
Parameter Learning for Relational Bayesian Networks

Manfred Jaeger jaeger@cs.aau.dk

Aalborg University, Fredrik Bajers Vej 7E, 9220 Aalborg, Denmark

Abstract

We present a method for parameter learn-
ing in relational Bayesian networks (RBNs).
Our approach consists of compiling the RBN
model into a computation graph for the like-
lihood function, and to use this likelihood
graph to perform the necessary computations
for a gradient ascent likelihood optimization
procedure. The method can be applied to all
RBN models that only contain differentiable
combining rules. This includes models with
non-decomposable combining rules, as well as
models with weighted combinations or nested
occurrences of combining rules. Experimen-
tal results on artificial random graph data ex-
plores the feasibility of the approach both for
complete and incomplete data.

1. Introduction

We are concerned with probabilistic models for rela-
tional data that can be expressed in representation
languages like Relational Bayesian Networks (Jaeger,
1997), Probabilistic Relational Models (Friedman
et al., 1999), or Bayesian Logic Programs (Kersting &
Raedt, 2001; Kersting, 2006). Closely related to these,
yet semantically mostly a bit different are numerous
other probabilistic modeling frameworks that combine
logical with probabilistic elements, e.g. the Prism sys-
tem (Sato, 1995), Stochastic Logic Programs (Muggle-
ton, 1996), IBAL (Pfeffer, 2000), Blog (Milch et al.,
2005), and Markov Logic (Richardson & Domingos,
2006).

1.1. Models, Languages and Combining Rules

A common ground shared by the aforementioned sys-
tems is that they define a probabilistic model for inter-
dependent objects in a structured domain. These de-
pendencies are represented by attributes and relations.
In typical applications, objects could be persons in a

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

pedigree, web-pages, or atoms in a molecule; the bi-
nary relation between the objects then could repre-
sent the parent/child relation, hyperlinks, or bonds
between atoms, respectively.

Given such a structured input domain, a probabilistic
model specifies a probability distribution over further
uncertain attributes and relations, as, for example, the
presence of a certain genetic traits, the relevance of a
web page, or spatial adjacency of atoms in a molecule.
We use S to denote the set of attributes and rela-
tions that describe the known structure of an input
domain (also called the predefined relations (Jaeger,
2001), the skeleton structure (Friedman et al., 1999),
or logical predicates (Kersting, 2006)). R denotes
the uncertain relations on the objects of the domain.
In the simplest case, all attributes and relations are
boolean. RBNs only allow this boolean case. Most
other frameworks also allow multi-valued attributes,
and sometimes multi-valued relations. The restriction
to boolean relations is no limitation in principle, but
makes some modeling tasks more cumbersome.

A relational probabilistic model defines for input struc-
tures D described by S a probability distribution on
the relations in R. This distribution can be seen
as a joint distribution of boolean random variables
given by the ground atoms r(o) constructed from re-
lations r ∈ R and tuples o of domain objects. We
denote with A(D, R) (or simply A) the set of all
these ground atoms, and write A = a to denote an
instantiation of the atoms in A to truth values a.
For a particular ground atom r(o) we denote with
a[r(o)] ∈ {true, false} the value of r(o) in the instan-
tiation A = a.

A core component of relational probabilistic models
are aggregation (Friedman et al., 1999) or combin-
ing rules (Ngo & Haddawy, 1995; Jaeger, 1997; Koller
& Pfeffer, 1997; Kersting & Raedt, 2001; Natarajan
et al., 2005) that describe how to integrate probabilis-
tic dependencies on varying numbers of related ob-
jects. See (Natarajan et al., 2005) for a discussion
of aggregating vs. combining probabilistic influences.
In frameworks that are based on combining rules, it
is often assumed that with each probabilistic relation
there is associated exactly one combining rule. One

Parameter Learning for Relational Bayesian Networks

of the motivating factors in the definition of the RBN
language was the desire to allow for multiple, possibly
nested, applications of combining rules in the defini-
tion of conditional probabilities. The consideration
of weighted combinations of combining rules also is a
main motivation in (Natarajan et al., 2005).

