
Model-Theoretic Expressivity Analysis

Manfred Jaeger

Institut for Datalogi, Aalborg University
Selma-Lagerlöfs Vej 300, 9220 Aalborg Ø, Denmark

jaeger@cs.aau.dk

1 Introduction

In the preceding chapter the problem of comparing languages was considered
from a behavioral perspective. In this chapter we develop an alternative, model-
theoretic approach.

In this approach we compare the expressiveness of probabilistic-logic (pl-)
languages by considering the models that can be characterized in a language.
Roughly speaking, one language L′ is at least as expressive as another language
L, if every model definable in L also is definable in L′. Results obtained in the
model-theoretic approach can be somewhat stronger than results obtained in
the behavioral approach in that equivalence of models entails equivalent behav-
ior with respect to any possible type of inference tasks. On the other hand,
the model-theoretic approach is somewhat less flexible than the behavioral ap-
proach, because only languages can be compared that define comparable types
of models. A comparison between Bayesian Logic Programs (defining probability
distributions on possible worlds) and Stochastic Logic Programs (defining prob-
ability distributions over derivations), therefore, is already quite challenging in a
model-theoretic approach, as it requires first to define a unifying semantic frame-
work. In this chapter, therefore, we focus on pl-languages that exhibit stronger
semantic similarities (Bayesian Logic Programs (BLPs) [6], Probabilistic Rela-
tional Models (PRMs) [1], Multi-Entity Bayesian Networks [7], Markov Logic
Networks (MLNs) [12], Relational Bayesian Networks (RBNs) [4]), and first es-
tablish a unifying semantics for these languages. However, the framework we
propose is flexible to enough (with a slightly bigger effort) to also accommodate
languages like Stochastic Logic Programs [9] or Prism [13].

The focus of this chapter is expressivity analysis. Clearly, expressivity is only
one relevant aspect in the comparison of languages. Further highly important
issues are compactness of representation, efficiency of inference, and learnability
in different languages. A meaningful comparison of these issues, however, re-
quires concepts of equivalence of models and inferences, which is just what our
expressivity analysis provides. Thus, this analysis is to be understood as a first
step towards more comprehensive comparisons.

2 PL-Models

In this chapter the word model is used to refer to unique distributions over some
state space. This is consistent with the usage in logic, where “model” refers to

a unique structure. It is different from the usage in statistics, where “model”
refers to a parametric class of distributions. Specifically, when we talk about the
model represented by some BLP, RBN or MLN, for example, we are referring to
a fully quantified BLP, etc., i.e. all numeric parameters set to specific values.

As a first step towards a unifying semantics for different pl-languages, we
have to find a common structure of the state spaces on which distributions are
defined. A sufficiently general class of state spaces consists of the spaces that
are generated by a set of random variables that can be written in the syn-
tactic form of ground atoms, e.g. blood pressure(tom), sister(susan,tom), geno-
type(mother(tom)),. . . These random variables take values in finite sets of states
that are associated with the relation symbol, e.g. states(genotype)={AA,Aa, aa}.
At this point we do not consider continuous variables. We call any assignment
of states to the set of all ground atoms constructible over a given vocabulary S
of relation, function and constant symbols (the Herbrand base of S, HB(S)) a
Multi-valued Herbrand interpretation.

To reason about identity we allow that =∈ S. The symbol = is seen as
a binary Boolean relation symbol. Interpretations of = are constrained to be
consistent with identity relation on domain elements (i.e. they must satisfy the
axioms of equality). Some languages (including RBNs and MLNs) use the =
relation to define models, but do not provide probabilistic models of = itself.
Some approaches have been proposed to model “identity uncertainty”, i.e. to
build probabilistic models for = [10, 8, 11].

The set of all multi-valued Herbrand interpretations for S is denoted MVHI(S).
We use ω, ω′, . . . to denote individual multi-valued Herbrand interpretations. In
the case where all relations in S are Boolean, then these ω are also referred
to as possible worlds (in agreement with standard logic terminology). When
ω ∈ MVHI(S), and S′ ⊆ S then ω[S′] denotes restriction of ω to the symbols
in S′. Similarly, when α is an arbitrary vector of ground S-atoms, then ω[α]
denotes the state assignment in ω to the ground atoms in α. Another notational
convention we will use is to refer by r/k to a relation symbol of arity k. Specifi-
cally, r/k ∈ S is to be read as “r is a k-ary relation symbol in S”. Similarly for
function symbols.

We always assume that probability distributions P on MVHI(S) are defined
on the σ-algebra A(S) generated by all elementary events of the form α = s,
where α ∈ HB(S), and s is a value in the state space of α.

