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Abstract

We investigate algebraic, logical, and geomet-
ric properties of concepts recognized by vari-
ous classes of probabilistic classifiers. For this
we introduce a natural hierarchy of probabilis-
tic classifiers, the lowest level of which com-
prises the naive Bayesian classifiers. We show
that the expressivity of classifiers on the differ-
ent levels in the hierarchy is characterized alge-
braically by separability with polynomials of dif-
ferent degrees. A consequence of this result is
that every linearly separable concept can be rec-
ognized by a naive Bayesian classifier. We con-
trast this result with negative results about the
naive Bayesian classifier previously reported in
the literature, and point out that these results only
pertain to specific learning scenarios for naive
Bayesian classifiers. We also present some log-
ical and geometric characterizations of linearly
separable concepts, thus providing additional in-
tuitive insight into what concepts are recogniz-
able by naive Bayesian classifiers.

1. Introduction

In spite of the very simplistic assumptions it is based on, the
naive Bayesian classifier has proven very useful in practice.
Many studies have been conducted to analyze this seem-
ingly paradoxical success (Domingos & Pazzani, 1997;
Rish et al., 2001; Garg & Roth, 2001). In spite of the
wealth of material on the naive Bayesian classifier that is
now available, there still seems to be some confusion as to
some of its very fundamental properties. In particular, there
appear to be some misunderstandings relating to the class
of concepts it can recognize. While it is common knowl-
edge that it can only recognize linearly separable concepts,
there also appears to be a widespread belief, that not all
linearly separable concepts can be recognized by a naive
Bayesian classifier.

In large part the apparent confusion is due to the fact that it
is not always unambiguously clear, what individual authors

mean when they say that “the [naive] Bayesian classifier
cannot learn some linearly separable concepts” (Domin-
gos & Pazzani, 1997), or “not all linearly separable func-
tions can be represented using this [naive Bayes] predictor”
(Roth, 1998). Without a very careful analysis of the con-
text in which such a statement is made, one would take it
as negative answer to the following question:

(Q1)Can every linearly separable concept be rec-
ognized by a naive Bayesian classifier, i.e. does
there exist for every linearly separable conceptC
a naive Bayesian classifier that will assign to ev-
ery examplex class label� iff x belongs toC?

However, the negative statements one finds in the literature
really are answers to the following question:

(Q2) Is for every linearly separable conceptA a
naive Bayesian classifier learnable by maximum
likelihood inference from an enumeration ofA?

We require some formal definitions before, in section 3 we
can recast(Q2) in precise terms. For the time being, it
only needs to be realized that here the question is whether
a classifier recognizingA will be learned using a specific
learning principle, and a specific data set. The significance
of asking(Q2) rather than(Q1) has sometimes been real-
ized: Zhang, Ling and Zhao (2000) remark that the neg-
ative results of (Domingos & Pazzani, 1997) depend on
their assumption of a uniform sampling distribution for the
examples, and present empirical evidence that with data
sampled from non-uniform distributions the class of learn-
able concepts changes. Conversely, Roth (1999) remarks
that the positive results of (Domingos & Pazzani, 1997) on
the learnability of pure disjunctive or conjunctive concepts,
too, depend on a uniform sampling assumption.

To the best of our knowledge, so far no one has addressed
the arguably much more pertinent question(Q1). In this pa-
per we will provide an affirmative answer to this question.
Indeed, we will provide a much more general result: we
introduce a hierarchy of probabilistic classifiers, the lowest
level of which exactly corresponds to naive Bayesian clas-
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sifiers, and show an exact correspondence between the lev-
els of this hierarchy and separability by polynomials with
different degrees. We thus obtain results that also are ap-
plicable to other classes of probabilistic classifiers, e.g. the
class oftree augmented naive Bayesianclassifiers (Fried-
man et al., 1997).

We also provide some results on logical and topological
characterizations of concept classes recognizable with the
probabilistic classifiers in our hierarchy. These results are
much more mixed, and only lead to necessary, but not to
sufficient conditions for recognizability.

