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k-Institut f�ur InformatikIm Stadtwald, 66123 Saarbr�u
ken, Germanyjaeger�mpi-sb.mpg.deAbstra
tA number of representation systems have been proposed that extend thepurely propositional Bayesian network paradigm with representation tools forsome types of �rst-order probabilisti
 dependen
ies. Examples of su
h sys-tems are dynami
 Bayesian networks and systems for knowledge based model
onstru
tion. We 
an identify the representation of probabilisti
 relationalmodels as a 
ommon well-de�ned semanti
 
ore of su
h systems.Re
ursive relational Bayesian networks (RRBNs) are a framework for therepresentation of probabilisti
 relational models. A main design goal forRRBNs is to a
hieve greatest possible expressiveness with as few elementarysynta
ti
 
onstru
ts as possible. The advantage of su
h an approa
h is thata system based on a small number of elementary 
onstru
ts will be mu
hmore amenable to a thorough mathemati
al investigation of its semanti
 andalgorithmi
 properties than a system based on a larger number of high-level
onstru
ts. In this paper we show that with RRBNs we have a
hieved ourgoal, by showing, �rst, how to solve within that framework a number of non-trivial representation problems. In the se
ond part of the paper we showhow to 
onstru
t from a RRBN and a spe
i�
 query, a standard Bayesiannetwork in whi
h the answer to the query 
an be 
omputed with standardinferen
e algorithms. Here the simpli
ity of the underlying representationframework greatly fa
ilitates the development of simple algorithms and 
or-re
tness proofs. As a result we obtain a 
onstru
tion algorithm that even forRRBNs that represent models for 
omplex �rst-order and statisti
al depen-den
ies generates standard Bayesian networks of size polynomial in the sizeof the domain given in a spe
i�
 appli
ation instan
e.Keywords: First-order probabilisti
 representations, knowledge based model
onstru
tion, Bayesian networks, temporal and relational models.
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1 Introdu
tion1.1 From propositional to relational probabilisti
 modelsUn
ertain information 
an often be modeled as a joint probability distributionof a set X1; : : : ; Xn of random variables. An important sub
lass of su
h jointdistributions is given by the 
ase where ea
h random variable Xi 
an only take on�nitely many di�erent values. A random variable with k possible values 
an alsobe en
oded with dlog(k)e Boolean random variables, i.e. random variables whosepossible values are only true and false. A joint distribution of random variableswith �nite ranges, thus, 
an also be en
oded as a joint distribution of Booleanrandom variables. Su
h a distribution we 
all a Probabilisti
 propositional model(ppm).Bayesian networks are the most prominent representation framework for ppms.Figure 1 (a) shows a 
lassi
 example of a Bayesian network representing a jointdistribution of the Boolean random variables burglary(Holmes) (standing for theevent that Holmes's home was broken into), earthquake(Holmes) (there was anearthquake in the area where Holmes lives),alarm(Holmes) (the alarm at Holmes'shouse went o�), and 
all(Watson,Holmes) (Holmes re
eived a phone 
all fromhis neighbor Watson). The network stru
ture, in 
onjun
tion with the 
onditionalprobability tables atta
hed to the nodes, spe
ify a joint probability distributionof the network's variables [23, 10℄.The network in Figure 1 (a) is adequate for Holmes to evaluate the probabilityof a burglary at his house when Holmes has exa
tly one neighbor, Watson. IfHolmes has two neighbors, Watson and Gibbon, then he needs to use the ppmrepresented by the network shown in Figure 1 (b).Figure 1 (a) and (b) show two distin
t Bayesian networks representing twodistin
t ppms. The two models are very similar, however: the random variables innetwork (a) are a subset of the random variables in network (b), and the distribu-tion de�ned by the network (a) is just the marginal on the random variables thetwo networks have in 
ommon of the distribution de�ned by the network (b). Infa
t, the similarities between the two models are su
h that one 
an hardly speakabout two distin
t models, but only about two di�erent instan
es of one basi
 un-derlying model. This underlying model, however, no longer 
an simply be a ppm.Instead, the underlying model must essentially be a blueprint for the 
onstru
tionof individual ppms. To obtain a mathemati
al formalization of su
h a blueprint,we �rst observe that all the random variables in Figure 1 are designated by whatin predi
ate logi
 would be 
alled a ground atomi
 formula, or, shorter, a groundatom: a predi
ate (or relation) symbol (burglary, : : : ,
all) applied to some
onstants (Holmes,Watson). We also see that the random variables appearing inthe two ppms of Figure 1 are 
onstru
ted by applying the same relations to thetwo distin
t sets of 
onstants fHolmes;Watsong and fHolmes;Watson;Gibbong,respe
tively. The blueprint that underlies the two ppms of Figure 1, thus, 
an beunderstood as a generi
 probabilisti
 model for the relations burglary, : : : ,
all,whi
h 
an be applied to any (�nite) domain of individuals. A (provisional) math-emati
al de�nition of su
h a generi
 probabilisti
 model (or blueprint for the 
on-1
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 model
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stru
tion of ppms) is as follows.Provisional De�nition: A probabilisti
 relational model (prm) 
onsists of aset R of relation symbols, and a mapping that assigns to every �nite set D =fd1; : : : ; dng of 
onstants a joint probability distribution of the setfr(di1 ; : : : ; dil) j r 2 R; di1 ; : : : ; dil 2 D (l = arity of r)gof Boolean random variables.In other words, a prm maps �nite domains D to a ppm whose random vari-ables are the ground atoms r(di1 ; : : : ; dil) (dij 2 D). Ea
h su
h ppm de�nedby some domain D we 
all an instan
e of the prm. Comparing these de�nitionswith the networks shown in Figure 1, we �nd that, stri
tly speaking, the net-works do not represent instan
es of a prm, be
ause they do not 
ontain nodesfor all ground atoms that 
an be formed with the given relation and 
onstantsymbols. A full instan
e of a prm given by D = fHolmes;Watsong is representedby the network shown in Figure 2 (the probability tables for nodes other than
all(Holmes,Holmes) and 
all(Watson,Watson) being as in Figure 1). Similarly,Figure 1 (b) only shows a part of the instan
e of the underlying prm obtained forD = fHolmes;Watson;Gibbong.
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e of a prm for D = fHolmes;WatsongThe 
on
ept of a prm is mu
h more general than perhaps suggested so farby our introdu
tory example. Another 
lass of prms is represented by dynami
Bayesian networks. Dynami
 Bayesian networks [7, 21℄ were introdu
ed to modeltime dependent random variables X1; : : : ; Xk (whi
h, again, may be assumed to beBoolean). A dynami
 Bayesian network is given by a standard Bayesian networkthat represents the joint distribution of X1; : : : ; Xk at time t = 0, and a standardBayesian network fragment that represents the joint distribution of X1; : : : ; Xkfor t � 1 
onditional on their values at t � 1 (only dis
rete time models areused). In Figure 3 the two network fragments de�ning a dynami
 Bayesian net-work for X1; X2 are highlighted. For any tmax 2 N one 
an 
on
atenate tmax
opies of the network fragment for t � 1 with the initial network for t = 0, andthereby obtain a standard Bayesian network for the Boolean random variablesX1(0); X2(0); : : : ; X2(tmax ). Thus, a dynami
 Bayesian network represents a prmfor X1; : : : ; Xk, now interpreted as unary relation symbols. Instan
es of this prmare given by domains D = f0; 1; : : : ; tmaxg of time points.3
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 Bayesian networkThis does not quite �t our provisional de�nition of a prm, as there it was de-manded that a prm de�nes a ppm for every �nite domain D. A dynami
 Bayesiannetwork, however, requires that the domain 
onsists of points in time. This do-main need not ne
essarily 
onsist of natural numbers 0..tmax . All that is reallyneeded is that the elements of the domain are totally ordered: when it is given, forinstan
e, that blue < green < red, then the dynami
 Bayesian network of Figure 3will also de�ne a joint probability distribution of X1(blue); : : : ; X2(red).This leads to a 
ru
ial modi�
ation of our provisional 
on
ept of prms: di�erentinstan
es of the prm, in general, are not given by unstru
tured domains D =fd1; : : : ; dng, but by stru
tures D = (D;S), 
onsisting of a �nite domain D, anda set S of prede�ned relations on D.For a �xed (�nite) domain D, and a set R of relation symbols, we denote byModD(R) the set of all R-stru
tures over D, i.e. the set of all algebrai
 stru
tureswith domain D and interpretations of the symbols r 2 R. 1 A stru
ture D 2ModD(R) 
an be identi�ed with an assignment of truth values true,false to allground atoms r(di1 ; : : : ; dil) (r 2 R, di1 ; : : : ; dil 2 D, l = arity of r). We alsorefer to this set of ground atoms as the ground atoms of ModD(R). This alsomeans that a probability distribution over ModD(R) 
an be identi�ed with a jointprobability distribution of the ground atoms of ModD(R) (viewed as Booleanrandom variables). We 
an now give the �nal de�nition of a prm.De�nition 1.1 Let R;S be two sets of relation symbols. The elements of Rare 
alled the probabilisti
 relations; the elements of S are 
alled the prede�ned1In the following, we will usually not pursue a stri
t distin
tion between a (synta
ti
) symboland its (semanti
) interpretation. Thus, a

ording to 
ontext, d 2 D is both a 
onstant symbol,and the element of a semanti
 domain designated by d; r 2 R is both a relation symbol, and arelation de�ned on some domain. 4



relations. A probabilisti
 relational model for R and S is a partial mapping P thatassigns to S-stru
tures D with �nite domain D a probability distribution P (D )over ModD(R). In the sequel we write PD for P (D ).By the equivalen
e of PD with a joint probability distribution of the groundatoms of ModD(R), we 
an still view PD as a ppm. As before, we 
all ea
h PD aninstan
e of the prm. A prm will usually not de�ne PD for all S-stru
tures D: adynami
 Bayesian network, for instan
e, 
an be des
ribed as a prm with S = f<g,su
h that PD is de�ned i� < is a total order on D.The prede�ned symbols in S are restri
ted to relation symbols just as a matterof 
onvenien
e: this simpli�es some of our subsequent de�nitions. As fun
tions and
onstants 
an always be en
oded as a relation, this de�nition really also providesfor prede�ned fun
tions and 
onstants, and we will use them freely in examples.Probabilisti
 relational models are a fundamental semanti
 
onstru
t that ap-pear in several pla
es in dis
rete mathemati
s and 
omputer s
ien
e. Randomgraphs, for instan
e, are studied from a theoreti
al point of view in 
ombinatori
s,and are applied in average 
ase analysis (see [9℄ for an overview). Models for ran-dom graphs are prms in the sense of De�nition 1.1 (with S = ; and R 
ontaininga single binary (edge) relation). As a semanti
 model for probabilisti
 knowledgerepresentation in AI, prms probably were �rst expli
itly used in [14℄. The term\probabilisti
 relational model" itself was introdu
ed by Friedman et al. [8℄.To make pra
ti
al use in AI appli
ations of the semanti
 notion of prms, twoquestions have to be answered:Representation: How 
an prms be represented within a formal synta
ti
alframework?Inferen
e: What algorithms 
an be used to answer queries about a prm?For ppms the 
urrently favored answers to the 
orresponding questions are: useBayesian networks and their inferen
e algorithms. For prms no similarly 
lear-
utanswers have yet emerged. In the following two subse
tions we will brie
y reviewthe di�erent answers that have been proposed so far in the literature, and outlineour answers, whi
h then are presented in detail in the remainder of this paper.1.2 Representation ParadigmsFew systems presented in the literature were developed pre
isely for the represen-tation of prms in the sense of De�nition 1.1. Some variations in their individualsemanti
s notwithstanding, the representation of prms nevertheless 
an be iden-ti�ed as a 
ommon 
ore fun
tionality of a number of di�erent systems. In thesequel we dis
uss these systems only with regard to this 
ore fun
tionality.Network templatesOne possible method for representing prms we already en
ountered in dynami
Bayesian networks: network templates. By network templates we mean any repre-5



