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tWe investigate the 
omplexity of probabilisti
 inferen
e from knowledge bases thaten
ode probability distributions on �nite domain relational stru
tures. Our interesthere lies in the 
omplexity in terms of the domain under 
onsideration in a spe
i�
appli
ation instan
e. We obtain the result that assuming NETIME6=ETIME thisproblem is not polynomial for reasonably expressive representation systems. Themain 
onsequen
e of this result is that it is unlikely to �nd inferen
e te
hniqueswith a better worst-
ase behavior than the 
ommonly employed strategy of 
on-stru
ting standard Bayesian networks over ground atoms (knowledge based model
onstru
tion).Key words: Knowledge based model 
onstru
tion, Bayesian networks, �rst-orderlogi
1 Introdu
tionA re
ent development in probabilisti
 reasoning in AI is the emergen
e ofvarious systems for the spe
i�
ation of probability distributions on relationalstru
tures, or, in the terminology of Friedman et al. (1999), the 
onstru
tionof probabilisti
 relational models (Ngo & Haddawy 1997, Jaeger 1997, Koller& Pfe�er 1998). These systems have evolved out of earlier frameworks thatwere developed as spe
i�
ation languages for stru
turally uniform 
lasses ofBayesian networks (Poole 1993, Breese 1992, SaÆotti & Umkehrer 1994).Given a parti
ular probabilisti
 query, a spe
i�
ation in su
h a language wouldserve as the blueprint for the automati
 generation of a Bayesian networkin whi
h the probability of the query then is 
omputed. This method hasbeen 
alled knowledge based model 
onstru
tion (Wellman, Breese & Goldman1992).



Initially, only representation languages were 
onsidered that are based on someform of probabilisti
 Horn 
lauses. Ignoring many parti
ular features present inthe representation languages proposed by various authors, these probabilisti
Horn 
lauses are essentially of the formp(u; v) 0:3 � q(u; v)p(u; v) 0:5 � r(u); s(v) (1)where p,q,r,s are relation symbols, and u; v; w logi
al variables. The intu-itive meaning of e.g. the �rst 
lause is: for all u; v, the 
onditional probabil-ity of p(u; v) given that q(u; v) holds is 0.3. Given 
onstants a; b for whi
hwe have eviden
e q(a; b) the rule allows us to 
ompute a posterior probabil-ity of 0.3 for p(a; b) 1 (if (1) expresses statisti
al knowledge, this 
omputa-tion would be an instan
e of dire
t inferen
e, 
f. (Ba

hus 1990)). This 
oin-
ides with the interpretation of similar rules in 
ertain probabilisti
 logi
s (Ng& Subrahmanian 1992, Lakshmanan & Sadri 1994). The di�eren
e betweenknowledge based model 
onstru
tion and its outgrowths on the one hand, andprobabilisti
 logi
s on the other emerges when we 
onsider 
onditional proba-bilities that are not fully determined by the rules. The 
onditional probability� := P (p(a; b) j q(a; b); r(a); s(b)), for instan
e, is not de�ned by either of therules in (1). Moreover, only the trivial bounds [0; 1℄ are stri
tly implied for� by instantiations of the rules (1) with a; b; 
. In most probabilisti
 logi
s,therefore, one will be unable to derive from (1) any nontrivial bounds for �.In purely propositional settings, Bayesian networks have proven to be moreuseful in pra
ti
e than propositional probabilisti
 logi
s (Nilsson 1986, Fris
h& Haddaway 1994) be
ause they de�ne a unique probability distribution onthe set of propositional models (i.e. truth assignments), and therefore (atthe 
ost of a greater spe
i�
ation e�ort) allow us to derive a unique prob-ability value for every query. It is natural to extend this approa
h to 
er-tain forms of �rst-order probabilisti
 information, and to develop tools forde�ning probability distributions on models for �rst-order logi
. In knowledgebased model 
onstru
tion this is done by interpreting the probabilisti
 rules(1) as rules for the 
onstru
tion of standard Bayesian networks over groundatoms. Given a ground query P (p(a; b) j q(a; b); r(a); s(b)) =? the model
onstru
tion will yield a Bayesian network 
ontaining nodes for the atomsp(a; b); q(a; b); r(a); s(b) (and possibly a large number of additional nodes),1 As long as no 
onstant symbols appear in the rules, the same will be true for
onstants 
; d for whi
h we have the same eviden
e q(
; d). Most 
on
rete represen-tation systems provide for 
onstants in the rules, so that the probabilities entailedby the rules are not ne
essarily invariant under substituting di�erent 
onstants.Forthe purpose of the present paper we may fo
us on rules without 
onstants, be
auseour main result is a lower 
omplexity bound, whi
h, obviously, also is appli
able tori
her systems admitting 
onstant symbols.2



