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Abstract as the basis for a theory of data mining. Such a theory would

be analogous to traditional database theory in the sense tha

We introduce the boolean inductive query evaluation one could study properties of different pattern languages
problem, which is concerned with answering inductive different types of queries (and query languages), as well as
queries that are arbitrary boolean expressions over mono- different types of databases. Such a theory could also serve
tonic and anti-monotonic predicates. Secondly, we developas a sound basis for developing algorithms that solve induc-
a decomposition theory for inductive query evaluation in tive queries.
which a boolean quer§) is reformulated intd: sub-queries It is precisely such a theory that we introduce in this pa-
Q; = Qa A Qu that are the conjunction of a monotonic per. More specifically, we study inductive queries that are
and an anti-monotonic predicate. The solution to each sub-boolean expressions over monotonic and anti-monotonic
query can be represented using a version space. We investipredicates. An example query could ask for molecular frag-
gate how the number of version spaéaseeded to answer ments that have frequency at least 30 per cent in the active
the query can be minimized. Thirdly, for the pattern do- molecules or frequency at most 5 per cent in the inactive
main of strings, we show how the version spaces can beones [14]. To the best of our knowledge this type of boolean
represented using a novel data structure, called the varsio inductive query is the most general type of inductive query
space tree, and can be computed using a variant of the fa-that has been considered so far in the data mining litera-
mous Apriori algorithm. Finally, we present some experi- ture. Indeed, most contemporary approaches to constraint
ments that validate the approach. based data mining use either single constraints (such as min
imum frequency), e.g. [2], a conjunction of monotonic con-
straints, e.g. [17, 10], or a conjunction of monotonic and
anti-monotonic constraints, e.g. [4, 14]. However, [6] has
studied a specific type of boolean constraints in the context
of association rules and item sets. It should also be noted

Many data mining problems address the problem of find- that even these simpler types of queries have proven to be
ing a set of patterns that satisfy a constraint. Formalig, th useful across several applications, which in turn explains
can be described as the task of finding the set of patternghe popularity of constraint based mining in the literature

1. Introduction

Th(Q,D,L) = {¢ € L | Q(p,D), i.e. those patterng Our theory of boolean inductive queries is first of all con-
satisfying queny) on databas®}. HereL is the language  cerned with characterizing the solution spddeQ, D, L)
in which the patterns or rules are described ghid a pred- using notions of convex sets (or version spaces [13, 12, 16])

icate or constraint that determines whether a patfeima and border representations [15]. This type of representa-
solution to the data mining task or not [15]. This framework tions have a long history in the fields of machine learning
allows us to view the predicate or the constrajnas ann- [13, 12, 16] and data mining [15, 3]. These data mining and
ductive queryo aninductive database systemis then the machine learning viewpoints on border sets have recently
task of the inductive database management system to effibeen unified by [4, 14], who introduced the level-wise ver-
ciently generate the answers to the query. This view of datasion space algorithm that computes the S and G set w.r.t. a
mining as a declarative querying process is also appealingconjunction of monotonic and anti-monotonic constraints.



In the present paper, we build on these results to developover Z. The traditional pattern language for this domain
a decomposition approach to solving arbitrary booleanis £; = Uz. A patterng € L; covers the sep, := {¢p C
queries over monotonic and anti-monotonic predicates.Z | ¢ C 1}. An alternative, less expressive, pattern lan-
More specifically, we investigate how to decompose ar- guage is the languagé€z , C Lz of item sets of size at
bitrary queries into a set of sub-querie§; such that  mostk.