1.2. Relational Bayesian Networks

Relational Bayesian Networks define the probabilities
for ground atoms of a given probabilistic relation r by
a single functional expression F r(v), called a proba-
bility formula. A formula F r(v) evaluates for an ob-
ject o from an input domain D to a probability value
F r(o) = P (r(o) = true) ∈ [0, 1]. The evaluation can
depend on the input structure, and be conditional on
the truth values of other probabilistic atoms r′(o′) (all
relations can have any arity ≥ 0).

The formal syntax and semantics of probability for-
mulas is defined in (Jaeger, 2001). We here review the
main elements by an example.

Example 1.1 Let input structures be given by arbi-
trary directed acyclic graphs consisting of a (finite)
domain, a binary edge relation, and a unary root at-
tribute identifying nodes without incoming edges. On
such input structures we define a boolean probabilis-
tic attribute on as follows: for any root node o, on(o)
is true with probability θ1. For any non-root node o,
the probability for on(o) depends on the truth value of
on(o′) for all parents o′ of o. If o has a single parent
o′, then P (on(o) = true) = θ2 if on(o′) = true, and
P (on(o) = true) = θ3 if on(o′) = false. For multiple
parents these probabilities are combined using noisy-or.

A RBN representation of this model is shown in Ta-
ble 1. It consists basically of a single formula F on(v)

defining the probabilities for on atoms. For better
readability the formula is broken up into several sub-
formulas that are denoted by identifiers starting with
’@’.

The main formula F on(v) is a convex combination,
which has the general syntactic form (F1:F2,F3) with
sub-formulas F1, F2, F3. A convex combination evalu-
ates for an object o to F1(o)F2(o) + (1 − F1(o))F3(o).
In the case where F1 is a formula evaluating to ei-
ther 0 or 1, this amounts to an if-then-else condi-
tion. In our example: if o is a root, then F on(o) is
evaluated as theta1, else as @nonroot(o). The sub-
formula @nonroot(v) combines by noisy-or the values
returned by the sub-formula @norarg(o′) for all o′ with
edge(o′, v). The @norarg sub-formula again uses the
convex combination construct to make an if-then-else
choice.

Table 1. A simple RBN

@norarg(w) = (on(w): theta2,theta3);

@nonroot(v) = n-or{@norarg(w)|w:edge(w,v)};
F on(v) = (root(v):theta1,@nonroot(v));

The preceding example illustrated all syntactic ele-
ments of the RBN language: convex combinations,
combination functions, and the two basic constructs of
numerical constants and atoms from S and R. Com-
bination functions are the RBN version of combining
rules: they are functions that map multisets I of prob-
ability values to a single probability value. Examples
of combination functions are

noisy-or(I) = 1 −
∏

p∈I(1 − p)

mean(I) = 1/ |I | ∑

p∈I p

esum(I) = e−
P

p∈I
p

(esum stands for exponential sum). A combination
function is differentiable if it is differentiable in all el-
ements of p ∈ I . Clearly, the three combination func-
tions above are differentiable.

In Example 1.1 the convex combination construct was
only used to express if-then-else conditions. However,
by setting the first component F1 to some numerical
constant λ ∈ [0, 1], one obtains the weighted mean
λF2+(1−λ)F3 of two probability formulas. By nested
application of the the convex combination construct,
this can be extended to weighted means λ1F1 + . . . +
λmFm with arbitrarily many components. Since the
Fi here could also be constructed using combination
functions, one can form weighted means of combining
rules, as suggested in (Natarajan et al., 2005).

