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Abstract

We introduce the boolean inductive query evaluation
problem, which is concerned with answering inductive
queries that are arbitrary boolean expressions over mono-
tonic and anti-monotonic predicates. Secondly, we develop
a decomposition theory for inductive query evaluation in
which a boolean queryQ is reformulated intok sub-queriesQi = QA ^ QM that are the conjunction of a monotonic
and an anti-monotonic predicate. The solution to each sub-
query can be represented using a version space. We investi-
gate how the number of version spacesk needed to answer
the query can be minimized. Thirdly, for the pattern do-
main of strings, we show how the version spaces can be
represented using a novel data structure, called the version
space tree, and can be computed using a variant of the fa-
mous Apriori algorithm. Finally, we present some experi-
ments that validate the approach.

1. Introduction

Many data mining problems address the problem of find-
ing a set of patterns that satisfy a constraint. Formally, this
can be described as the task of finding the set of patternsTh(Q;D;L) = f' 2 L j Q(';D), i.e. those patterns'
satisfying queryQ on databaseDg. HereL is the language
in which the patterns or rules are described andQ is a pred-
icate or constraint that determines whether a pattern' is a
solution to the data mining task or not [15]. This framework
allows us to view the predicate or the constraintQ as anin-
ductive queryto aninductive database system. It is then the
task of the inductive database management system to effi-
ciently generate the answers to the query. This view of data
mining as a declarative querying process is also appealing

as the basis for a theory of data mining. Such a theory would
be analogous to traditional database theory in the sense that
one could study properties of different pattern languagesL,
different types of queries (and query languages), as well as
different types of databases. Such a theory could also serve
as a sound basis for developing algorithms that solve induc-
tive queries.

It is precisely such a theory that we introduce in this pa-
per. More specifically, we study inductive queries that are
boolean expressions over monotonic and anti-monotonic
predicates. An example query could ask for molecular frag-
ments that have frequency at least 30 per cent in the active
molecules or frequency at most 5 per cent in the inactive
ones [14]. To the best of our knowledge this type of boolean
inductive query is the most general type of inductive query
that has been considered so far in the data mining litera-
ture. Indeed, most contemporary approaches to constraint
based data mining use either single constraints (such as min-
imum frequency), e.g. [2], a conjunction of monotonic con-
straints, e.g. [17, 10], or a conjunction of monotonic and
anti-monotonic constraints, e.g. [4, 14]. However, [6] has
studied a specific type of boolean constraints in the context
of association rules and item sets. It should also be noted
that even these simpler types of queries have proven to be
useful across several applications, which in turn explains
the popularity of constraint based mining in the literature.

Our theory of boolean inductive queries is first of all con-
cerned with characterizing the solution spaceTh(Q;D;L)
using notions of convex sets (or version spaces [13, 12, 16])
and border representations [15]. This type of representa-
tions have a long history in the fields of machine learning
[13, 12, 16] and data mining [15, 3]. These data mining and
machine learning viewpoints on border sets have recently
been unified by [4, 14], who introduced the level-wise ver-
sion space algorithm that computes the S and G set w.r.t. a
conjunction of monotonic and anti-monotonic constraints.



In the present paper, we build on these results to develop
a decomposition approach to solving arbitrary boolean
queries over monotonic and anti-monotonic predicates.
More specifically, we investigate how to decompose ar-
bitrary queriesQ into a set of sub-queriesQk such thatTh(Q;D;L) = Si Th(Qi;D;L), k is minimal, and eachTh(Qi;D;L) can be represented using a single version
space. This results in an operational and effective decom-
position procedure for solving queries. Indeed, the overall
queryQ is first reformulated into the sub-queriesQi, which
can then be solved by existing algorithms such as the level-
wise version space algorithm of [4].