PSfrag replacements

P on MVHI(S)

M ∈ L M ′ ∈ L′Translation

Se
m

an
ti
cs

Se
m

an
ti
cs

Fig. 1. Preliminary translation schema

Figure 1 gives a preliminary view of the model-theoretic language compari-
son: a language L′ is at least as expressive as a language L, if for every model
M ∈ L defining a distribution P on MVHI(S) there exists a model M ′ ∈ L′

defining the same distribution. The schema in Figure 1 is not yet fully adequate,
however. The first problem with this schema is that we cannot expect the model
M ′ to define a distribution on exactly the same state space MVHI(S) as M . For
example, language L′ might only permit Boolean relations, whereas L operates
with multi-valued relations. The translation from M to M ′ then will involve a
“binarization” of the vocabulary S, leading to a new vocabulary S ′, and hence
a different probability space MVHI(S ′). We must therefore allow that M ′ does
not represent exactly the distribution P defined by M , but only that M ′ defines
some P ′ that encodes all the information contained in P . In the following defi-
nition we formalize this scenario. The definition also provides for the case where
the model M ′ does not encode all of M , but only as much as is needed to answer
a restricted class of queries.

Definition 1. Let P, P ′ be probability distributions over MVHI(S), respectively
MVHI(S′). Let Q ⊆ A(S). A Q-embedding of P in P ′ is a mapping

h : Q → A(S′) (1)

such that for all Q ∈ Q:
P (Q) = P ′(h(Q)).

We write P �Q P ′ if there exists a Q-embedding of P in P ′.
A conditional Q-embedding of P in P ′ is a mapping (1) together with a

subset C ∈ A(S), such that for all Q ∈ Q:

P (Q) = P ′(h(Q) | C).

We write P �Q,c P
′ if there exists a conditional Q-embedding of P in P ′.

If Q = A(S) we just write �,�c instead of �Q,�Q,c.

An important example for Q is the set of all events of the form α = s. If
then P �Q P ′, we can retrieve from P ′ all single variable marginals of P , but
not necessarily joint or conditional distributions of P .

We now turn to a second, more subtle and fundamental deficiency of the
schema in Figure 1. Consider the situation where MVHI(S) is finite (which
happens when S contains only finitely many constant and no function symbols).
In this case basically every pl-language will be able to represent any distribution
P on MVHI(S) (P could be expressed by a Bayesian network with one node
for each α ∈ HB(S); for essentially all pl-languages it is known that they can
encode any standard Bayesian network). Thus, it would immediately follow that
for purely relational vocabularies all pl-languages are equally expressive, and
that they have the same expressive power as standard Bayesian networks.

To see why this argument misses the point, consider a typical pl-model for
genotypes in a pedigree. Such a model would be given by two distinguishable
elements: on the one hand, there are general probabilistic rules that specify, for

example, that each of the two alleles of one gene is passed from parent to child
with equal probability, or that specify the probability of a random mutation. On
the other hand, there are basic facts that describe the structure of the pedigree,
e.g. that John and Mary are the parents of Paul. The power and usefulness
of pl-languages derives from this modularity that separates generic underlying
probabilistic rules from domain-specific information.

The modularity in the model specification is most clearly expressed in PRMs,
where the specification of the skeleton structure is distinguished from the actual
probabilistic model, and in RBNs, where the specification of an input structure
is distinguished from the specification of the actual RBN model. BLPs make a
distinction between the intensional and the extensional model part, where the
extensional part mostly is expressed in terms of special logical relations, roughly
corresponding to the predefined relations of RBNs.

In the following we adopt the extensional/intensional terminology (originat-
ing in database theory), and by the following definition demand that a pl-model
has a modular structure that separates the generic, high-level (intensional) part
of the model from a specific, non-probabilistic (extensional) domain specification.

Definition 2. (PL-model) A PL-model M for a vocabulary S is a specification
in a formal language L of a probability distribution P [M] on MVHI(S). The
model M can be decomposed as M = (Mint,Mext), such that

(i) for a given Mint there exist infinitely many different M
(1)
ext ,M

(2)
ext, . . ., such

that (Mint,M
(i)
ext) defines a distribution on some MVHI(Si), where for i 6= j

the vocabularies Si, Sj contain different constant symbols.
(ii) if α ∈ HB(S) with 0 < P [M](α) < 1, then there exists M ′ = (M ′

int,Mext)
with P [M ′](α) 6= P [M](α).

Definition 2 requires that a model M has a modular structure (Mint,Mext).
Moreover, conditions (i) and (ii) make certain minimal requirements for the com-
ponents: condition (i) ensures that the generic, intensional part of the model
gives rise to infinitely many concrete model instances obtained by exchanging
the extensional part, and that these changes permit a change of the underlying
domain as represented by the constants in S. Condition (i) alone would per-
mit the trivial decomposition M = (∅,Mext). Condition (ii), therefore, requires
that Mint actually contains the essential probabilistic information, and that by
changes to Mint (typically just by change of numerical parameter values) one
can change the quantitative aspects of the model.