2. Definitions and Main Result

Definition 2.1 Let X1; : : : ; Xn; C be a set of binary ran-
dom variables. The random variablesXi are called fea-
tures, andC is called the class variable. We denote the
two possible values of theXi with 0 and 1, and the two
possible values ofC with � and	. We also useFn to de-
note the spacef0; 1gn of all possible value assignments to
the features (the instance space). ABayesian probabilistic
classifierfor the class variableC given the featuresXi is
given by a probability distributionP on Fn � f�;	g. A
classical probabilistic classifieris given by a pairP� andP	 of probability distributions onFn .

A Bayesian classifier assigns to aninstancex 2 Fn the
class label� iffP (C = � j x) � P (C = 	 j x); (1)

whereas a classical classifier assigns class label� iffP�(x) � P	(x) (2)

Any subset ofFn is called aconcept. The conceptrecog-
nized by a classifieris the set of instances to which class
label� is assigned.

We note that in the case of the classical classifier, the class
variableC is not really considered a random variable, but a
parameter governing the distribution of the features. The
definitions of Bayesian and classical classifiers are very
similar, and we will see in the sequel that for the types of
classifiers we consider there is no substantial difference be-
tween these two variations in the definitions. In fact, the
only difference is the following: a classical classifier can-
not recognize the empty concept, as (2) must be satisfied
for at least onex. The Bayesian classifier, on the other
hand, can recognize the empty concept by placing a high
prior probability on the class label	. This, of course, is
not a fundamental difference, but only an artefact of the
definitions given here.

Example 2.2 Forx = (x1; : : : ; xn) 2 Fn we denote with1(x) the setfi j 1 � i � n; xi = 1g. Them-of-nconcept
is the setAm�n := fx 2 Fn jj1(x) j� mg.
We construct a (classical) probabilistic classifier that rec-
ognizesAm�n as follows (for the time being we ignore
the question whether, and how, this classifier is learnable
from data; we return to that question in section 3). Fori = 1; : : : ; n letP�(Xi = 1) = m=n P	(Xi = 1) = (m� 1)=n;
and define the joint distributions as the productsPÆ(x) = nYi=1PÆ(Xi = xi) (Æ = �;	) (3)

This is a “naive classical” classifier that can be turned into
an equivalent naive Bayesian version by assuming prior
class probabilitiesP (C = �) = P (C = 	) = 1=2.

It is readily verified that this classifier recognizesAm�n.
For this, we only have to observe that the distributionsP�
andP	 are of the binomial formPÆ(x) = �j1(x)jÆ (1� �Æ)n�j1(x)j (4)

with parameters�� = m=n and�	 = (m� 1)=n, respec-
tively. Forx with j1(x) j= l we have that (4) is maximized
by�Æ = l=n, and that (4) is monotonically increasing in�Æ
on [0; l=n℄, and monotonically decreasing on[l=n; 1℄. Forl = m it immediately follows thatP�(x) > P	(x). Ifl > m the same result follows from the monotonicity of (4)
on [0; l=n℄, and the fact that�	 < �� < l=n. Similarly,
for l < m, we obtain thatP�(x) < P	(x) from the mono-
tonicity of (4) on[l=n; 1℄, and the fact thatl=n � �	 < ��.

The class of naive Bayesian classifiers is determined by
condition (3) on their defining distributions. More gener-
ally, any restriction on the form of the admissible distri-
butionsPÆ(�), respectivelyP (� j C = Æ), induces a class
of probabilistic classifiers. We now define different classes
of distributions that in this way induce a hierarchy of dif-
ferent classifiers. We define our classes of distributions in
terms oflog-linear models, which are the most widely used
classes of distributions on categorical state spaces such asFn (see (Agresti, 2002) or (Schafer, 1997) for in-depth dis-
cussion of log-linear models). In our special context, where
the state space is generated by binary variables only, the
usual definitions of log-linear models can be given the fol-
lowing special form.