Our theory is then instantiated to answer boolean queries
about string patterns. String patterns are widely applicable
in the many string databases that exist today, e.g. in DNA
or in proteins. Furthermore, the present work is to a large
extent motivated by the earlier MolFea system [14, 4], in
which conjunctive queries (over anti-monotonic and mono-
tonic constraints) for molecular features were solved using
a version space approach. MolFea features are essentially
strings that represent sequences of atoms and bonds. For
string patterns, we introduce a novel data structure, i.e. ver-
sion space trees, for compactly representing version spaces
of strings. Version space trees combine ideas of version
spaces with those of suffix trees. They have various desir-
able properties. Most notably, they can be computed using
a variant of traditional level wise algorithms for tries, rec-
ognizing whether a string belongs to the version space is
linear in the size of the string, and the size of the version
space tree is at most quadratic in the size of the elements in
the S set of the version space.

This paper is organized as follows. In Section 2, we de-
fine the inductive query evaluation problem and illustrate it
on the pattern domains of strings and item-sets; in Section
3, we introduce a decomposition approach to reformulate
the original query in simpler sub-queries; in Section 4, we
introduce version space trees that compactly represent the
solutions to a sub-query in the pattern domain of strings; in
Section 5, we report on some experiments in this domain,
and, finally, in Section 6, we conclude.

2 Boolean Inductive Queries

A pattern languageL is a formal language for specifying
patterns. Each pattern� 2 L matches (or covers) a set of
examples�e, which is a subset of the universeU of possible
examples. In general, pattern languages will not allow to
represent all subsetsP(U) of the universe1.

Example 2.1 Let I = fi1; : : : ; ing be a finite set of pos-
sible items, andUI = 2I be the universe of item sets

1The terminology used here is similar to that in concept-learning, whereU would be the space of examples,P(U) the set of possible concepts, andL the set of concept-descriptions.

over I. The traditional pattern language for this domain
is LI = UI . A pattern� 2 LI covers the set�e := f �I j � �  g. An alternative, less expressive, pattern lan-
guage is the languageLI;k � LI of item sets of size at
mostk.

Example 2.2 Let� be a finite alphabet andU� = �� the
universe of all strings over�. We will denote the empty
string with �. The traditional pattern language in this do-
main is L� = U�. A pattern� 2 L� covers the set�e = f 2 �� j � v  g, where� v  denotes that�
is a substring of . An alternative, more expressive, lan-
guage is the language of all regular expressions over�.

One pattern� is more generalthan a pattern , written� �  , if and only if�e �  e.
A patternpredicatedefines a primitive property of a pat-

tern, usually relative to some data setD (a set of examples),
and sometimes other parameters. For any given pattern, it
evaluates to eithertrueor false.

We now introduce a number of pattern predicates that
will be used for illustrative purposes throughout this paper.
Most of these predicates are inspired by MolFea [14]. Our
first pattern predicates are very general in that they can be
used for arbitrary pattern languages:� min freq(p,n,D) evaluates to true iffp is a pattern that

occurs in databaseD with frequency at leastn 2 N.
The frequencyf(�;D) of a pattern� in a databaseD
is the (absolute) number of data items inD covered
by �. Analogously, the predicatemax freq(p; n;D) is
defined.� ismoregeneral(p, ) is a predicate that evaluates to true
iff patternp is more general than pattern . Dual to theismoregeneral predicate one defines theismorespe
i�

predicate.

The following predicate is an example predicate tailored
towards the specific domain of string-patterns overL�.� length atmost(p,n) evaluates to true forp 2 L�

iff p has length at mostn. Analogously thelength atleast(p,n) predicate is defined.

In all the preceding examples the pattern predicates
have the formpred(p,params) or pred(p,D,params), where
paramsis a tuple of parameter values,D is a data set andp
is a pattern variable.

We also speak a bit loosely ofpred alone as a pattern
predicate, and mean by that the collection of all pattern
predicates obtained for different parameter valuesparams.

We say thatm is amonotonicpredicate, if for all possible
parameter valuesparamsand all data setsD:8�;  2 L such that� �  :m( ;D; params)! m(�;D; params)
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The class ofanti-monotonicpredicates is defined du-
ally. Thus,min freq, ismoregeneral, andlength atmost are
monotonic, their duals are anti-monotonic.

