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Abstract

We investigate algebraic, logical, and geomet-
ric properties of concepts recognized by vari-
ous classes of probabilistic classifiers. For this
we introduce a natural hierarchy of probabilis-
tic classifiers, the lowest level of which com-
prises the naive Bayesian classifiers. We show
that the expressivity of classifiers on the differ-
ent levels in the hierarchy is characterized alge-
braically by separability with polynomials of dif-
ferent degrees. A consequence of this result is
that every linearly separable concept can be rec-
ognized by a naive Bayesian classifier. We con-
trast this result with negative results about the
naive Bayesian classifier previously reported in
the literature, and point out that these results only
pertain to specific learning scenarios for naive
Bayesian classifiers. We also present some log-
ical and geometric characterizations of linearly
separable concepts, thus providing additional in-
tuitive insight into what concepts are recogniz-
able by naive Bayesian classifiers.

mean when they say that “the [naive] Bayesian classifier
cannot learn some linearly separable concepts” (Domin-
gos & Pazzani, 1997), or “not all linearly separable func-

tions can be represented using this [naive Bayes] predictor
(Roth, 1998). Without a very careful analysis of the con-

text in which such a statement is made, one would take it
as negative answer to the following question:

(Q1)Can every linearly separable concept be rec-
ognized by a naive Bayesian classifier, i.e. does
there exist for every linearly separable conc€pt

a naive Bayesian classifier that will assign to ev-
ery exampler class labeb iff « belongs toC'?

However, the negative statements one finds in the literature
really are answers to the following question:

(Q2) Is for every linearly separable concepta
naive Bayesian classifier learnable by maximum
likelihood inference from an enumeration 4f

We require some formal definitions before, in section 3 we

can recas{(Q2) in precise terms. For the time being, it
only needs to be realized that here the question is whether
a classifier recognizingl will be learned using a specific
learning principle, and a specific data set. The significance
In spite of the very simplistic assumptions itis based o@, th of asking(Q2) rather than(Q1) has sometimes been real-
naive Bayesian classifier has proven very useful in practiceized: Zhang, Ling and Zhao (2000) remark that the neg-
Many studies have been conducted to analyze this seenative results of (Domingos & Pazzani, 1997) depend on
ingly paradoxical success (Domingos & Pazzani, 1997their assumption of a uniform sampling distribution for the
Rish et al., 2001; Garg & Roth, 2001). In spite of the examples, and present empirical evidence that with data
wealth of material on the naive Bayesian classifier that issampled from non-uniform distributions the class of learn-
now available, there still seems to be some confusion as table concepts changes. Conversely, Roth (1999) remarks
some of its very fundamental properties. In particularn¢he that the positive results of (Domingos & Pazzani, 1997) on
appear to be some misunderstandings relating to the claske learnability of pure disjunctive or conjunctive contep
of concepts it can recognize. While it is common knowl- too, depend on a uniform sampling assumption.
edge that it can only recognize linearly separable concepta?
p

1. Introduction

o the best of our knowledge, so far no one has addressed

there also appears to be a widespread belief, that not : )
. . “the arguably much more pertinent quest{@1). In this pa-
linearly separable concepts can be recognized by a naive . : . . . .

er we will provide an affirmative answer to this question.

Bayesian classifier. . . )
Indeed, we will provide a much more general result: we

In large part the apparent confusion is due to the fact that iintroduce a hierarchy of probabilistic classifiers, the ésitv

is not always unambiguously clear, what individual authordevel of which exactly corresponds to naive Bayesian clas-
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sifiers, and show an exact correspondence between the lezxample 2.2 Forz = (z1,... ,z,) € F" we denote with
els of this hierarchy and separability by polynomials with 1(x) the set{i | 1 < i < n, z; = 1}. Them-of-nconcept
different degrees. We thus obtain results that also are afis the setd™ " := {x € F* ||1(x)|> m}.

plicable to other classes of probabilistic classifiers, thg
class oftree augmented naive Bayesialassifiers (Fried-
man et al., 1997).