Th(Q,D,L) = U, Th(Qi,D, is mini -
W@, D, L) = U; Th(Q:, D, L), k is ”."”'ma". and each_ Example 2.2 Let ¥ be a finite alphabet antly; = ¥* the
Th(Q;, D, L) can be represented using a single version ~ . . .
) : . . universe of all strings oveE. We will denote the empty
space. This results in an operational and effective decom-__ . : - L
o . . string withe. The traditional pattern language in this do-
position procedure for solving queries. Indeed, the overal Y
L . : . main is Ly, = Us. A patterng € Lx covers the set
queryq is first reformulated into the sub-queri@s, which N
S . ¢ = { € ¥* | ¢ C ¢}, whereg C ¢ denotes thap
can then be solved by existing algorithms such as the level-; . : .
i ) . is a substring of). An alternative, more expressive, lan-
wise version space algorithm of [4]. uage is the language of all regular expressions aver

Our theory is then instantiated to answer boolean queriesg 9 guag 9 P
about string patterns. String patterns are widely appleab One patternp is more generathan a pattern), written
in the many string databases that exist today, e.g. in DNA ¢ = «, if and only if ¢, D 1)..
or in proteins. Furthermore, the present work is to a large A patternpredicatedefines a primitive property of a pat-
extent motivated by the earlier MolFea system [14, 4], in tern, usually relative to some data $&(a set of examples),
which conjunctive queries (over anti-monotonic and mono- and sometimes other parameters. For any given pattern, it
tonic constraints) for molecular features were solvedgisin evaluates to eithdrue or false
a version space approach. MolFea features are essentially We now introduce a number of pattern predicates that
strings that represent sequences of atoms and bonds. Fawill be used for illustrative purposes throughout this pape
string patterns, we introduce a novel data structure, ee. v Most of these predicates are inspired by MolFea [14]. Our
sion space trees, for compactly representing version spacefirst pattern predicates are very general in that they can be
of strings. Version space trees combine ideas of versionused for arbitrary pattern languages:
spaces with those of suffix trees. They have various desir-
able properties. Most notably, they can be computed using
a variant of traditional level wise algorithms for triescre
ognizing whether a string belongs to the version space is
linear in the size of the string, and the size of the version
space tree is at most quadratic in the size of the elements in
the S set of the version space.

This paper is organized as follows. In Section 2, we de- e ismoregeneral(p,?) is a predicate that evaluates to true
fine the inductive query evaluation problem and illustrate i iff patternp is more general than patteyn Dual to the
on the pattern domains of strings and item-sets; in Section ismoregeneral predicate one defines tiwnorespecific
3, we introduce a decomposition approach to reformulate predicate.
the original query in simpler sub-queries; in Section 4, we
introduce version space trees that compactly represent th%
solutions to a sub-query in the pattern domain of strings; in
Section 5, we report on some experiments in this domain, e length_atmost(p,n) evaluates to true fop € Lx

e min_freq(p,n,D) evaluates to true ifp is a pattern that
occurs in databasP with frequency at least € N.
The frequencyf (¢, D) of a patternp in a databas®
is the (absolute) number of data itemsfihcovered
by ¢. Analogously, the predicai@ax_freq(p, n, D) is
defined.

The following predicate is an example predicate tailored
wards the specific domain of string-patterns oger

and, finally, in Section 6, we conclude. iff p has length at mostn.  Analogously the
length_atleast(p,n) predicate is defined.
2 Boolean Inductive Queries In all the preceding examples the pattern predicates

have the fornpred(p,paramsg or pred(p,D,paramg, where
A pattern languagé€ is a formal language for specifying  paramsis a tuple of parameter valueB, is a data set ang
patterns. Each pattei € £ matches (or covers) a set of s a pattern variable.

examples)., which is a subset of the univer&eof possible We also speak a bit loosely gfed alone as a pattern
examples. In general, pattern languages will not allow to predicate, and mean by that the collection of all pattern
represent all subsef®(1{) of the universé predicates obtained for different parameter valp@sams
Example 2.1 LetZ = {iy,... ,i,} be a finite set of pos- a:/!renZ?grt\?;tS 'S e:;n;g:rtlgn;ﬁ);?;cgigfor all possible
sible items, and/; = 27 be the universe of item sets P s '

1The terminology used here is similar to that in conceptrizey, where Vo, € L suchthap = 1 :

U would be the space of examplé3(i{) the set of possible concepts, and

£ the set of concept-descriptions. m(y, D, param$ — m(¢, D, paramg



The class ofanti-monotonicpredicates is defined du-
ally. Thus,min_freq, ismoregeneral, andlength_atmost are
monotonic, their duals are anti-monotonic.