sentation that 
onsists of a number of generi
 Bayesian network fragments, whosenodes 
an be instantiated with the ground atoms of a parti
ular domain. Anotherexample of a representation framework that is essentially a template representa-tion are the probabilisti
 frame based systems of Koller and Pfe�er [19℄.Figure 4 shows a simple template representation of our introdu
tory prm.The nodes in these templates are labelled with (non-ground) atoms alarm(v),
all(v; w), : : : , where v; w are logi
al variables. A �nite domain D gives rise tothe set of instantiations of these templates by performing all possible substitutionsof domain elements (
onstants) for the variables (where distin
t domain elementsare to be substituted for distin
t variables in a template). The resulting 
olle
tionof standard Bayesian network fragments 
an be put together in a unique wayto form a single standard Bayesian network. For D = fHolmes;Watsong thetemplates of Figure 4 yield the network of Figure 2.
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Figure 4: Template representation of introdu
tory prmNetwork templates 
an only represent a restri
ted 
lass of prms. To understandtheir basi
 limitation, 
onsider the generi
 node alarm(v) in Figure 4. Assumethat D is a domain 
ontaining Holmes. The standard Bayesian network de�nedby the templates of Figure 4 for this domain 
ontains the node alarm(Holmes)with parents burglary(Holmes) and earthquake(Holmes) (
f. Figure 2 ). In par-ti
ular, the set of parents of alarm(Holmes) does not depend on D. Similarly,if D also 
ontains Watson, then the node 
all(Watson,Holmes) only dependson alarm(Holmes), irrespe
tive of the other elements in the domain. This is anintrinsi
 limitation of template representations: by spe
ifying 
onditional proba-bility distributions in the templates with probability tables, the stru
ture of theparent sets of nodes is �xed for every instan
e of the template, and 
annot dependon the domain.However, the set of parents of a ground atom may very well be domain depen-dent in a realisti
 model. For example, add an additional relation symbol worriedto our vo
abulary. The ground atom worried(Holmes) stands for the fa
t thatHolmes is worried be
ause one of his neighbors has 
alled and informed him that hisalarm bell is ringing. Figure 5 shows the node worried(Holmes) in two instan
esof a prm given by the domains fHolmes;Watsong and fHolmes;Watson;Gibbong.The 
onditional probability tables at worried(Holmes) are di�erent in the two in-6



stan
es, whi
h therefore 
annot be obtained as instantiations of network templateslabelled with �xed 
onditional probability tables. What is needed to represent
omplex prms, therefore, are (�nitary) representations of the (in�nite) 
lasses of
onditional probability tables needed in the di�erent instan
es of the prm.
(a) (b)
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 logi
 programs [5, 24, 11, 25, 20℄. The most advan
ed ofthese systems are the probabilisti
 knowledge bases of Ngo and Haddawy [20℄. Theexa
t de�nitions of syntax and semanti
s given in [20℄ are rather involved, so thathere we 
an only give an impression of the 
hara
teristi
s of Ngo and Haddawy'ssystem by showing how it 
an be used to represent our example prm. The 
entralsynta
ti
 
onstru
ts in a probabilisti
 knowledge base are probabilisti
 rules likeP (worried(v) = true j 
all(w; v) = true) = 0:9: (1)The variables v; w in this rule are again to be instantiated with the elements ofa parti
ular domain. For D = fHolmes,Watson,Gibbong we obtain among theinstantiations of the rule P (worried(Holmes) = true j 
all(Watson;Holmes) =true) = 0:9 and P (worried(Holmes) = true j 
all(Gibbon;Holmes) = true) =0:9. These instantiated rules 
an be thought of as partial spe
i�
ations of the
onditional probability table of Figure 5 (b). To de�ne all the probability valuesneeded in the full table, the rule (1) is supplemented with a 
ombining rule. Byde
laring the 
ombining rule
ombining-rule(worried) = noisy-or (2)for instan
e, one would obtain as the de�nition of the 
onditional probability tablefor the node worried(Holmes) in a model for the domainD = fHolmes; d1; : : : ; dkgP (worried(Holmes) = true j 
all(d1;Holmes) = �1; : : : ; 
all(dk;Holmes) = �k)= 1� (1� 0:9)l(�1 ;::: ;�k);7



where �i 2 ftrue; falseg, and l(�1; : : : ; �k) = jfi j �i = truegj. Taken together,(1) and (2) say that any 
all by a neighbor will 
ause Holmes to be worried withprobability 0.9, and that the e�e
t of 
alls by several neighbors are independent,so that when l di�erent neighbors 
all, the probability of Holmes to be worried is1� (1� 0:9)l.For the parti
ular domain fHolmes,Watson,Gibbong (1) and (2) will generatethe �rst three lines of the 
onditional probability table of Figure 5 (b). Thelast line, however, will be P (worried(Holmes) = true j 
all(Watson;Holmes) =false; 
all(Gibbon;Holmes) = false) = 0. If we want to have a \base probability"0.05 of being worried even when no one has 
alled instead, this would have to bea

omplished by a suitable modi�
ation of the 
ombining rule.As this example illustrates, the probabilisti
 knowledge base approa
h over-
omes the limitation of network templates in that domain dependent dependen
ystru
tures and probability values 
an be represented. The probabilisti
 rules 
anprovide a 
exible and intuitive way to spe
ify aspe
ts of a prm in a modular way.In general, however, the probabilisti
 rules have to be regarded with a great deal of
aution. Their intuitiveness is to some extent illusory be
ause a probabilisti
 rulealone has no de
larative semanti
s: in spite of its suggestive syntax, the rule (1) initself does not de�ne a 
onditional probability. What it says about the probabili-ties in a prm depends on the asso
iated 
ombining rule. The more 
ompli
ated aprm be
omes, whi
h one wants to represent with a probabilisti
 knowledge base,the more 
ompli
ated 
ombining rules have to be used, and the less transparentthe meaning of the numeri
al parameters spe
i�ed in the probabilisti
 rules willbe.Relational Bayesian networksRelational Bayesian networks were introdu
ed in [14℄. The main tool for therepresentation of prms used in relational Bayesian networks is the probability for-mula. Probability formulas are fun
tional expressions that de�ne the entries inthe 
onditional probability tables for the di�erent instan
es of the prm. A suitableprobability formula 
ould be used to de�ne, for instan
eP (worried(v) = t) = � 1� (1� 0:9)l if jfw j 
all(w; v)gj = l > 10:05 if :9w
all(w; v): (3)This de�nition then generates the probability tables for worried(Holmes) in Fig-ure 5.The expression on the right hand side of (3) only is a high-level representationof a probability formula. Probability formulas in the stri
t sense are 
onstru
tedin a formal syntax that 
onsists of only four elementary 
onstru
tion rules. Thisredu
tion of the basi
 representation syntax to a small number of primitive 
on-stru
ts has two main advantages: �rst, the semanti
s of the representation systembe
omes straightforward and transparent. Se
ond, the representation frameworkis quite amenable to theoreti
al investigations of its properties, as many basi
 ques-tions 
an be answered by a four-step indu
tion on the 
onstru
tion of probabilityformulas. 8



In Se
tion 2 we will review syntax and semanti
s of probability formulas andrelational Bayesian networks. These de�nitions were already given in [14℄. Inthat paper two types of relational Bayesian networks were distinguished: (plain)relational Bayesian networks (RBNs), and re
ursive relational Bayesian networks(RRBNs). The former 
an only be used to represent prms without prede�nedrelations (S = ; in De�nition 1.1), whereas the latter allow prede�ned relations.In pre
eding papers [16, 15℄ the fo
us was on RBNs, as these are signi�
antlysimpler than RRBNs, and have a number of interesting theoreti
al properties,whi
h are not shared by RRBNs. In the present paper, we turn to RRBNs, asthey are mu
h more expressive than RBNs. Se
tion 3.1 highlights with someexamples the ability of RRBNs to represent 
omplex prms.1.3 Inferen
eFor any representation of a prm one would like to answer the following questions:given an S-stru
ture D, is PD de�ned by the prm? If so, and given ground atomsr0(d0); r1(d1); : : : ; rk(dk) of ModD(R) and �i 2 ftrue; falseg (1 � i � k), what isthe value of PD (r0(d0) = true j r1(d1) = �1; : : : ; rk(dk) = �k)? (4)If PD is de�ned, being a ppm, it 
an be represented with a standard Bayesiannetwork. The standard approa
h to solve the two inferen
e problems thereforeis to try to 
onstru
t a standard Bayesian network representing PD, so that the
onstru
tion fails i� PD is unde�ned. When a standard network representing PDhas been 
onstru
ted, one 
an 
ompute probabilities (4) using the standard algo-rithms. In fa
t, the 
onne
tion between representations of prms and the 
onstru
-tion of standard Bayesian networks representing instan
es of the prm originallywas so 
lose, that representations of prms were identi�ed with 
onstru
tion rulesfor standard Bayesian networks. The pro
ess of 
onstru
ting individual standardBayesian networks as instan
es of a general spe
i�
ation has be
ome known asknowledge based model 
onstru
tion [27℄.Given a high-level representation of a prm, it is not immediately 
lear, how-ever, that one 
annot do better than solving inferen
e problems by 
onstru
ting(possibly very large) standard networks �rst. In [14℄ hope was expressed thatfor RBNs more high-level and eÆ
ient inferen
e pro
edures 
ould be found. Un-fortunately, it turned out that the 
omplexity of the given inferen
e problems isinherently so high, that one 
annot do better than standard network 
onstru
tion[17℄.In this paper, therefore, we will take a 
loser look at standard network 
on-stru
tion as an inferen
e pro
edure for RRBNs. We develop in Se
tion 4 a methodfor the 
onstru
tion of small standard Bayesian networks representing instan
esPD. \Small" here means that the size of the standard network only grows poly-nomially in the size of D. As inferen
e in standard Bayesian networks, althoughof exponential 
omplexity in the worst 
ase [6℄, has turned out to be tra
tablein pra
ti
e, this is a step towards making the 
omputation of probabilities (4)tra
table in many pra
ti
al 
ases. Another step in the dire
tion of making these9




omputations feasible is presented in Se
tion 5: there it is shown how one 
anavoid to 
onstru
t a full network representing PD, by 
onstru
ting a network di-re
tly for the 
onditional distribution PD (� j r1(d1) = �1; : : : ; rk(dk) = �k), andby limiting this 
onstru
tion to a fragment of the full network whi
h is relevantfor the node r0(d0).2 Re
ursive Relational Bayesian NetworksIn this se
tion we reintrodu
e syntax and semanti
s of re
ursive relational Bayesiannetworks. Apart from some slight generalizations the de�nitions given here arethe same as in [14℄.We begin with �xing some notational 
onventions. Throughout we will be
on
erned with two sets R;S of relation symbols, as given in De�nition 1.1. Tomark the distin
tion between the two sets, we use standard mathemati
al fonts andsymbols (s; r;�; : : : ) for the relations in S, and typewriter font (X; r; alarm; : : : )for the relations in R.The arity of any relation r is denoted by jr j. Throughout, we use boldfa
ev,d, : : : to denote tuples of variables or domain elements. The length of a tuplev is denoted by jv j. Expressions like u � v and w 2 v are to be interpreted byidentifying a tuple v = (v1; : : : ; vn) with the set fvi j 1 � i � ng of its 
omponents.As observed in Se
tion 1.1, a distribution PD on ModD(R) 
an be identi�edwith a joint probability distribution of the ground atoms of ModD(R). Whena1; : : : ; am is an enumeration of these ground atoms, then we 
an fa
torize thejoint probability of the events ai = �i (�i 2 ffalse; trueg, 1 � i � m) in the usualway:PD(a1 = �1; : : : ; am = �m) = mYi=1PD(ai = �i j a1 = �1; : : : ; ai�1 = �i�1): (5)This identity holds for all instantiations �1; : : : ; �m, so that we 
an also write itas an identity between distributions:PD(a1; : : : ; am) = mYi=1PD(ai j a1; : : : ; ai�1): (6)Conditional independen
ies will often allow us to simplify the 
onditional distri-butions PD(ai j a1; : : : ; ai�1) to 
onditional distributions PD(ai j Pa(ai)), wherePa(ai) is a subset of fa1; : : : ; ai�1g. ThenPD(a1; : : : ; am) = mYi=1PD(ai j Pa(ai)): (7)From (7) we derive our strategy for the representation of a prm: for every S-stru
ture D, and every atom ai of ModD(R), our representation will de�ne afun
tion PD(ai j Pa(ai)) that maps instantiations (i.e. truth assignments) of a setPa(ai) of atoms into [0; 1℄. Probability formulas are our representation languagefor fun
tions of this form. 10