We construct a (classical) probabilistic classifier thatre
ognizesA™ " as follows (for the time being we ignore
the question whether, and how, this classifier is learnable
We also provide some results on logical and topologicafrom data; we return to that question in section 3). For
characterizations of concept classes recognizable wih thi = 1,... ,n let

probabilistic classifiers in our hierarchy. These results a

much more mixed, and only lead to necessary, butnotto Pg(X; =1) =m/n Ps(X; =1)=(m —1)/n,
sufficient conditions for recognizability.

and define the joint distributions as the products

2. Definitions and Main Result n
P,(x) = HPO(Xi =1z;) (0=@®,0) 3)

Definition 2.1 Let X4,..., X, C be a set of binary ran- -

dom variables. The random variablés are called fea-
tures, andC is called the class variable. We denote theThis is a “naive classical’ classifier that can be turned into
two possible values of thé'; with 0 and 1, and the two  an equivalent naive Bayesian version by assuming prior
possible values of’ with & andc. We also usé™ to de-  ¢|ass probabilitie (C = @) = P(C = &) = 1/2.

note the spac¢0, 1} of all possible value assignmentsto . N i N .

the features (the instance space)Bayesian probabilistic It iS readily verified that this classifier recognizes.
classifierfor the class variabl€’ given the feature; is ~ For this, we only have to observe that the distributidis
given by a probability distributiod® onF" x {@,o}. A andPs are of the binomial form

classical probabilistic classifieis given by a paitP; and

P, of probability distributions o™ Py(x) = A (1 = Ap)n ) 4)

A Bayesian classifier assigns to arstancex € F" the

, with parameterag = m/n andAg = (m — 1) /n, respec-
class labels iff

tively. Forz with | 1(z) |= [ we have that (4) is maximized
by A, = I/n, and that (4) is monotonically increasingin

P(C=glz)>P(C=0c|m), () onJo,1/n], and monotonically decreasing @iin, 1]. For
) B ) . I = m it immediately follows thatPg(x) > Pg(x). If
whereas a classical classifier assigns class labl | > m the same result follows from the monotonicity of (4)
on[0,!/n], and the fact thade < Ag < I/n. Similarly,
Pe(z) > P () (2)  fori < m, we obtain thaPy () < Pg () from the mono-

tonicity of (4) on[l/n, 1], and the fact thd/n < A\g < Ag.

Any subset off” is called aconcept The conceptecog- . ) o .
label & is assigned. condition (3) on their defining distributions. More gener-

ally, any restriction on the form of the admissible distri-

We note that in the case of the classical classifier, the clag@utions P (-), respectivelyP(- | C' = o), induces a class
variableC is not really considered a random variable, but a®f Probabilistic classifiers. We now define different classe
parameter governing the distribution of the features. The?f distributions that in this way induce a hierarchy of dif-
definitions of Bayesian and classical classifiers are Ver}terent classifiers. We define our classes of distributions in
similar, and we will see in the sequel that for the types ofterms ofiog-linear modelswhich are the most widely used
classifiers we consider there is no substantial differeee b classes of distributions on categorical state spaces sich a
tween these two variations in the definitions. In fact, thel (See (Agresti, 2002) or (Schafer, 1997) for in-depth dis-
only difference is the following: a classical classifier ean CuSsion of log-linear models). In our special context, veher
not recognize the empty concept, as (2) must be satisfietl® State space is generated by binary variables only, the
for at least oner. The Bayesian classifier, on the other usual definitions of log-linear models can be given the fol-
hand, can recognize the empty concept by placing a higPWing special form.

prior probability on the class labeb. This, of course, is

not a fundamental difference, but only an artefact of theDefinition 2.3 LetZ C 2t pe a collection of subsets
definitions given here. of {1,...,n} with § € Z. Thelog-linear model defined

by 7 is the set of all distribution® onF" that are given by



parameters! € R (I € ) in the form each of which depends on at most two of the feature vari-
ables. From this it follows that all these distributions are
logP(z) = ol whereo) := (—1)/'I7// "M@ 1 iy the order-2 association model, and tree augmented naive
Iez Bayesian classifiers are order-2 association classifiees. W
(3)  will see in section 4 that the converse does not hold.