Definition 2.3 LetI � 2f1;::: ;ng be a collection of subsets
of f1; : : : ; ng with ; 2 I. The log-linear model defined
by I is the set of all distributionsP onFn that are given by



parameters�I 2 R (I 2 I) in the form

logP (x) =XI2I �Ix�I ; where�Ix := (�1)jI j�jI \ 1(x) j:
(5)

We defineIn;k := fI � f1; : : : ; ng jjI j� kg; In;k+ := In;k n ;;
and call the log-linear model defined byIn;k the order-k
association model.

A probabilistic classifier is called anorder-k association
classifier if PÆ(�) (for classical classifiers), respectivelyP (� j C = Æ) (for Bayesian classifiers) are distributions
in the order-k association model (Æ = �;	).

For anyI, one can construct distributions in the log-linear
model defined byI by choosing arbitrary parameters�I 2R for I 6= ;, and then setting�; so that the probabilities
sum to one. For the order-k association model this means
that we must have:1 = Xx2Fn P (x)= Xx2Fn exp( XI2In;k �Ix�I )= Xx2Fn exp(�; + XI2In;k+ �Ix�I )= exp(�;) Xx2Fn exp( XI2In;k+ �Ix�I)
so that �; = �log(Xx2Fn exp( XI2In;k+ �Ix�I )) (6)

Example 2.4 The order-1 association model contains just
the distributions according to which theXi are indepen-
dent. The correspondence between the parameterspi :=P (Xi = 1) in the direct formulation of an independence
model, and the parameters�I in (5) is:�fig = log(ppi=(1� pi)); �; = log(vuut nYi=1 pi(1� pi)):
Friedman, Geiger and Goldszmidt (1997) have introduced
the class oftree-augmented naive Bayesian classifiers.
This class is determined by allowing forP (� j Æ) dis-
tributions that are representable with a Bayesian network
in which every node has at most one parent (moreover,
the Bayesian network has to be the same forÆ = � andÆ = 	). As a result, the conditional probability of any in-
stancex given the class label is given as product of terms,

each of which depends on at most two of the feature vari-
ables. From this it follows that all these distributions are
in the order-2 association model, and tree augmented naive
Bayesian classifiers are order-2 association classifiers. We
will see in section 4 that the converse does not hold.

We are now ready to turn to our main objective, the investi-
gation of the expressive power of different classes of clas-
sifiers: what classes of concepts can be recognized with
order-k association classifiers? Our main result gives a
completealgebraiccharacterization by showing the equiv-
alence of these classifiers with polynomial discriminant
functions.

Definition 2.5 A conceptA is order-k polynomially sepa-
rable, if there existaH 2 R (H 2 In;k+ ) andb 2 R, such
that for allx 2 Fnx 2 A , XH2In;k+ aH Yi2H xi � b: (7)

Order-1 polynomial separability then is just linear separa-
bility.

Theorem 2.6 Let ; 6= A � Fn , k 2 f1; : : : ; ng. The
following are equivalent

(i) A is recognized by an order-k association Bayesian
classifier.

(ii) A is order-k polynomially separable.

(iii) A is recognized by an order-k association classical
classifier.

The proof is given in appendix A. The restriction to
nonemptyA is due to the abovementioned limitation of the
classical classifier. As; is both linearly separable and rec-
ognizable by a naive Bayesian classifier, we obtain:

Corollary 2.7 A conceptA � Fn is recognizable by a
naive Bayesian classifier iff it is linearly separable.

3. Learning the Classifiers

The result in the previous section contrasts with negative
results previously reported for the naive Bayesian classifier.
In this section we investigate these discrepancies.

As mentioned in the introduction, when investigating the
expressivity of classifiers, one has to watch carefully what
the actual questions are that are being answered with pos-
itive or negative results. In the preceding section we have
dealt with questionQ1. This question is completely in-
dependent from the problem of how a classifier may be
learned from data.