A pattern predicatepred(p,D,params) that can be ap-
plied to the patterns from a languageL defines relative
to D the solution setTh(pred(p;D; params);L) = f� 2L j pred(�;D; params) = trueg. Furthermore, for mono-
tonic predicatesm these sets will be monotone, i.e. for all� �  2 L :  2 Th(m;L)! � 2 Th(m;L).
Example 2.3 Consider the string data setD =fabc;abd;cd;d;cdg. Here we have pattern fre-
quenciesf(abc; D) = 1, f(cd; D) = 2, f(c; D) = 3,f(abcd; D) = 0. And trivially, f(�;D) = jDj = 5. Thus,
the following predicates evaluate to true:min freq(c;
2; D), min freq(cd; 2; D), max freq(abc; 2; D),max freq(cd; 2; D).

The pattern predicatem := min freq(p; 2; D) de-
finesTh(m;L�) = f�; a; b; 
; d; ab; 
dg, and the pattern
predicatea := max freq(p; 2; D) defines the infinite setTh(a;L�) = L� n f�; 
; dg.

The definition ofTh(pred(p; D; params);L) is extended
in the natural way to a definition of the solution setTh(Q;L) for boolean combinationsQ of pattern predi-
cates over a unique pattern variable:Th(:Q;L) := L nTh(Q;L), Th(Q1 _ Q2;L) := Th(Q1;L) [ Th(Q2;L).
The predicates that appear inQ may reference one or more
data setsD1; : : : ; Dn. To emphasize the different data sets
that the solution set of a query depends on, we also writeTh(Q;D1; : : : ; Dn;L) or Th(Q;D;L) for Th(Q;L).

We are interested in computing solution setsTh(Q;D;L) for boolean queriesQ that are constructed
from monotonic and anti-monotonic pattern predicates.
As anti-monotonic predicates are negations of monotonic
predicates, we can, in fact, restrict our attention to mono-
tonic predicates. We can thus formally define theboolean
inductive query evaluation problemaddressed in this paper.

Given� a languageL of patterns,� a set of monotonic predicatesM = fm1(p;D1; params1); :::;mn(p;Dn; paramsn)g,� a queryQ that is a boolean expression over the predi-
cates inM (and over a single pattern variable),

Find the set of patternsTh(Q;D1; : : : ; Dn;L), i.e. the
solution set of the queryQ in the languageL with respect
to the data setsD1; : : : ; Dn.

3 A decomposition approach

The query evaluation problem for a queryQ will be
solved by decomposingQ into k sub-queriesQi such thatQ is equivalent toQ1 _ ::: _ Qk, and then computingTh(Q;D;L) as[iTh(Qi;D;L). Furthermore, each of the
sub-queriesQi will be such thatTh(Qi;D;L) is a version
space (also called a convex space), and therefore can be ef-
ficiently computed for a wide class of pattern languagesL,
and queriesQi.
Definition 3.1 Let L be a pattern language, andI � L.I hasdimension1, if 8�; �0;  2 L : � �  � �0 and�; �0 2 I =)  2 I . I has dimensionk if it is the
union ofk subsets of dimension 1, but not the union ofk�1
subsets of dimension 1.

A queryQ has dimensionk (with respect to the pattern
languageL) if k is the maximal dimension of any solution
setTh(Q;D;L) ofQ (where the maximum is taken w.r.t. all
possible data setsD and w.r.t. the fixed languageL).

If Q has dimension 1 w.r.t.L, thenTh(Q;D;L) is a ver-
sion space [16] or a convex space [13]. Version spaces are
particularly useful when they can be represented by bound-
ary sets, i.e. by the setsG(Q;D;L) of their maximally
general elements, andS(Q;D;L) of their minimally gen-
eral elements. For the theoretical framework of the present
section we need not assume boundary representability for
convex sets. However, concrete instantiations of the general
method we here develop, like the one described in sections 4
and 5, usually will assume pattern languages in which con-
vexity implies boundary representability.