It must be emphasized that the partitioning of a model into intensional and
extensional part may not be unique. For some languages there exists a canonical
decomposition that is also reflected in a syntactic distinction between the two
parts. For other languages, several meaningful partitions satisfying Definition 2
can exist.

We now arrive at the refined schema in Figure 2: to show that L′ is at least
as expressive as L, we have to find translations between L and L′ models that
respect the modular structure of the models, i.e. we need separate translations

PSfrag replacements

Mint

Mext

M ′
int

M ′
ext

P P ′

tint

text

S
em

a
n
ti
cs Embedding

Fig. 2. Translations and Embeddings

for the intensional and extensional parts. For the following precise definition
we take it for granted that for L and L′ decompositions into intensional and
extensional parts have been defined, and emphasize that modifications to how
intensional and extensional parts are identified can lead to changes in the partial
expressivity order � here defined.

Definition 3. Language L′ is at least as expressive as L with respect to queries
Q, L �Q L′, if ∃tint∀Mint∃text∀Mext

P [Mint,Mext]�QP [tint(Mint), text(Mext)] (2)

If (2) is only satisfied by a conditional embedding �Q,c, we write L �Q,c L
′.

The quantifier string ∃tint∀Mint∃text∀Mext in Definition 3 requires some ex-
planation. According to the definition, the exact translation used for the exten-
sional part may depend on the concrete intensional part. This reflects to some
extent the “primacy” of the intensional model part, which is supposed to contain
the essential probabilistic specifications, whereas the extensional part contains
ancillary domain information. The following example illustrates how the possible
dependence of text on Mint can become relevant in practice.

Example 1. One special application of comparisons of the form L � L′ is the
case where L′ is a fragment of L. In such a case, a relation L � L′ is basically a
normal form theorem: every model M is equivalent to a model M ′ in a normal
form characterized by the syntactic restrictions of L′. As an example, let L be
the language of BLPs, and L′ the BLP fragment in which Bayesian clauses are
not allowed to contain constant symbols.

Consider the following BLP (here not showing the probability annotation of
the intensional clauses):

Mext :
father(peter,paul)

mother(mary,paul)

Mint :
bloodtype(X)|father(thomas,X)

bloodtype(X)|father(Y,X),mother(Z,X),bloodtype(Y),bloodtype(Z)

Here an intensional probabilistic rule contains the constant ’thomas’. In order
to eliminate the occurrence of this constant, we can introduce a new unary
relation symbol thomas rel/1, and translate the original model into

M ′
ext

:
father(peter,paul)

mother(mary,paul)

thomas rel(thomas)

M ′
int

:
bloodtype(X)|father(Y,X),thomas rel(Y)

bloodtype(X)|father(Y,X),mother(Z,X),bloodtype(Y),bloodtype(Z)

In general, tint replaces constants cons in Mint with new variables, and adds
cons rel() atoms to the clauses. This translation is independent of Mext. The
translation text adds clauses cons rel(cons) to Mext. This depends on Mint,
because we first have to inspect Mint in order to find the constant symbols in
need of elimination.

3 Case Study: MLNs and RBNs

In this section we apply the general framework established in the previous section
to compare the expressiveness of Markov Logic Networks [12] with Relational
Bayesian Networks [4]. We begin by briefly reviewing the essential concepts and
definitions for both languages.

3.1 Markov Logic Networks

In the following we give a definition of MLNs following [12]. Notation and pre-
sentation are somewhat adapted to our general conceptual setting. In particular,
we make explicit an intensional/extensional division in MLN models, which is
only implicit in the original definitions. Our definitions are based on the known
functions assumption stated in [12], which basically stipulates that all function
symbols in the language have a fixed and known interpretation, and are not mod-
eled probabilistically. The general MLN paradigm allows to relax or eliminate
this assumption. The translation we present in this chapter can be generalized
also to MLN versions without the known functions assumption.

Under the known function assumption, MLNs contain a domain specification
given by a set of constant symbols Smln

C , and interpretations over this domain
of a set of function symbols Smln

F . This domain specification is the extensional
part of the model, i.e.