We define . L . .
We are now ready to turn to our main objective, the investi-

Tk =T C{1,... 0} | T|< k), TF = Tmk\ 0, gation of the expressive power of different classes of clas-
sifiers: what classes of concepts can be recognized with
and call the log-linear model defined ty-* the order-k  order% association classifiers? Our main result gives a
association model completealgebraiccharacterization by showing the equiv-
alence of these classifiers with polynomial discriminant

A probabilistic classifier is called aarder-k association .
functions.

classifierif P,(-) (for classical classifiers), respectively
P(- | C = o) (for Bayesian classifiers) are distributions

in the order-k association model & @, ). Definition 2.5 A conceptA is order# polynomially sepa-

rable, if there existt/’ € R (H € ij”“) andb € R, such

For anyZ, one can construct distributions in the log-linear that for allz €

model defined by by choosing arbitrary parametex$ € rcAd o Z o H 2 < b @)
R for I # ), and then setting? so that the probabilities =
sum to one. For the ordérassociation model this means
that we must have:

n.k i€H
HeTY

Order-1 polynomial separability then is just linear separa

1= Z P(x) bility.
xzclF™
_ Z exg( Z oAl Theor_em2.6Let_® # A cC ', ke {l,...,n}. The
following are equivalent
xeFn Iezm:*
= Z eXFi/\m + Z oaAl) (i) A is recognized by an ordet-association Bayesian
zcFn rez; classifier.
=expg\?) 3 exp > ai)) (i) A is order-k polynomially separable.
P n,k
ety (iii) A is recognized by an ordek- association classical
so that classifier.
AP = —log( Y exp( > oir") (6)  The proof is given in appendix A. The restriction to
zEFn rezn nonemptyA is due to the abovementioned limitation of the

classical classifier. A8 is both linearly separable and rec-
Example 2.4 The order-1 association model contains justognizable by a naive Bayesian classifier, we obtain:
the distributions according to which thg; are indepen-
dent. The correspondence between the paramgters ~ Corollary 2.7 A conceptA C F* is recognizable by a
P(X; = 1) in the direct formulation of an independence naive Bayesian classifier iff it is linearly separable.
model, and the parametex$ in (5) is:

3. Learning the Classifiers

n
A =log(v/pi/(1=pi)). A’ =log(,|[[pi(1=p:)).-  The result in the previous section contrasts with negative
i=1 results previously reported for the naive Bayesian classifi
én this section we investigate these discrepancies.

Friedman, Geiger and Goldszmidt (1997) have introduce
the class oftree-augmented naive Bayesian classifiers As mentioned in the introduction, when investigating the
This class is determined by allowing fdP(- | o) dis-  expressivity of classifiers, one has to watch carefully what
tributions that are representable with a Bayesian networlthe actual questions are that are being answered with pos-
in which every node has at most one parent (moreoveltive or negative results. In the preceding section we have
the Bayesian network has to be the samedfer @ and  dealt with questiorQ1l. This question is completely in-

o = &). As a result, the conditional probability of any in- dependent from the problem of how a classifier may be
stancex given the class label is given as product of terms,learned from data.