Example 3.2 Reconsider the string domain. LetQ1 = ismoregeneral(p; ab
de) ^ length atleast(p; 3)Q2 = ismorespe
i�
(p; ab) ^ ismorespe
i�
(p; uw)^(length atleast(p; 6) _min freq(p; 3; D))
The query Q1 does not reference any dataset, andTh(Q1;L�) = fab
de; ab
d; b
de; ab
; b
d; 
deg:
This set of solutions is completely characterized byS(Q1;L�) = fab
deg andG(Q1;L�) = fab
; b
d; 
deg.Th(Q2; D;L�) cannot in general be represented using
a single version space. However, as our general method
will show, the dimension ofTh(Q2; D;L�) is at most two,
so that it can be represented as the union of two version
spaces.

With the following definition and lemma we provide an
alternative characterization of dimensionk sets.

Lemma 3.3 Let I � L. Call a chain�1 � �2;� : : : ��2k�1 � L analternating chain (of lengthk) for I if �i 2 I
for all oddi, and�i 62 I for all eveni. Then the dimension
of I is equal to the maximalk for which there exists inL an
alternating chain of lengthk for I .

3



Example 3.4 Consider the following queries:Q3 = ismoregeneral(p; ab
) ^ ismorespe
i�
(p; a),Q4 = ismoregeneral(p; 
), andQ5 = Q3 _Q4.
Then 
, b
, ab
 is an alternating chain of length 2 forTh(Q5;L�).

GivenQ andL we are now interested in computing the
dimensionk of Q, and transformingQ into a disjunction_kh=1Qi, such that eachTh(Qi;D;L) is a version space.
The approach we take is to first evaluateQ in a reduced
pattern languageLadmM(Q), so that the desired partition_Qi
can be derived from the structure ofTh(Q;LadmM(Q)). The

solution setTh(Q;LadmM(Q)) does not depend on the datasetsD thatQ references, and the complexity of its computation
only depends on the size ofQ, but not on the size of any
datasets.

Definition 3.5 For a queryQ, letM(Q) = fm1; : : : ;mng
be the set of monotonic predicates contained inQ (where
predicates that only differ with respect to parameter values
also are considered distinct). DefineLM(Q) := 2M(Q).
A subset� � M(Q) is called admissibleif there exists
data setsD such thatTh(^mi2�mi ^mj 62� :mj ;D;L) is
not empty. LetLadmM(Q) = f� 2 LM(Q) j � admissibleg.

For the predicatesmi we defineTh(mi;LM(Q)), respec-
tivelyTh(mi;LadmM(Q)), as the set of (admissible)� that con-
tain mi. By the general definition this also determines
Th(Q;LM(Q)) andTh(Q;LadmM(Q)).
Example 3.6 Using only monotonic predicates, the queryQ2 from example 3.2 can be rewritten as:m1 ^ :m2 ^(:m3 _m4), withm1 = not-ismorespe
i�
(p; ab)m2 = not-ismorespe
i�
(p; uw)m3 = not-length atleast(p; 6)m4 = min freq(p; 3; D)
(where e.g.not-ismorespe
i�
 is the (monotonic) comple-
ment of the anti-monotonic predicateismorespe
i�
; note
that this is distinct fromismoregeneral).

Here every� � fm1; : : : ;m4g is admissible (a witness
for the admissibility offm3;m4g, for instance, is a datasetD in which the stringabuwappears at least three times, i.e.
abuw2 Th(:m1 ^ :m2 ^m3 ^m4; D;L�)).

Figure 1 (a) showsLM(Q2) = LadmM(Q2), where e.g. pat-
ternfm3;m4g is just represented by its “index string” 34.

Now consider a variantQ6 of Q2 obtained by
replacing m3 with m03 := not-length atleast(p; 4).
Here not every� � fm1;m2;m03;m4g is admissi-
ble: as ismorespe
i�
(p; ab) ^ ismorespe
i�
(p; uw) im-
plies lengthatleast(p; 4), we have that neitherfm03g norfm03;m4g are admissible. These are the only two inadmissi-
ble subsets ofM(Q), so thatLadmM(Q6) here is as in figure 1
(b).

