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ABSTRACT

We introduce a set of transformations on the set of all probability distributions over
a finite state space, and show that these transformations are the only ones that preserve
certain elementary probabilistic relationships. This result provides a new perspective on
a variety of probabilistic inference problems in which invariance considerations play a
role. Two particular applications we consider in this paper are the development of an
equivariance-based approach to the problem of measure selection, and a new justification
for Haldane’s prior as the distribution that encodes prior ignorance about the parameter
of a multinomial distribution.

1. Introduction

Many rationality principles for probabilistic and statistical inference are based
on considerations of indifference and symmetry. An early expression of such a
principle is Laplace’s principle of insufficient reason: “One regards two events as



equally probable when one can see no reason that would make one more proba-
ble than the other, because, even though there is an unequal possibility between
them, we know not which way, and this uncertainty makes us look on each as if
it were as probable as the other’”(Laplace, Collected Works vol. VIII, cited after
(Hacking 1975)). Principles of indifference only lead to straightforward rules for
probability assessments when the task is to assign probabilities to a finite number
of different alternatives, none of which is distinguished from the others by any
information we have. In this case all alternatives will have to be assigned equal
probabilities. Such a formalization of indifference by equiprobability becomes
notoriously problematic when from state spaces of finitely many alternatives we
turn to infinite state spaces: on countably infinite sets no (countably additive)
uniform probability distributions exist, and on uncountably infinite sets the con-
cept of uniformity becomes ambiguous (as evidenced by the famous Bertrand’s
paradox (Holbrook & Kim 2000, van Fraassen 1989)).

On (uncountably) infinite state spaces concepts of uniformity or indifference
have to be formalized on the basis of certain transformations of the state space:
two sets of states are to be considered equiprobable, if one can be transformed into
the other using some natural transformation ¢. This, of course, raises the sticky
question what transformations are to be considered as natural and probability-
preserving. However, for a given state space, and a given class of probabilistic in-
ference tasks, it often is possible to identify natural transformation, so that the so-
lution to the inference tasks (which, in particular, can be probability assessments)
should be invariant under the transformations. The widely accepted resolution of
Bertrand’s paradox, for example, is based on such considerations of invariance
under certain transformations. Also the uniform distribution on the real numbers
is ultimately characterized (up to a constant factor) through its invariance under
rigid motions.

In this paper we are concerned with probabilistic inference problems that per-
tain to probability distributions on finite state spaces. As indicated above, when
dealing with finite state spaces there does not seem to be any problem of cap-
turing indifference principles with equiprobability. However, even though the
underlying space of alternatives may be finite, the object of our study very often
is the infinite set of probability distributions on that space, i.e. for the state space
S ={s1,...,8,} the (n — 1)-dimensional probability polytope

A" = {(pla' 7pn) eR" |pl € [07 1]72]?1 = 1}

The objective of this paper now can be formulated as follows: we investigate
what natural transformations there exist of A™, such that inference problems that
pertain to A™ should be solved in a way that is invariant under these transfor-
mations. In section 2 we identify a unique class of transformations that can be
regarded as most natural in that they alone preserve certain relevant relationships
between points of A™. In sections 3 and 4 we apply this result to the problems of
noninformative priors and measure selection, respectively.



2. Representation Theorem

The nature of the result we present in this section can best be explained by an
analogy: suppose, for the sake of the argument, that the set of probability distribu-
tions we are concerned with is parameterized by the whole Euclidean space R",
rather than the polytope A™. Suppose, too, that all inputs and outputs for a given
type of inference problem consist of objects (e.g. points, convex subsets,...) in
R™. In most cases, one would then probably require of a rational solution to the
inference problem that it does not depend on the choice of the coordinate system.
Specifically, if all inputs are transformed by a translation, i.e. by adding some
constant offset » € R"™, then the outputs computed for the transformed inputs
should be just the outputs computed for the original inputs, also translated by 7:

sol(z + r) = sol(z) + r, (1)

where ¢ stands for the inputs and sol for the solution of an inference problem.
Condition (1) expresses an equivariance principle: when the problem is trans-
formed in a certain way, then so should be its solution (not to be confused with
invariance principles according to which certain things should be unaffected by a
transformation).

The question we now address is the following: what simple, canonical trans-
formations of the set A™ exist, so that for inference problems whose inputs and
outputs are objects in A™ one would require an equivariance property analogous
to (1)? Intuitively, we are looking for transformations of A™ that can be seen
as merely a change of coordinate system, and that leave all relevant geometric
structures intact. The following definition collects some key concepts we will
use.

DEFINITION 2.1. A transformation of a set S is any bijective mapping ¢ of .S
onto itself. We often write ts rather than ¢(s). For a probability distribution
p=(p1,...,pn) € A" theset {i € {1,...,n} | p; > 0} is called the set of
support of p, denoted support(p). A transformation ¢ of A™ is said to

e preserve cardinalities of support if for all p: | support(p) |=|support(tp) |
e preserve sets of support if for all p: support(p) = support(¢p).