Given a set(xi,01),...,(xNn,on) (&; € B 0, € open problem whether for every linearly separable con-
{®, &}) of classified examples one will usually learn the ceptA there exists a noise-free data set, such that the naive
classifier that maximizes the likelihood of the examples,Bayesian classifier learned from the data set will recognize
i.e. for the classical classifier one choosesfh¢hat max-  A. The following theorem answers the converse question.

imize To formulate it we call a concept general in theith com-
ponentfthere existinstances, ' € Aandy,y’ € F*\ A
H Po(wl) (O € {@76})7 with z; =y; :Oaﬂd"r’Z :1/; =1.
1:0; =0

and for the Bayesian classifier one choogethat maxi- Theorem 3.1 Let A be a concept such that is general in at
mizes least one component. Then there exists a descrighiarf

A such that the naive classical classifier learned by maxi-
H P(x;,0;). mum likelihood inference fronb does not recoginizd.
i

Theorem 3.1 also holds for the naive Bayesian classifier

Note that this describes a pure maximum likelihood ap-,.. . . . :
; o . o (itis actually rather more obvious in the Bayesian case, as
proach (also for the Bayesian classifier), and that addition : L
there one can skew the learning results by providing many

learning techniques and principles (like using Bayesian pr more data items with class label (or &), thereby learn-

ors on parameters, or applying techniques to prevent oveﬁhg a high prior probability forC' = &, which leads to a
fitting) may be used.

classifier that will assign class label to  whenever the
A data set may be eitherise-freei.e. z; = =; implies  conditional probabilities?(X; = z; | @) in the data are
o; = o4, Ornoisy, i.e. it contains examples with conflicting nonzerofori =1,... , n).

labels. We say that a data seaidescription of the concept
A ifitis noise-free, and contains for evestye F" a data-
item (z,0) with o = @ iff z € A. We say that a data set
is an enumeration ofd if in addition it does not have any
two identical data items.

Itis an open question to what extent theorem 3.1 also holds
for order« polynomially separable sets and ordeassoci-
ation classifiers fok > 2. It does seem to be a fairly safe
conjecture that this negative result holds forfak n (but
note that it does not hold fdr = n, because the orderas-

We can now rephrase the negative result of (Kohavi & Johnsociation model comprises all probability distributioasd
1997) and (Domingos & Pazzani, 1997) as follows: theretherefore from a description of a classifier will be learned
existrn,n € N, such that the naive Bayesian classifierwith Pg(xz) = 0 forxz ¢ A, andP5(x) = 0 for x € A).
learned by maximum likelihood inference from an enumer-Things become much easier when one turns to noisy data
ation of A™ ™ will not recognizeA™ ™. Thisresultneed not sets: here it is clear that every ordeiassociation classi-

be seen as a serious limitation of the naive Bayesian cladier (Ps, Ps) can be learned by maximum likelihood in-
sifier, as there is little reason to focus on data sets that arerence from a noisy data set that consists of represeatativ
enumerations of a certain concept. Indeed, when the trairsamples fromPs and Ps. Thus, if a conceptl is order

ing examples are real-life data, it is all but certain not¢éo b polynomially separable, and hence by theorem 2.6 recog-
an enumeration of a concept (and is likely to be noisy asized by a classical orddrassociation classifiéiPs , Ps),
well). then(Pg, Ps) can be learned from a suitable noisy data set.
There is one qualification, however: fbr> 2 the param-

The naive f:lass'|cal classifiePs, .9) for them-of-n con eters of the maximum likelihood ordérassociation clas-
cept described in example 2.2 will be learned by maximum_... L
o : . . .~ sifier do not have a closed-form representation in terms of
likelihood inference from any data set in which the relative

. . . empirical counts, as is the case for= 1. Thus, numerical
frequencies ofX; = 1 is m/n in the examples labelled P

with &, and(m — 1)/n in the examples labelled with. techniques here have to be used for learning (see (Agresti,

The simplest data set that has this property is the one thaztooz’ section 8.7) for some applicable techniques).

containsm copies of the examplg(1,... ,1),®), m —n _ ) o
copies of((0, ... ,0), &), m — 1 copies of((1,... ,1),e), 4. Logical and Geometric Characterizations

andn —m + 1 copies of((0,... ,0), 5). This is a noisy .Theorem 2.6 provides an algebraic characterization of con-

data set. Note that we would not learn the correct classi- ; . o .