(b)(a)

1234

⊥

123   124   134   234

12   13   14   23   24

1   2        4

1234

⊥

123   124   134   234

1   2   3   4

12   13   14   23   24   34 

Figure 1. Pattern languages LadmM(Q)
Assuming that we can decide admissibility of subsets

of M(Q) (for the types of pattern languages and pred-
icates we have considered so far admissibility can al-
ways be decided), we can constructLadmM(Q) and compute

Th(Q;LadmM(Q)). These solution sets are indicated for the

queriesQ2 andQ6 in their respective languagesLadmM(Q)
by circles in figure 1. One sees thatTh(Q2;LadmM(Q2)) has
dimension 2, andTh(Q6;LM(Q6)) has dimension 1. This
gives an upper bound for the dimensions of the solutions to
the query:

Theorem 3.7 The dimension of Th(Q;LadmM(Q)) is an upper
bound for the dimension ofTh(Q;D;L) for all datasetsD.

The dimension ofTh(Q;LM(Q)) is greater or equal the
dimension ofTh(Q;LadmM(Q)), and therefore also can serve
as an upper bound for the dimension ofTh(Q;D;L). In
general, this will be a coarser bound: forQ6, for instance,
we obtain forTh(Q;LM(Q6)) the same structure as shown
forQ2 in figure 1 (a), and therefore only the bound 2.

When Th(Q;LadmM(Q)) is of dimensionk, we can de-
fine each of its convex componentsIh as a solution to a
queryQh in the predicatesmi: if �1; : : : ; �l are the max-
imal and 1; : : : ;  m the minimal elements ofIh, thenIh = Th(Qh;LadmM(Q)) forQh := (_li=1 ^mj 62�i :mj) ^ (_mi=1 ^mj2 i mj) (1)

Theorem 3.8 Th(Qh;D;L) is convex for all datasetsD, and Th(Q;D;L) = Th(_kh=1Qh;D;L) =[kh=1Th(Qh;D;L).
Example 3.9 Continuing from example 3.6, we can par-
tition Th(Q2;LadmM(Q2)) into two convex componentsI1 =ffm4g; fm3;m4gg andI2 = f?g. We thus obtain the de-
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composition of the queryQ2 into the two subqueriesQ21 = ismorespe
i�
(p; ab) ^ ismorespe
i�
(p; uw)^min freq(p; 3; D)Q22 = ismorespe
i�
(p; ab) ^ ismorespe
i�
(p; uw)^length atleast(p; 6) ^ :min freq(p; 3; D)
For Q6 we have thatTh(Q6;LadmM(Q6)) consists of one ver-
sion spacef?; fm4gg, so thatQ6 is equivalent to the queryQ61 = ismorespe
i�
(p; ab) ^ ismorespe
i�
(p; uw)^length atleast(p; 4)

The sub-queries (1) to which the original queryQ is
reduced not only are known to have convex solution sets
Th(Qh;D;L), they also are of a special syntactic formQh = Qh;M ^ Qh;A, whereQh;M defines a monotone
set Th(Qh;M ;D;L), andQh;A defines an anti-monotone
set Th(Qh;A;D;L). This factorization ofQh facilli-
tates the computation of the border setsG(Qh;D;L) andS(Qh;D;L), for which the level wise version space algo-
rithm [4, 14] can be used. In the following section we will
present an algorithm that for queries in the string domain
uses the syntactic form of theQh for efficiently computing
and representing the solution setsTh(Qh;D;L) with ver-
sion space trees.

4. Version space trees

In this section, we introduce a novel data structure,
called the version space tree, that can be used to elegantly
represent and index a version space of strings, e.g. the
Th(Qh;D;L�) introduced in the previous section. Further-
more, we present effective algorithms that compute version
space trees containing all strings that satisfy the conjunction
of a monotonic and an anti-monotonic predicate (as in the
queriesQh).

4.1. The data structure

A trie is a tree where each edge is labelled with a symbol
from the alphabet�. Moreover, the labels on every edge
emerging from a node must be unique. Each noden in a
trie thus uniquely represents the strings(n) containing the
characters on the path from the rootr to the noden. The
root node itself represents the empty string�.

A suffix trieis a trie with the following properties:� For each noden and for each suffixt of s(n), there is
also a noden0 in the trie representingt, i.e. t = s(n0).� Each noden has asuffix link suffix(n) = n0, wheres(n0) represents the suffix obtained froms(n) by drop-
ping the first symbol. The root node represents�,
which has no suffixes. We definesuffix(root) = ?,
where? is a unique entity.