The RBN in Table 1 contains 3 parameters θi that have
to be set to constants in [0, 1] before a distribution is
actually defined. Other than being numbers in [0, 1]
the parameters in a RBN are unconstrained, i.e. the
parameter space for a RBN with k parameters is [0, 1]k.
Given a particular θ ∈ [0, 1]k, and input domain D, the
RBN defines a distribution PD

θ
on A(D, R) as

PD
θ (A = a) =

∏

r∈R

∏

o:

a[r(o)]=true

F r(o)
∏

o:

a[r(o)]=false

(1 − F r(o)) (1)

1.3. Data

Data for learning relational models consists of pairs
(Di, ai), where Di is an input structure, and
ai is an instantiation of the ground probabilistic

Parameter Learning for Relational Bayesian Networks

atoms (this is the “learning from interpretations”
paradigm (De Raedt & Kersting, 2003)). Some truth
values of probabilistic atoms may be unobserved. We
use aobs to denote a partial instantiation of the ground
atoms, and amis for the missing values. Thus, a =
(aobs, amis) is a complete instantiation.

The likelihood function induced by data
(D1, aobs,1), . . . , (DN , aobs,N) is

L(θ) =

N
∏

i=1

PDi

θ
(aobs,i). (2)

2. Parameter Learning

The most frequently proposed method for learning pa-
rameters of a relational model specification is by reduc-
tion to parameter learning in Bayesian networks. Fig-
ure 1 shows a Bayesian network representing the prob-
ability distribution induced by the model of Table 1,
and an input domain D with objects A, . . . , E and a bi-
nary edge relation with A → D, B → D, C → D, C →
E. The parameters of the original model specification
here appear inside arithmetic expressions defining the
entries in the conditional probability tables. Standard
Bayesian network learning methods would learn each
cpt entry as an independent parameter, rather than
the underlying model parameters θ1, . . . , θ3. The easi-
est way around this problem is to decompose the net-
work via insertion of auxiliary or hidden nodes in such
a way, that the marginal distribution on the observable
ground atoms is unchanged, and in the resulting net-
work all cpt entries are either one of the original model
parameters, or constants not depending on the model
parameters (Figure 2). Such a decomposition is pos-
sible when the relational model only uses a restricted
class of combining rules. The definitions of what con-
stitutes a decomposable combining rule vary to some
extent (Koller & Pfeffer, 1997; Natarajan et al., 2005;
Kersting, 2006). For RBNs the decomposability of
a combination function has been identified with the
arithmetic property of multi-linearity (Jaeger, 2001).
When a decomposed Bayesian network has been con-
structed, then parameters can be learned using a stan-
dard EM procedure. Since the generated Bayesian net-
works are usually too complex for exact inference, one
has to implement the E step using a suitable approxi-
mation method.

The possibility of applying gradient-ascent optimiza-
tion directly on non-decomposed parameterizations of
the cpt entries has been mentioned e.g. in (Binder
et al., 1997). Such an approach seems attractive for at
least two reasons: combining rules only need to be dif-
ferentiable, not decomposable, and, for complete data,

on(A) on(B) on(C)

on(E)on(D)

PSfrag replacements

P (on(A)) = t

θ1

on(A) on(B) on(C) P (on(D) = t

t t t 1 − (1 − θ2)
3

t t f 1 − (1 − θ2)
2(1 − θ3)

1

...
...

...
...

f f f 1 − (1 − θ3)
3

Figure 1. Bayesian network without decomposition

on(D) on(E)

on(A) on(B) on(C)

h(A) h(B) h(C)

PSfrag replacements
P (on(A)) = t

θ1

on(A) P (h(A)) = t
t θ2

f θ3

h(A) h(B) h(C) P (on(D) = t
t t t 1
t t f 1
...

...
...

...
f f f 0

Figure 2. Bayesian network with decomposition

no probabilistic inference is required. In spite of these
attractive features, to the best of our knowledge, this
approach has not previously been developed for any
general, expressive relational modeling language. One
possible difficulty is the need to compile the model
into a suitable representation of the likelihood func-
tion, such that partial derivatives can be computed.
Whereas most languages are designed to support the
compilation into a Bayesian network, they are not very
easily transformed into an arithmetic expression for
the likelihood function. RBNs, in contrast, are very
closely linked to the likelihood function, since the ba-
sic representation elements of RBNs, the probability
formulas, are just the factors of the likelihood func-
tion (1).