A distribution p is called a mixture of p’ and p” if there exists A € [0, 1] such
that p = A\p’ + (1 — \)p” (in other words, p is a convex combination of p” and
p"). A transformation ¢ is said to

e preserve mixtures if for all p, p’, p”: if p is a mixture of p’ and p”, then
tp is a mixture of tp’ and tp”.
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The set of support of a distribution p € A”™ can be seen as its most fundamental
feature: it identifies the subset of states that are to be considered as possible at all,
and thus identifies the relevant state space (as opposed to the formal state space
S, which may contain states s; that are effectively ruled out by p with p; = 0).
When the association of the components of a distribution p with the elements
of the state space S = {s1,...,s,} is fixed, then p and p’ with different sets of
support represent completely incompatible probabilistic models that would not be
transformed into one another by a natural transformation. In this case, therefore,
one would require a transformation to preserve sets of support.

A permutation of A™ is a transformation that maps (p1, . .., pn) t0 (Pr(1); - - -
Pr(n))» Where 7 is a permutation of {1,...,n}. Permutations preserve cardinal-
ities of support, but not sets of support. Permutations of A™ are transformations
that are required to preserve the semantics of the elements of A™ after a reorder-
ing of the state space S: if S is reordered according to a permutation 7, then p
and 7p are the same probability distribution on S.

That a distribution p is a mixture of p’ and p” is an elementary probabilis-
tic relation between the three distributions. It expresses the fact that the proba-
bilistic model p can arise as an approximation to a finer model that would dis-
tinguish the two distinct distributions p’ and p” on S, each of which is appro-
priate in a separate context. For instance, p’ and p”’ might be the distributions
on S = {jam, heavy traffic, light traffic} that represent the travel conditions on
weekdays and weekends, respectively. A mixture of the two then will represent
the probabilities of travel conditions when no distinction is made between the
different days of the week.

That a transformation preserves mixtures, thus, is a natural requirement that
it does not destroy elementary probabilistic relationships. Note that we do not
require that ¢ preserves the mixture coefficient: when p = Ap’ 4+ (1 — \)p” then
usually we will have tp = ktp’ + (1 — k)tp” with k # A. In fact, it is easy to see
that only the identity function preserves both sets of supports and mixtures, such
that the mixture coefficient is unchanged.

We now introduce the class of transformations that we will be concerned with
in the rest of this paper. We denote with R™ the set of positive real numbers.

DEFINITION 2.2. Letr = (r1,...,r,) € (RT)™. Define forp = (p1,...,pn) €
A’I’L

tr(p) = (rlpla L) 7T71p71)/ Z TiDi-
=1
Let T, := {t, | r € (RT)").

Note that we have ¢, = t,.. if 7’ is obtained from r by multiplying each com-
ponent with a constant ¢ > 0. We can now formulate our main result.

THEOREM 2.3. Letn > 3 and ¢ be a transformation of A™.



(i) t preserves sets of support and mixtures iff ¢ € T,.
(i) t preserves cardinalities of support and mixtures iff ¢ = ¢’ o 7 for some
permutation 7 and some ¢’ € Tj,.

The statements (i) and (ii) do not hold for n = 2: A2 can be identified with the
interval [0, 1], and every monotone bijection of [0, 1] satisfies (i) and (ii). A weak
form of a dual version of this theorem was already reported in (Jaeger 2001). The
proof of the theorem is given in appendix 6.1. The following examples illustrate
how transformations ¢ € T, can arise in practice.

EXAMPLE 2.4. In a study of commuter traffic the use of buses, private cars and
bicycles is investigated. To this end, a group of research assistants is sent out
one day to perform a traffic count on a number of main roads into the city.
They are given count sheets and short written instructions. Two different sets
of instructions were produced in the preparation phase of the study: the first
set advised the assistants to make one mark for every bus, car, and bicycle,
respectively, in the appropriate column of the count sheet. The second (more
challenging) set of instructions specified to make as many marks as there are
actually people traveling in (respectively on) the observed vehicles. By acci-
dent, some of the assistants were handed instructions of the first kind, others
those of the second kind.

Assume that on all roads being watched in the study, the average number of
people traveling in a bus, car, or on a bicycle is the same, e.g. 10, 1.5, and 1.01,
respectively. Also assume that the number of vehicles observed on each road is
so large, that the actually observed numbers are very close to these averages.

Suppose, now, that we are more interested in the relative frequency of bus, car
and bicycle use, rather than in absolute counts. Suppose, too, that we prefer
the numbers that would have been produced by the use of the second set of
instructions. If, then, an assistant hands in counts that were produced using
the first set of instructions, and that show frequencies f = (f1, f2, f3) € A3
for the three modes of transportation, then we obtain the frequencies we really
want by applying the transformation ¢,. with » = (10,1.5,1.01). Conversely,
if we prefer the first set of instructions, and are given frequencies generated by
the second, we can transform them using ' = (1/10,1/1.5,1/1.01).

This example gives rise to a more general interpretation of transformations in
T, as analogues in discrete settings to rescalings, or changes of units of measure-
ments, in a domain of continuous observables.