− −
b

+
c

+
d

+
e

−

c

−
d

+
e

−
a

−
b

+
c

+
d

+
e

Figure 2. An example version space tree

Suffix tries have been well studied in the literature [18,
19]. However, we make some important deviations from the
main stream approach:� instead of building a suffix trie on all the suffixes of a

singlestring, we are indexing all the suffixes of aset of
strings; thus multiple strings are stored in the trie.� we usefully labelled tries, in which each node is la-
belled with either “�” or “	”; the� label to indicate
nodes that are interesting to us (say: belong to the ver-
sion space) and	 for those that are not.� because we need to store labels and counts for all
substrings represented in the trie, we do not coalesce
chains of nodes with only one out-going edge into a
single edge label.

Note that a fully labelled trie may contain nodes for
which its label as well as those of its descendants are all	. Thus the node as well as the subtrie below it are unin-
teresting. Therefore, in practice we will often use apruned
labelled trie. This is a fully labelled trie with the additional
property that all leaf nodes have the sign�. Both trees have
the same semantics and each fully labelled tree has a unique
equivalent pruned tree. Furthermore,as most of our results
are valid for both types of trees, we will often employ the
term “labelled trie”.

Now a version space treeV is a labelled trie that rep-
resents a version space of strings overL�. More for-
mally, let V be a set of strings of dimension 1. Then the
corresponding (pruned) version space trieT is such thatV = fv j n is a node inT with label� ands(n) = v g. Fig-
ure 2 illustrates the (pruned) version space tree representingTh(Q7;D;L�), whereQ7 = is more general(t; ab
de) ^(is more spe
i�
(t; b
) _ is more spe
i�
(t; 
de)).

A version space tree VST representing version spaceV
has the following properties:

1. All leaf nodes are labelled�.

2. Along every path from root to a leaf there is at most
one sign change (from	 to�); cf. Lemma 3.3.

3. If S = min V then VST will 1) have a leaf corre-
sponding to eachs 2 S and 2) have a node corre-
sponding to each suffixs0 of eachs 2 S for whichs0 2 V .
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4. Therefore, the number of nodes in the version space
tree VST is at most�i2S jsij2, wherejsj denotes the
length of the string. However, the size of a VST is
usually much smaller.

5. Testing whether a strings belongs to the version space
represented by a version spaceV ST is linear injsj, as
the VST can be interpreted as a deterministic automa-
ton on inputs.

6. Property 3 can be used as the basis for an algorithm for
constructing a version space tree based onS andG.

7. For a given version space tree, one can easily and ef-
ficiently construct theS andG-sets. Indeed, theS-
set will contain all leafsl of the version space tree to
whom no suffix pointer points; and theG-set will con-
tain all nodesg with label� whose parent node has
label	 and for which the nodesuffix(g) either does
not exist or also has the label	.

As one can see, there is a close correspondence between
version spaces of strings and version space trees. We will
now show that there is also a close correspondence between
version space trees and algorithms such as Apriori [2].

4.2. The algorithms

In this section, we sketch theVST algorithm to build a
version space tree that satisfies the conjunctionQA^QM of
an anti-monotonic predicateQA and a monotonic oneQM .
This form of query corresponds to the one of the queriesQh that would be generated by our decomposition (over
anti-monotonic and monotonic constraints) approach. Al-
gorithmVST is a level-wise algorithm based on the well-
known Apriori [2] algorithm. The algorithm assumes 1)
that the version space tree to be computed is finite and 2)
that the alphabet� is given. It consists of two phases:

DESCEND: top-down growing of the version space tree us-
ing the monotonic predicateQM .

ASCEND: bottom-up marking of the version space tree us-
ing the anti-monotonic predicateQA.

Both phases are designed to minimize the number of
database scans2. As such, they both exhibit the cyclic
pattern: candidate generation, candidate testing (database
scan) and pruning. The cycle terminates when no more new
candidates patterns are generated.