Two key ingredients of probability formulas are S-
onstraints and 
ombinationfun
tions. S-
onstraints are the tool employed by probability formulas to makeuse of prede�ned relations.De�nition 2.1 Let S be a set of relation symbols. An S-
onstraint is any Boolean
ombination of atomi
 formulas that 
an be 
onstru
ted from logi
al variablesu; v; : : : , the identity relation =, and relation symbols from S. We write 
(v) foran S-
onstraint that only 
ontains variables from the tuple v (but not ne
essarilyall the variables in the v). We use � to denote an arbitrary tautologi
al 
onstraint,e.g. u = u.More su

in
tly, we 
an also say that an S-
onstraint is a quanti�er free S-formula(in the sense of �rst-order logi
). Combination fun
tions are the main tool fornumeri
al 
omputations.De�nition 2.2 A 
ombination fun
tion is any fun
tion that maps �nite multisetswith elements from [0,1℄ into [0,1℄.We use bra
es jg; fj to denote multisets: if qi 2 [0; 1℄ for all i from some indexset �, then fjqi j i 2 �jg denotes the multiset that 
ontains jfi 2 � j qi = rgj 
opiesof r 2 [0; 1℄. We also use the notation fjr1 : k1; : : : ; rn : knjg for the multisetthat 
ontains ki 
opies of the number ri (1 � i � n), or expli
it enumerationsfjq1; : : : ; qljg. Thus, when q1 = q2 = 0:3, and q3 = 0:8, then fjqi j i 2 f1; ; 2; 3gjg =fj0:3 : 2; 0:8 : 1jg = fj0:3; 0:3; 0:8jg. Two important examples of 
ombination fun
-tions are noisy-or : n-ofjqi j i 2 �jg := 1�Qi2�(1� qi)mean : meanfjqi j i 2 �jg := 1j�jPi2� qi:For te
hni
al reasons, 
ombination fun
tions also have to be de�ned on the emptymultiset. For noisy-or andmean we here employ the 
onventions n-o ; = mean ; :=0. Probability formulas, now, are de�ned with respe
t to two relational vo
abu-laries R and S.De�nition 2.3 Let R;S be sets of relation symbols. The 
lass of R;S-probabilityformulas is indu
tively de�ned as follows.(i) (Constants) Ea
h q 2 [0; 1℄ is a probability formula.(ii) (Indi
ator fun
tions) For ea
h r 2 R, and every jr j-tuple v of variables, r(v)is a probability formula.(iii) (Convex 
ombinations) When F1; F2; F3 are probability formulas, then so isF1F2 + (1� F1)F3.(iv) (Combination fun
tions) When F1; : : : ; Fk are probability formulas, 
ombis any 
ombination fun
tion, v,w are tuples of variables, and 
(v;w) is anS-
onstraint, then 
ombfjF1; : : : ; Fk j w; 
(v;w)jgis a probability formula. 11



Spe
ial 
ases of 
onvex 
ombinations are produ
ts F1F2 (setting F3 = 0) andthe inverse 1� F1 of a formula F1 (setting F2 = 0 and F3 = 1).Example 2.4 For R = f
allg and S = ; an R;S-probability formula isF (v) � n-ofj0:9
all(w; v) j w;w 6= vjg: (8)It is straightforward to de�ne the set of free variables of a probability formulaF : the free variables of r(v) are the variables in the tuple v, the free variables ofa 
onvex 
ombination are the union of the free variables of F1; F2; F3, and the freevariables of a 
ombination fun
tion are the union of the free variables of F1; : : : ; Fkand 
, minus the variables in w (thus, a 
ombination fun
tion binds the variablesw). We write F (v) for a probability formula whose free variables are among v.An important measure for the 
omplexity of a probability formula is its quanti�erdepth:De�nition 2.5 Let F (v) be a R;S-probability formula. We de�ne the quanti�erdepth qd(F ) 2 N indu
tively as follows: if F is a 
onstant or an indi
ator fun
tion,then qd(F ) := 0. If F = F1F2+(1�F1)F3 then qd(F ) := maxfqd(Fi) j i = 1; 2; 3g.If F = 
ombfjF1; : : : ; Fk j w; 
(v;w)jg then qd(F ) := maxfqd(Fi) j i = 1; : : : ; kg+jw j.We now turn to the semanti
s of probability formulas. Eventually, they willbe used to de�ne the probabilities PD(ai j Pa(ai)) in (7), so we have to say howprobability formulas determine su
h probability values. A probability formulaF (v) 
omputes probabilities as a fun
tion of three inputs: an S-stru
ture D, atuple d of domain elements from D whi
h is substituted for v, and the truthvalues of the ground R-atoms that are needed to evaluate indi
ator fun
tions inF . An expli
it representation of this set of ground R-atoms is obtained by de�ningfor every symbol r 2 R a �rst-order formula paF;r(v;z) su
h that the evaluationof F (d) depends on the atom r(d0) just when paF;r(d;d0) holds.De�nition 2.6 Let F (v) be an R;S-probability formula. Let r 2 R and z anjr j-tuple of variables that do not o

ur in v. We de�ne the �rst-order formulapaF;r(v;z) in the vo
abulary S by indu
tion on the stru
ture of F :(i) If F � q then paF;r(v;z) � �, where � denotes an arbitrary unsatis�ableformula.(ii) If F � ~r(u), then u � v, and we de�nepaF;r(v;z) � ( ^jr ji=1ui = zi if r = ~r� otherwise(iii) If F � F1F2 + (1� F1)F3 thenpaF;r(v;z) � paF1;r(v;z) _ paF2;r(v;z) _ paF3;r(v;z):12



(iv) If F � 
ombfjF1; : : : ; Fk j w; 
(v;w)jg thenpaF;r(v;z) � 9w(
(v;w) ^ (paF1;r(v;w;z) _ : : : _ paFk ;r(v;w;z))):In the 
ase where w = ; this simpli�es topaF;r(v;z) � 
(v) ^ (paF1;r(v1;z) _ : : : _ paFk;r(vk;z)):Example 2.7 For F (v) as in Example 2.4, we obtainpaF;
all(v; z1; z2) � 9w(w 6= v ^ (w = z1 ^ v = z2))(whi
h is equivalent to z1 6= v ^ z2 = v). ForF 0(v) � 0:4F (v) + 0:6alarm(v) (9)we obtain paF 0;
all(v; z1; z2) � z1 6= v ^ z2 = v as before, and paF 0;alarm(v; z1) �v = z1 (in both 
ases after some simpli�
ations of the result obtained from there
ursive De�nition 2.6).For a given S-stru
ture D 2 ModD(S), and for a tuple d 2 Djv j, the formulapaF;r(v;z) de�nes the set of ground r-atomsPar(F (d)[D ℄) := fr(e) j D j= paF;r(d;e)g (10)and the set of R-atomsPa(F (d)[D ℄) := [r2RPar(F (d)[D ℄): (11)Example 2.8 For F 0(v) as given by (9), andD given byD = fHolmes;Watson;Gibbong(S being empty), we obtainPa
all(F 0(Holmes)[D ℄) = f
all(Watson,Holmes); 
all(Gibbon,Holmes)gPaalarm(F 0(Holmes)[D ℄) = falarm(Holmes)gOften we will drop the expli
it referen
e to the underlying stru
ture D, andsimply write Pa(F (d)) for Pa(F (d)[D ℄). Given a truth assignment for all atomsin Pa(F (d)), the formula F now de�nes a probability value for d.De�nition 2.9 Let F (v) be a R;S-probability formula. Let D 2 ModD(S), d 2Djv j, and I an instantiation for all ground atoms in Pa(F (d)[D℄) with truth valuesftrue; falseg. We then de�ne F (d)[D; I℄ 2 [0; 1℄ indu
tively as follows.(i) F � q: F (d)[D; I℄ := q.(ii) F � r(u) (with u � v):F (d)[D; I℄ := � 1 if I(r(~d)) = true0 if I(r(~d)) = false;where ~d is the tuple of domain elements obtained by substituting for ea
hvariable vi in u the domain element di.13



(iii) F � F1F2 + (1� F1)F3:F (d)[D; I℄ := F1(d)[D; I℄F2(d)[D; I℄ + (1� F1(d)[D; I℄)F3(d)[D; I℄:(iv) F = 
ombfjF1; : : : ; Fk j w; 
(v;w)jg:F (d)[D; I℄ := 
ombfjF1(d;e)[D; I℄; : : : ; Fk(d;e)[D; I℄ j e 2 Djw j;D j= 
(d;e)jg:In the 
ase w = ; this simpli�es toF (d)[D; I℄ := � 
ombfjF1(d)[D; I℄; : : : ; Fk(d)[D; I℄jg if D j= 
(d)
omb ; otherwiseThat F (d)[D; I℄ is de�ned when I instantiates Pa(F (d)[D℄) follows by straightfor-ward indu
tion on the stru
ture of F . Again, we usually drop the referen
e to D,and write F (d)[I℄ for F (d)[D; I℄.Example 2.10 Let F 0 andD be as in Example 2.8. Let I(
all(Watson;Holmes)) =true, I(
all(Gibbon;Holmes)) = false, and I(alarm(Holmes)) = true. ThenF 0(Holmes)[D ; I℄ = 0:5n-ofj0; 0:9jg + 0:5 = 0:95:Example 2.11 Consider the formulaF (v; w; u) � n-ofj0:6r(v; w) j ;;w < vjg: (12)For (d1; d2; d3) 2 D3 we now have Par(F (d1; d2; d3)[D℄) = fr(d1; d2)g if D j= d2 <d1, and Par(F (d1; d2; d3)) = ; if D 6j= d2 < d1. In the �rst 
ase, we need for theevaluation of F (d1; d2; d3) an instantiation I of r(d1; d2), and obtainF (d1; d2; d3)[D; I℄ := � n-ofj0:6jg = 1� 0:4 if I(r(d1; d2)) = truen-ofj0jg = 0 otherwise:In the se
ond 
ase we obtain F (d1; d2; d3)[D℄ = n-o ; = 0. As the variable u doesnot a
tually appear on the right hand side of (12), the value F (d1; d2; d3)[D; I℄does not depend on d3.The following probability formula has a somewhat di�erent 
avor:F (v) � meanfjn-ofj1 j ;; v = wjg j w; � jg: (13)As F does not 
ontain any indi
ator fun
tions, we have Pa(F (d)[D℄) = ; for allD; d. To see what formula (13) does, �rst 
onsider the inner subformula F 0(v; w) �n-ofj1 j ;; v = wjg. For any d; d0 2 D we obtain that F 0(d; d0) = 1 if d = d0, and0 else. To evaluate F (d) we have to evaluate F 0(d; d0) for every d0 2 D, andthen apply mean to the resulting multiset. This, however, will be the multisetfj1 : 1; 0 : jD j�1jg, the mean of whi
h is 1=jD j. Thus, F (d)[D ℄ is just the inverseof the domain size (for every d).To de�ne probability distributions on ModD(R), we now assign to ea
h r 2 Rexa
tly one probability formula. 14