. . . ; epts recognizable by certain classes of classifiers. While

fier from the data set obtained by removing the mislabelled - ) -

data item((1 1), &) and((0 0), &) his aIrgaQy prpv!des a good deal of'|'nS|ght, and can be
ok A helpful in identifying the type of classifier needed to rec-

Zhang et al. (2000) present empirical results that show thabgnize a given concept, it is also true that the algebraic

somem-of-n concepts for which a naive Bayesian clas- characterization does not always provide a good intuitive

sifier is not learned from an enumeration 4f*~", are  understanding of the expressive power of the various clas-

learnable from a suitable description df*~". It is an sifiers. More intuitive insights can be obtained by logical



and geometric characterizations.

To give logical characterizations, we interpret a concep
F* as the set of truth assignments to propositional vari

ablesXy, ..., X,. Aconceptd can then be identified with

boolean formulas that are satisfied by the truth assignmen
in A. The goal then is to identify classes of concepts (thos
recognizable by certain classes of classifiers) with syntac

tically defined classes of formulas.

t

literals). Now consider: € F*. Let I} := 1(z)NIT,
andl; := 1(x)NI—. If x € A, then for everyl € J
with I C I (i.e. thosel for which x satisfies the left

side of the implication in (8) we have thgf € H(I), and

ﬁhereforea: satisfies the right hand side of the implication.

F ¢ A thenx does not satisfy the conjunct gf A) for

9 = 1(2). O

The converse of theorem 4.2 does not hold:

For geometric characterizations we interpret the elements

of ™ as the vertices of the-dimensional unit cube. Con-

ceptsA can then be classified according to certain connect
edness properties of sets of vertices. Connections betwe
syntactic and geometric properties of concepts (or Booleal
functions) have been extensively studied (Ekin et al., 7999
Here we connect this existing work with properties of iden-
tifiability by order# association classifiers. The results in

this section are not uniform for ordérassociation classi-

e

Example 4.3 Let ¢ := (X1 A Xo) V (X3 A X4). For the
conceptA defined byg we have(l,1,0,0),(0,0,1,1) €
ﬁ!lq, (1,0,1,0),(0,1,0,1) ¢ A. If Awas linearly separable
with coefficientsay, ... , a4, b, then this would mean; +
as < b,az +a4 <0b,a; +az > b,andas + a4 > b, an

obvious contradiction.
Fory := (X; A X3) V (X3), on the other hand, we ob-

fiers for differentk. We therefore first concentrate on the tain that the concept defined pyis linearly separable with
k = 1 case, and then discuss possible generalizations teoefficientsy; = ao = —1,a3 = b = —2.

k > 1. Beginning with logical characterizations, we recall

the following standard definition.

Definition 4.1 Let ¢ be a boolean formula iy, ... , X,
in negation normal form (NNF), i.ep is constructed from

The preceding example indicates that it may not be possible
to find a natural logical if-and-only-if characterizatioh o
linear separability, as such a characterization would bave
distinguish the syntactically very similar formulasndq).

positive and negative literals using conjunction and dis-We now turn to geometric properties of linearly separable

junction only. ¢ is calledunateiff for all ¢ ¢ only contains
the literal X;, or only the literaX;. A conceptA is called
unate if it can be described with a unate formula.

Theorem 4.2 If A is linearly separable, the# is unate.

Proof: We havez € A iff 3, a’z; < bfor somea’,b €
R. The intuition for the construction of a unageis now

concepts. The following definitions are adopted from (Ekin
etal., 1999).