2.1. Likelihood Graph: Complete Data

We compile a RBN model together with an input do-
main and observed data into a data structure that sup-
ports the required gradient computations. An exam-
ple of this data structure, called the likelihood graph,
is shown in Figure 3. A likelihood graph is a directed
acyclic graph with a single root node, called the likeli-
hood node. The likelihood node has one child for each
ground atom in the data; the edge leading to such an
upper ground atom node is labeled with the truth value
of the atom in the data. An upper ground atom node
is labeled with the ground probability formula that de-
fines the probability for the atom in the given input
structure. Each ground atom node has one child node
for each of the relevant sub-formulas of the probability
formula it is labeled with. A sub-formula is relevant,
if the evaluation of the sub-formula depends on one
of the unknown parameters, and the evaluation of the

Parameter Learning for Relational Bayesian Networks

@nonroot(E)@nonroot(D)

@norarg(A) @norarg(B) @norarg(C)

theta3theta1 theta2

F_on(A) F_on(B) F_on(C) F_on(D) F_on(E)

Likelihood

f t ftt

Figure 3. Likelihood graph for data
on(A),on(B),on(D)=true; on(C),on(E)=false

parent formula depends on the sub-formula. For ex-
ample, the ground atom node for F on(A) in Figure 3
is labeled with the ground probability formula

F_on(A) = (root(A):theta1,@nonroot(A))

This formula has three sub-formulas root(A), theta1
and @nonroot(A). The first one, root(A) evaluates
to 1, independent of the parameters, and so is not
relevant. The sub-formula theta1 is relevant. The
sub-formula @nonroot(A) depends on the parameters
θ2 and θ3. However, since root(A)=1, the value
of this sub-formula has no impact on the value of
on(A), and therefore also is not relevant. The de-
composition of probability formulas into sub-formulas
and the addition to the graph of nodes for relevant
sub-formulas continues recursively until the base case
of parameter formulas is encountered (note that here
we are talking about a purely syntactic decomposi-
tion that is always possible. Even when a node is
labeled with a probability formula constructed from
a non-decomposable combination function, the node
can be decomposed!). Nodes in the likelihood graph
with identical sub-formulas will share the children
corresponding to these sub-formulas. In our ex-
ample the sub-formula @norarg(C) appears both in
@nonroot(D) and @nonroot(E).

Apart from their probability formula label and point-
ers to their children, nodes in the likelihood graph
contain the numerical values for those sub-formulas
that were irrelevant because they evaluated to a con-
stant independent of any parameter, but whose con-
stant value still has an impact on the value of the
probability formula at the node. In our example, the
node F on(A) stores the numerical value 1 for the sub-
formula root(A).

Given the likelihood graph, and a setting of the pa-
rameters to specific values, one can compute by a
simple bottom-up propagation the value of the prob-
ability formulas at all nodes. At the root node one

obtains the likelihood value according to (1). Fur-
thermore, partial derivatives of a probability formula
are functions of the values and partial derivatives of
its sub-formulas. For example, a (partial) deriva-
tive (F1 : F2, F3)′ of a convex combination is given
by F1′(F2− F3) + F1F2′ + (1 − F1)F3′. Thus, partial
derivatives, too, can be efficiently computed bottom-
up (Rote, 1990). More precisely, both likelihood values
and partial derivatives can be computed in time lin-
ear in the size of the graph, where the size is given by
the number of edges in the graph, plus the number of
constant values stored at the nodes.

2.2. Likelihood Graph: Incomplete Data

The definition and construction of likelihood graphs
for incomplete data is a simple extension of the com-
plete data case. One starts as before with a root likeli-
hood node, and children for all ground atoms that are
instantiated in the data. However, now the decomposi-
tion may end in a ground atom that is not observed in
the data. In that case, a node for this ground atom is
added to the graph (we call such a node a lower ground
atom node), and the probability formula defining its
probability is added as a new upper ground atom node.
The decomposition of the new upper ground atom
node may, in turn, lead to new unobserved atoms, so
that the process has to be iterated (this is completely
analogous to backward-chaining from observed nodes
in a Bayesian network). Links from the likelihood node
to upper ground atom nodes for unobserved atoms are
labeled with a link to the corresponding lower ground
atom node, instead of a fixed instantiation value. Fig-
ure 4 shows our previous example in the case where
on(A) and on(E) are not observed. The decomposi-
tion of the formula F on(D) leads to the atom on(A),
so upper and lower ground atom nodes for this atom
have to be added.