Given a set(x1; Æ1); : : : ; (xN ; ÆN) (xi 2 Fn ; Æi 2f�;	g) of classified examples one will usually learn the
classifier that maximizes the likelihood of the examples,
i.e. for the classical classifier one chooses thePÆ that max-
imize Yi:Æi=ÆPÆ(xi) (Æ 2 f�;	g);
and for the Bayesian classifier one choosesP that maxi-
mizes Yi P (xi; Æi):
Note that this describes a pure maximum likelihood ap-
proach (also for the Bayesian classifier), and that additional
learning techniques and principles (like using Bayesian pri-
ors on parameters, or applying techniques to prevent over-
fitting) may be used.

A data set may be eithernoise-free, i.e. xi = xj impliesÆi = Æj , or noisy, i.e. it contains examples with conflicting
labels. We say that a data set isa description of the conceptA if it is noise-free, and contains for everyx 2 Fn a data-
item (x; Æ) with Æ = � iff x 2 A. We say that a data set
is an enumeration ofA if in addition it does not have any
two identical data items.

We can now rephrase the negative result of (Kohavi & John,
1997) and (Domingos & Pazzani, 1997) as follows: there
exist m;n 2 N, such that the naive Bayesian classifier
learned by maximum likelihood inference from an enumer-
ation ofAm;n will not recognizeAm;n. This result need not
be seen as a serious limitation of the naive Bayesian clas-
sifier, as there is little reason to focus on data sets that are
enumerations of a certain concept. Indeed, when the train-
ing examples are real-life data, it is all but certain not to be
an enumeration of a concept (and is likely to be noisy as
well).

The naive classical classifier(P�; P	) for them-of-n con-
cept described in example 2.2 will be learned by maximum
likelihood inference from any data set in which the relative
frequencies ofXi = 1 is m=n in the examples labelled
with �, and(m � 1)=n in the examples labelled with	.
The simplest data set that has this property is the one that
containsm copies of the example((1; : : : ; 1);�), m � n
copies of((0; : : : ; 0);�),m� 1 copies of((1; : : : ; 1);	),
andn �m + 1 copies of((0; : : : ; 0);	). This is a noisy
data set. Note that we would not learn the correct classi-
fier from the data set obtained by removing the mislabelled
data items((1; : : : ; 1);	) and((0; : : : ; 0);�).
Zhang et al. (2000) present empirical results that show that
somem-of-n concepts for which a naive Bayesian clas-
sifier is not learned from an enumeration ofAm�n, are
learnable from a suitable description ofAm�n. It is an

open problem whether for every linearly separable con-
ceptA there exists a noise-free data set, such that the naive
Bayesian classifier learned from the data set will recognizeA. The following theorem answers the converse question.
To formulate it we call a conceptA general in theith com-
ponentif there exist instancesx;x0 2 A andy;y0 2 Fn nA
with xi = yi = 0 andx0i = y0i = 1.

Theorem 3.1 LetA be a concept such that is general in at
least one component. Then there exists a descriptionD ofA such that the naive classical classifier learned by maxi-
mum likelihood inference fromD does not recoginizeA.

Theorem 3.1 also holds for the naive Bayesian classifier
(it is actually rather more obvious in the Bayesian case, as
there one can skew the learning results by providing many
more data items with class label� (or 	), thereby learn-
ing a high prior probability forC = �, which leads to a
classifier that will assign class label� to x whenever the
conditional probabilitiesP (Xi = xi j �) in the data are
nonzero fori = 1; : : : ; n).