Mmln

ext ∈ MVHI(Smln

ext),

where Smln
ext

:= Smln

C ∪ Smln

F ∪ {=}.
The intensional part of an MLN is given by a set of pairs

Mmln

int
= {(φi(x1, . . . , xki

), wi) | i = 1, . . . , n}, (3)

Here the φi are first-order logic formulas in Smln := Smln
ext ∪ Smln

R , where Smln

R

is a set of Boolean relation symbols. The wi are numbers in R ∪ {∞}. Mmln =

(Mmln
ext

,Mmln

int
) defines a distribution on MVHI(Smln) as follows:

P [Mmln](ω) =



























0 if ω[Smln
ext

] 6= Mmln
ext

,
or ω 6|= ∀xφi(x) for some i with wi = ∞

1
Z
exp(

n
∑

i=1

wi 6=∞

ni(ω)wi) otherwise

(4)
where ni(ω) is the number of true instances of φi in ω obtained by grounding φi
with constants from Smln

C . Z is a normalizing constant.

Table 1. MLN: friends and smokers example

φi wi

Fr(x, y) ∧ Fr(y, z) ⇒ Fr(x, z) 0.7
¬∃yFr(x, y) ⇒ Sm(x) 2.3
Sm(x) ⇒ Ca(x) 1.5
Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y)) 1.1
Fr(Anna,Bob) ∞

Example 2. (adapted from [12]) Table 1 shows a small intensional model using
relation symbols Smln

R = {Fr(iend),Sm(okes),Ca(ncer)}. The model consists of
four weighted formulas expressing, respectively, that the friends relation is tran-
sitive, friendless people smoke, smoking causes cancer, and friends will either
both smoke or both not smoke. Furthermore, there is a hard constraint say-
ing that Anna is friends with Bob (not necessarily implying the converse). This
intensional model is to be combined with domain specifications given by a set
of constants, including the constants Anna,Bob, e.g Smln

C = {Anna,Bob,Paul}.
There are no function symbols, so this set of constants (together with the unique
names assumption) defines Mmln

ext ∈ MVHI(Smln

C ∪ {=}).

A B

P

Fig. 3. A small ω ∈ MVHI(SC ∪ SR ∪ {=})

Let ω ∈ MVHI(Smln
ext) as shown in Figure 3, where arrows indicate the inter-

pretation of the Fr relation, light shading indicates the objects for which Sm is

true, and dark shading indicates the objects for which Ca is true. In ω there are
26 groundings that satisfy φ1(x, y, z) (there are 33 possible groundings, and only
the grounding x = A, y = B, z = A does not satisfy φ1), i.e. n1(ω) = 26. Simi-
larly, n2(ω) = 3 (the condition ¬∃yFr(x, y) is not satisfied for any x), n3(ω) = 2,
and n4(ω) = 7 (this example highlights some potential difficulties with calibrat-
ing the weights for material implications, which can have a large number of true
groundings simply because most groundings do not satisfy the antecedent).

3.2 Relational Bayesian Networks

We here give a condensed summary of all relevant technical definitions for syntax
and semantics of RBNs. For more detailed explanations and motivating examples
the reader is referred to [5].

In RBN models the vocabulary is partitioned into predefined (extensional)
and probabilistic (intensional) symbols: Srbn = Srbn

ext
∪ Srbn

int
, where Srbn

ext
con-

sists of relation and constant symbols (including the = relation), and Srbn
int

of relation symbols only. The extensional part of a RBN model consists of
M rbn

ext
∈ MVHI(Srbn

ext
), where the interpretation of = follows the unique names

assumption (in the original RBN terminology,M rbn
ext is called an input structure).

The intensional part (i.e. the RBN proper) consists of a collection of proba-
bility formulas Fr for the intensional relations:

M rbn

int = {Fr(x1, . . . , xk) | r/k ∈ Srbn

int }. (5)

Probability formulas are formal expressions generated by a syntax which can be
seen as a probabilistic counterpart of the syntax of predicate logic: the probability
formula constructs of atoms, convex combinations and combination functions (cf.
Table 2) correspond to predicate logic constructs of atomic formulas, Boolean
connectives, and quantification, respectively. A first-order formula φ(x1, . . . , xk)
evaluates for particular domain elements c1, . . . , ck from some possible world ω
to a truth value φ(c1, . . . , ck)[ω] ∈ {true, false} (note that φ(c1, . . . , ck)[ω] = true
is synonymous with ω |= φ(c1, . . . , ck)).

A probability formula F (x1, . . . , xk) evaluates to a probability value

F (c1, . . . , ck)[ω] ∈ [0, 1].

Both the first-order and the probability formula depend for their evaluation
usually not on the whole possible world ω, but only on the truth values of a set
of ground atoms α(φ, c), respectively α(F, c). For example, the evaluation of
the first-order formula φ(x) = ∃y(r(x, y) ∧ t(y)) depends for x = c on the atoms
r(c, c′), t(c′) for all c′ in the domain of ω.