De�nition 2.12 Let R;S be sets of relation symbols. A re
ursive relationalBayesian network for R with prede�ned S is a set� = fFr(v1; : : : ; vjr j) j r 2 Rgof R;S-probability formulas.(Non-re
ursive) relational Bayesian networks (RBNs), whi
h were the mainfo
us of [14, 16, 15℄ are a spe
ial 
ase of re
ursive relational Bayesian networks(RRBNs) de�ned by the following two restri
tions: (1) S = ;, so that the 
on-straints 
(v;w) in 
ombination fun
tions only use the equality relation, (2) therelations in R are arranged in a dire
ted a
y
li
 graph, and ea
h formula Fr only
ontains indi
ator fun
tions s(v) for symbols s that are parents of r in the graph.Relational Bayesian networks without this restri
tion were 
alled \re
ursive" in[14℄ be
ause the probability for r-atoms may depend re
ursively on other r-atoms.The se
ond of the restri
tions that distinguish the narrower 
lass of RBNsmakes it 
lear why this form of representation was 
alled a \network". In thegeneralized form of De�nition 2.12 this term is no longer a good des
ription of therepresentation, but was here retained to remain 
onsistent with earlier work.De�nition 2.9 is the 
ornerstone of the semanti
s of a RRBN �. For thenumbers Fr(d)[D; I℄ to indu
e a probability distribution PD, it only is requiredthat an appropriate a
y
li
ity 
ondition holds:De�nition 2.13 Let � be a R;S-re
ursive relational Bayesian network, D a S-stru
ture with �nite domain D. � and D indu
e a dependen
y relation � on theatoms of ModD(R) vias(d0) � r(d) i� s(d0) 2 Pa(Fr(d)[D℄):If the relation � is a
y
li
, then a probability distribution P�D is de�ned onModD(R) via P�D := Yr2R Yd2Djr j P�D(r(d) j Pa(Fr(d)[D℄));where the 
onditional distributions on the right are given byP�D(r(d) = true j I) := Fr(d)[D; I℄for ea
h instantiation I of Pa(Fr(d)[D℄).Example 2.14 To illustrate the de�nitions given so far, we show how to representas a RRBN the prm given by the dynami
 Bayesian network of Figure 3.Let S = fzero ; sg, where zero is a 
onstant, and s a binary relation. Thenetwork of Figure 3 de�nes a distribution P �D on ModD(fX1; X2g) for every S-stru
ture D that interprets zero and s as the minimal element and the su

essorrelation, respe
tively, of a linearly ordered domain. We have to de�ne a RRBN� = fFX1 ; FX2g, su
h that P�D = P �D for all D of this form. In the following, D is15



an arbitrary su
h stru
ture. In parti
ular, for every d 2 D, d 6= zero , there is aunique element d� 1 2 D with s(d� 1; d).The de�nition of FX1 is simple: just let FX1 � 0:3. For FX2 we �rst de�ne aprobability formula Z(v) :� n-ofj1 j ;; v = zero jgwhi
h for every D and d 2 D has the value Z(d)[D ℄ = 1 if D j= d = zero , andZ(d)[D℄ = 0 else. The probability formula FX2 then has the stru
tureFX2 � Z(v)F0(v) + (1� Z(v))Ft(v)with subformulas F0(v) and Ft(v) that determine the probability of X2(d) ford = zero and d 6= zero , respe
tively.The �rst of these is a straightforward representation of the probability tablefor X2(0) of Figure 3: F0(v) :� 0:2X1(v) + 0:4(1 � X1(v)):For Ft(v) things are slightly more 
ompli
ated, be
ause here we have to a

ess thetruth value of X2(v � 1). This is done via the subformulaT (v) :� n-ofjX2(w) j w; s(w; v)jg:This formula has the following properties: for d 2 D we have Pa(T (d)) = ; ifd = zero , and Pa(T (d)) = fX2(d� 1)g if d 6= zero . In the latter 
ase we haveT (d)[X2(d� 1) 7! true℄ = 1 and T (d)[X2(d� 1) 7! false℄ = 0:Thus, T (d)[I℄ is 1 if d 6= zero and I(X2(d � 1)) = true, and 0 else (the use ofn-o as a 
ombination fun
tion here is quite arbitrary: any 
ombination fun
tionwith 
omb ; = 
ombfj0jg = 0 and 
ombfj1jg = 1 would do). With T (v) we 
an nowrepresent the 
onditional probability table for X2(t) in the formula Ft(v) asFt(v) :� T (v)0:7 + (1� T (v))(X1(v)0:8 + (1� X1(v))0:6):Ft(v) is an illustration how probability formulas naturally en
ode 
ontext-spe
i�
independen
e [4℄: the fa
t that X2(d) only depends on X1(d) if I(X2(d� 1)) = falseis dire
tly re
e
ted in the stru
ture of the formula Ft(v). In Se
tion 5 it willbe shown how this stru
tural aspe
t of probability formulas helps us to developmethods for more eÆ
ient inferen
e.3 RepresentationsWe illustrate the expressive power of RRBNs from two perspe
tives: in Se
tion 3.1from a pra
ti
al perspe
tive by showing how to solve realisti
 non-trivial repre-sentation problems, in Se
tion 3.2 from a theoreti
al perspe
tive by showing that,in prin
iple, every probabilisti
 relational model 
an be represented by a RRBN.16



3.1 Pra
ti
al ModellingWe use as a running example the following s
enario: a bi
y
le ra
e of k parti
ipantsis to be monitored over tmax time steps. We are interested in making probabilityassessments of the following kind: given that at time t parti
ipant a is aheadof b, what is the probability that at time t + 3 b is ahead of a? Given that a�nishes among the �rst 10% of parti
ipants, what is the probability that he willbe quali�ed for the next ra
e?It is not our goal to 
onstru
t a whole 
oherent RRBN for this s
enario. Wewill only use individual aspe
ts of this toy example to illustrate how RRBNssolve some very general modelling problems that are relevant in many di�erentappli
ation domains. The temporal aspe
t of our example makes it related todynami
 Bayesian networks (and, in fa
t, it is partly inspired by the appli
ation ofdynami
 Bayesian networks for traÆ
 monitoring [13℄). It goes beyond dynami
Bayesian networks, however, in that at ea
h time step we are dealing with arandom relational stru
ture over a domain of k parti
ipants.Sorted domainsThe domains of stru
tures D for whi
h PD is to be de�ned 
onsist of time points0; 1; : : : ; tmax , and parti
ipants p1; : : : ; pk. Atoms whose probabilities are to beassessed will be of the form ahead(t; p2; p7) or in shape(p3). The probabilitiesfor these atoms must obviously be de�ned in a way that distinguishes time pointarguments from parti
ipant arguments. To do this with RRBNs we assume thatprede�ned unary relations T; P are given whose interpretations in D are just thetime points and parti
ipants, respe
tively. A probability formula that says thata parti
ipant is in shape with probability 0.7 (and a time point is in shape withprobability 0) then is Fin shape(v) � 0:7n-ofj1 j ;;Pvjg: (14)Again, the use of noisy-or here is quite arbitrary, as any 
ombination fun
tionwith 
ombfj1jg = 1 and 
omb ; = 0 would do.On
e we have as
ertained that 
ertain 
onstru
ts are expressible in the stri
tsyntax of probability formulas, we 
an introdu
e appropriate synta
ti
 abbrevi-ations to in
rease the readability of the formulas. As a �rst 
onvention, we ab-breviate the formula n-ofj1 j ;; 
(v)jg (
(v) an arbitrary S-
onstraint) by 
(v) (theindi
ator of 
: 
(d)[D ℄ = 1 if D j= 
(d), and 
(d)[D ℄ = 0 if D 6j= 
(d)). Formula(14) then simpli�es to Fin shape(v) � 0:5Tv: (15)Sort 
onstraints on variables 
an also be en
oded even more 
onveniently by ob-vious 
onventions on the variable names, so that (15) be
omes even simplerFin shape(t) � 0:5:17



First-order 
onditioningOn
e we have de�ned a random relation ahead(t; p1; p2) standing for p1 to beahead of p2 at time t, we may next want to represent the relation leader(t; p)standing for p leading the �eld at time t. The relation leader is deterministi
allyde�ned in terms of the relation ahead: leader(t; p) , :9p0ahead(t; p0; p). This
an be done in a probability formula as follows:Fleader(t; p) � 1� n-ofjahead(t; p0; p) j p0; � jg:The subformula n-ofjahead(t; p0; p) j p0; � jg evaluates to 1 if ahead(t; p0; p) holdsfor at least one parti
ipant p0, and to 0 else. Thus it is the indi
ator of theformula 9p0ahead(t; p0; p). This is inverted by 1� : : : , obtaining the indi
ator for:9p0ahead(t; p0; p).More generally, by using the noisy-or 
onstru
t for existential quanti�
ation,the 
onstru
t 1 � : : : for negation, multipli
ation for 
onjun
tion, indi
ators ofDe�nition 2.3 (ii) for atomi
 R-formulas, and indi
ators 
(v) (as dis
ussed above)for atomi
 S-formulas, we 
an de�ne for any �rst-order formula �(v) over R [ Sa probability formula F�(v), su
h that in all S-stru
tures D, for all d 2 Djv j, andfor all instantiations I of the atomi
 R-formulas on whi
h the truth value of �(d)depends, we have F�(d)[I℄ = � 1 if (D; I) j= �(d)0 elseExtending the 
onventions adopted above for S-
onstraints, we simply use �(v)to denote the probability formula F�. We 
an then write, for instan
e,F (t; p) � 0:7(:9p0ahead(t; p0; p)) + 0:1(9p0ahead(t; p0; p));whi
h evaluates to 0.7 if p ist the leader at time t, and to 0.1 else. Note thatF:� = 1 � F�, so that formulas of the form �(v)F2 + :�(v)F3 are a spe
ial formof 
onvex 
ombinations in the sense of De�nition 2.3.ProportionsOne of the primary 
on
erns of probabilisti
 extensions of �rst-order logi
 in AI[1, 12℄ was to provide a framework for reasoning with statisti
al probabilities,where (on �nite domains) the statisti
al probability of some property usually isidenti�ed with the proportion of domain elements that have the property. Toreason with su
h proportions Ba

hus [1℄ introdu
es the synta
ti
 
onstru
t[�(v;w) j  (v;w)℄w (16)to represent the proportion of tuples w that satisfy the formula �(v;w) amongthose w that satisfy  (v;w) (in other words, the 
onditional statisti
al probabilityfor w of �(v;w) given  (v;w); this 
onditional probability is parameterized bythe free variables v). 18



Proportions are a very useful tool for our model representation task: 
onsider,for instan
e, the relation qualified(p) representing that p quali�es for the nextra
e. The probability of qualified(p) will usually depend on the relative positionin whi
h p �nishes, i.e. on the proportion of p0 with ahead(tmax ; p0; p) (assuminghere that the ra
e is over at time tmax , and the relation ahead(tmax ; �; �) storesthe order of �nishing). This proportion 
an be represented with the probabilityformula F (p) � meanfjahead(tmax ; p0; p) j p0; � jg:We 
ould now de�ne Fqualified(p) � 1� F (p);making the probability of qualifying inversely proportional to the relative positionof �nishing.More generally, for any S-
onstraint 
(v;w), and any R-formula �(v;w), wehave the probability formula[�(v;w) j 
(v;w)℄w :� meanfj�(v;w) j w; 
(v;w)jg: (17)For d 2 Djw j then [�(d;w) j 
(d;w)℄w evaluates to the 
onditional statisti
alprobability for w of �(d;w) given 
(d;w).This 
onstru
t is asymmetri
 in that the �rst argument of the formula (17) isrequired to be a R- formula, and the se
ond a (quanti�er-free) S-formula. We 
ouldgeneralize the 
onstru
t to also allow R-formulas  (v;w) as 
onditioning propo-sitions. The representation of su
h a 
onditional probability [�(v;w) j  (v;w)℄w,however, seems to require 
ombination fun
tions for whi
h our subsequent resultsin Se
tion 4 are not appli
able. For this reason we do not pursue su
h more general
onstru
ts for statisti
al probabilities here.Fun
tional relationsSo far we have not addressed the key modelling problem in our example: how tomodel the random relation ahead, in parti
ular how to maintain ahead(t; p; p0)over time, i.e. how to de�ne ahead(t; �; �) 
onditional on ahead(t � 1; �; �) so thatahead(t; �; �) is guaranteed to be an order relation on P provided that ahead(t �1; �; �) is su
h an order relation, and the transition from t�1 to t models a random
hange in the order.Our solution to this modelling problem illustrates the use of fun
tional rela-tions, and how to en
ode them with probability formulas (a (partial) fun
tionalrelation from Dk to Dl is a relation r(v;w) on Dk+l su
h that for all d 2 Dk thereexists at most one d0 2 Dl with r(d;d0)).Our model for the transition from ahead(t� 1; �; �) to ahead(t; �; �) is based onthe assumption that the time units are so small that in the interval [t � 1; t℄ atmost one event of the form \parti
ipant p passes parti
ipant p0" takes pla
e. Themodel then 
onsists of the random sele
tion of one parti
ipant p, and advan
inghim by one position in the order ahead.19