It is an open question to what extent theorem 3.1 also holds
for order-k polynomially separable sets and order-k associ-
ation classifiers fork � 2. It does seem to be a fairly safe
conjecture that this negative result holds for allk < n (but
note that it does not hold fork = n, because the order-n as-
sociation model comprises all probability distributions,and
therefore from a description ofA a classifier will be learned
with P�(x) = 0 for x 62 A, andP	(x) = 0 for x 2 A).
Things become much easier when one turns to noisy data
sets: here it is clear that every order-k association classi-
fier (P�; P	) can be learned by maximum likelihood in-
ference from a noisy data set that consists of representative
samples fromP� andP	. Thus, if a conceptA is order-k
polynomially separable, and hence by theorem 2.6 recog-
nized by a classical order-k association classifier(P�; P	),
then(P�; P	) can be learned from a suitable noisy data set.
There is one qualification, however: fork � 2 the param-
eters of the maximum likelihood order-k association clas-
sifier do not have a closed-form representation in terms of
empirical counts, as is the case fork = 1. Thus, numerical
techniques here have to be used for learning (see (Agresti,
2002, section 8.7) for some applicable techniques).

4. Logical and Geometric Characterizations

Theorem 2.6 provides an algebraic characterization of con-
cepts recognizable by certain classes of classifiers. While
this already provides a good deal of insight, and can be
helpful in identifying the type of classifier needed to rec-
ognize a given concept, it is also true that the algebraic
characterization does not always provide a good intuitive
understanding of the expressive power of the various clas-
sifiers. More intuitive insights can be obtained by logical



and geometric characterizations.

To give logical characterizations, we interpret a conceptFn as the set of truth assignments to propositional vari-
ablesX1; : : : ; Xn. A conceptA can then be identified with
boolean formulas that are satisfied by the truth assignments
in A. The goal then is to identify classes of concepts (those
recognizable by certain classes of classifiers) with syntac-
tically defined classes of formulas.

For geometric characterizations we interpret the elements
of Fn as the vertices of then-dimensional unit cube. Con-
ceptsA can then be classified according to certain connect-
edness properties of sets of vertices. Connections between
syntactic and geometric properties of concepts (or Boolean
functions) have been extensively studied (Ekin et al., 1999).
Here we connect this existing work with properties of iden-
tifiability by order-k association classifiers. The results in
this section are not uniform for order-k association classi-
fiers for differentk. We therefore first concentrate on thek = 1 case, and then discuss possible generalizations tok > 1. Beginning with logical characterizations, we recall
the following standard definition.

Definition 4.1 Let � be a boolean formula inX1; : : : ; Xn
in negation normal form (NNF), i.e.� is constructed from
positive and negative literals using conjunction and dis-
junction only.� is calledunateiff for all i � only contains
the literalXi, or only the literal:Xi. A conceptA is called
unate if it can be described with a unate formula.

Theorem 4.2 If A is linearly separable, thenA is unate.

Proof: We havex 2 A iff
Pi aixi � b for someai; b 2R. The intuition for the construction of a unate� is now

quite simple: we just axiomatize that whenever too manyXi with positive coefficients are true, then also sufficiently
manyXi with negative coefficients are true.

For the details, letI+ := fi 2 f1; : : : ; ng j ai > 0g andI� := fi 2 f1; : : : ; ng j ai < 0g. DefineJ := fI � I+ jXi2I ai > bg;
and for everyI 2 J :H(I) := fH � I� j Xi2I[H ai � bg:
Now consider the formula�(A) := Î2J (^i2IXi ! _H2H(I)^h2HXh) (8)

It is easy to see that�(A) is unate (by eliminating the im-
plications one obtains a NNF in whichXi with ai > 0 only
appear in negative literals, andXi with ai < 0 in positive

literals). Now considerx 2 Fn . Let I+x := 1(x) \ I+,
andI�x := 1(x) \ I�. If x 2 A, then for everyI 2 J
with I � I+x (i.e. thoseI for which x satisfies the left
side of the implication in (8) we have thatI�x 2 H(I), and
thereforex satisfies the right hand side of the implication.
If x 62 A thenx does not satisfy the conjunct of�(A) forI = 1(x). �
The converse of theorem 4.2 does not hold:

Example 4.3 Let � := (X1 ^ X2) _ (X3 ^ X4). For the
conceptA defined by� we have(1; 1; 0; 0); (0; 0; 1; 1) 2A, (1; 0; 1; 0); (0; 1; 0; 1) 62 A. If A was linearly separable
with coefficientsa1; : : : ; a4; b, then this would meana1 +a2 � b, a3 + a4 � b, a1 + a3 > b, anda2 + a4 > b, an
obvious contradiction.