In the case of probability formulas we will be mostly interested in the de-
pendence on Srbn

int
-atoms. The set of Srbn

int
-atoms that the evaluation of F (c)[ω]

depends on is determined by c and the extensional part of ω, i.e. ω[Srbn
ext

]. We
write α(F, c, ω[Srbn

ext
]) for this set of ground Srbn

int
-atoms.

Table 2 now summarizes syntax and semantics of probability formulas. Shown
are the syntactic form of the formulas F (x) constructed via the four different

construction rules, a specification of the sets α(F, c, ω[Srbn
ext

]), and the computa-
tion rule for the probability value F (c)[ω]. The combination function construct
here is only shown for the noisy-or combination function, which is the only one
we will need for MLN encodings.

Table 2. RBN syntax and semantics – F1, F2, F3, F
′ are any probability formulas;

ψ(x,y) is any Boolean combination of Srbn

ext -atoms

F (x) α(F, c, ω[Srbn

ext])

Constant p (p ∈ [0, 1]) ∅

Atom r(x) (r ∈ Srbn

int) r(c)

Convex Com-
bination

(F1 : F2, F3) ∪3
i=1α(Fi, c, ω[Srbn

ext])

Combination
Function

noisy-or{F ′(x,y) | y : ψ(x, y)}
[

c
′

ω[Srbn

ext
]|=ψ(c,c′)

α(F, (c, c′), ω[Srbn

ext])

F (c)[ω]

Constant p

Atom



1 if r(c)[ω] = true
0 otherwise

Convex Combination F1(c)[ω]F2(c)[ω] + (1 − F1(c)[ω])F3(c)[ω]

Combination Function 1 −
Y

c
′

ω|=ψ(c,c′)

(1 − F (c, c′)[ω])

A pair M rbn = (M rbn
ext

,M rbn

int
) induces a dependency relation between Srbn

int
-

atoms:
r(c) � r′(c′) :⇔ r′(c′) ∈ α(Fr, c,M

rbn

ext
).

If this dependency relation is acyclic, then we obtain a well-defined probability
distribution on MVHI(S) via

P [M rbn](ω) =



















0 if ω[Srbn
ext

] 6= M rbn
ext

∏

r∈Srbn

int

∏

c

ω|=r(c)

Fr(c)[ω]
∏

c

ω 6|=r(c)

(1 − Fr(c)[ω]) otherwise

Probability formulas can encode standard first-order formulas in the following
sense: for all first-order φ(x) there exists a probability formula Fφ(x), such that
for all ω, c: φ(c)[ω] = true iff Fφ(c)[ω] = 1, and φ(c)[ω] = false iff Fφ(c)[ω] =
0 [4]. This encoding will be the cornerstone for our MLN to RBN translation in
the next section.

3.3 MLN to RBN translation

Let Mmln = (Mmln
ext

,Mmln

int
) be a MLN model with Mmln

int
as in (3). We begin by

defining the vocabulary for the target RBN model:

Srbn
ext = Smln

C ∪ {rf/(k + 1) | f/k ∈ Smln

F }
Srbn

int
= Smln

R ∪ {rφi
/ki | i = 1, . . . , n}.

Thus, Srbn
ext is Smln

C ∪ Smln

F with relations instead of functions, and Srbn
int

adds to
Smln

R new relation symbols rφi
corresponding to the formulas in Mmln

int
.

The translation text is independent of the intensional model part Mmln
int

,
and simply consists of a transformation of Mmln

ext ∈ MVHI(Smln
ext) into M rbn

ext ∈
MVHI(Srbn

int
) by replacing interpretations of f/k ∈ Smln

F with corresponding in-
terpretations of rf/(k + 1) ∈ Srbn

ext .
To define M rbn

int
:= tint(M

mln

int
), we have to define for each relation r ∈ Srbn

int
a

probability formula. For r/k ∈ Smln

R we simply define:

Fr(x1, . . . , xk) = 0.5. (6)

The formulas Fr (r ∈ Smln

R) together with the input structure M rbn
ext

define a
uniform distribution over {ω ∈ MVHI(Srbn

ext , S
mln

R) | ω[Srbn
ext] = M rbn

ext }.
The core of the translation lies in the definition of probability formulas Fφi

for the new relation symbols rφi
. The main component in the construction of

the Fφi
are sub-formulas Hφi

that are essentially encodings of the formulas φi,
as mentioned at the end of the preceding section. More precisely, we construct
probability formulas Hφi

with the following properties:

(i) α(Hφi
, c, ω[Srbn

ext]) only contains atoms in relations from Smln

R .
(ii) Hφi

(c)[ω] ∈ {0, 1} for all ω, c.
(iii) for all ω ∈ MVHI(Smln), c, and ω′ ∈ MVHI(Srbn

ext
, Smln

R) with ω′[Srbn
ext

] =
text(ω[Smln

ext
]) and ω′[Smln

R] = ω[Smln

R]:

φi(c)[ω] = true ⇔ Hφi
(c)[ω′] = 1.