Definition 4.4 Let x, o’ € F*. A pathfrom x to z’ is

a sequencec = xg,x1,...,x; = «' in F* such that
x; andx;,1 have different values in at most one coordi-
nate. A concept is calledgeodeticallyconnected, if for
all z, 2’ € A there exists a shortest path connectingnd

quite simple: we just axiomatize that whenever too many,.: q,ch that all instances on the path belongito

X; with positive coefficients are true, then also sufficiently

many X; with negative coefficients are true.
For the details, lef* := {i € {1,...,n} | a; > 0} and
I=:={ied{l,... ,n}]|a; <0}. Define
J={ICI"|) a >b},
el
and for everyl € J:
HI):={HCI | ) a;<b}
i€elUH
Now consider the formula

d(A) = /\ (Nier Xi — \/ AnenXn)  (8)

Teg HeH(T)

It is easy to see that(A) is unate (by eliminating the im-
plications one obtains a NNF in whicky; with a; > 0 only
appear in negative literals, and; with a; < 0 in positive

The intuition behind geodetic connectedness is that from
any point inA we can reach any other point ih by taking

a shortest walk along the edges of the unit cube, and never
leaveA on this walk. Ekin et al. (1999) show that whdris
defined by a unate formula, thehandF™ \ A are geodeti-
cally connected (but the converse does not hold). It follows
that for linearly separabld both A andF" \ A are geodeti-
cally connected. The connectedness property we have thus
found for linearly separable concepts has a very intuitive
meaning: it says that between any two vertices of the unit
cube that lie on the same side of some hyperplane, one can
find a shortest path along the edges of the unit cube that
connects the two vertices and always stays on the same side
of the hyperplane.

Theorem 4.2 and its geometric implications do not seem to
allow a meaningful generalization for concept classes de-
termined by ordek polynomial separability fok > 2.

First, there does not seem to exist a useful generalization



of the class of unate propositional formulas that, in anal+rom (ii) and (iii) it follows thata’ + a7 < 0. As (i) and

ogy to theorem 4.2, would provide a nontrivial upper bound(ii) imply that ¢’ > 0, this means tha&’/ < 0. From

on the richness of the class of ordeseparable concepts. (iii) and (iv) we derive that® + a'® + a23 > 0, which

As for the connectedness properties of linearly separableontradicts our previous results that bafht-a'3 < 0 and

sets, one might entertain the thought that these generaliz€-? < 0.

in the sense that it is possible to bound the number of con-

nected components an ordlepolynomlally separable con- (? Conclusions

cept can have. As the following example shows, no boun

that is polynomial ik can be given. We have introduced the hierarchy of ordelssociation
classifiers, and shown that it corresponds exactly to the hi-

Example 4.5 Consider the order-2 polynomials of the erarchy of ordert polynomially separable concepts. The

form most interesting consequences are for the dase 1,
n n where this result implies that the concepts recognizable by
p(x) = Z ar; + Z Tk a naive Bayesian classifier are exactly the linearly separa-
i=1 i,j=1 ble sets, thus, apparently for the first time, proving the-con

verse of a well-known result from (Duda & Hart, 1973).
Fork = 1 we also derived some useful logical and geomet-
ric properties of linearly separable concepts.

with a € R. Forz with | 1(z) |= k we obtainp(z) =
ak + k(k — 1)/2. This is minimized fott = 1/2 — a with
avalue of(1/2 — a)?/2. To obtain a polynomial that has a

unigue minimum for some givety € {1,... ,n}, we can  There are a number of interesting open questions: is a naive
chooser = 1/2 — kq. Then Bayesian classifier for a linearly separable concept always
. . learnable from a noise-free data set? Are there meaningful

2(1/2 — k)i — Z ziz; < —k2)2 logical or geometric properties one can derive for orker-

polynomially separable concepts?

i=1 i,j=1

The orderk association classifiers here were introduced

with a mainly formal motivation. However, they might

also be considered for use in practice: an orklessoci-

ation model is determined b9 (n*) independent parame-

By settingk, = |n/2]| we obtain an example for a concept ters. The hierarchy of ordét-association classifiers thus

that consists o([n’/l%) distinct connected components.  provides a smooth spectrum of models of increasing com-
plexity, allowing a fine-tuned tradeoff between expresgivi

One can show that whéfy < n, thenA*e cannot be repre- on the one hand, and efficiency of learning and guarding

sented by a tree-augmented Bayesian network. This is eveagainst overfitting on the other hand.

true when instead of limiting to one the number of parents

any node can have, one imposes a limit of sdrden — 2. Acknowledgement

One thus sees that order-2 association classifiers ard-signi
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naive Bayesian classifiers. With the following example, onabout classification we had during her visit to Saarbriicken
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sifiers. with her at that time.

holds exactly when 1(x) |= ko. Thus, for everyk, €
{1,...,n} the conceptd*o := {z || 1(x) |= ko} is order-
2 polynomially separable.