A random sele
tion is the spe
ial 
ase of a random fun
tional relation withk = 0; l = 1, i.e. a unary relation sele
t for whi
h sele
t(p) holds for at mostone p. To de�ne a random sele
tion with probability formulas, we assume thatthe domain elements of sort P , too, are equipped with some prede�ned stri
t totalorder <P . In the sequel we take this order to 
orrespond with the naming ofthe elements, i.e. p1 <P p2 <P : : : <P pk. Intuitively, we 
an de�ne a randomsele
tion by going through the elements of P in the order <P , and for ea
h piassign sele
t(pi) the 
onditional probability 1=(k� i+1) given that no pj <P pihas already been sele
ted, and 
onditional probability 0 else. Then for all pi:P (sele
t(pi) = 1) = (1� P (sele
t(p1) = 1))(1 � P (sele
t(p2) = 1)) � � �� � � (1� P (sele
t(pi�i) = 1))P (sele
t(pi) = 1)= (1� 1k )(1 � 1k � 1) � � � (1� 1k � i+ 2) 1k � i+ 1= 1k :As in our model one sele
tion takes pla
e at every point in time t, the relationsele
t needs to have a se
ond argument of sort T . Its probabilisti
 model now isen
oded in the probability formulaFsele
t(t; p) � :9p0(p0 <P p ^ sele
t(t; p0))meanfjp = ~p j ~p; p <P ~p _ p = ~pjg:(18)The fa
tor meanfj : : : jg here 
ounts the elements ~p with p �P ~p in a similar way as(13) 
ounted domain elements. For p = pi it thus returns the value 1k�i+1 . Thisfa
tor is pre
eded by a logi
al expression that by the 
onventions introdu
ed abovestands for a formula that evaluates to 0 or 1 a

ording to whether sele
t(t; p0) istrue for some p0 <P p.On
e the relation sele
t(t�1; �) has been determined, the relation ahead(t; �; �)
an be de�ned for t > 0 by a purely logi
al probability formula:Fahead;t(t; p; p0) � (sele
t(t� 1; p) ^ in front(t� 1; p0; p))_(:(sele
t(t� 1; p) ^ in front(t� 1; p0; p)) ^ ahead(t� 1; p; p0)):Here in front(t�1; p0; p) is an abbreviation for a subformula that says that at timet � 1 p0 was dire
tly in front of p. A full probabilisti
 model for ahead 
an thenbe given by a formulaFahead(t; p; p0) � (t = 0)Fahead;0(p; p0) + (t > 0)Fahead;t(t; p; p0);where Fahead;0(p; p0) is a formula that generates a random initial order. This 
anbe done with similar fun
tional 
onstru
ts as the sele
t relation used in Fahead;t.The way a fun
tional relation is de�ned by (18) easily generalizes to the 
asewhere a fun
tional relation r(v;w) with the following properties is to be de�ned:the domain of r is de�ned by a R;S-formula �(v), the range of r is de�ned by aS-
onstraint 
(w), and for d with �(d) all d0 with 
(d0) are equally likely to be the20



unique value for whi
h r(d;d0) is true. A probability formula that de�nes su
h afun
tional r then is:Fr(v;w) ��(v):9w0(w0 < w ^ r(v;w0))meanfjw = ~w j ~w; (w < ~w _w = ~w) ^ 
(w)jg(the relation w0 < w now is some prede�ned total order on Dl).As in the 
ase of proportion formulas above, we here have an asymmetry in thatthe domain of a fun
tional relation 
an be de�ned by an arbitrary R;S-formula,its range only with a S-
onstraint. As above, this 
ould be generalized with theaid of suitable 
ombination fun
tions other than mean and noisy-or.It should be pointed out that the fun
tional relations we here have 
onsideredare fundamentally di�erent from random fun
tions with a prede�ned set of possiblevalues, whi
h is �xed for all domains (this is the 
on
ept of a random fun
tion tobe found e.g. in [20, 19℄). This is a mu
h simpler 
ase of a random fun
tion (orfun
tional relation), and 
an easily be handled in the RRBN framework by addingto the prede�ned relations S a 
onstant symbol for ea
h of the possible fun
tionvalues.3.2 A 
ompleteness theoremThe theorem proved in this se
tion says that basi
ally every prm 
an be repre-sented by a RRBN. Some quali�
ations are ne
essary however. The �rst qual-i�
ation is that RRBNs 
an only represent prms that are 
ompatible with iso-morphisms. Loosely speaking, a prm is 
ompatible with isomorphisms if for anytwo isomorphi
 S-stru
tures D;D 0 the two distributions PD and PD 0 also are iso-morphi
. The pre
ise 
ondition is as follows: when D;D 0 are S-stru
tures withdomains D and D 0, C and C 0 are R-stru
tures over the same domains D and D 0,respe
tively, and i : D ! D 0 is both an isomorphism from D to D 0 and from C toC 0, then PD(C) = PD 0(C 0). The se
ond quali�
ation is that we require a prede-�ned total order < on the domain. Finally, we shall only 
onsider prms that aretotal for ordered stru
tures, i.e. for every D 2 ModD(S) in whi
h < is interpretedas a stri
t linear order on D, we have that PD is de�ned. While RRBNs 
an alsorepresent a large 
lass of prms that are not total in this sense, an exa
t state-ment of what types of partial prms 
an be represented would introdu
e additionalte
hni
alities that we here want to avoid.Theorem 3.1 Let R;S be disjoint relational vo
abularies, with <2 S a binaryrelation symbol. Let P be a prm that is 
ompatible with isomorphisms and totalfor ordered stru
tures. There exists a R;S-RRBN � with P�D = PD for all orderedD.Proof: To simplify the proof we assume that all relations in R[S have the samearity q � 1. The proof of the general 
ase is basi
ally the same, it only requires alarger load of notation.Let D 2 ModD(S) with < interpreted as a linear order on D. Let R =fr1; : : : ; rkg, S = fs1; : : : ; slg. A stri
t linear order � is de�ned on the atoms of21



ModD(R) by: ri(d) � rj(d0) i� i < j or i = j and d pre
edes d0 in the lexi
o-graphi
 order indu
ed by � on q-tuples of D. Let a1; : : : ; am be the enumerationof the atoms of ModD(R) a

ording to the order �. The distribution PD then isgiven by the 
onditional distributions PD(ai j a1; : : : ; ai�1) (1 � i � m, 
f. (6)).The straightforward approa
h now is to assign to the relation rj 2 R a proba-bility formula Frj (v), su
h that for the atom ai = rj(d) we get Pa(Frj (d)) =fa1; : : : ; ai�1g, and for an instantiation I of a1; : : : ; ai�1Frj (d)[D; I℄ = PD(rj(d) = true j I): (19)The right-hand side of (19) is a number in [0; 1℄ that depends on D; I and d.The plan, now, is to ruthlessly exploit the generality of the de�nition of 
ombi-nation fun
tions, whi
h allows us to de�ne a 
ombination fun
tion 
ombP;j thaten
odes the fun
tion P in su
h a manner thatFrj (d)[D; I℄ = 
ombP;j(D; I;d) = PD(rj(d) = true j I): (20)The problem now is that the middle term in (20) is not really meaningful, as a
ombination fun
tion is applied to a stru
tured argument (D; I;d), not a [0; 1℄-multiset. The main part of the proof of the theorem therefore will be to showhow to 
ode (D; I;d) as a multiset. This en
oding, in turn, has to be done withprobability formulas.Essentially, (D; I;d) 
an be represented by a (l + j)� nq-matrixX = (x
;Æ) 1�
�l+j1�Æ�nqwhose rows are the 
hara
teristi
 ve
tors of the instantiations of the relations inS [ fr1; : : : ; rjg given by D and I. The relation rj, however, is only partiallyinstantiated by I: denoting by hdi the index of d in the lexi
ographi
 order of Dqn,we have that I instantiates the �rst hdi � 1 rj-atoms only. The pre
ise de�nitionof X now is given byx
;Æ := 8>><>>: 1 if 1 � 
 � l; and D j= s
(d0) for d0 with hd0i = Æ1 if l + 1 � 
 � l + j � 1; and I(r
(d0)) = 1 for d0 with hd0i = Æ1 if 
 = l + j; Æ < hdi; and I(rj(d0)) = 1 for d0 with hd0i = Æ0 else:The �rst l rows of X 
ode D only up to isomorphism, whi
h is why from thispoint onward we 
annot distinguish isomorphi
 S-stru
tures. X 
an be turnedinto a multiset MX viaMX := fj x
;Æ(
 � 1)nq + Æ j 1 � 
 � l + j; 1 � Æ � nqjgFrom MX the matrix X 
an be re
onstru
ted when the parameters (l + j) and qare given: MX 
ontains a total number of (s + j)nq elements, whi
h determinesn, and thus the dimensions of X. The entry x
;Æ is 1 i� MX 
ontains the number1=(
 � 1)nq + Æ. 22



X, respe
tively MX , does not fully en
ode the tuple (D; I;d), as it does notidentify d, or, equivalently, the domain of atoms on whi
h I is de�ned. For this wealso need to know the parameter hdi. We integrate hdi into the multiset en
odingby modifying MX slightly to obtainM(D; I;d) := fj(13)hdi; x
;Æ2((
 � 1)nq + Æ) j 1 � 
 � l + j; 1 � Æ � nqjg:Here the original entries ofMX have all been divided by 2, so that the nonzero onesamong them now are of the form 1=z, z even, and 
an thereby be distinguishedfrom the en
oding (1=3)hdi of hdi. Thus, from M(D; I;d) both X and hdi, andhen
e (D; I;d) 
an be re
overed.We next de�ne probability formulas whose evaluations will generate the ele-ments of M(D; I;d). In parti
ular, we will use a formula Fhi withFhi(d)[D; I℄ = (13)hdi;formulas F
(w1; : : : ; wq) for 1 � 
 � l + j � 1 withF
(d0)[D; I℄ = x
;hd0i2((
 � 1)nq + hd0i) (d0 2 Dqn);and a formula Fl+j(v1; : : : ; vq; w1; : : : ; wq) withFl+j(d;d0)[D; I℄ = xl+j;hd0i2((l + j � 1)nq + hd0i) (d0 2 Dqn)(note that the right hand side of this equation depends on d via the de�nition ofthe xl+j;Æ). Given su
h Fhi and F
 we putFrj (v) � 
ombP;jfjFhi(v); F1(w); : : : ; Fl+j�1(w); Fl+j(v;w) j w; � jg: (21)For d 2 Dqn and I thenfjFhi(d)[D; I℄; F1(d0)[D; I℄; : : : ; Fl+j�1(d0)[D; I℄; Fl+j(d;d0)[D; I℄ j d0 2 Dqnjg=M(D; I;d):We 
an now de�ne for a multiset M
ombP;jM := � PD(rj(d) = true j I)) if M =M(D; I;d)1 else:By the 
ompatibility of P with isomorphisms, the value PD(rj(d) = true j I))only depends on the en
oding M(D; I;d), so that 
ombP;j is well-de�ned. The
hoi
e of the value 1 in the else-
ase of this de�nition is arbitrary, as 
ombP;j willnever need to be evaluated for multisets not en
oding stru
tures (D; I;d).For Frj de�ned by (21) we then obtain the desired equality (19), and we aredone. 23



It remains to show how to de�ne Fhi and the F
 . This 
an be done by usingsome additional tailor-made 
ombination fun
tions. For Fhi we use the 
ombina-tion fun
tion power 13M := � (13)k if M = fj1 : kjg (k 2 N [ f0g)1 else;and put Fhi(v) :� power 13 fj1 j w;w < vjg:For 
 = 1; : : : ; l F
 is de�ned asF
(w) :� s
(w)
omb
fj ~w � w j ~w; ;jgwith 
omb
M :� � 12((
�1)(k+m)+k) if M = fj1 : k; 0 : mjg (k � 1;m � 0)0 else:The de�nition of F
 for 
 = l + 1; : : : ; l + j � 1 is similar. The de�nition of Fl+j ,too, follows the same pattern, only that now the evaluation of rj-atoms that arenot instantiated by I must be prevented:Fl+j(v;w) :� n-ofjrj(w) j ;;w < vjg
ombl+jfj ~w � w j ~w; ;jg: �In the proof of the theorem the representation of the prm P by a RRBN hasessentially been a

omplished by en
oding P with the very pe
uliar 
ombinationfun
tions 
ombP;j. This is rather orthogonal to the approa
h taken in Se
tion 3.1,where we have attempted to represent 
omplex models with only a very limitedsupply of elementary 
ombination fun
tions, so that the representation is reallyin the stru
ture of the probability formulas. This latter approa
h is 
learly meantfor probability formulas, and thus the general 
onstru
tion given in the proof ofTheorem 3.1 does not provide a pattern for the solution of a
tual modelling prob-lems. Nevertheless, the result shows that the framework of probability formulasand 
ombination fun
tions, in prin
iple, is general enough to 
ope with pra
ti
allyall modelling problems.4 Inferen
eThe inferen
e problem is the following: given a R;S-RRBN �, and a S-stru
tureD, is P�D de�ned? If P�D is de�ned, and given an instantiationr0(d0) = �0; r1(d1) = �1; : : : ; rl(dl) = �l (�i 2 ffalse; trueg; ri 2 R; di 2 Djri j);of some atoms of ModD(R), what is the 
onditional probabilityP�D (r0(d0) = �0 j r1(d1) = �1; : : : ; rl(dl) = �l) ? (22)24