Given a likelihood graph for incomplete data, one now
can compute likelihood values and partial derivatives
for any particular setting of truth values for the unob-
served atoms in the graph: setting e.g. on(A) to true
in the graph of Figure 4 turns the node on(A) into
the numerical constant 1, and the edge-label leading
to F on(A) into t. The graph can now be evaluated as
before in the complete data case.

2.3. Gradient Ascent

We use a quite simple gradient ascent strategy: given a
current parameter vector θ, we first compute the gradi-
ent of the likelihood function, (δ1, . . . , δn) := gradL(θ).
Given the gradient, we determine a search direction d

Parameter Learning for Relational Bayesian Networks

@norarg(A) @norarg(B) @norarg(C)

theta3theta1 theta2

F_on(A) F_on(B) F_on(C) F_on(D)

Likelihood

f tt

@nonroot(D)

on(A)

Figure 4. Likelihood graph for data on(B),on(D)=true;
on(C)=false

defined by

di =

{

δi · (1 − θi) if δi ≥ 0
δi · θi if δi < 0

Thus, the search direction is essentially in the direction
of the gradient, but the components of the gradient
are weighted by the distance to the boundary of the
parameter space when following that gradient compo-
nent. When θ is on the boundary, then components of
the gradient leading out of the parameter space have
0 weight.

Given the direction d we optimize the likelihood on
the line segment [θ, θ∗], where θ

∗ is the point where
the line θ + λd (λ ≥ 0) intersects the boundary of
[0, 1]n. This linesearch is currently implemented as an
un-sophisticated binary search that is guaranteed to
find a local maximum (but can be quite inefficient).

At the point θ
′ returned by the linesearch the gradi-

ent is again evaluated, and the process continues until
the distance between two successive parameter vectors
θ, θ′ falls below a user defined threshold.

When data is complete, then the required evaluations
of likelihood values and gradients are easily performed
on the likelihood graph. When data is incomplete,
then we have to use an approximate evaluation based
on random samples for the unobserved atoms in the
likelihood graph. Any sampling method could be used
for this purpose, including Gibbs sampling or MCMC
methods. We use the following sampling scheme: to
estimate

L(θ | aobs) =
∑

amis

PD
θ (aobs, amis) (3)

we generate a sample amis,1, . . . , amis,k, and estimate
(3) as

1

k

k
∑

i=1

PD
θ

(aobs, amis,i).

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e

in
 s

qr
t(

se
co

nd
s)

number of nodes

LG building 0%
Balios building 0%

LG learning 0%
Balios learning 0%

LG learning 10%
Balios learning 10%

Figure 5. Comparison with EM: time

An initial sample is drawn from a uniform distribu-
tion. After each termination of a linesearch we re-
sample components of each amis,i according to their
conditional distribution given aobs and the other com-
ponents of amis,i (according to the current parame-
ters). This is similar to performing one step in Gibbs
sampling, only that the values of several variables are
changed in one step. Also, estimates here are not ob-
tained by a sequence of samples from one chain, but
by one sample each from k independent chains. In the
experiments reported in Section 3 we used samplesize
k = 30.

Partial derivatives are computed analogously, based on
the same samples as used for the likelihood estimate.

3. Experiments

In our first experiment we compare the performance
of the likelihood graph method against the im-
plementation of EM on decomposed networks that
is provided by the Balios system for Bayesian
Logic Programs (BLPs) (http://www.informatik.uni-
freiburg.de/∼kersting/profile). A very simple toy
model for Mendelian inheritance was encoded both in
the BLP and RBN language. The model contains a
single unary random attribute trait. Random graphs
with a pedigree-like structure and 100-5000 nodes were
generated, and for each random pedigree instantia-
tions of the trait atoms with varying percentages of
missing values were sampled. A single pedigree with
one sampled instantiation represents one dataset we
learn from, i.e. we have N = 1 in (2), and the size of
the dataset corresponds to the size of the input struc-
ture (this is the case in all experiments in this section).