and thereby determine a unique value for P (p(a; b) j q(a; b); r(a); s(b)). Asnoted above, the intended semanti
s of the rules (1) alone will not uniquelydetermine the desired probabilities, so that it is 
lear that at some point ad-ditional information or assumptions { not dire
tly expressed by (1) { mustenter the 
onstru
tion pro
ess. Essentially, these additional assumptions haveto determine how the 
onditional probabilities in 
lauses with the same headare to be 
ombined to obtain the 
onditional probability of the head given the
onjun
tion of the bodies of the various 
lauses.In early approa
hes (Breese 1992) this information was supplied impli
itlyby 
ertain implementation details of the 
onstru
tion algorithm, and 
onse-quently the primary representation language did not possess a de
larative se-manti
s independent from the network 
onstru
tion pro
ess. Haddawy (1994)and Ngo and Haddawy (1997) have argued that this is unsatisfa
tory, and haveproposed representation systems with additional synta
ti
 
onstru
ts that inthe knowledge base de
lare how several appli
able 
lauses are to be 
ombined.Relational Bayesian networks (Jaeger 1997, Jaeger 1998) 
an be understoodas a representation formalism that goes one step further by 
ompiling sets of
lauses (1), and the ne
essary additional 
onventions for their 
ombination,into a single fun
tional expression F , so that the knowledge base now 
onsistsof exa
tly one de
laration of the formr(v) := F (s1; : : : ; sk; v); (2)for ea
h relation symbol r (we use boldfa
e letters v,a, : : : as an abbrevia-tion for tuples (v1; : : : ; vk); (a1; : : : ; al); : : : of variables or 
onstants). Formalsemanti
s for this set of de
larations then 
an be de�ned in a straightforwardmanner. Another related framework that uses a representation language di�er-ent from probabilisti
 Horn 
lauses are the probabilisti
 frame-based systemsof Koller and Pfe�er (1998).On
e one has taken the step to supply the primary representation formalismwith des
riptive semanti
s independent from any 
onstru
tion algorithm forstandard Bayesian networks, the question arises whether standard Bayesiannetworks are still needed at all. Their role now has 
hanged from being thesubje
t of our primary representation to being merely a tool of inferen
e: ifthere were more eÆ
ient ways to 
ompute the answer to a probabilisti
 querythan by 
onstru
ting a Bayesian network over ground atoms, we would behappy to dispense with Bayesian networks altogether. To emphasize this shiftof perspe
tive, we refer as auxiliary network 
onstru
tion to the pro
ess of
onstru
ting standard Bayesian networks as an inferen
e te
hnique for repre-sentation languages with independent semanti
s.It does not seem to be unreasonable to expe
t more eÆ
ient inferen
e te
h-niques than auxiliary network 
onstru
tion to exist, be
ause this approa
h3