The solution to the �rst problem is straightforward: by De�nition 2.13, P�Dis de�ned i� the dependen
y relation � on the atoms of ModD(R) is a
y
li
. Itis 
onvenient to view the relation � as the edge relation in a dependen
y graph,de�ned as follows.De�nition 4.1 Let � be a R;S-RRBN, D a S-stru
ture. The dire
ted graph G�Dis de�ned as follows: the nodes of G�D are the atoms of ModD(R); two nodes r(d)and s(d0) are joined by a dire
ted edge from s(d0) to r(d) i� s(d0) � r(d).Given � and D, the a
y
li
ity of G�D 
an be 
he
ked in time polynomial in jD j:for all r; s 2 R we generate the formulas paFr;s a

ording to De�nition 2.6 (in timeindependent of jD j). Then G�D is 
reated by 
he
king for all pairs of atoms r(d),s(d0) whether paFr;s(d;d0) holds in D. This 
he
k 
an be done naively in timeO(jD jql), where q is the quanti�er depth of Fr, and l is the number of atoms inpaFr;s (using the slight idealization that we 
an 
he
k in 
onstant time whether aground S-atom holds in D). Thus, we 
an 
reate G�D in time polynomial in jD j,and then test for a
y
li
ity, again in polynomial time.When G�D turns out to be a
y
li
, we 
an use it as the underlying dire
teda
y
li
 graph of a Bayesian network for P�D : to represent P�D it is only neededto label ea
h node r(d) in the graph with the probability formula Fr(d) (re
allDe�nition 2.13: Fr(d) indu
es a fun
tion that maps instantiations I of Pa(Fr(d))to the 
onditional probability value P�D(r(d) = true j I)).Example 4.2 Let R = fr; sg, S = ;. Let � be the R-RRBN given byFs(v; w) � 0:7Fr(v) � n-ofj0:4s(v; w) j w;w 6= vjg:Let D = fd1; : : : ; d5g. One 
onne
ted 
omponent of the graph G�D is shownin Figure 6. Labeling the nodes s(d1; di) with 0.7, and the node r(d1) withn-ofj0:4s(d1; w) j w;w 6= d1jg turns the graph into a Bayesian network with 
on-ditional probability tables represented by probability formulas.
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e algorithms for Bayesian networks require ex-pli
it table representations. There are several approa
hes one 
an take to over
ome25



this problem: the �rst is simply to expand the probability formula representationto a full table representation by 
omputing the value Fr(d)[I℄ for ea
h instantia-tion I of Pa(Fr(d)). This, however, will usually lead to representations with a sizeexponential in the size of the domain: in Example 4.2, for instan
e, this approa
hwill lead to 
onditional probability tables for atoms r(di) of size 2jD j�1.A se
ond approa
h one 
ould take is to develop a 
al
ulus that allows us toperform operations dire
tly on probability formulas whi
h are performed by stan-dard inferen
e algorithms on 
onditional probability tables. The basi
 operationshere needed are multipli
ation and marginalization. Multipli
ation does not 
auseany problems, but marginalizing an atom s(d0) 2 Pa(Fr(d)) out of Fr(d) leadsto a fun
tion on instantiations of Pa(Fr(d)) n fs(d0)g that is not again 
ompa
tlyrepresentable by a probability formula.We will here pursue a third approa
h, whi
h promises to lead to tra
tableinferen
e at least in many 
ases where the intra
tability 
aused by the 
onstru
tionof exponentially large 
onditional probability tables in the �rst approa
h does notre
e
t any inherent 
omplexity of the inferen
e problem. The basi
 idea behindthe approa
h is to take the graph G�D labelled with the probability formulas Fr(d),and to de
ompose it by adding additional variables, to form a graph DG�D withthe following properties: every atom of ModD(R) is a node in DG�D, the numberof nodes in DG�D is polynomial in the number of nodes in G�D, every node inDG�D has at most 3 parents, and the nodes in DG�D are labelled with 
onditionalprobability tables so that the (marginal) probability distribution indu
ed by DG�Don the atoms of ModD(R) again is P�D . The remainder of this se
tion is devotedto develop a 
onstru
tion te
hnique for su
h a network DG�D.
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Figure 7: De
omposition of the network in Figure 6To motivate our approa
h for the 
onstru
tion of DG�D, 
onsider Figure 7. Itshows the de
omposition of the network in Figure 6, whi
h is here dire
tly ob-tained by inserting an expli
it representation of the 
ausal model that originallymotivated the noisy-or 
ombination fun
tion (
f. [23, Figure 4.20℄). In detail,we have added a layer of variables X(di), whi
h are \noisy" versions of the vari-ables s(d1; di) (i = 2; : : : ; 5): the 
onditional probability of X(di) = true is 0.4 ifs(d1; di) = true, and 0 else. The 
onditional probability of r1(d1) then be
omesthe deterministi
 or of the four variables X(d2); : : : ; X(d5). A dire
t representation26



of this deterministi
 or as a 
onditional probability table for r(d) would still beexponential in size, but, by a standard 
onstru
tion, we 
an de
ompose the orwith 4 inputs using two auxiliary \or -nodes" Z1; Z2, so that all nodes in the re-sulting subnetwork only have 2 parents. One readily veri�es that the 
onditionalprobability of r(d1) given s(d1; d2); : : : ; s(d1; d5) in the network of Figure 7 is thesame as in the network of Figure 6 (indeed, noisy-or has just been de�ned for thisto be the 
ase).Our general strategy for de
omposing the network G�D now 
an be outlinedas follows: given a node r(d) in G�D, whi
h is labelled with a probability formulaFr(d) = 
ombfjF (d;w) j w; 
(d;wjg, pro
eed as follows:(D1) For ea
h d0 with 
(d;d0) 
reate a new node X(d0) with parents Pa(F (d;d0))labelled with F (d;d0).(D2) Make the nodes X(d0) the parent set of r(d).(D3) Insert a \
omputation network" for the 
omputation of the 
onditionalprobability of r(d) given fX(d0) j 
(d;d0)g between r(d) and its parents,su
h that in the end r(d) and ea
h of the added auxiliary variables have atmost two parents.Only for 
ertain 
ombination fun
tions will su
h a de
omposition be possi-ble. Our �rst goal, therefore, will be to determine the 
lass of these 
ombina-tion fun
tions. For the following de�nitions and results some standard termi-nology from probability theory is required: a binary random variable X withP (X = 1) = p is 
alled B(p)-distributed. If Xi is B(pi)-distributed (1 � i � k),and the X1; : : : ;Xk are independent, then the joint distribution of the Xi is de-noted by B(p1)
 : : :
B(pk). When f(x1; : : : ; xk) is a real-valued fun
tion, thenE[f(X1; : : : ;Xk)℄ denotes the expe
ted value of f(X1; : : : ;Xk). To make expli
itthat this expe
tation is with respe
t to a B(p1) 
 : : : 
 B(pk)-distribution of theXi we also write Ep1;::: ;pk [f(X1; : : : ;Xk)℄.De�nition 4.3 A 
ombination fun
tion 
omb is 
alled an expe
tation if for alln � 1, for all p1; : : : ; pn 2 [0; 1℄, and for B(p1) 
 : : : 
 B(pn)-distributed randomvariables X1; : : : ;Xn it holds thatE[
ombfjX1; : : : ;Xnjg℄ = 
ombfjp1; : : : ; pnjg: (23)A simple \synta
ti
" 
hara
terization of expe
tations 
an be based on thefollowing de�nition.De�nition 4.4 A 
ombination fun
tion is 
alled multilinear if for all n � 1, andfor all i1; : : : ; in 2 f0; 1g there exists �i1;::: ;in 2 R, su
h that for all p1; : : : ; pn 2[0; 1℄ 
ombfjp1; : : : ; pnjg = X(i1;::: ;in)2f0;1gn �i1;::: ;inpi11 � � � pinn : (24)Theorem 4.5 A 
ombination fun
tion is an expe
tation i� it is multilinear.27



Proof: Assume �rst that 
omb is multilinear, and let X1; : : : ;Xn be independentB(pi)-distributed random variables. Noting that E[Xi℄ = E[X℄i for all integrablerandom variables X and i 2 f0; 1g, we then obtainE[
ombfjX1; : : : ;Xnjg℄ = X(i1;::: ;in)�i1;::: ;inE[X1℄i1 � � �E[Xn℄in= X(i1;::: ;in)�i1;::: ;inpi11 � � � pinn= 
ombfjp1; : : : ; pnjg:For the 
onverse dire
tion, assume that 
omb is an expe
tation. We prove that
omb is multilinear by indu
tion on n. For n = 1 we haveE[
ombfjX1jg℄ = 
ombfj1jgp1 + 
ombfj0jg(1� p1);whi
h is multilinear with �0 = 
ombfj0jg and �1 = 
ombfj1jg � 
ombfj0jg.Now let n � 1. Then for B(p1)
 : : : 
B(pn)-distributed X1; : : : ;XnE[
ombfjX1; : : : ;Xnjg℄= E[
ombfjX1; : : : ;Xnjg j Xn = 0℄(1� pn) +E[
ombfjX1; : : : ;Xnjg j Xn = 1℄pn= E[
omb0fjX1; : : : ;Xn�1jg℄(1� pn) +E[
omb1fjX1; : : : ;Xn�1jg℄pn (25)for 
ombination fun
tions 
omb0 and 
omb1 that satisfy
ombifjX1; : : : ;Xn�1jg = 
ombfjX1; : : : ;Xn�1; ijg (i = 0; 1); (26)and expe
tations now taken over the joint distribution of X1; : : : ;Xn�1.As 
omb is an expe
tation, the right-hand side of (25) is equal to 
ombfjp1; : : : ; pnjg,whi
h therefore is of the form
omb�0fjp1; : : : ; pn�1jg(1� pn) + 
omb�1fjp1; : : : ; pn�1jgpn; (27)where
omb�i fjp1; : : : ; pn�1jg = Ep1;::: ;pn�1 [
ombifjX1; : : : ;Xn�1jg℄ (i = 0; 1): (28)We now need to show that the 
omb�i are multilinear fun
tions of p1; : : : ; pn�1,whi
h then makes (27) multilinear in p1; : : : ; pn. To infer the multilinearity of the
omb�i from (28) and the indu
tion hypothesis, we have to verify that
omb�iM = 
ombiM (29)for multisets M of the form M = fj1 : k; 0 : n � k � 1jg (0 � k � n � 1). Notethat the 
ombi only are determined by (26) for arguments of this form, whereasthe 
omb�i are determined by (28) for all multisets of n� 1 elements from [0; 1℄.To show (29), let 0 � k � n � 1, and put p1 = : : : = pk = 1, pk+1 = : : : =pn�1 = 0. For B(pi)-distributed random variables Xi, (25) then be
omes
omb0fjp1; : : : ; pn�1jg(1� pn) + 
omb1fjp1; : : : ; pn�1jgpn (30)28



whi
h has to be equal to (27) for all pn 2 [0; 1℄. But now (29) follows by lettingpn = 1, respe
tively pn = 0.Thus, 
ombining (28) and (29) we obtain
omb�i fjp1; : : : ; pn�1jg = Ep1;::: ;pn�1 [
omb�i fjX1; : : : ;Xn�1jg℄for all p1; : : : ; pn�1, so that by indu
tion hypothesis the 
omb�i are multilinearfor multisets of n � 1 elements, and thus 
omb is multilinear for multisets of nelements. �Example 4.6 Noisy-or and mean are multilinear, and hen
e are expe
tations.For 
ombination fun
tions that are expe
tations we 
an now give a generalde�nition of the �rst two de
omposition steps (D1) and (D2), and show that theprobability distribution on the nodes of the original network is not a�e
ted by thede
omposition.De�nition 4.7 Let D be a S-stru
ture, d a tuple of domain elements from D,and F (d) � 
ombfjF1(d;w); : : : ; Fk(d;w) j w; 
(d;w)jga R;S-probability formula. Let d1; : : : ;dm be an enumeration of fd0 2 Djw j jD j= 
(d;d0)g. Let G be a Bayesian network, A a node in G whose parents arePa(F (d)), and whi
h is labelled with F (d). We de�ne a new networkG0 = de
ompose1 (G; A)as follows (
f. Figure 8):(1) for h = 1; : : : ; k and j = 1; : : : ;m let Xh(dj) be a new Boolean randomvariable.(2) 
reate a new graph by removing all edges between Pa(F (d)) and A, insertingan edge from ea
h node in Pa(Fh(d;dj)) to Xh(dj), and inserting an edgefrom ea
h node Xh(dj) to A.(3) label ea
h node Xh(dj) with Fh(d;dj), and A with
ombfjX1(d1); X1(d2); : : : ; Xh(dj); : : : ; Xk(dm)jg:Theorem 4.8 Let P and P 0 be the probability distributions de�ned by G andG0 = de
ompose1 (G; A), respe
tively, on the random variables of G. If 
omb is anexpe
tation, then P = P 0.
29
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Figure 8: The �rst de
omposition stepProof: It suÆ
es to show that for ea
h instantiation I of Pa(F (d)) we haveP 0(A = true j I) = P (A = true j I): (31)To show (31) we �rst writeP 0(A = true j I) = XI0 P 0(A = true j I 0)P (I 0 j I)= XI0 
ombfji0h;j j 1 � h � k; 1 � j � mjgP (I 0 j I) (32)where I 0 varies over all instantiations of the new variables Xh(dj), andi0h;j := � 0 if I 0(Xh(dj)) = false1 if I 0(Xh(dj)) = true (33)As the variables Xh(dj) are 
onditionally independent given Pa(F (d)), we havethat 
onditional on I they are B(F1(d;d1)[I℄)
 : : :
B(Fk(d;dm)[I℄)- distributed.The right hand side of (32) thus is equal toEF1(d;d1)[I℄;::: ;Fk(d;dm)[I℄[
ombfjX1(d1); : : : ; Xk(dm)jg℄:As 
omb is an expe
tation, this is equal to
ombfjF1(d;d1)[I℄; : : : ; Fk(d;dm)[I℄jg = P (A = true j I):30