Since only the monotonic pattern predicate is handled
in the descend phase, we can reuse the idea of Apriori. The
algorithm searches the strings satisfyingQM in a top-down,

2As in Apriori, one only needs to scan the data sets at most oncefor
each level of the tree.

breadth-first manner. At each depth levelk, the descend
algorithm first expands the� nodes found in the previous
iteration (Lk�1). The nodes resulting from the expansion
constitute the setCk. These candidate nodes are then tested
against the predicateQM . The testing involves one database
scan for the whole iteration. The candidate patterns inCk
that satisfy the constraints are put intoLk. Those that do not
are pruned away from the tree. This process is repeated in
a level wise fashion untilCk becomes empty. All generated
nodes are labelled with� and the necessary suffix links are
set up during this phase.

Note that the setsCk andLk are the same as the candi-
date sets and “large” sets in the Apriori algorithm. More-
over, the generation ofCk from Lk�1 also mimics the
Apriori-join operation in the Apriori algorithm.3 The de-
scend algorithm makes use of the suffix like and parent-
child relationship of a suffix trie to perform the join effi-
ciently. More specifically, the candidate child nodes of a
noden in Lk�1 (as well as the edges) correspond to the
children of the nodesuffix(n). So, the major difference be-
tween DESCEND and Apriori is that the former also orga-
nizes the discovered strings into a suffix trie, facilitating the
join operation and the second phase of the VST algorithm.

The second phase is implemented with algorithm AS-
CEND. This phase handles the anti-monotonic con-
straintQA. Here we assume that we have the setF0 of
leaf nodes in the treeT generated during the descend phase.
While DESCENDworks top-down, ASCENDstarts from the
leaves and works upwards. It first checks the leaf nodes
against the predicateQA. The labels of all the nodesn
that do not satisfyQA, are changed into	. In addition,
all their ancestors are also labelled as	. This is sound
due to the anti-monotonicity. So, we can propagate these	 marks upwards until we have marked the root with	.
Actually, we can stop as soon as we reach an ancestor al-
ready marked with	, as another such leaf noden0 may
share some ancestors withn. So, all the ancestors from that
point upwards have already been marked with	. Secondly,
for those nodesp in F0 that satisfyQA, the label remains
unchanged (i.e.�). Furthermore, we will enter their parent
into the setF1 (and remove possible duplicates).F1 con-
tains the nodes to be considered at the next iteration. This
process is then repeated untilFk becomes empty.

So, after these two phases, namely DESCEND and then
ASCEND, both the monotonic and the anti-monotonic con-
straints are handled. With a simple tree traversal, we can
prune away those subtrees that contain only	 labels. The

3There are some differences here since we are dealing with strings in-
stead of sets. E.g., while Apriori-join generates item setfa, b, cg fromfa, bg andfa, cg, the descend algorithm generatesabc from ab andbc,
because these are theonly immediately shortersubstringsof abc. At the
same time, it is not hard to imagine a variant of the version space tree al-
gorithm for use with item sets. Indeed, the kind of trie searched is quite
similar to some of the data structures used by e.g. [3, 11].
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result is a tree that is a pruned suffix trie representing the
version space of strings that satisfy the queryQA ^QM .

Theorem 4.1 The VST algorithm performs at most2m
database scans, wherem is length of the longest strings
satisfying the monotonic queryQM .

5. Experiments

We have implemented theVST algorithm and performed
experiments on datasets of command histories collected
from 168 Unix users over a period of time [7]. The users are
divided into four groups: computer scientists, experienced
programmers, novice programmers and non-programmers.
The corresponding data sets are denoted “sci”, “exp”, “nov”
and “non”, respectively. When each user accesses the Unix
system, he first logs in, then types in a sequence of com-
mands, and finally logs out. Each command is recorded as
a symbol in the database. The sequence of commands from
log in to log out constitutes a login session, and is mapped
to a string in our experiment. Each user contributes to many
login sessions in the database. Table 1 gives some statistics
on the data.

In the first set of experiments we determined solutions of
queriesmin freq(p; n;D) for the four different datasets and
for thresholdsn that were selected so as to produce solution
sets of around 300 frequent string patterns. Table 1 summa-
rizes the datasets, the queries, and their solutions. Timings
(wall-clock time on a Pentium III 600 Mhz) are reported as
well.