A pattern predicatered(p,D,paramg that can be ap-
plied to the patterns from a languade defines relative
to D the solution setl'h(pred(p, D, params, L) = {¢ €
L | pred(¢, D, paramg = true}. Furthermore, for mono-
tonic predicatesn these sets will be monotone, i.e. for all
op=vpeLl:peTh(mL)— ¢eTh(m,L).
Example 2.3 Consider the string data setD =
{abc,abd,cd,d,cd}. Here we have pattern fre-
quenciesf(abc,D) = 1, f(cd,D) = 2, f(c,D) = 3,
f(abcd, D) = 0. And trivially, f(e, D) = |D| = 5. Thus,
the following predicates evaluate to truemin_freg(c;
2; D), min_freq(cd; 2; D), max_freq(abc; 2; D),
max_freq(cd; 2; D).

The pattern predicatem min_freq(p, 2, D) de-
finesTh(m,Ly;) = {e,a,b,c,d,ab,cd}, and the pattern
predicatea max_freq(p, 2, D) defines the infinite set
Th,(a, [,E) = L:g; \ {E, C, d}

The definition ofl'h(pred(p, D, params, L) is extended
in the natural way to a definition of the solution set
Th(Q, L) for boolean combinationg) of pattern predi-
cates over a unique pattern variablBh(—Q, L) = L\
Th(Q, L), Th(Q1 V Q2, L) = Th(Q1,£) UTh(Qa, L).
The predicates that appearGhmay reference one or more
data setd)q, ..., D,. To emphasize the different data sets

that the solution set of a query depends on, we also write

Th(Q,D:,...,Dy, L)orTh(Q,D, L) for Th(Q, L).

We are interested in computing solution sets
Th(Q, D, L) for boolean queries) that are constructed
from monotonic and anti-monotonic pattern predicates.
As anti-monotonic predicates are negations of monotonic
predicates, we can, in fact, restrict our attention to mono-
tonic predicates. We can thus formally define Humlean
inductive query evaluation problemddressed in this paper.

Given
e alanguag€ of patterns,

¢ a set of monotonic predicates
M = {m(p, D,,params), ..., m,(p, D,,, params,) },

e a query@ that is a boolean expression over the predi-
cates inM (and over a single pattern variable),

Find the set of pattern§'h(Q,D+,... ,D,, L), i.e. the
solution set of the querg) in the language’ with respect
to the data set®,, ..., D,,.

3 A decomposition approach

The query evaluation problem for a que€y will be
solved by decomposin@ into & sub-querie€); such that
@ is equivalent to@; V ... V @, and then computing
Th(Q,D, L) asy;Th(Q;, D, £). Furthermore, each of the
sub-querie®); will be such thatl'h(Q;, D, L) is a version
space (also called a convex space), and therefore can be ef-
ficiently computed for a wide class of pattern languages
and queries);.

Definition 3.1 Let £ be a pattern language, antl C L.
I hasdimensionl, if Vo, ¢',¢p € L : ¢ < ¢ < ¢ and
¢,¢' € I = 1 € I. I has dimensiork if it is the
union ofk subsets of dimension 1, but not the unio# ef1
subsets of dimension 1.

A query@ has dimensiort: (with respect to the pattern
languagel) if k is the maximal dimension of any solution
setT'h(Q, D, L) of @ (where the maximum is taken w.r.t. all
possible data set® and w.r.t. the fixed languagg).

If @ has dimension 1 w.r.iZ, thenTh(Q, D, L) is a ver-
sion space [16] or a convex space [13]. Version spaces are
particularly useful when they can be represented by bound-
ary sets, i.e. by the set5(Q, D, L) of their maximally
general elements, an®l(Q), D, £) of their minimally gen-
eral elements. For the theoretical framework of the present
section we need not assume boundary representability for
convex sets. However, concrete instantiations of the géner
method we here develop, like the one described in sections 4
and 5, usually will assume pattern languages in which con-
vexity implies boundary representability.