amounts to a 
omplete \propositionalization" of �rst-order information. Forlogi
 inferen
e problems from (deterministi
) Horn-
lauses we know that we
an avoid this, and, for example, by uni�
ation and resolution dedu
e fromp(v)  q(v; w)q(a; u)  that p(a) holds, without �rst 
onstru
ting all the ground atoms p(
); q(
; 
0); : : :for all 
onstants 
; 
0; : : : in the language.It is natural to look for 
orresponding te
hniques for probabilisti
 inferen
efrom �rst-order probabilisti
 rules like (1) or (2) { te
hniques that 
omputeprobabilities by manipulating more abstra
t logi
al expressions than groundatoms. In this paper we show that it is very unlikely that with su
h algorithmswe 
an obtain inferen
e te
hniques that are more eÆ
ient than auxiliary net-work 
onstru
tion.
2 Model Representation SystemsIt is our aim to derive our 
omplexity results in as general terms as possible,showing their appli
ability to a great variety of di�erent representation sys-tems. In order to do this, we have to abstra
t from the 
on
rete synta
ti
al
onstru
ts used in various systems, and analyze these systems in terms of theirsemanti
 expressiveness.To a
hieve this goal we develop in this se
tion the general 
on
ept of a proba-bilisti
 model representation system, whi
h (very loosely) 
an be seen as spe-
ialized 
ounterpart of the general 
on
ept of a logi
. Just as di�erent logi
s
an be 
ompared, and their 
omplexity be analyzed, by 
onsidering the 
lassesof models they 
an de�ne, we derive results for model representation systemsin terms of the 
lass of models they 
an des
ribe, where models now are prob-ability distributions.First, we have to des
ribe the stru
ture of the models that are de�ned bythe representation systems we deal with. To motivate the following de�nition,
onsider again the 
ase of probabilisti
 Horn 
lauses as the representationlanguage. It is 
lear that, e.g., the semanti
s of knowledge base (1) will beused to assign probability values to senten
es su
h as p(a; b) ^ s(b). However,it is not enough to say that the semanti
s of a knowledge base is given by a4



probability distribution over senten
es: to see why, 
onsider the two rulesp(v) 0:5 � q(v; u)q(v; u) 0:8 �where the se
ond 
lause means that the marginal probability of q(v; u) is 0.8.Also assume that the semanti
al 
onventions adopted (perhaps via some addi-tional de
larations in the knowledge base) make the 
onditional probability ofp(a) in
rease in the number of valid instantiations for u in q(a; u). In parti
u-lar, we would have P (p(a) j q(a; b)) < P (p(a) j q(a; b); q(a; 
)). But more thanthat, sin
e ea
h possible instantiation of u in q(a; u) has a positive probabilityof 0.8 of being valid, the probability of p(a) should also in
rease in the numberof possible instantiations, whether or not they appear in the eviden
e. Thus,the probability of p(a) as de�ned by the given rules, 
an only be determinedwith respe
t to a 
ertain (�nite) domain D of elements that we 
an substitutefor v and u.Consequently, the semanti
s of a knowledge base does not 
onsist of a singleprobability distribution over senten
es, but of one distribution for ea
h (�nite)domain D. Formally, a probability distribution on senten
es 
ontaining rela-tion symbols from a vo
abulary S and 
onstants from D is most 
onvenientlyrepresented by a distribution on the set of all stru
tures (or models) that in-terpret the symbols in S over D. We denote the set of these stru
tures byModD(S). As the parti
ular names of the elements of D should be irrelevant,we may restri
t attention to the 
ase where D = n = f0; 1; : : : ; n � 1g forsome n 2 N (we here avail ourselves of the set-theoreti
 
onvention to identifythe number n 2 N with the set f0; : : : ; n� 1g).De�nition 1 A �nite domain probabilisti
 relational model representationsystem M 
onsists of� A syntax that de�nes for every relational vo
abulary S = fr1; : : : ; rkg a setM(S) of well-formed model representations.� A semanti
s that assigns to every � 2M(S) and every n 2 N a probabilitymeasure P�n on Modn(S).Note that a probabilisti
 model representation system di�ers from a proba-bilisti
 logi
 in that it is required that every model representation � de�nesfor every n a unique measure on Modn(S), whereas a theory � in a proba-bilisti
 logi
 will usually de�ne a (possibly empty) set of su
h measures. Itshould also be noted that most existing systems are somewhat more generalthan des
ribed in de�nition 1 in that they allow for a set R of prede�ned, de-terministi
 relations on the domain, so that the semanti
s maps R-stru
turesover n to probability measures over S-expansions of the R-stru
ture.5