Example 4.6 Let n = 3, and consider the concept =

(2 = (21,29,75) | | 1(z) |€ {0.2}}. Assume thatt is +- Proof of Main Theorem

separable by an order-2 polynomial Proof: The theorem clearly holds fot = F. In the se-
3 3 quel we therefore assumé # () and A # F". We first
ZGZT1 + Z aIxim; < b, rewrite the representation (5) ¢bgP(z) in polynomial

= =1 form (throughout we use the convention that a product over

an empty index set is equal to 1):
We obtain the following inequalities for the parameters,

where (ii) and (iii) hold for alli, j € {1,2,3},i # j.

0 5, e
(i) a' +a¥ +a™ <b Z HmiH(l — ) Z ()TN i@\
(

i) a'+ad®+a®+a?+a"? +a> > b Jernries igd Tezn*



D NEIIRIGCIY | 7 (e

reznk JeIn:n ied iglJ

)BID NEHILRELY | £ | (EEESE

Teznk JCI ied  diel\J

With
[z J[TO-20= > "]
ieJ i€I\J H:JCHCI i€eH

this becomes

Z (71)\1\7\.]\+\HQI\J\)\IHmi:

J,H, TeT™* i€H
JCHCT

IINEDS

HeZIn* TeIn*:HCI

PONCEVEDIETD S

(w(H, I)X) T] =i =

i€eH

> wEH DN [] =

Iezn -k HeIi"“ Teznk:HCI ieH
where
v(H,I) := Z (,1)\1\7\J\7\H01\J\
J:JCH
- Z (—1)/ T+ H[=2]T]
J:.JCH
= Z (=)l I+IH]
J:.JCH
= (=) T+ HIgl H]|
(i)=(ii) Let A be recognized by an ordér-log-linear

Bayesian classifier given by class probabilitBséC =
o) = ¢, conditional distributionP(X | C = @) of the
form (5) with parameters’, and conditional distribution
P(X | C = ©) of the form (5) with parameters’.

Thenx € A iff

logP(C =@ | x) > logP(C =& | x) 9)
=3
logP(z | C =1) —logP(xz | C =0) +
logeg — logeg <0
=3
S DT -k +
rezn*
> > vH DN &) [ =i
Hter'"“' reznk:HCI i€H
+ logeg — loges <0 (10)

20 >

HeIi'k Iez™*:HCI

> ()"~ M) +loges — logeg,. (11)

IISVASL

v(H, DN = &) [] i <

iceH

(i) = (iii)
Assume thatz € A iff

p(x) := Z at HTl <b.

n.k i€H
HeTY

(12)

Let w = argmin,cg. p(x), w = argmax,cp. p(x).
With A # 0, we havep(u) < b < p(w). As one
can always replack with b + e for some small positive
without changing the concept defined, we may furthermore
assume that(u) < b < p(w).

A is recognized by an ordédr<classical classifier, iff it can
be defined by a condition of the form (11) omitting the term
logee — logeg,. We thus have to show that we can choose
parameters, k!, such that

S

v(H, )N — k") (H e TP (13)

Iez~*HCI
and
b= > (D" = ). (14)
IISVASL
O
To define thex™, let Hy, H,, . .. , H,, be an enumeration

of Zj‘j’“ such that < j — H; ¢ H;. We can now choose
parameters.”i | k¢ inductively so that

>

IeZn*:.H;CI

v(H;, (A" — &").

Obviously, there is one degree of freedom in choosing the
pairs\, k!, and we can always replacé, x’ with AT +
c!', k! + ¢! for arbitraryc’ € R.