Example 3.2 Reconsider the string domain. Let

ismoregeneral(p, abede) A length_atleast(p, 3)
ismorespecific(p, ab) A ismorespecific(p, uw)
A(length_atleast(p, 6) V min_freq(p, 3, D))

The query ); does not reference any dataset, and
Th(Q1,Ly) {abede, abed, bede, abe, bed, cde} .

This set of solutions is completely characterized by
S(Q1, Ly;) = {abede} andG(Qn, Ly:) = {abe, bed, cde}.
Th(Q2, D, Lyx) cannot in general be represented using
a single version space. However, as our general method
will show, the dimension &h(Q-, D, Ly) is at most two,

so that it can be represented as the union of two version
spaces.

With the following definition and lemma we provide an
alternative characterization of dimensibisets.

Lemma 3.3 Letl C L. Call achaing; < ¢9,< ... <
o211 C L analternating chain (of lengtlk) for | if ¢; € I
for all oddi, and¢; ¢ I for all eveni. Then the dimension
of I is equal to the maximal for which there exists i an
alternating chain of length for I.



Example 3.4 Consider the following queries:

Q3 = ismoregeneral(p, abc) A ismorespecific(p, a),

Q4 = ismoregeneral(p, ¢), andQs = Q3 V Q4.

Thene, be, abe is an alternating chain of length 2 for
Th(Qs,Ly).

Given( and £ we are now interested in computing the
dimensionk of @), and transforming?) into a disjunction
V¥ _,@Q;, such that each(Q;, D, L) is a version space.
The approach we take is to first evalu@fein a reduced
pattern Ianguagéj‘}l“(‘@, so that the desired partitionQ);

can be derived from the structure oh(Q, 'C?\(EITQ))' The

solution sefTh(Q, £§‘amQ ) does not depend on the datasets
D that( references, and the complexity of its computation
only depends on the size ¢f, but not on the size of any
datasets.

Definition 3.5 For a query@, let M(Q) = {my,... ,m,}
be the set of monotonic predicates contained)irfwhere
predicates that only differ with respect to parameter value
also are considered distinct). Defin®, g, = 2M(@.

A subsetp C M(Q) is called admissibleif there exists
data setsD such thatTh(Am,cym; Am, gy ~m;, D, L) is
not empty. LeC3{(y, = {¢ € La(q) | ¢ admissiblg.

For the predlcatesn, we deflneTh(mi L)), respec-
tively Th(m;, ,Cj‘{jl“(“Q)) as the set of (adm|35|bI¢)that con-
tain m;. By the general definition this also determines
Th(Q, L(@)) andTh(Q, £j‘erQ)).

Example 3.6 Using only monotonic predicates, the query
Q- from example 3.2 can be rewritten agn; A —-my A
(—|m3 \ m4), with

my = not-ismorespecific(p, ab)
my = not-ismorespecific(p, uw)
ms = not-length_atleast(p, 6)

my = min_freq(p, 3, D)

(where e.g.not-ismorespecific is the (monotonic) comple-
ment of the anti-monotonic predicatenorespecific; note
that this is distinct fromismoregeneral).

Here everyp C {my,...,m4} is admissible (a withess
for the admissibility of ms;, m4 }, for instance, is a dataset
D in which the stringabuwappears at least three times, i.e.
abuwe Th(_‘ml A —ma A m3 A\ my, l)7 [,E))

Figure 1 (a) showsC v (q,) = E‘j‘{j{?Q ) where e.g. pat-
tern {ms, m,} is just represented by its “index string” 34.

Now consider a variantQ)s of @, obtained by
replacing ms with mj not-length_atleast(p,4).
Here not every¢ C {my,my, my, my} is admissi-
ble: as ismorespecific(p, ab) A ismorespecific(p, uw) im-
plies lengthatleast(p,4), we have that neithefm}} nor
{m}, m,} are admissible. These are the only two inadmissi-
ble subsets aM (@), so thatﬁf"dm here is as in figure 1

(b).
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Figure 1. Pattern languages 53\4“(1@)

Assuming that we can decide admissibility of subsets
of M(Q) (for the types of pattern languages and pred-
icates we have considered so far admissibility can al-
ways be decided), we can constrlﬂ:)a”(‘@ and compute

Th(Q, E‘j‘\‘j,“(‘Q ). These solution sets are indicated for the

queries®> and (¢ in their respective Ianguageis"j\‘jl“(‘@

by circles in figure 1. One sees thBi(Q», £3(,,,) has
dimension 2, and'h(Qs, £ (q,)) has dimension 1. This
gives an upper bound for the dimensions of the solutions to
the query:

Theorem 3.7 The dimension of Td), Ej‘j{?Q)) is an upper
bound for the dimension @fh(Q, D, L) for all datasetsD.

