that
a priori looks rather wasteful, because it involves a complete propositional-
ization of originally first-order knowledge. However, theorem 4 shows that for
reasonably expressive representation systems we are unlikely to find inference
techniques that have a better worst-case behavior than auxiliary network con-
struction. The proof of the theorem points to reasoning about equality as the
main cause for the complexity bounds we obtained. Investigations of weaker
systems with potentially lower complexity should therefore be directed towards
systems without equality reasoning.
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