The formulas Hφ are defined inductively in the manner described in [4].
Some additional provisions are necessary for dealing with the transformation of
function symbols into a relational representation.

Case 1a: φ is a relational atom. This is the most difficult case, as it involves
the elimination of function. We demonstrate the construction of Hφ by a generic
example: let φ = r(f(d), x), with r ∈ Smln

R , f ∈ Smln

F , d ∈ Smln

C . Define

Hφ(x) := noisy-or{r(y, x) | y : rf (d, y)}.

According to the semantics of probability formulas, the evaluation Hφ(c)[ω
′]

performs all substitutions r(y, c)[y/c′] for c′ ∈ Smln

C that satisfy rf (d, c
′), by

evaluating the resulting ground probability formulas, and by combining all values
so obtained by noisy-or. We first observe that this evaluation does not require
truth values of any atoms in the relations rφi

, so that (i) is satisfied. By the

definition of M rbn
ext

, the condition rf (d, y) is satisfied exactly for y = c′ with
c′ = f(d) in Mmln

ext . Thus, only this substitution is performed, and the evaluation
of Hφ(c)[ω

′] reduces to the evaluation of noisy-or{r(c′, c)}. The evaluation of
r(c′, c) returns 1, respectively 0, according to whether r(c′, c) is true, respectively
false, in ω′, or, equivalently r(f(d), c) is true, respectively false, in ω. Since, finally
noisy-or{0} = 0 and noisy-or{1} = 1, we obtain (ii) and (iii).

Case 1a: φ is an equational atom. This case is similar. The formula for the
equational atom f(c) = x is given by noisy-or{1 | y : rf (c, y) ∧ y = x}. This
construction utilizes the convention that noisy-or∅ := 0.

Case 2a (Negation): φ(x) = ¬ψ(x). Define Hφ(x) := (Hψ(x) : 0, 1), using
the convex combination construct for probability formulas.

Case 2a (Conjunction): φ(x) = ψ(x) ∧ χ(x): Define Hφ(x) := (Hψ(x) :
Hχ(x), 0), again using convex combinations.

Case 3 (Existential quantifiers): φ(x) = ∃yψ(x, y). Define Hφ(x) := noisy-or
{Hψ(x, y) | y : τ}, where τ stands for a tautological constraint (e.g. y = y). Thus,
the sub-formula Hψ(x, c) will be evaluated for all c ∈ C, and Hφ(x) returns 1 iff
Hψ(x, c) evaluates to 1 for at least one c ∈ C.

In all cases condition (i) is immediate from the syntactic form of the con-
structed probability formulas (they do not contain any φi-atoms), and (ii),(iii)
follow from the evaluation rules for probability formulas.

Given the formulas Hφi
, we define the final probability formulas Fφi

as fol-
lows:

Fφi
(x) :=







(Hφi
: 1, 0) if wi = ∞

(Hφi
: 1, 1/ewi) if ∞ > wi ≥ 0

(Hφi
: ewi , 1) if wi < 0

Example 3. Table 3 shows the formulas Hφi
and Fφi

for φ1, . . . , φ5 from Table 1.
Here we have translated implications φ ⇒ ψ directly into probability formulas
(Hφ : Hψ, 1), rather than applying the translation given above for ¬ and ∧ to
¬(φ ∧ ¬ψ). Note, too, that we need to encode Fr(Anna,Bob) in the roundabout
way shown in the table, because the RBN syntax does not allow constants from
Srbn

ext
as arguments in atomic relation formulas (cf. Table 2).

Table 3. Translation of Mmln

int of Table 1

Hφi
Fφi

((Fr(x, y) : Fr(y, z), 0) : Fr(x, z), 0) (Hφ1
: 1, 0.496)

(noisy-or{(Fr(x, y) : Sm(x), 1) | y : y = y} : 0, 1) (Hφ2
: 1, 0.1)

(Sm(x) : Ca(x), 1) (Hφ3
: 1, 0.223)

(Fr(x, y) : (Sm(x) : Sm(y), (Sm(y) : 0, 1))) (Hφ4
: 1, 0.332)

noisy-or{Fr(x, y) | x, y : x = Anna ∧ y = Bob} (Hφ5
: 1, 0)

Having defined the translations text, tint, we have to show that

P [Mmln] �c P [M rbn]. (7)

where Mmln = (Mmln

int
,Mmln

ext
) and M rbn = (tint(M

mln

int
), text(M

mln
ext

)). For this we
have to find a suitable embedding, and a conditioning set C.