Figure 5 shows the time used by EM learning in Balios
and gradient ascent in the likelihood graph (LG) for
different pedigree sizes, and for 0 and 10% missing
values. Each value in the plot represents the average of

Parameter Learning for Relational Bayesian Networks

three repetitions of the experiment. The Balios system
was unable to cope with the larger pedigrees, due to
memory overflow.

Based on the thus limited data, we can still make the
following observations: both Balios and LG require
quadratic time for building the Bayesian network, re-
spectively the likelihood graph (note that the time
scale is in

√
s). The construction time is shown only for

the case of 0% missing data, because it is very similar
in the 10% case. The quadratic complexity is some-
what surprising at first, as the sizes of the constructed
structures in both cases are linear in the input graph.
For the likelihood graph, the quadratic complexity is
explained by the fact that in our current implemen-
tation we store the input graph in a Java class that
requires linear time for returning for a given node o
all parents o′ in the graph. Since the graph has to be
queried for such parent sets at least during the decom-
position of each upper ground atom node, we obtain
the quadratic complexity. This complexity could be
reduced by storing the input structures in a database
to permit more efficient querying.

In the case of complete data, both systems required
about the same time to perform the actual parameter
learning on the constructed structure, and the con-
struction time dominates the overall complexity. The
only marked difference we observe in the two systems
is the learning time in the presence of missing values.
Here our implementation exhibits a quadratic behav-
ior, whereas learning in Balios remains linear. The
reason for this lies in our rather expensive sampling
scheme, where we compute a conditional distribution
for each unobserved atom r(o). This computation is
currently implemented using the global evaluation of
the likelihood graph. Thus, each of these computa-
tions linear in the size of the graph, giving an overall
quadratic complexity for all conditional distributions.
Significant speedups for our method could be achieved
by reducing the computation of the conditional distri-
butions to local re-evaluations of those nodes in the
likelihood graph that are actually affected by the in-
stantiation of the single atom r(o). Balios, on the
other hand, already uses a Gibbs sampling scheme
based on local computations.

Figure 6 shows the accuracy of the parameters learned
by Balios and the likelihood graph. For both sys-
tems, we performed 5 random restarts of parameter
learning, and selected the highest-scoring parameter
values. As before, we show average accuracy values
over 3 repetitions of the experiment. Accuracy of
an estimated parameter vector θ here is measured as
acc(θ) = 1/n

∑n

i=1 | θi − θgen,i |, where θgen are the

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ac
cu

ra
cy

number of nodes

LG accuracy 0%
Balios accuracy 0%

LG accuracy 1%
Balios accuracy 1%

LG accuracy 5%
Balios accuracy 5%

LG accuracy 10%
Balios accuracy 10%

Figure 6. Comparison with EM: accuracy

Table 2. RBN with nested combination function

@base(u)=(blue(u):0.8,0.1);

@innercomb(w)=mean{@base(u)|u:edge(u,w)};
F on(v)= esum{@innercomb(w)|w:edge(w,v)};

true parameters in the generating model (both encod-
ings of the model contain exactly the same parame-
ters). The results show that both methods obtain very
similar accuracies, both with complete and incomplete
data.

Our following experiments explore models with non-
decomposable and nested combination functions,
which are outside the scope of previous methods.
First, we investigate the RBN given in Table 2. This
is a model with a nested combination function, includ-
ing a non-decomposable one. Input structures for this
model consist of graphs with an edge relation, and an
attribute blue on the nodes. The model represents a
probabilistic attribute on. According to the model,
the probability of on(o) depends on parents o′ and
grandparents o′′ of o. Note that P (on(o)) does not
only depend on the number of grandparents o′′ of o
for which blue(o′′) is true/false. For example, the two
objects o1, o2 in Figure 8 both have two blue and two