�To 
omplete the de
omposition for node A we have to insert a suitable 
omputa-tion network for its 
onditional probability distribution 
ombfjX1(d1); : : : ; Xk(dm)jg.That this is always possible is the 
ontent of the next theorem.Theorem 4.9 Let D,d,G and A be as in De�nition 4.7. Assume that in the
onstru
tion G0 = de
ompose1 (G; A) new variables X1(d1); : : : ; Xk(dm) have beeninserted. There exists a network G00 = de
ompose2 (G0) with the following prop-erties(1) The nodes of G00 are the nodes of G0 together with l new nodes Z1; : : : ; Zlwhere l � (km)6 + km.(2) A and the Zi have at most two parents ea
h, these are all among the Xh(dj)and the Zi.(3) A and the new Zi are labelled with 
onditional probability tables, so that P 0 =P 00, where P 0 is the distribution de�ned by G0, and P 00 is the distributionde�ned by G00 restri
ted to the nodes of G0.Proof: We show that we 
an insert nodes Z1; : : : ; Zl as stated in the theorem su
hthat for every instantiation I 0 of X1(d1); : : : ; Xk(dm) we obtain P 00(A = true j I 0) =P 0(A = true j I 0). The following 
onstru
tion is illustrated in Figure 9.Let i0h;j be de�ned by (33). The value of P 0(A = true j I 0) = 
ombfji0h;j j 1 �h � k; 1 � j � mjg only depends on the number of entries i0h;j equal to 1. Denotethe event that this number is t by #I 0 = t. We introdu
e km + 1 new variablesZ0; : : : ; Zkm that are to have the following property:P 00(Zt = true j #I 0 = t) = 
ombfj1 : t; 0 : km� tjg (34)P 00(Zt = true j #I 0 6= t) = 0: (35)Then the probability given I 0 that at least (and also: at most) one of the nodes Ztis 1 is equal to P 0(A = true j I 0). Conne
ting A to the variables Zt by a de
omposeddeterministi
 or therefore yields P 00(A = 1 j I) = P 0(A = 1 j I). It thus remains toshow that we 
an obtain (34) and (35) for the Zt. For this we appeal to results onthe formula 
omplexity of symmetri
 Boolean fun
tions [18, 3℄ whi
h imply thatthe fun
tions Stkm : f0; 1gkm ! f0; 1g(x1; : : : ; xkm) 7! ( 1 if Pkmj=1 xj = t0 if Pkmj=1 xj 6= t
an be represented by a Boolean 
ir
uit with at most (km)5 and,or and not gates.This 
ir
uit 
an be used as a subnetwork with input nodes X1(d1); : : : ; Xk(dm),output node Zt and internal nodes Zt;g (1 � g � (km)5). The 
onditional prob-ability tables of the Zt;g are deterministi
 and,or and not, as determined by the31



Boolean 
ir
uit. The logi
al fun
tion of the output node Zt is modi�ed by 
hang-ing probability values 1 to 
ombfj1 : t; 0 : mk � tjg (leaving 0-entries un
hanged).Then (34) and (35) hold for the Zt.To de�ne the Zt we have added km subnetworks representing Boolean 
ir
uitsof size at most (km)5, i.e. a total of at most (km)6 new nodes. Another km nodesare added by the �nal or over the Zt. All nodes between A and the Xh(dj) havetwo parents at most. �

or or or
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Figure 9: The se
ond de
omposition stepFor natural 
ombination fun
tions one 
an usually obtain 
omputation net-works that are smaller and simpler than those obtained from the general 
on-stru
tion of the proof of Theorem 4.9. In the 
ase of noisy-or a straightforwardgeneralization of the 
onstru
tion shown in Figure 7 yields 
omputation networkswith only 2n�1 new nodes when applied to a node with n parents. Moreover, theinserted network here has a tree stru
ture and therefore does not introdu
e anynew 
y
les into the network. We now show that an equally small and stru
turallysimple 
omputation network exists for mean.For this let A be a node in a network G with parents fX1; : : : ; Xng, labelledwith meanfjX1; : : : ; Xnjg. We de�ne de
ompose2 (G; A) by introdu
ing new variablesY1; : : : ; Yn 
onne
ted to X1; : : : ; Xn and A as shown in Figure 10. The 
onditionalprobability tables for Y1, Yh (1 � h � n) and A are:X1 P (Y1 = true)false 0true 1 Yh�1 Xh P (Yh = true)false false 0false true 1/htrue false (h-1)/htrue true 1 Yn P (A = true)false 0true 1
32
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AFigure 10: Computation network for meanTo show that the resulting network is a 
orre
t 
omputation network for mean,we have to 
he
k that for an instantiation I of X1; : : : ; Xn that instantiates exa
tlyk of the Xi to true we obtainP (A = true j I) = k=n (0 � k � n): (36)We show (36) by indu
tion on the number n of input nodes. For n = 1 theinstantiation of A is just a deterministi
 
opy of the instantiation of X1, so that(36) holds. Now assume that (36) is satis�ed for n � 1 inputs. Let I be aninstantiation of X1; : : : ; Xn, and I 0 its restri
tion to X1; : : : ; Xn�1. Let k and k0 bethe number of nodes instantiated to trueby I and I 0, respe
tively (k0 2 fk�1; kg).By indu
tion hypothesis thenP (Yn�1 = true j I 0) = k0=(n� 1): (37)Now (36) 
an be veri�ed by straightforward 
omputations, separately for the two
ases k0 = k � 1 and k0 = k. In the 
ase k0 = k � 1, i.e. I(Xn) = true we obtainP (A = true j I) = P (Yn = true j I)= P (Yn = true j Yn�1 = true; Xn = true)P (Yn�1 = true j I 0)+P (Yn = true j Yn�1 = false; Xn = true)P (Yn�1 = false j I 0)= k � 1n� 1 + 1n(1� k � 1n� 1)= kn:The 
ase k0 = k is similar.Thus, just as for noisy-or, we obtain a tree stru
tured 
omputation networkthat only introdu
es n new nodes. Putting the two de
omposition steps together,we now de�ne:De�nition 4.10 Let D,d,G and A be as in De�nition 4.7, with noisy-or or meanthe 
ombination fun
tion of F (d). Thende
ompose(G; A) := de
ompose2 (de
ompose1 (G; A); A):33



The de�nition of de
ompose(G; A) may be extended to other multilinear 
ombi-nation fun
tions for whi
h an e�e
tive 
onstru
tion of 
omputation networks hasbeen de�ned.The de�nition of de
ompose(G; A) for nodes A labelled with noisy-or or mean
ombination fun
tions is the 
ornerstone of the transformation from the networkG�D to the network DG�D. To fully de�ne the transformation, we also have toexplain how to de
ompose nodes labelled with 
onvex 
ombinations.De�nition 4.11 Let D, d, G, A be as in De�nition 4.7, withF (d) � F1(d)F2(d) + (1� F1(d))F3(d):We de�ne a new network G0 = de
ompose(G; A) as follows (
f. Figure 11):(1) let X1, X2, X3 be new Boolean random variables(2) 
reate a new graph by removing all edges between Pa(F (d)) and A, insertingan edge from ea
h node in Pa(Fi(d)) to Xi, and inserting an edge from ea
hnode Xi to A.(3) label ea
h node Xi with Fi(d), and A with the deterministi
 table shown inFigure 11.
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omposition of a 
onvex 
ombinationAs a 
onvex 
ombination also is multilinear in its three probability formulaarguments, the same reasoning as for multilinear 
ombination fun
tion shows thatthe de
omposition of De�nition 4.11 preserves the probability distribution de�nedby the network.The de
omposition given in De�nition 4.11 is very similar to a de
ompositiongiven by Boutilier et al. [4℄ for the utilization of 
ontext spe
i�
 independen
ein probabilisti
 inferen
e. The similarity between the two de
ompositions is no34




oin
iden
e, as the one in [4℄ was designed to be parti
ularly useful when 
ondi-tional probability tables are represented by (de
ision-) trees, and nested 
onvex
ombinations are the probability formula equivalent of a tree representation.Calling a probability formula basi
 if it is either a 
onstant or an indi
atorfun
tion, and 
omplex else, we 
an now de�ne DG�D via the algorithm de
ompose-network given in Table 1.Input: Network G�D de�ned by RRBN � that uses noisy-orand mean as the only 
ombination fun
tionsInitialize: G := G�D;while G 
ontains node A labelled with 
omplex probability formula F (d)G := de
ompose(G; A)end while;DG�D := G Table 1: Algorithm de
ompose-networkIt is readily veri�ed that the algorithm terminates, and that the stru
ture ofthe output network does not depend on the sele
tion pro
edure for the node A tobe de
omposed next. It also is 
lear that the probability distribution de�ned onthe atoms of ModD(R) is the same in DG�D as in G�D, and that ea
h node in DG�Dhas at most three parents. It remains to show that the size of DG�D is polynomialin the size of D.Theorem 4.12 Let � be a R;S-RRBN de�ned by probability formulas that 
on-tain noisy-or and mean as the only 
ombination fun
tions. Let D be a S-stru
turewith jD j = n. The number of nodes in DG�D as a fun
tion of n is O(nk+q), wherek is the maximum arity of relation symbols in R, and q is the maximal quanti�erdepth of probability formulas in �.The proof is almost immediate by noting that G�D 
ontains at most nk nodes,and that the iterative de
omposition of a node A in G�D labelled with F (d) gener-ates O(nq) new nodes.We now have shown that for an interesting 
lass of RRBNs we 
an 
onstru
t forinferen
e standard Bayesian networks of size polynomial in the size of the underly-ing domain. This, of 
ourse, does not guarantee that inferen
e will be polynomialin the domain size (and in view of the results mentioned in Se
tion 1.3 it is veryunlikely that su
h a guarantee 
ould be given for any inferen
e te
hnique). For thevery simple Example 4.2 the result of the de
omposition always is a singly 
on-ne
ted network, so that here the 
omplexity of inferen
e is a
tually linear in thedomain size. An interesting question for future work is to investigate under what
onditions the good behavior of this example generalizes, i.e. under what 
ondi-tions will the DG�D have graph theoreti
 properties that guarantee probabilisti
inferen
e algorithms to run in time polynomial in jD j?35