For  := (X1 ^ X2) _ (X3), on the other hand, we ob-
tain that the concept defined by is linearly separable with
coefficientsa1 = a2 = �1; a3 = b = �2.

The preceding example indicates that it may not be possible
to find a natural logical if-and-only-if characterization of
linear separability, as such a characterization would haveto
distinguish the syntactically very similar formulas� and .
We now turn to geometric properties of linearly separable
concepts. The following definitions are adopted from (Ekin
et al., 1999).

Definition 4.4 Let x;x0 2 Fn . A path from x to x0 is
a sequencex = x0;x1; : : : ;xk = x0 in Fn such thatxi andxi+1 have different values in at most one coordi-
nate. A conceptA is calledgeodeticallyconnected, if for
all x;x0 2 A there exists a shortest path connectingx andx0 such that all instances on the path belong toA.

The intuition behind geodetic connectedness is that from
any point inA we can reach any other point inA by taking
a shortest walk along the edges of the unit cube, and never
leaveA on this walk. Ekin et al. (1999) show that whenA is
defined by a unate formula, thenA andFn nA are geodeti-
cally connected (but the converse does not hold). It follows
that for linearly separableA bothA andFn nA are geodeti-
cally connected. The connectedness property we have thus
found for linearly separable concepts has a very intuitive
meaning: it says that between any two vertices of the unit
cube that lie on the same side of some hyperplane, one can
find a shortest path along the edges of the unit cube that
connects the two vertices and always stays on the same side
of the hyperplane.

Theorem 4.2 and its geometric implications do not seem to
allow a meaningful generalization for concept classes de-
termined by order-k polynomial separability fork � 2.
First, there does not seem to exist a useful generalization



of the class of unate propositional formulas that, in anal-
ogy to theorem 4.2, would provide a nontrivial upper bound
on the richness of the class of order-k separable concepts.
As for the connectedness properties of linearly separable
sets, one might entertain the thought that these generalize
in the sense that it is possible to bound the number of con-
nected components an order-k polynomially separable con-
cept can have. As the following example shows, no bound
that is polynomial ink can be given.

Example 4.5 Consider the order-2 polynomials of the
form p(x) = nXi=1 axi + nXi;j=1 xixj
with a 2 R. For x with j 1(x) j= k we obtainp(x) =ak + k(k � 1)=2. This is minimized fork = 1=2� a with
a value of(1=2� a)2=2. To obtain a polynomial that has a
unique minimum for some givenk0 2 f1; : : : ; ng, we can
choosea = 1=2� k0. ThennXi=1(1=2� k0)xi � nXi;j=1 xixj � �k20=2
holds exactly whenj 1(x) j= k0. Thus, for everyk0 2f1; : : : ; ng the conceptAk0 := fx jj1(x) j= k0g is order-
2 polynomially separable.

By settingk0 = bn=2
 we obtain an example for a concept
that consists of

� nbn=2
� distinct connected components.

One can show that whenk0 < n, thenAk0 cannot be repre-
sented by a tree-augmented Bayesian network. This is even
true when instead of limiting to one the number of parents
any node can have, one imposes a limit of somel � n� 2.
One thus sees that order-2 association classifiers are signif-
icantly more expressive than the ordinary tree augmented
naive Bayesian classifiers. With the following example, on
the other hand, we illustrate the limitations of order-2 clas-
sifiers.