The dimension oTh(Q, £ () ) is greater or equal the
dimension of Th(Q, Eadm Q) and therefore also can serve
as an upper bound for the dimension™h(Q, D, £). In
general, this will be a coarser bound: Qg, for instance,
we obtain forTh(Q, £4(q,)) the same structure as shown
for Q- in figure 1 (a), and therefore only the bound 2.

When Th(@Q, £577,,,) is of dimensionk, we can de-
fine each of its convex componentg as a solution to a
query @y, in the predicatesn;: if ¢1,..., ¢, are the max-
imal and 1, ... ,v,, the minimal elements of;,, then
I, = Th(Qh,ﬁadm ) for

Qn = (Viey Ampgos “mj) A (V2 Amsey, mj) (1)
Theorem 3.8 Th(Q), D, L) is convex for all datasets
D, and Th(Q,D,L) Th(VE_,Qn, D, L)
Uk_ Th(Q4, D, L).

Example 3.9 Continuing from example 3.6, we can par-
tition Th(QQ,,Cj‘i”(“QQ)) into two convex componenis =

{{ms},{ms, ms}} andl, = {L}. We thus obtain the de-



composition of the querg, into the two subqueries O 0—>0—>0
Q2, = ismc.)respecific(p, ab) A ismorespecific(p, uw) C 00— 5>0—=>0
Amin_freq(p, 3, D) .
. s . apr e
Q2, = ismorespecific(p, ab) A ismorespecific(p, uw) O O]

Nlength_atleast(p, 6) A —min_freq(p, 3, D)
Figure 2. An example version space tree

For Q¢ we have thafTh(Qs, Ej‘}[{‘%)) consists of one ver-

sion spacq L, {m,}}, so thatQ)s is equivalent to the quer
pace L, {m}} Welseq auery Suffix tries have been well studied in the literature [18,

Qe, = ismorespecific(p, ab) A ismorespecific(p, uw) 19]. However, we make some important deviations from the
Alength_atleast(p,4) main stream approach:

The sub-queries (1) to which the original que(@_yiS e instead of building a suffix trie on all the suffixes of a
reduced not only are known to have convex solution sets singlestring, we are indexing all the suffixes ogat of

Th(Qn, D, L), they also are of a special syntactic form strings thus multiple strings are stored in the trie.
Qn = Qnm N Qn.a, WhereQy a defines a monotone
setTh(Qn ., D, L), and @, 4 defines an anti-monotone e we usefully labelledtries, in which each node is la-

set Th(Qn 4,D,L). This factorization of@Q facilli- belled with either %" or “&"; the & label to indicate
tates the computation of the border s&t&);, D, £) and nodes that are interesting to us (say: belong to the ver-
S(Qn, D, L), for which the level wise version space algo- sion space) and for those that are not.

rithm [4, 14] can be used. In the following section we will
present an algorithm that for queries in the string domain
uses the syntactic form of th@,, for efficiently computing
and representing the solution s@i(Q,, D, £) with ver-
sion space trees

e because we need to store labels and counts for all
substrings represented in the trie, we do not coalesce
chains of nodes with only one out-going edge into a
single edge label.