Whereas the first set of experiments only used themin freq predicate, the second set of experiments involves
the computation of two version space treesT1 andT2 cor-
responding to the queriesQ8 andQ9:Q8 : min freq(p; non; 24) ^max freq(p; s
i; 60)Q9 : min freq(p; nov; 80) ^max freq(p; exp; 36)Q8 andQ9 are conjunctions of an anti-monotonic predicate
and a monotonic one, thus their solution space is a version
space. Furthermore, they are the sub-queries that are gener-
ated for the queryQ10 = Q8 _Q9 using the decomposition
approach outlined in Section 3.

The results of the second experiment are shown in Ta-
ble 2. Each row shows the time the algorithm spent on
building that tree. The columns of the table show the num-
ber of nodes and total length of strings represented by those
nodes. Each of the five sub-column in each case shows the
number for a subset of the nodes in the final trie. The col-
umn “all” shows the figure for all trie nodes. The columns
“�” and “	” show the figure aggregated over nodes with
the respective labels only. The columns “S” and “G” show
the figures for the maximally specific strings and the mini-
mally specific strings, respectively. For what concerns the

queryQ10, there are in total 401 strings in its answer set,
and together they have length 1953.

Our experimental results confirm our claim that the setsS andG constitute a compact representation of the set of all
patterns satisfying the given constraintsQM andQA. From
Table 2, it can be seen that the total length of strings forS
andG together is always smaller than that for all interesting
patterns (i.e.�). In the case ofT2, the space saving is
significant. Moreover, algorithmVST is also very efficient
in terms of time and space. This shows that using suffix tries
in the mining of string patterns is a promising approach.

The longest pattern found (represented by the deepest
node in eitherT1 or T2 having a� label) was “pix
umacs pix umacs pix umacs pix umacs pix
umacs pix umacs pix umacs pix umacs pix
umacs pix”, which has a length of 19.

6. Conclusions

We have described an approach to the general pattern
discovery problem in data mining. The method is based on
the decomposition of the answer set to a collection of com-
ponents defined by monotonic and anti-monotonic predi-
cates. Each of the components is a convex set or version
space, the borders of which can be computed using the level
wise version space algorithm or - for the pattern domain of
strings - using theVSTalgorithm, which employs a novel
data structure called the version space tree. Experiments
have been presented that validate the approach.

The results we have presented in this paper are by no
means complete, a lot of open problems and questions re-
main. First, it seems possible to adapt the version space
trees and algorithm for use in other domains (such as item-
sets). However, at present it is unclear how to do this for
some more expressive domains such as Datalog queries or
even the string domain where one is using a coverage rela-
tion based on subsequence matching rather than substring
matching. Secondly, for the string domain, it is possible
to further optimize these algorithms for specific predicates
(e.g. involving frequency counting on a database of strings).
Thirdly, we are at present also studying set operations on
version space trees. Such operations would allow us to per-
form some of the logical operations directly on solution
spaces. Fourthly, the framework seems also useful in the
context of optimizing a sequence of inductive queries. Here,
it would be interesting to see how the results to previous
(sub) queries could be reused for more efficiently answer-
ing the next question.

Although there are many remaining questions, the au-
thors hope that the introduced framework provides a sound
theoretical framework for studying these open questions as
well as for developing practical inductive database systems
based on the idea of inductive querying.
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Table 1. Summary statistics of the data
Data number number minimum frequent execution memory
set of of frequency strings time used
(D) users sequences (n) found (seconds) (bytes)
nov 55 5164 24 294 3.24 56994
exp 36 3859 80 292 2.88 88706
non 25 1906 80 293 0.72 59754
sci 52 7751 48 295 4.89 94290

Table 2. Results on finding the union of two version spaces
Suffix Time number of nodes total length of strings
Trie (sec) � 	 all S G � 	 all S GT1 2.55 166 40 206 104 68 472 75 547 305 147T2 5.51 237 18 255 85 15 1489 23 1512 416 24
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