As X%, k0 are determined via (6) by the', &’ € T},

the right-hand side of (14) is already fully determined by
our choices for the\’, s’ € Z'"*. It remains to show,
therefore, that using the degree of freedom in the choice of
A, k!, these parameters can be set so as to satisfy (14).

Using our representation of”’ in terms of the chosen



M kI, we obtain: For the possible values &f the right-hand side of (16) lies

in the interval
p(z) = >l
HeT} " HC1(x) ( Z ol A\ — k1), Z ol (A — &)
- X S wEDO - )
ok, ® (L . . .
HELL T HE () 162 HET From the continuity ok? — A\? as a function of the’, and
= > M-k > v(H,I). with (19) for z = w andz = w it follows that (16) is
rezn HeT™  HC1(2)nT satisfiable for all possible values &f
With (ii) = (i) is immediate.
Y. vHI)
. References
HeZP*:HC1(a)NI
_ (1)l Tl HIgIH] Agresti, A. (2002).Categorical data analysiswiley.
HeT}*:HC1(=)NI Domingos, P., & Pazzani, M. (1997). On the optimality of
() N the simple Bayesian classifier under zero-one |d4a-
_ Z <| 1(z)N 1|>( 1)1 (—2)" chine Learning29, 103-130.
h

:]1 . , Duda, R. O., & Hart, E. (1973)Pattern classification and

= (- =2)t@n Tl _1) scene analysiswiley.
= (=D)/TF@ T _ )l .
Ekin, O., Hammer, P. L., & Kogan, A. (1999). On con-

and usingsl, = (—DII=@ 0T = ()T @) A 1] nected Boolean functioniscrete Applied Mathemat-
we obtain ics, 96-97, 337-362.
p(x) = Z (oh — (=)A= &"). (15)  Friedman, N., Geiger, D., & Goldszmidt, M. (1997).
1ez* Bayesian network classifiersMachine Learning 29,
131-163.

Plugging this into (14) and solving f¢k? — \?) we obtain
Garg, A., & Roth, D. (2001). Understanding probabilistic
0 _ g _ T\T
— A =b—pla)+ D oM =k (16) classifiers.Proceedings of ECML-01Springer.
rezy*
Kohavi, R., & John, G. H. (1997). Wrappers for feature

The problem of satisfying (14) now becomes that of choos- subset selectiorrtificial Intelligence 97, 273-324.

ing the A, k” such that (16) holds. For any € R and

z € " let Rish, I., Hellerstein, J., & Thathachar, J. (200&n anal-
P 17) ysis of data charasteristics that affect naive Bayes per-
= = formanc&echnical Report RC21993). IBM T.J.Watson
Substituting\’ + cZ, &’ + ¢! for AT, k” we obtain from (6) Research Center.
K0 =2 Roth, D. (1998). Learning to resolve natural language am-
DI >(¢ § P ol (A +¢l)) biguities: a unified approactProceedings of AAAI-98,
= log + Tl 1 15th Conference of the American Association for Artifi-
2imchn XA ey r 0a (k! + 1) cial Intelligence(pp. 806-813).

. exple e olol)ex w0 E N o .
— Dwer WZ’GI £ 0202) KZ’GI »0zA) Roth, D. (1999). Learning in natural languageoceedings

(0]
O aeen OHC S gy ORI XS gk 7LAT)  oFIICAI-9

As Z,Gzn » olo!l is uniquely maximized for € F* by  Schafer, J. L. (1997)Analysis of incomplete multivariate

x = z, we obtain that for: — oo data Chapman & Hall/CRC.
] . exqzlezn x oL\ Zhang, H., Ling, C. X., & Zhao, Z. (2000). The learnabil-
k' — A" — log X0 v o TnT) (18) ity of naive bayes. Canadian Al 200Q(pp. 432-441).
Tely Springer.
= Y ol &) (19)

n,k
I€I+