Note that a fully labelled trie may contain nodes for

4. Version space trees which its label as well as those of its descendants are all

6. Thus the node as well as the subtrie below it are unin-

In this section, we introduce a novel data structure, teresting. Therefore, in practice we will often uspraned

called the version space tree, that can be used to elegantljabelled trie This is a fully labelled trie with the additional
represent and index a version space of strings, e.g. theproperty that all leaf nodes have the signBoth trees have
Th(Q4, D, Ly introduced in the previous section. Further- the same semantics and each fully labelled tree has a unique
more, we present effective algorithms that compute versionequivalent pruned tree. Furthermore,as most of our results
space trees containing all strings that satisfy the cotjonc  are valid for both types of trees, we will often employ the
of a monotonic and an anti-monotonic predicate (as in the term “labelled trie”.

queriesl)). Now a version space tre®’ is a labelled trie that rep-
resents a version space of strings ovgr. More for-
4.1. The data structure mally, let V be a set of strings of dimension 1. Then the

corresponding (pruned) version space ffieis such that
A trie is a tree where each edge is labelled with a symbol V' = {v | nisanode irl" with label® ands(n) = v }. Fig-
from the alphabek. Moreover, the labels on every edge ure 2 illustrates the (pruned) version space tree repriggent
emerging from a node must be unique. Each node a Th(Q7,D, Ls), whereQ; = is_more_general(t, abede) A
trie thus uniquely represents the strin@) containing the  (is_more_specific(t, be) V is_more_specific(t, cde)).
characters on the path from the rooto the noden. The A version space tree VST representing version sgace
root node itself represents the empty string has the following properties:

A suffix trieis a trie with the following properties:
] . 1. All leaf nodes are labelleg.
e For each node and for each suffix of s(n), there is
also a node’ in the trie representing i.e.t = s(n'). 2. Along every path from root to a leaf there is at most

one sign change (from to ¢); cf. Lemma 3.3.
e Each noden has asuffix link suffixn) = n', where 9 ge ( )

s(n') represents the suffix obtained frostn) by drop- 3. If S = min V then VST will 1) have a leaf corre-
ping the first symbol. The root node represeats sponding to eaclk € S and 2) have a node corre-
which has no suffixes. We defirmiffiXroot) = L, sponding to each suffix’ of eachs € S for which
where L is a unique entity. s'eV.



4. Therefore, the number of nodes in the version spacebreadth-first manner. At each depth levelthe descend
tree VST is at mosE;¢s|s;|?, where|s| denotes the  algorithm first expands thes nodes found in the previous
length of the string. However, the size of a VST is iteration (Lx—;). The nodes resulting from the expansion
usually much smaller. constitute the sat’,. These candidate nodes are then tested

) . . against the predicatg,,. The testing involves one database

5. Testing whether a stringbelongs to the version space  gcan for the whole iteration. The candidate pattern€iin
represented by a version spaceT is linearin|s|,as  hat satisfy the constraints are put iftp. Those that do not
the VST can be interpreted as a deterministic automa-are pruned away from the tree. This process is repeated in
ton on inputs. a level wise fashion until’;, becomes empty. All generated

6. Property 3 can be used as the basis for an algorithm fornodes are labelled witty and the necessary suffix links are

constructing a version space tree based@ndG. set up during this phase. .
Note that the set€';, and L, are the same as the candi-

7. For a given version space tree, one can easily and ef-date sets and “large” sets in the Apriori algorithm. More-

ficiently construct theS and G-sets. Indeed, thé- over, the generation of’; from L;_; also mimics the
set will contain all leafd of the version space tree to  Apriori-join operation in the Apriori algorithni. The de-
whom no suffix pointer points; and tlie-set will con- scend algorithm makes use of the suffix like and parent-

tain all nodesy with label @ whose parent node has child relationship of a suffix trie to perform the join effi-
label & and for which the nodsuffiXg) either does  ciently. More specifically, the candidate child nodes of a
not exist or also has the label. noden in L;_; (as well as the edges) correspond to the
children of the nodsuffiXn). So, the major difference be-
As one can see, there is a close correspondence betweetiveen DEsceNDand Apriori is that the former also orga-
version spaces of strings and version space trees. We willnizes the discovered strings into a suffix trie, facilitgtthe
now show that there is also a close correspondence betweejoin operation and the second phase of the VST algorithm.