In the sequel we simply write \model representation system" and \vo
abulary"for \�nite domain probabilisti
 relational model representation system" and\relational vo
abulary", respe
tively.Next we des
ribe minimal requirements for the expressiveness of model rep-resentation systems. Our 
omplexity results will hold for those systems thatsatisfy these requirements.The �rst requirement is very simple: we should be able to represent the uni-form distribution on Modn(S). The se
ond requirement is to have the abilityto 
ondition the probability that v belongs to some relation r on 
ertainlogi
al properties of v with respe
t to other relations s1; s2; : : : . In a 
lausebased representation language, for instan
e, this requirement will demand theavailability of rules of the formr(v) p ��(v; s1; : : : ; sk); (3)where �(v; s1; : : : ; sk) is some logi
al expression in the variables v and therelation symbols s1; : : : ; sk. Our minimal requirement will be that rules of thisform are available for � being an equality 
onstraint vi = vj, a 
onjun
tions1(v0) ^ s2(v00), a negated atom :s(v), and an existentially quanti�ed atom9ws(v; w). Of these types of rules only the 
ase of � being a 
onjun
tion isreadily re
ognized as being provided by existing systems for knowledge basedmodel 
onstru
tion. Existential quanti�
ation, on the other hand, might looklike a rather strong assumption about a system's expressiveness. It should benoted, however, that a rule liker(v) 1 �s(v; w)together with the 
ommon 
onvention that multiple instantiations of the righthand side of a rule are to be 
ombined by noisy-or, just amounts to existentialquanti�
ation.The following de�nition formulates the availability of rules like (3) in syntax-independent, general semanti
 terms. In this de�nition, and in the remain-der of the paper, we need some notation for restri
tions of stru
tures tosub-vo
abularies, and restri
tions of measures to sub-algebras: when M 0 2Modn(S 0) and S � S 0, thenM 0↾S denotes the S-stru
ture over domain n thathas the same interpretations of the symbols in S as M 0. Conversely, a stru
-ture M 2 Modn(S) 
an be identi�ed with the subset fM 0 j M 0↾S = M g �Modn(S 0). When P 0 is a probability measure on Modn(S 0), then P 0↾Modn(S)denotes the probability measure P on Modn(S) de�ned by P (M ) = P 0(fM 0 jM 0↾S =M g), and P 0(� jM ) denotes the 
onditional distribution on Modn(S 0)given fM 0 jM 0↾S =M g. We use the notation v0 � v to express that all vari-ables in the tuple v0 are variables that also appear in v.6



De�nition 2 A model representation system M allows �rst-order 
ondition-ing if� For every vo
abulary S there exists � 2 M(S) su
h that P�n is the uniformdistribution on Modn(S) for all n 2 N.� For every vo
abulary S, every � 2 M(S), every k-ary r 62 S, for v :=(v1; : : : ; vk), and for every expression �(v) of one of the four forms� vi = vj (1 � i; j � k),� s1(v0) ^ s2(v00) (s1; s2 2 S; v0; v00 � v),� :s(v0) (s 2 S; v0 � v),� 9ws(v0; w) (s 2 S; v0 � v)there exists �� 2M(S [ frg), su
h that 8n 2 N:P��n ↾Modn(S) = P�n ; (4)and for all n 2 N, all M 2 Modn(S), and all m 2 nk:P��n (r(m) jM ) = 8><>: 1 if M j= �(m)0 if M 6j= �(m) (5)The 
onditions of de�nition 2 demand that the probability of r(v) 
an be
onditioned on very simple logi
al properties of v. For relational Bayesiannetworks it is straightforward to show that, in fa
t, r(v) 
an be 
onditionedon arbitrary �rst-order expressible properties of v (Jaeger 1997). For systemsbased on probabilisti
 Horn rules, on the other hand, it is not so obvious thatwith rules (3) for simple formulas � we 
an also en
ode more 
ompli
ated
onditions like r(v) 1 � :9w(s1(v0; w)) _ s2(v00): (6)The following lemma, whi
h is instrumental to the proof of theorem 4 inthe next se
tion, shows that the elementary requirements of de�nition 2 aresuÆ
ient to guarantee that rules like (6) 
an be en
oded.Lemma 3 Let M be a model representation system that allows �rst-order
onditioning. Let � be a model representation for a vo
abulary S, r 62 S ak-ary relation symbol, and �(v) a �rst-order S-formula whose free variablesare among v = (v1; : : : ; vk). Then there exists a model representation �� fora vo
abulary S� � S [ frg, su
h that for all nP��n ↾Modn(S) = P�n ; (7)7