Since both MVHI(Smln) and MVHI(Srbn) are finite, we need to define the
embedding h(Q) only for singleton Q = {ω} (ω ∈ MVHI(Smln)). First define
h̃(ω) ∈ MVHI(Srbn

ext , S
mln

R) as the unique ω̃ with ω̃[Srbn
ext] = text(ω[Smln

ext]), and
ω̃[Smln

R] = ω[Smln

R]. Now let

h(ω) := {ω′ ∈ MVHI(Srbn) | ω′[Srbn

ext
, Smln

R] = h̃(ω)}. (8)

Thus, h(ω) contains all possible extensions of h̃(ω) with interpretations of the
relations rφi

/ki ∈ Srbn
int

\ Smln

R .
Now let

C := {ω′ ∈ MVHI(Srbn) | ∀i = 1, . . . , n∀c : rφi
(c)[ω′] = true}. (9)

To show (7) it is sufficient to show that for all ω ∈ MVHI(Smln):

P [Mmln](ω) = 0 ⇔ P [M rbn](h(ω) | C) = 0, (10)

and for all ω1, ω2 ∈ MVHI(Smln) with P [Mmln](ωi) > 0:

log
P [Mmln](ω1)

P [Mmln](ω2)
= log

P [M rbn](h(ω1) | C)

P [M rbn](h(ω2) | C)
. (11)

It is quite straightforward to verify (10) from the definitions of P [Mmln]
and P [M rbn]. We therefore only show (11), for which we then can make the
simplifying assumption that wi < ∞ for all i. By the semantics of MLNs, we
obtain for the left-hand side of (11):

log
P [Mmln](ω1)

P [Mmln](ω2)
=

n
∑

i=1

wi(ni(ω1) − ni(ω2)), (12)

For the right-hand side, we first obtain

log
P [M rbn](h(ω1) | C)

P [M rbn](h(ω2) | C)
= logP [M rbn](h(ω1) ∩ C) − logP [M rbn](h(ω2) ∩ C)

= logP [M rbn](h(ω1))P [M rbn](C | h(ω1))−logP [M rbn](h(ω2))P [M rbn](C | h(ω2))

= logP [M rbn](C | h(ω1)) − logP [M rbn](C | h(ω2)). (13)

The last equality follows from P [M rbn](h(ω1)) = P [M rbn](h(ω2)), which holds
because P [M rbn](h(ωi)) is equal to the marginal probability P [M rbn](h̃(ωi))
defined by M rbn

ext and the probability formulas for r ∈ Smln

R alone. According to
(6), these probabilities are uniform over the ω that have nonzero probability.

We now determine

P [M rbn](C | h(ωi)) =

n
⋂

i=1

⋂

c

P [M rbn](rφi
(c) = true | h(ωi)).

Since Fφ(c) only depends on relations in Smln

R , we have that the random vari-
ables rφi

(c) are conditionally independent given an interpretation of all relations
in Smln

R . Furthermore, since all ω′ ∈ h(ω) have the same interpretation of Smln

R ,
we obtain

P [M rbn](rφi
(c) = true | h(ωi)) = Fφi

(c)[h̃(ω)].

This gives us

logP [M rbn](C | h(ω)) =

n
∑

i=1

∑

c

logFφi
(c)[h̃(ω)]

=

n
∑

i=1

wi≥0

(
∑

c

h̃(ω)|=φi(c)

log(1) +
∑

c

h̃(ω)6|=φi(c)

log(1/ewi))

+

n
∑

i=1

wi<0

(
∑

c

h̃(ω)|=φi(c)

log(ewi) +
∑

c

h̃(ω)6|=φi(c)

log(1))

=
∑

i:wi≥0

−wi(Ni − ni(ω)) +
∑

i:wi<0

wini(ω), (14)

where Ni is the total number of possible groundings c of φi(x), and, thus, Ni −
ni(ω) is the number of groundings with h̃(ω) 6|= φi(c). The terms −wiNi cancel
when taking the difference in (13), so that we finally obtain for the right-hand
side of (11) the same expression as in (12) for the left-hand side.

We have now shown that RBNs are at least as expressive as MLNs. It is an
open question whether the converse also holds.