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000

ac
cu

ra
cy

number of nodes

Figure 7. Accuracy result for RBN of Table 2

Parameter Learning for Relational Bayesian Networks

PSfrag replacements

0.8 0.1

e−0.9

0.45 0.8

e−1.25

o1 o2

Figure 8. Nodes with different probability values

Table 3. Mixture of combination functions RBN

active(w) = theta active

@basenor(w) = (active(w):theta nor1,theta nor2);

@basemean(w) = (active(w):theta mean1,theta mean2);

@baseesum(w) = (active(w):theta esum1,theta esum2);

@norform(v) = n-or{@basenor(w)|w:edge(v,w)};
@meanform(v) = mean{@basemean(w)|w:edge(v,w)};
@esumform(v) = esum{@baseesum(w)|w:edge(v,w)};
@redcomb(v)=theta red nor @norform(v)+

theta red mean @meanform(v)+

theta red esum @esumform(v);

F on(v) = (red(v):@redcomb(v),

blue(v):@bluecomb(v),

green(v):@greencomb(v));

non-blue grandparents. In Figure 8 the parent nodes
o′ are labeled with the values of @innercomb(o′), and
o1, o2 with the resulting value of F on. Intuitively, in
this model, blueness of grandparents inhibits the at-
tribute on. Parents pass this inhibition factor on to
their children only depending on the relative, not the
total, number of their blue parents.

Figure 7 shows the accuracy results for learning the
two parameters of the the RBN in Table 2. For this,
complete data was sampled from (random) graphs of
different sizes (note that for this model incomplete
data will just reduce the effective datasize, because an
observed on atom will not depend on any unobserved
atoms). On each dataset, parameters were learned
with 10 random restarts, and the parameters obtain-
ing the highest likelihood score were selected. For each
input structure, this experiment was repeated 6 times.
The graph in Figure 7 shows the average accuracy in
the 6 repetitions, as well as maximal and minimal val-
ues. The results show that we can learn the parameters
inside a two-level nested combination function.

In our third experiment we explore the possibility
of identifying combination functions by parameter
learning. We use random graphs with a node col-
oring red, blue, green as input structures, and con-
sider two unary random attributes active and on.
The on attribute depends via a combination func-
tion on the active attribute of parents in very much
the same way as on depended recursively on on in
the RBN of Table 1. The formulas @meanform(v),

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 9. Learned mixture parameters

@norform(v), and @esumform(v) describe this depen-
dency for three different combination functions. The
formula @redcomb(v) is a weighted combination of
these three combination functions with weight param-
eters θred = θred,nor, θred,mean, θred,esum (we are here
taking some liberties with the RBN syntax, which in
reality expresses this combination as a nested con-
vex combination). According to the formula F on(v),
@redcomb(v) is the formula that determines the prob-
ability of on for red nodes. The formulas @bluecomb

and @greencomb (not shown in Table 3) are iden-
tical to @redcomb(v), only with parameter vectors
θblue, θgreen. We use a generating model in which
θred,nor = θblue,mean = θgreen,esum = 1, and all other
weight parameters are 0, i.e. the on attribute is de-
termined by a noisy-or for red nodes, by mean for
blue nodes, and by esum for green nodes. We learn
the parameters of the model from complete datasets
sampled from an input structure with 2000 nodes (as
usual, repeating the experiment 6 times with differ-
ent datasets). Figure 9 illustrates the learned weight
parameters. Here we have projected the three di-
mensional vectors θred, θblue, θgreen into 2-dimensional
space, such that (1, 0, 0) is mapped to (−1, 0), (0, 1, 0)
is mapped to (1, 0), and (0, 0, 1) is mapped to (0, 1).
The result shows that the mixture coefficients for the
red and green nodes (given by (1,0,0), respectively
(0,0,1) in the generating model) were very accurately
identified. The mixture coefficients for the blue nodes
were not as accurately identified, i.e. the combination
function mean was harder to identify.