and for all n 2 N, all M 2 Modn(S), and all m 2 nk:P��n (r(m) jM ) = 8><>: 1 if M j= �(m)0 if M 6j= �(m) : (8)In parti
ular, for all m 2 nk:P��n (r(m)) = P�n (�(m)): (9)
PROOF. First note that (7) and (8) dire
tly imply (9). We prove the exis-ten
e of �� with (7) and (8) by indu
tion on the stru
ture of �.First, assume that � is of the form s(v0) for some s 2 S; v0 � v. Then thelemma follows from the 
ase �(v) � s(v0)^ s(v0) in de�nition 2. The 
ase for� of the form vi = vj is similar.Now 
onsider �(v) of the form  (v) ^ �(v). A

ording to the indu
tion hy-pothesis, the lemma holds for  and �. Applying the indu
tion hypothesis�rst to  , let r be a new k-ary relation symbol, and let � be a modelrepresentation for a vo
abulary S � S [ fr g, su
h thatP� n ↾Modn(S) = P�n ;and for all M 2 Modn(S), m 2 nk:P� n (r (m) jM ) = 8><>: 1 if M j=  (m)0 else:Now we apply the indu
tion hypothesis to � and the already 
onstru
ted � .This gives us a model representation �� for a vo
abulary S� � S 
ontaininganother new k-ary relation symbol r�, su
h thatP��n ↾Modn(S) = (P��n ↾Modn(S ))↾Modn(S)= P� n ↾Modn(S)= P�n ;8



and for all M 2 Modn(S ), m 2 nk:P��n (r�(m) jM ) = 8><>: 1 if M j= �(m)0 else:= 8><>: 1 if M↾S j= �(m)0 else:Given �� we now 
an use the 
ase � � r (v) ^ r�(v) of de�nition 2 to �nd a�nal model representation �� for the vo
abulary S� = S� [ frg, su
h thatP��n ↾Modn(S) = (P��n ↾Modn(S�))↾Modn(S)= P��n ↾Modn(S)= P�n ;and for all M 2 Modn(S�), m 2 nk:P��n (r(m) jM ) = 8><>: 1 if M j= r (m) ^ r�(m)0 else= 8><>: 1 if M↾S j=  (m) ^ �(m)0 else:The last identity establishes (8) for M 2 Modn(S).The 
ase for �(v) of the form : (v) is dealt with in a similar manner.Finally, 
onsider �(v) of the form 9w (v; w). We apply the indu
tion hypoth-esis to a relation symbol r of arity k+1 and the formula  (v; w) to obtain amodel representation � . We then obtain �� by applying de�nition 2 for the
ase �(v) � 9wr (v; w) to r and � . 23 Complexity: Deterministi
, Exa
t Inferen
eGiven a model representation systemM we now are interested in the 
omplex-ity of answering probabilisti
 queries, i.e. of 
omputing P�n (�(m)) for a modelrepresentation �, a domainsize n, and a proposition �(m). Obviously, with theassumptions we have made we 
annot derive exa
t bounds for the 
omplexityof this 
omputation, be
ause these would depend on many spe
i�
 featuresof the system M that we have left unspe
i�ed. Our aim here, therefore, onlyis to investigate one spe
i�
 aspe
t of the overall 
omputational 
omplexity,9