version space trees and algorithms such as Apriori [2]. The second phase is implemented with algorithis- A
CEND. This phase handles the anti-monotonic con-
4.2. The algorithms straintQ 4. Here we assume that we have the Bgtof

leaf nodes in the tre€ generated during the descend phase.
In this section, we sketch théST algorithm to build a ~ While DEsceENDworks top-down, ACENDstarts from the
version space tree that satisfies the conjunafjam Q »; of leaves and works upwards. It first checks the leaf nodes
an anti-monotonic predicatg 4 and a monotonic oné ;. against the predicatg 4. The labels of all the nodes
This form of query corresponds to the one of the queries that do not satisfy) 4, are changed inte>. In addition,
Q) that would be generated by our decomposition (over all their ancestors are also labelled @s This is sound
anti-monotonic and monotonic constraints) approach. Al- due to the anti-monotonicity. So, we can propagate these
gorithm VST is a level-wise algorithm based on the well- © marks upwards until we have marked the root with
known Apriori [2] algorithm. The algorithm assumes 1) Actually, we can stop as soon as we reach an ancestor al-
that the version space tree to be computed is finite and 2)ready marked withe, as another such leaf nodg may
that the alphabeX is given. It consists of two phases: share some ancestors with So, all the ancestors from that
point upwards have already been marked withSecondly,
DESCEND: top-down growing of the version space tree us- for those nodeg in F, that satisfy() 4, the label remains
ing the monotonic predicat@ . unchanged (i.e®). Furthermore, we will enter their parent
into the setF; (and remove possible duplicates); con-
tains the nodes to be considered at the next iteration. This
process is then repeated uritjl becomes empty.

Both phases are designed to minimize the number of SO, after these two phases, namelgdeenpand then
database scahs As such, they both exhibit the cyclic ASCEND, both the monotonic and the anti-monotonic con-
pattern: candidate generation, candidate testing (ds¢aba Straints are handled. With a simple tree traversal, we can
scan) and pruning. The cycle terminates when no more newPrune away those subtrees that contain enliabels. The
Canqldates patterns are generatEd' . . 3There are some differences here since we are dealing wittystin-

) Since only the monotonic pattern prgdlcate IS h_ar?dled stead of sets. E.g., while Apriori-join generates item {&tb, ¢ from

in the descend phase, we can reuse the idea of Apriori. The{a, b} and{a, ¢}, the descend algorithm generatasc from ab andbc,

algorithm searches the strings SatiSfyC@@f ina tOp-dOWﬂ, becaus_e the_sg are thaly imr_nedir?\tely shortesubstringsof _abc. At the
same time, it is not hard to imagine a variant of the versiaacepree al-

2As in Apriori, one only needs to scan the data sets at most fmce  gorithm for use with item sets. Indeed, the kind of trie shattis quite
each level of the tree. similar to some of the data structures used by e.g. [3, 11].

ASCEND: bottom-up marking of the version space tree us-
ing the anti-monotonic predicatg.




result is a tree that is a pruned suffix trie representing the query @1, there are in total 401 strings in its answer set,
version space of strings that satisfy the qu@ry A Q. and together they have length 1953.
Our experimental results confirm our claim that the sets
S andG constitute a compact representation of the set of all
patterns satisfying the given constraifitg; and@ 4. From
Table 2, it can be seen that the total length of stringsSfor
) andG together is always smaller than that for all interesting
5. Experiments patterns (i.e. ). In the case ofl}, the space saving is
significant. Moreover, algorithfST is also very efficient
We have implemented théST algorithm and performed  in terms of time and space. This shows that using suffix tries
experiments on datasets of command histories collectedin the mining of string patterns is a promising approach.
from 168 Unix users over a period of time [7]. Theusersare  The longest pattern found (represented by the deepest
divided into four groups: computer scientists, experiehce node in eitherT; or T, having a® label) was i x
programmers, novice programmers and non-programmersunmacs pi X UNMACS Pi X UMACS pi X UmMACcS pi X
The corresponding data sets are denoted “sci”, “exp”, “nov” unacs pi X UMACS Pi X umMACS pi X umacs pix
and “non”, respectively. When each user accesses the Unibumacs pi x”, which has a length of 19.
system, he first logs in, then types in a sequence of com-
mands, and finally logs out. Each command is recorded asg_Conclusions
a symbol in the database. The sequence of commands from
log in to log out constitutes a login session, and is mapped
to a string in our experiment. Each user contributes to many

login sessions in the database. Table 1 gives some stsitistic n )
on the data. the decomposition of the answer set to a collection of com-