Example 4.6 Let n = 3, and consider the conceptA =fx = (x1; x2; x3) j j 1(x) j2 f0; 2gg. Assume thatA is
separable by an order-2 polynomial3Xi=1 aixi + 3Xi;j=1 ai;jxixj � b:
We obtain the following inequalities for the parameters,
where (ii) and (iii) hold for alli; j 2 f1; 2; 3g; i 6= j.(i) 0 � b(ii) ai > b(iii) ai + aj + ai;j � b(iv) a1 + a2 + a3 + a1;2 + a1;3 + a2;3 > b

From (ii) and (iii) it follows thataj + ai;j < 0. As (i) and
(ii) imply that aj > 0, this means thatai;j < 0. From
(iii) and (iv) we derive thata3 + a1;3 + a2;3 > 0, which
contradicts our previous results that botha3+a1;3 < 0 anda2;3 < 0.

5. Conclusions

We have introduced the hierarchy of order-k association
classifiers, and shown that it corresponds exactly to the hi-
erarchy of order-k polynomially separable concepts. The
most interesting consequences are for the casek = 1,
where this result implies that the concepts recognizable by
a naive Bayesian classifier are exactly the linearly separa-
ble sets, thus, apparently for the first time, proving the con-
verse of a well-known result from (Duda & Hart, 1973).
Fork = 1 we also derived some useful logical and geomet-
ric properties of linearly separable concepts.

There are a number of interesting open questions: is a naive
Bayesian classifier for a linearly separable concept always
learnable from a noise-free data set? Are there meaningful
logical or geometric properties one can derive for order-k
polynomially separable concepts?

The order-k association classifiers here were introduced
with a mainly formal motivation. However, they might
also be considered for use in practice: an order-k associ-
ation model is determined byO(nk) independent parame-
ters. The hierarchy of order-k association classifiers thus
provides a smooth spectrum of models of increasing com-
plexity, allowing a fine-tuned tradeoff between expressivity
on the one hand, and efficiency of learning and guarding
against overfitting on the other hand.
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A. Proof of Main Theorem

Proof: The theorem clearly holds forA = Fn . In the se-
quel we therefore assumeA 6= ; andA 6= Fn . We first
rewrite the representation (5) oflogP (x) in polynomial
form (throughout we use the convention that a product over
an empty index set is equal to 1):

logP (x) =XJ2In;nYi2J xiYi62J(1� xi) XI2In;k(�1)jI j�jI \ 1(x) j�I =



XI2In;k XJ2In;n(�1)jI j�jI \ 1(x) j�IYi2J xiYi62J(1� xi) =XI2In;kXJ�I(�1)jI j�jJ j�IYi2J xi Yi2InJ(1� xi) =
WithYi2J xi Yi2InJ(1� xi) = XH:J�H�I(�1)jH \ I n J jYi2H xi
this becomesXJ;H;I2In;kJ�H�I (�1)jI j�jJ j+jH \ I n J j�I Yi2H xi =XH2In;k( XI2In;k:H�I(�(H; I))�I )Yi2H xi =XI2In;k(�1)jI j�I + XH2In;k+ ( XI2In;k:H�I(�(H; I))�I )Yi2H xi
where �(H; I) := XJ:J�H(�1)jI j�jJ j�jH \ I n J j= XJ:J�H(�1)jI j+jH j�2jJ j= XJ:J�H(�1)jI j+jH j= (�1)jI j+jH j2jH j
(i))(ii) Let A be recognized by an order-k log-linear
Bayesian classifier given by class probabilitiesP (C =Æ) = 
Æ, conditional distributionP (X j C = �) of the
form (5) with parameters�I , and conditional distributionP (X j C = 	) of the form (5) with parameters�I .