namely its dependen
e on the domainsize n. The dependen
y on this param-eter is of parti
ular interest, be
ause it is with regard to this parameter thatwe would expe
t to obtain a gain in eÆ
ien
y by repla
ing auxiliary network
onstru
tion with more sophisti
ated inferen
e te
hniques: when � and �(m)are �xed, then the number of nodes in an auxiliary network 
onstru
ted to
ompute P�n (�(m)) will usually be polynomial in n, and the 
omplexity ofinferen
e exponential in n (be
ause, in general, we will also have in the auxil-iary network a polynomial growth of the maximal number of parents of singlenodes). It is not obvious that this exponential blowup in n is inherent inthe problem, and 
annot be avoided by other inferen
e te
hniques. Note, inparti
ular, that the well-known 
omplexity results for inferen
e in Bayesiannetworks (Cooper 1990) are not appli
able here, be
ause we 
annot representa suitable 
lass of Bayesian networks that shows that inferen
e is NP-hardin the network size as the set of auxiliary networks 
onstru
ted for a set ofqueries P�n (�(m)) (n 2 N; �; � �xed).Thus, we here will be 
on
erned with the 
omplexity of 
omputing P�n (�(m))as a fun
tion of n with � and �(m) being �xed. Moreover, following a 
om-mon strategy, we will �rst 
on
entrate on the simpler problem of de
idingwhether P�n (�(m)) > 0. Formally, our problem then be
omes that of de
idingpredi
ates of the formNONZERO(�; �(m)) := fn 2 N j P�n (�(m)) > 0gde�ned by model representations � (in some representation system M), and aformula �(m) 
ontaining 
onstants m1; : : : ; mk 2 N (use the 
onvention thatP�n (�(m)) = 0 when mi > n for some i � k, and therefore �(m) 
annot notbe interpreted over the domain n). For arbitrary subsets A � N we use Aunand Abin to denote the sets of unary and binary en
odings, respe
tively, ofthe members of A. Sin
e we are interested in the 
omplexity in terms of n ofde
iding NONZERO(�; �(m)), not in terms of log(n), we really are talkingabout the 
omplexity of de
iding NONZERO(�; �(m))un, when 
omplexity ismeasured in input size.Adopting the notation of Johnson (1990), we denote by (N)ETIME the 
lassof subsets of f0; 1g� that 
an be de
ided in (nondeterministi
) time O(2
n)for some 
 > 0. Note that this 
lass is distin
t from (N)EXPTIME, whi
his 
hara
terized by time bounds of the form O(2n
) (
 > 0). We 
an nowformulate our main theorem.Theorem 4 Let M be a model 
onstru
tion system that allows �rst-order
onditioning. If NETIME6=ETIME, then there exist an S-model representation� in M, and a ground S-atom r(m) su
h that NONZERO(�; r(m))un 62 P.The proof of theorem 4 is quite straightforward using lemma 3 and establishedresults due to Jones and Selman (1972) on the 
onne
tion between the 
lass10