In the first set of experiments we determined solutions of ponents defined by monotonic and anti-monotonic predi-

queriesmin_freq(p, n, D) for the four different datasets and ~ C3t€s- Eacg' 0(: the ?orﬁp(;nentsbls a conveg set or r\]/erlsmnl
for thresholds: that were selected so as to produce solution SPac€, the borders of which can be computed using the leve

sets of around 300 frequent string patterns. Table 1 summa—Wi§e versiop space aIgorithm or- for the pattern domain of
rizes the datasets, the queries, and their solutions. gisnin strings - using the/STaIgorlthm, which employs a nqvel
(wall-clock time on a Pentium 11l 600 Mhz) are reported as data structure called the version space tree. Experiments
well have been presented that validate the approach.

Whereas the first set of experiments only used the 1he results we have presented in this paper are by no
min_freq predicate, the second set of experiments involves Me@ns complete, a lot of open problems and questions re-

the computation of two version space tré&sand T, cor- main. First, it seems possible to adapt the version space
responding to the queriggs andQo: trees and algorithm for use in other domains (such as item-

sets). However, at present it is unclear how to do this for

Qs : min_freq(p, non, 24) A max_freq(p, sci, 60) some more expressive domains such as Datalog queries or
even the string domain where one is using a coverage rela-
tion based on subsequence matching rather than substring
(s andQq are conjunctions of an anti-monotonic predicate matching. Secondly, for the string domain, it is possible
and a monotonic one, thus their solution space is a versionto further optimize these algorithms for specific predisate
space. Furthermore, they are the sub-queries that are-genefe.g. involving frequency counting on a database of stjings
ated for the quer)¢ = Qs V Q9 using the decomposition  Thirdly, we are at present also studying set operations on
approach outlined in Section 3. version space trees. Such operations would allow us to per-

The results of the second experiment are shown in Ta-form some of the logical operations directly on solution
ble 2. Each row shows the time the algorithm spent on spaces. Fourthly, the framework seems also useful in the
building that tree. The columns of the table show the num- context of optimizing a sequence of inductive queries. Here
ber of nodes and total length of strings represented by thoset would be interesting to see how the results to previous
nodes. Each of the five sub-column in each case shows th€sub) queries could be reused for more efficiently answer-
number for a subset of the nodes in the final trie. The col- ing the next question.
umn “all” shows the figure for all trie nodes. The columns Although there are many remaining questions, the au-
“@" and “©” show the figure aggregated over nodes with thors hope that the introduced framework provides a sound
the respective labels only. The columrg’“and “G” show theoretical framework for studying these open questions as
the figures for the maximally specific strings and the mini- well as for developing practical inductive database system
mally specific strings, respectively. For what concerns the based on the idea of inductive querying.

Theorem 4.1 The VST algorithm performs at mosim
database scans, where is length of the longest strings
satisfying the monotonic quey,,.

We have described an approach to the general pattern
discovery problem in data mining. The method is based on

Q9 : min_freq(p, nov, 80) A max_freq(p, exp, 36)



Table 1. Summary statistics of the data

Data | number| number | minimum | frequent| execution| memory
set of of frequency| strings time used
(D) users | sequences (n) found | (seconds) (bytes)
nov 55 5164 24 294 3.24 56994
exp 36 3859 80 292 2.88 88706
non 25 1906 80 293 0.72 59754
SCi 52 7751 48 295 4.89 94290

Table 2. Results on finding the union of two version spaces
Suffix | Time number of nodes total length of strings
Trie | (sec)| & | & | all S | G @ e | all S G
Ty 255|166 | 40 | 206 | 104 | 68 | 472 | 75| 547 | 305 | 147
T 551 | 237| 18| 255| 85 | 15| 1489 | 23 | 1512 | 416 | 24
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