5 ContextThe network DG�D 
onstru
ted in the previous se
tion is a 
omplete representationof the distribution P�D ; it 
an be used to 
ompute the answer to any query (22).For a parti
ular query, DG�D usually 
ontains a lot of information whi
h is notrelevant for the 
omputation of the answer, and the query 
an also be answeredby 
omputations in a small subnetwork of DG�D. This observation is true not onlyfor networks of the type DG�D, but for any (large) standard Bayesian network, andhas led to the development of pruning te
hniques [2℄ that in a prepro
essing stepgenerate a subnetwork whi
h is suÆ
ient for the 
omputation of a given query. Inknowledge based model 
onstru
tion (
f. Se
tion 1.3) the simpli�
ations possiblethrough pruning usually are taken into a

ount already during the 
onstru
tionof the standard Bayesian network, whi
h works by an in
remental 
onstru
tionstarting from the nodes ri(dj) appearing in the query [5, 20℄. Analogous querydependent in
remental 
onstru
tion te
hniques 
an also be used in the RRBNframework to generate only a relevant subnetwork of G�D, and hen
e of DG�D.Example 5.1 Let S 
ontain a 
onstant LA and two unary relations C and P , de-noting obje
ts of sort \
ity" and \person", respe
tively. A RRBN for the randomrelations R = fburglary; alarm; lives in; earthquakeg then is given byFlives in(p; 
) � 0:05(
 = LA) + 0:001(:
 = LA)Fburglary(p) � 0:01Fearthquake(
) � 0:01(
 = LA)Falarm(p) � lives in(p;LA)n-ofj0:9burglary(p); 0:2earthquake(LA) j ;; � jg+(:lives in(p;LA))0:9burglary(p)These formulas use some of the simpli�
ations introdu
ed in Se
tion 3.1, espe
iallyimpli
it sort 
onstraints by the naming of variables. The formula Flives in(p; 
)simply (and somewhat unrealisti
ally) says that person p lives in 
ity 
 with prob-ability 0.05 if 
 = LA, and with probability 0.001 else. A more sensible formulawould have to make lives in a fun
tional relation using the 
onstru
ts dis
ussedin Se
tion 3.1.Let the given domain 
ontain a person Holmes, and assume that the query isP (burglary(Holmes) = true jlives in(Holmes ;LA) = false; alarm(Holmes) = true) =?Then the relevant subnetwork of G�D obtained by an in
remental 
onstru
tionstarting with the nodes in the query is shown in Figure 12.The subnetwork of G�D 
onstru
ted in this example is not as small as it mightbe: the node earthquake(LA) and its link to alarm(Holmes) is relevant onlywhen lives in(Holmes,LA) is true. This illustrates a basi
 limitation of networkredu
tion by pruning (and the 
orresponding in
remental 
onstru
tion methods):with these te
hniques we 
annot take into a

ount the values to whi
h groundatoms are instantiated in the eviden
e { only the fa
t whi
h atoms are instantiated36
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tion with value-insensitive pruninghas an in
uen
e on the 
onstru
ted subnetwork. A mu
h better use of the giveneviden
e, however, would be to only 
onstru
t the network in Figure 13(a) whenit is given that lives in(Holmes ,LA) is false, and the network in Figure 13(b)when it is given that lives in(Holmes ,LA) is true.
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tionTe
hniques that try to utilize given instantiations of random variables to parti
-ular values for simpli�
ation of model representations and inferen
e have be
omeasso
iated with the word 
ontext. In the 
ontext sensitive knowledge bases of Ngoand Haddawy [20℄ probabilisti
 rules (1) are annotated with 
onstraints that areexpressed by a designated set of 
ontext relations. Our example (whi
h is takenalmost dire
tly from [20℄), would be en
oded in a 
ontext sensitive knowledge baseby making lives in a designated 
ontext relation, and by entering two separaterules for alarm into the knowledge base { one for the 
ase of lives in(�,LA) beingfalse, and one for it being true. Disadvantage of this approa
h is that it introdu
esan often not very natural distin
tion between 
ontext relations and probabilisti
relations, and that it requires that all atoms over the 
ontext relations are assignedtruth values before probabilisti
 inferen
e 
an begin.Boutilier et al. [4℄ de�ne 
ontext spe
i�
 independen
e of random variables, a
on
ept that initially only leads to more 
ompa
t representations of 
onditionalprobability tables. By de
omposing nodes a

ording to a similar rule as givenin our De�nition 4.11, however, this 
ompa
t representation 
an also be used toenable value-sensitive network redu
tions.In the following we will show how by a simple extension of the de
ompose-network algorithm of Se
tion 4, a 
onstru
tion algorithm for standard Bayesiannetworks is obtained, whi
h, in the 
ontext of given eviden
e, generates smallernetworks in a manner that is sensitive to the values of instantiated atoms. Inparti
ular, in the 
ase of our introdu
tory example, only the small networks inFigure 13 will be 
onstru
ted. Our approa
h relies on the following standardnetwork simpli�
ation, whi
h also is the basis for 
utset 
onditioning algorithms37



[22, 26℄.De�nition 5.2 Let N be a standard Bayesian network with nodes labelled withstandard 
onditional probability tables. Let I be an instantiation of a subsetE1; : : : ; Ek of nodes. The network N 0 obtained by 
onditioning N on I is de�nedby deleting all outgoing edges from instantiated nodes and by 
onditioning all
onditional probability tables on I. A 
onditional probability table for a node Xwith parents Pa(X) in N is 
onditioned on I by making it a table that depends onPa(X) n fE1; : : : ; Ekg only, and assigning to every instantiation I� of these nodesthe original table entry for the instantiation I� [ I.The 
onditional distribution given I is the same in N and N 0, so that N 0 
an beused for the 
omputation of 
onditional probabilities given I.When a 
onditional probability distribution is represented by a probabilityformula, rather than a table, it sometimes 
an be 
onditioned on eviden
e simplyby substituting 0 and 1 for the instantiated ground atoms. The probability formulaat the node alarm(Holmes) in the network of Figure 12, for instan
e, islives in(Holmes ;LA)n-ofj0:9burglary(Holmes); 0:2earthquake(LA) j ;; � jg+(:lives in(Holmes ;LA))0:9burglary(Holmes): (38)It 
an be 
onditioned on lives in(Holmes;LA) = false by setting the indi
atorlives in(Holmes;LA) in (38) to 0, whi
h leads to the mu
h simpler formula0:9burglary(Holmes): (39)Thus, 
onditioning the probability formula at alarm(Holmes) on the eviden
enot only removes the link from lives in(Holmes,LA) to alarm(Holmes), but wealso obtain a representation of the new 
onditional distribution at alarm(Holmes)that shows that this distribution no longer depends on earthquake(LA).The probability formula (38) 
an be dire
tly 
onditioned on instantiations oflives in(Holmes,LA), be
ause its dependen
y on this ground atom is given ex-pli
itly through o

urren
es of (ground) indi
ator variables lives in(Holmes,LA)in the formula, whi
h 
an be repla
ed with 0 or 1. In general, however, the de-penden
e of a probability formula F (d) on some ground atom r(d) 
an also beimpli
it, in that r(d) 2 Pa(F (d)), but F (d) does not 
ontain the indi
ator r(d).An example is the probability formulaFr(d1) � n-ofj0:4s(d1; w) j w;w 6= d1jg; (40)at the node r(d1) of the network in Figure 6. This formula depends on s(d1; d4),for instan
e, but it 
annot be 
onditioned on an instantiation s(d1; d4) = � simplyby substituting 0 or 1. This problem has disappeared in the de
omposed versionof the network shown in Figure 7. All probability formulas in this network dependexpli
itly on their parent nodes. This is true in general: su

essive appli
ations ofthe de
ompose operator eliminate impli
it dependen
ies on parent nodes.38



A general strategy for the 
onstru
tion of de
omposed networks that are sim-pli�ed in the most e�e
tive way by 
onditioning on given instantiations of groundatoms is to substitute values 0 or 1 for ground indi
ator variables as soon asthey appear expli
itly in the iterative 
onstru
tion of DG�D. This substitution isformally de�ned as follows.De�nition 5.3 Let F (v) be a R;S-probability formula, d a tuple of domain el-ements, I an instantiation of some ground R-atoms. We de�ne the probabilityformula F (d)jI obtained by 
onditioning F (d) on I as follows:(i) If F (d) = q, then F (d)jI � q.(ii) If F (d) = r(d) then F (d)jI � 0 if I(r(d)) = false, F (d)jI � 1 if I(r(d)) =true, and F (d)jI � r(d) if r(d) is not instantiated by I.(iii) If F (d) � F1(d)F2(d) + (1� F1(d))F3(d), thenF (d)jI � F1(d)jIF2(d)jI + (1� F1(d)jI)F3(d)jI(when one of the Fi(d)jI is 0 or 1, then this expression is simpli�ed a

ordingto the rules 0F  0, F + 0 F ).(iv) If F (d) � 
ombfjF1(d;w); : : : ; Fk(d;w) j w; 
(d;w)jg, thenF (d)jI � 
ombfjF1(d;w)jI ; : : : ; Fk(d;w)jI j w; 
(d;w)jg:We 
an now integrate the 
onditioning operation of De�nition 5.3 into thede
ompose-network algorithm of Table 1 by pre
eding the de
omposition stepG := de
ompose(G; A) in the while-loop with the 
ommandrepla
e F (d) with F (d)jI :The �nal result returned by this modi�ed algorithm we denote with DG�DjI . Were
ord in a theorem:Theorem 5.4 Let I be an instantiation of some atoms of ModD(R). Let P; P 0be the probability distributions de�ned by DG�D and DG�DjI , respe
tively, on theatoms of ModD(R). Then P (� j I) = P 0(� j I).The proof follows immediately from the fa
t that in ea
h exe
ution of thewhile-loop in the amended de
omposition algorithm neither 
ommand 
hangesthe 
onditional distribution given I in the 
urrent network G.Note that it is really essential to 
ondition probability formulas on the eviden
eas soon as instantiated atoms appear expli
itly: in our introdu
tory Example 5.1for instan
e, 
onditioning (38) on lives in(Holmes,LA)=false before de
ompos-ing the node alarm(Holmes) leads to the simpli�ed formula (39), and subsequentde
omposition to the small network of Figure 13 (a). De
omposing alarm(Holmes)�rst, and 
onditioning on lives in(Holmes,LA)=false later, on the other hand,will no longer lead to the elimination of the node earthquake(LA).39



6 Con
lusionIn re
ent years several frameworks for probabilisti
 modeling and inferen
e havebeen proposed that aim to integrate �rst-order logi
 representation 
onstru
ts intothe Bayesian network paradigm. Probabilisti
 relational models 
an be regardedas a well-de�ned 
ommon semanti
 
ore of these systems.Probability formulas and re
ursive Relational Bayesian networks are one frame-work for probabilisti
 relational model representation. In this paper we have shownhow RRBNs 
an be used to represent 
omplex prms, and how the stru
ture of prob-ability formulas 
an be exploited to 
onstru
t standard Bayesian networks thatrepresent just the part of a probabilisti
 model that is relevant for a parti
ularquery.Key design goal of RRBNs was to base the representation framework on a smallnumber of elementary 
onstru
ts. This has been a
hieved mostly by redu
ing therepresentation language to the four simple 
onstru
tion rules for probability for-mulas. When, furthermore, the 
ombination fun
tion permitted in the 
onstru
-tion of probability formulas are limited to a small set of elementary fun
tions,then the whole representation framework of RRBNs 
onsists of a small numberof elementary 
onstru
ts. We have singled out noisy-or and mean as very usefulelementary 
ombination fun
tions, and have seen that they alone allow us to dealwith a variety of interesting modelling problems.The pri
e we pay for the simpli
ity of the representation framework is a ratherrigid language, in whi
h even relatively simple representations be
ome hard toread. This, however, is not a major problem, as one 
an always introdu
e high-level 
onstru
ts that are de�nable in terms of the given basi
 ones. Experien
etells us that this is the most fruitful approa
h: given a 
ertain type of semanti

onstru
t for whi
h a formal representation language is needed, one should iden-tify small sets of elementary 
onstru
ts with whi
h the problem 
an be solvedin prin
iple. On
e su
h a set of elementary 
onstru
ts has been obtained, one
an always introdu
e se
ondary, de�ned 
onstru
ts that 
an be used to a
hievebetter readability of 
omplex representations. Investigations of basi
 semanti
 oralgorithmi
 questions, however, are mu
h easier to 
ondu
t when only the fewunderlying elementary 
onstru
ts have to be taken into a

ount. This is just whythe theory of 
omputability is based on simple representation languages for algo-rithms { Turing ma
hine tables, re
ursive fun
tions { not dire
tly on high-levelprogramming languages. Mathemati
al logi
, too, has only been so su

essful be-
ause it redu
ed the ri
h language of mathemati
s to the few simple syntax rulesof predi
ate logi
. The experien
es gained in these foundational mathemati
al�elds should not be ignored in the lesser enterprise of studying the mathemati
sof probabilisti
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