NETIME and spe
tra of �rst-order senten
es. We brie
y review the relevantde�nitions and results here.The spe
trum of a �rst-order senten
e � in the vo
abulary S is the set fn 2
N j 9M 2 Modn(S) : M j= �g, i.e. the set of all �nite 
ardinalities for whi
h� has a model. A subset of N is 
alled a spe
trum if it is the spe
trum of some�rst-order senten
e � (over an arbitrary vo
abulary { but note that withoutloss of generality we 
an assume a relational vo
abulary). The result of Jonesand Selman (1972) that we shall use is: a subset A of N is a spe
trum i�Abin 2 NETIME.Proof of theorem 4 Let M be as stated in the theorem, and assume thatAbin 2 NETIME n ETIME. By Jones and Selman's (1972) theorem thereexists a �rst-order senten
e  in a relational vo
abulary S, su
h that A isthe spe
trum of  . Let � be a model representation for S su
h that P�n is theuniform distribution on Modn(S) for all n 2 N. By lemma 3 there exists amodel representation �� for S� � S, su
h that S� 
ontains a unary relationsymbol r, and (7) and (9) hold. Sin
e the right hand side of (9) is nonzero i�n is in the spe
trum of �, we obtainNONZERO(��; r(m)) = A:By the assumption Abin 62 ETIME it follows thatAun = NONZERO(��; r(m))un 62 P:2Our proof of theorem 4 relies 
ru
ially on the requirement of de�nition 2 thatwe 
an 
ondition on equality 
onstraints. If we deleted the 
ase � � vi = vjfrom de�nition 2 then our arguments would only show that we 
an en
ode assets of the form NONZERO(�; r(m)) spe
tra of �rst-order senten
es withoutequality. These, however, are simply sets of the form N n f1; 2; : : : ; k � 1; kg,whi
h 
an be de
ided in 
onstant time.Theorem 4 gives us a lower 
omplexity bound for some NONZERO(�; r(m)).For most 
on
rete model 
onstru
tion systems proposed so far, on the otherhand, we have the upper bound NONZERO(�; r(m))2NP for all �; r(m).This suggests to 
he
k whether NONZERO(�; r(m)) might be an NP-
ompleteproblem for some representation system M, and suitable �; r(m). A generalresult in 
omplexity theory, however, says that this is unlikely to be the 
ase.Theorem 5 If P6=NP then NONZERO(�; r(m))un is not NP-
omplete forany representation system M, model representation �, and query r(m).11



PROOF. This follows immediately from results of Mahaney (1986) that so-
alled sparse sets 
annot be NP-
omplete if P6=NP. All sets in unary en
oding(also 
alled tally languages) are examples of sparse sets. 2While it is 
ustomary to simplify questions about the 
omplexity of 
omputinga fun
tion to a simpler de
ision problem, it is of 
ourse the 
omplexity of
omputing the value of P�n (r(m)) that we are ultimately interested in. Inpra
ti
e, one will usually not need to 
ompute the pre
ise probability value,but only an approximation with a 
ertain given pre
ision. This leads us to thesubje
t of approximate inferen
e, whi
h we deal with in the following se
tion.4 Approximate Inferen
eFollowing Dagum and Luby (1993), we may distinguish between four prin
ipalvariants of approximate inferen
e: the approximation may be within a spe
i�edabsolute or relative error, and the approximation algorithm may be eitherdeterministi
 or randomized.When lower 
omplexity bounds for the 
omputation of exa
t probabilities P (�)are derived by a redu
tion to a de
ision problem of the form P (�) > 0? (as wedid here, and as did Cooper (1990) for standard Bayesian network inferen
e),then we 
annot gain mu
h by turning from exa
t inferen
e to approximateinferen
e with a bounded relative error, be
ause an approximation of P (�)with a bounded relative error will still show whether P (�) > 0 or P (�) = 0. Forthis reason we here 
on
entrate on 
omputing approximations z for P�n (r(m))with a bound � on the absolute error, i.e. a number z that satis�esz 2 [P�n (r(m))� �; P�n (r(m)) + �℄:We �rst turn to deterministi
 approximations. It turns out that now the 
om-plexity of 
omputing P�n (r(m)) 
an be as well-behaved as one might hope {at least in theory.Theorem 6 There exist model 
onstru
tion systems that allow �rst-order
onditioning su
h that for every model representation �, every ground atomr(m), and every � > 0 the 
omplexity (in n) of 
omputing an approximationof P�n (r(m)) with absolute error at most � is O(1).PROOF. In (Jaeger 1998) it is shown that for a 
ertain sub
lass of rela-tional Bayesian networks the probabilities P�n (r(m)) 
onverge to some limitas n!1 for every network � in that sub
lass, and every query r(m). The12