4. Conclusion

We have introduced a new method for parameter learn-
ing for relational models based on compiling a rela-
tional Bayesian network representation into a compu-
tational structure for the likelihood function and its
partial derivatives. Apart from the limitation to dif-

Parameter Learning for Relational Bayesian Networks

ferentiable combination functions, the method is appli-
cable (and implemented) for arbitrary models in the
very expressive RBN language, including models with
weighted combinations of combining rules, nested com-
bining rules, or both. The addition of a new combina-
tion function to the modeling language only requires
the specification for its value and partial derivative
computations (the three combination functions imple-
mented so far require about 20 lines of specific code
each).

Our current prototype implementation has already
provided very encouraging results. They show that our
method can compete with existing alternative methods
on models where both apply, and, more importantly,
that the method can be applied to models which are
outside the scope of previous approaches.

There is room for substantial improvement in the cur-
rent implementation. Notably improved data man-
agement and better sampling techniques can be ex-
pected to lead to significant gains in efficiency. Our
implementation is being integrated into the Prim-
ula system (http://www.cs.aau.dk/∼jaeger/Primula),
and will become publicly available with the next ver-
sion of Primula.

Another line of future work is a further reduction of
the likelihood graph. Currently, nodes are only shared
when they represent subformulas that are identified
by the name of their probability formula as equal.
However, many nodes in the likelihood graph can still
represent the same function, without being merged
into a single node (this is the case, for instance, for
the two nodes @norarg(A),@norarg(B) in Figure 3,
which both just represent the value θ2). Another in-
triguing possibility is to explicitly sum out unobserved
atoms using methods borrowed from binary decision
diagrams.

References

Binder, J., Koller, D., Russell, S., & Kanazawa, K.
(1997). Adaptive probabilistic networks with hidden
variables. Machine Learning, 29, 213–244.

De Raedt, L., & Kersting, K. (2003). Probabilistic
logic learning. ACM-SIGKDD Explorations, 5, 31–
48.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A.
(1999). Learning probabilistic relational models.
Proceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99).

Jaeger, M. (1997). Relational bayesian networks. Pro-
ceedings of the 13th Conference of Uncertainty in

Artificial Intelligence (UAI-13) (pp. 266–273). Prov-
idence, USA: Morgan Kaufmann.

Jaeger, M. (2001). Complex probabilistic modeling
with recursive relational Bayesian networks. Annals
of Mathematics and Artificial Intelligence, 32, 179–
220.

Kersting, K. (2006). An inductive logic programming
approach to statistical relational learning. IOS Press.

Kersting, K., & Raedt, L. D. (2001). Towards combin-
ing inductive logic programming with bayesian net-
works. Proceedings of the 11th International Con-
ference on Inductive Logic Programming (ILP-01)
(pp. 118–131).

Koller, D., & Pfeffer, A. (1997). Learning probabilities
for noisy first-oreder rules. Proceedings of the Fif-
teenth International Joint Conference on Artificial
Intelligence (IJCAI-97).

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.,
& Kolobov, A. (2005). Blog: Probabilistic logic with
unknown objects. Proc. 19th International Joint
Conference on Artificial Intelligence (IJCAI) (pp.
1352–1359).

Muggleton, S. (1996). Stochastic logic programs. In
de L. Raedt (Ed.), Advances in inductive logic pro-
gramming, 254–264. IOS Press.

Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich,
T., Fern, A., & Restificar, A. (2005). Learning first-
order probabilistic models with combining rules.
Proc. of the 22nd International Conference on Ma-
chine Learning (ICML-05) (pp. 609–616).

Ngo, L., & Haddawy, P. (1995). Probabilistic logic
programming and bayesian networks. Algorithms,
Concurrency and Knowledge (Proceedings ACSC95)
(pp. 286–300).

Pfeffer, A. (2000). Probabilistic reasoning for complex
systems. Doctoral dissertation, Stanford University.

Richardson, M., & Domingos, P. (2006). Markov logic
networks. Machine Learning, 62, 107 – 136.

Rote, G. (1990). Path problems in graphs. In Compu-
tational graph theory, no. 7 in Computing Supple-
mentum, 155–189. Springer.

Sato, T. (1995). A statistical learning method for logic
programs with distribution semantics. Proceedings
of the 12th International Conference on Logic Pro-
gramming (ICLP’95) (pp. 715–729).