Beyond the pure expressivity result, our MLN to RBN translation provides
some additional insights: first, it is clear that the size of the RBN encoding of
a MLN model is linear in the size of the MLN, so that compactness of repre-
sentation is preserved. Second, one can see that MLN models and their RBN
encodings will exhibit very similar behavior in terms of inference complexity:
inference for MLNs is conducted on a ground Markov network [12] whose nodes
are ground atoms in the relations from Smln

R with constants from Smln

C . Inference
for RBNs (usually) is conducted on a ground Bayesian network, whose nodes are
ground atoms in the relations from Srbn

int
with constants from Smln

C . For inference,
this Bayesian network will first be transformed into its moral graph. This moral
graph turns out to have essentially the same structure as the ground Markov
network from the MLN, only that to the cliques of Smln

R -nodes are attached
nodes with ground rφ-atoms. Since for inference these nodes are all instantiated
to true, they can easily be eliminated, and one ends up with a graphical support
structure for inference in the RBN model that is identical to the ground Markov
network. Thus, the commonly used inference techniques (exact or approximate)
that operate on ground graphical models will show very similar behavior for
MLN and RBN encodings. This does not preclude the possibility, however, that

for one language one might find a more sophisticated inference technique, which
does not readily translate into a corresponding inference technique for the other
language.

4 Conclusion

In this chapter we have developed a model-theoretic framework for comparisons
of probabilistic logic languages. The framework is based on the key hypothesis
that the essential feature of pl-languages is their modularity: they allow to repre-
sent general, high-level probabilistic specifications (the intensional model part),
that is combined with the specification of concrete domains (the extensional
model part).

Within this framework we have shown that the RBN language can encode
MLN models. This result is based on basic versions of RBNs and MLNs. Both
languages can be extended in various ways, e.g. to provide probabilistic models of
functions in addition to probabilistic relations, or to provide probabilistic models
for infinite domains [2, 14]. For some of the simpler extensions the basic transla-
tion method described in this chapter will also be applicable. For more complex
extensions (notably infinite domains), however, some substantial additional ef-
fort may be required to determine whether MLN models can be translated into
RBN models, or vice-versa.

Turning our attention to other languages, we conjecture that BLPs and RBNs
are equally expressive when both languages are restricted to the noisy-or combi-
nation function. Since only noisy-or is required for the RBN encodings of MLNs,
this would also mean that MLN �c BLP .

Acknowledgments

The author wants to thank Kristian Kersting and Luc De Raedt for many fruitful
discussions on the topic of this paper. A preliminary account of some of the
material in this chapter was given in [3]. This work was supported in part by the
EU IST program: FP6-508861, Application of Probabilistic ILP II (April-II).

References

1. N. Friedman, Lise Getoor, D. Koller, and A. Pfeffer. Learning probabilistic re-
lational models. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99), 1999.

2. M. Jaeger. Reasoning about infinite random structures with relational bayesian
networks. In Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors,
Proceedings of the 6th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR-98), pages 570–581, Trento, Italy, 1998. Morgan
Kaufmann.

3. M. Jaeger, K. Kersting, and L. De Raedt. Expressivity analysis for pl-languages
(position paper). In Online Proceedings of the Workshop on Statistical Relational
Learning (SRL-06), 2006.

4. M. Jaeger. Relational bayesian networks. In Dan Geiger and Prakash Pundalik
Shenoy, editors, Proceedings of the 13th Conference of Uncertainty in Artificial
Intelligence (UAI-13), pages 266–273, Providence, USA, 1997. Morgan Kaufmann.

5. M. Jaeger. Complex probabilistic modeling with recursive relational Bayesian
networks. Annals of Mathematics and Artificial Intelligence, 32:179–220, 2001.

6. K. Kersting and L. De Raedt. Towards combining inductive logic programming
with bayesian networks. In Proceedings of the 11th International Conference on
Inductive Logic Programming (ILP-01), volume 2157 of LNAI, pages 118–131, 2001.

7. K. B. Laskey and P. C. G. da Costa. Of starships and klingons: Bayesian logic for
the 23rd century. In Proceedings of UAI-05, 2005.

8. B. Milch, B. Marthi, S. Russell, D. Sontag, D.L. Ong, and A. Kolobov. Blog: Prob-
abilistic logic with unknown objects. In Proc. 19th International Joint Conference
on Artificial Intelligence (IJCAI), pages 1352–1359, 2005.

9. S. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in
Inductive Logic Programming, pages 254–264. IOS Press, 1996.

10. H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty
and citation matching. In Proceedings of NIPS-03, 2003.

11. D. Poole. Logical generative models for probabilistic reasoning about existence,
roles and identity. In Proceedings of AAAI-07, 2007.

12. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-
2):107 – 136, 2006.

13. T. Sato. A statistical learning method for logic programs with distribution seman-
tics. In Proceedings of the 12th International Conference on Logic Programming
(ICLP’95), pages 715–729, 1995.

14. P. Singla and P. Domingos. Markov logic in infinite domains. In Proceedings of
UAI-07, 2007.