sub
lass identi�ed in (Jaeger 1998) is ri
h enough to allow �rst-order 
ondi-tioning.Now assume that � and r(m) are su
h that P�n (r(m))! p 2 [0; 1℄ as n!1,and let � > 0 be given. Then there exists n0 2 N, su
h that P�n (r(m)) 2[p � �; p + �℄ for all n � n0. Thus, we obtain an algorithm for 
omputing an�-approximation of P�n (r(m)) by exa
t 
omputation of P�n (r(m)) (using anyavailable algorithm) when n < n0, and by simply outputting p when n � n0.The time requirement of this pro
edure is asymptoti
ally 
onstant in n. 2Clearly this result is of theoreti
al rather than pra
ti
al interest, be
ause nei-ther does it tell us how to 
ompute the number n0, nor does it provide anybound on the 
onstant 
hara
terizing the time requirement. Furthermore, thetheorem is not appli
able for representation systems in whi
h P�n (r(m)) neednot 
onverge.In pra
ti
e, randomized approximation algorithms 
an be parti
ularly well-suited for 
omputing probabilities P�n (r(m)). To see why, 
onsider an algo-rithm that produ
es random samplesMi 2 Modn(S) a

ording to the distribu-tion P�n . As in logi
 sampling for standard Bayesian networks (Henrion 1988)we 
ould use the fra
tion of stru
tures Mi withMi j= r(m) in a random sam-pleM1; : : : ;Mn as an estimate for P�n (r(m)). This is usually not the best usewe 
an make of the sample M1; : : : ;Mn, though: when the distribution P�n isinvariant under renaming (as we have always assumed), then we haveP�n (r(m)) = E�n (kr(v)k); (10)where by kr(v)k we denote the fra
tion of tuples m that satisfy r(m) in astru
ture M 2 Modn(S), and by E�n the expe
ted value under the distribu-tion P�n . Therefore, we also gain an estimate for P�n (r(m)) by averaging overthe stru
tures M1; : : : ;Mn the values of kr(v)k. The varian
e of the randomvariable kr(v)k is at most as large as that of the indi
ator variable for r(m),and usually de
reasing in n. Depending on how fast the varian
e of kr(v)kde
reases the redu
tion of the size of a random sample needed to estimateP�n (r(m)) with given error and 
on�den
e bounds 
an o�set the in
reased
omplexity of sampling a single stru
ture Mi. In the best 
ase we will reallyobtain a time requirement that is 
onstant in n.5 Con
lusionThe purpose of this paper was twofold: �rst, we wanted to develop a 
on
eptualframework that permits us to treat in a uni�ed way a number of systems that13



have been proposed in the literature for integrating some �rst-order reasoning
apabilities into Bayesian networks. We here have obtained this uni�ed viewby 
hara
terizing su
h systems entirely in terms of their semanti
s, withoutimposing any restri
tions on the spe
i�
 syntax used.Our main obje
tive then was to derive within this general setting results onthe 
omplexity of probabilisti
 inferen
e as a fun
tion of the size of the spe
i�
domain to whi
h the generi
 knowledge is applied. This is a new 
omplexityproblem that is distin
tive of the emergent 
lass of probabilisti
 relationalmodel representation systems. It does not appear in probabilisti
 logi
s, be-
ause there entailment always is with regard to all models of a knowledge base,not the models over a spe
i�
 domain. It also is distin
t from 
omplexity ques-tions about inferen
e in standard Bayesian networks, be
ause there a 
hangeof the domain (by way of a di�erent set of nodes in the network) always isa

ompanied by a new model representation (i.e. a new network).Our 
omplexity problem is of parti
ular interest, be
ause polynomial boundshere would have shown that there are more eÆ
ient ways for probabilisti
inferen
e than auxiliary network 
onstru
tion { an inferen
e te
hnique thata priori looks rather wasteful, be
ause it involves a 
omplete propositional-ization of originally �rst-order knowledge. However, theorem 4 shows that forreasonably expressive representation systems we are unlikely to �nd inferen
ete
hniques that have a better worst-
ase behavior than auxiliary network 
on-stru
tion. The proof of the theorem points to reasoning about equality as themain 
ause for the 
omplexity bounds we obtained. Investigations of weakersystems with potentially lower 
omplexity should therefore be dire
ted towardssystems without equality reasoning.Referen
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