Thenx 2 A iff

logP (C = � j x) � logP (C = 	 j x) (9),
logP (x j C = 1)� logP (x j C = 0) +

log
� � log
	 � 0, XI2In;k(�1)jI j(�I � �I) +XH2In;k+ XI2In;k:H�I �(H; I)(�I � �I))Yi2H xi+ log
� � log
	 � 0 (10)

, XH2In;k+ ( XI2In;k:H�I �(H; I)(�I � �I))Yi2H xi �XI2In;k(�1)jI j(�I � �I) + log
	 � log
�: (11)

(ii))(iii)

Assume thatx 2 A iffp(x) := XH2In;k+ aH Yi2H xi � b: (12)

Let u := arg minx2Fn p(x), w := arg maxx2Fn p(x).
With A 6= ;; Fn we havep(u) � b < p(w). As one
can always replaceb with b + � for some small positive�
without changing the concept defined, we may furthermore
assume thatp(u) < b < p(w).A is recognized by an order-k classical classifier, iff it can
be defined by a condition of the form (11) omitting the term
log
	 � log
�. We thus have to show that we can choose
parameters�I ; �I , such thataH = XI2In;k:H�I �(H; I)(�I � �I) (H 2 In;k+ ) (13)

and b = XI2In;k(�1)jI j(�I � �I): (14)�
To define theaH , letH0; H1; : : : ; Hm be an enumeration
of In;k+ such thati < j ! Hi 6� Hj . We can now choose
parameters�Hi ; �Hi inductively so that(�Hi � �Hi) = aHi � XI2In;k:Hi(I �(Hi; I)(�I � �I):
Obviously, there is one degree of freedom in choosing the
pairs�I ; �I , and we can always replace�I ; �I with �I +
I ; �I + 
I for arbitrary
I 2 R.

As �;; �; are determined via (6) by the�I ; �I 2 In;k+ ,
the right-hand side of (14) is already fully determined by
our choices for the�I ; �I 2 In;k+ . It remains to show,
therefore, that using the degree of freedom in the choice of�I ; �I , these parameters can be set so as to satisfy (14).

Using our representation ofaH in terms of the chosen



�I ; �I , we obtain:p(x) = XH2In;k+ :H�1(x) aH= XH2In;k+ :H�1(x) XI2In;k:H�I �(H; I)(�I � �I)= XI2In;k+ (�I � �I) XH2In;k+ :H�1(x)\I �(H; I):
With XH2In;k+ :H�1(x)\I�(H; I)= XH2In;k+ :H�1(x)\I(�1)jI j+jH j2jH j= j1(x) \ I jXh=1 �j1(x) \ I jh �(�1)jI j(�2)h= (�1)jI j((1� 2)j1(x) \ I j � 1)= (�1)jI j+j1(x) \ I j � (�1)jI j
and using�Ix = (�1)jI j�j1(x) \ I j = (�1)jI j+j1(x) \ I j,
we obtainp(x) = XI2In;k+ (�Ix � (�1)jI j)(�I � �I): (15)

Plugging this into (14) and solving for(�;��;) we obtain�; � �; = b� p(x) + XI2In;k+ �Ix(�I � �I): (16)

The problem of satisfying (14) now becomes that of choos-
ing the�I ; �I such that (16) holds. For any
 2 R andz 2 Fn let 
Iz := �Iz � 
: (17)

Substituting�I + 
Iz; �I + 
Iz for �I ; �I we obtain from (6)�; � �;= log

Px2Fn exp(PI2In;k+ �Ix(�I + 
Iz))Px2Fn exp(PI2In;k+ �Ix(�I + 
Iz))= log

Px2Fn exp(
PI2In;k+ �Ix�Iz)exp(PI2In;k+ �Ix�I)Px2Fn exp(
PI2In;k+ �Ix�Iz)exp(PI2In;k+ �Ix�I)
As
PI2In;k+ �Ix�Iz is uniquely maximized forx 2 Fn byx = z, we obtain that for
!1�; � �; �! log

exp(PI2In;k+ �Iz�I )
exp(PI2In;k+ �Iz�I) (18)= XI2In;k+ �Iz(�I � �I) (19)

For the possible values ofb, the right-hand side of (16) lies
in the interval( XI2In;k+ �Iu(�I � �I); XI2In;k+ �Iw(�I � �I))
From the continuity of�; � �; as a function of the
I , and
with (19) for z = u andz = w it follows that (16) is
satisfiable for all possible values ofb.
(iii))(i) is immediate.
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