EXAMPLE 2.5. Let S be a set of n possible diagnoses a doctor considers for
one of his patients. After interviewing the patient and conducting several pre-
liminary examinations, the doctor has arrived at a probability distribution p on



S. He now performs another test 7" on the patient. For each s; € S the doc-
tor knows with certainty the probability that the test will give a positive result,
given that s; is the correct diagnosis, i.e. he knows the probabilities

r;:= P(T =pos | s;). 2)

Observing a positive result, the doctor will update his initial probability as-
signment p; = P(s;) to the new assignment p} := P(s; | T = pos) =
r;P(s;)/P(T = pos). If the test cannot exclude any diagnosis with certainty,
i.e. r; > Oforall ¢, then p’ = t,.p with 7 given by (2). Thus, the transformation
t, describes the change induced on the probability assignment for the relevant
state space S that is induced by conditioning on 7" = pos in the expanded state
space S x {T = pos, T = neg} (a similar transformation describes the change
induced by conditioning on T = neg).

Note that it is trivially true that the update from some particular prior p to a
posterior p’ can be described by a transformation ¢,. (provided p and p’ have
the same set of support). The salient fact is that given the fixed probabilities
(2), the transformation ¢,. is the same for all priors p.

3. NoninformativePriors

Bayesian statistical inference requires that a prior probability distribution is
specified on the set of parameters that determines a particular probability model.
Herein lies the advantage of Bayesian methods, because this prior can encode
domain knowledge that one has obtained before any data was observed. Often,
however, one would like to choose a prior distribution that represents the absence
of any knowledge: an ignorant or noninformative prior. The set A™ is the pa-
rameter set for the multinomial probability model (for a fixed sample size). The
question of what distribution on A™ represents a state of ignorance about this
model has received much attention, but no conclusive answer seems to exist.

Three possible solutions that most often are considered are: the uniform distri-
bution, i.e. the distribution that has a constant density ¢ with respect to Lebesgue
measure, Jeffreys’ prior, which is given by the density ¢ [], p, 1/2 (where c is
a suitable normalizing constant), and Haldane’s prior, given by density [, p;” 1
Haldane’s prior (so named because it seems to have first been suggested in (Haldane
1932)) is an improper prior, i.e. it has an infinite integral over A™. All three dis-
tributions are Dirichlet distributions with parameters (1,...,1),(1/2,...,1/2),
and (0, ...,0), respectively (in the case of Haldane’s distribution, the usual defi-
nition of a Dirichlet distribution has to be extended so as to allow the parameters



(0,...,0)). Schafer (1997) considers all Dirichlet distributions with parameters
(e, ...,a) for0 < a <1 as possible candidates for a noninformative prior.

The justifications for identifying any particular distribution as the appropri-
ate noninformative prior are typically based on invariance arguments: generally
speaking, ignorance is argued to be invariant under certain problem transforma-
tions, and so the noninformative prior should be invariant under such problem
transformations. There are different types of problem transformations one can
consider, each leading to a different concept of invariance, and often leading to
different results as to what constitutes a noninformative prior (see (Hartigan 1964)
for a systematic overview). In particular, there exist strong invariance-based ar-
guments both for Jeffreys’ prior (Jeffreys 1961), and for Haldane’s prior (Jaynes
1968, Villegas 1977). Novick and Hall (1965) derive Haldane’s prior by a differ-
ent type of argument. Skilling (1985), on the other hand, rejects Haldane’s prior
because it remains improper when updated by unreliable observations. In the fol-
lowing, we present additional invariance-based arguments in support of Haldane’s
prior.

EXAMPLE 3.1. (continuation of example 2.4) Assume that the true, long-term
relative frequencies of bus, car, and bicycle use are the same on all roads at
which the traffic count is conducted (under both counting methods). Then the
counts obtained in the study are multinomial samples determined by a param-
eter f € A3 if the first set of instructions is used, and f3 € A3 if the second
set of instructions is used. Suppose the project leader, before seeing any counts,
feels completely unable to make any predictions on the results of the counts,
i.e. he is completely ignorant about the parameters f.

When the samples are large (i.e. a great number of vehicles are observed on ev-
ery road), then the observed frequencies f obtained using instructions of type ¢
are expected to be very close to the true parameter f;. The prior probability Pr
assigned to a subset A C A™ then can be identified with a prior expectation of
finding in the actual counts relative frequencies f € A. If this prior expectation
is to express complete ignorance, then it must be the same for both sampling
methods: being told by the first assistant returning with his counts that he had
been using instructions of type 2 will have no influence on the project leader’s
expectations regarding the frequencies on this assistant’s count sheet. In partic-
ular, merely seeing the counts handed in by this assistant will give the project
leader no clue as to which instructions were used by this assistant.

The parameters f are related by f3 = t,.f], where ¢, is as in example 2.4.
Having the same prior belief about f7 as about f] means that for every A C
A3 one has Pr(A) = Pr(t, A). A noninformative prior, thus, should be invari-
ant under the transformation ¢,.. As the relation between f] and f3 might also
be given by some other transformation in 7, this invariance should actually
hold for all these transformations.



This example provides one intuitive justification for requiring noninformative
priors to be invariant under T, -transforms. The next theorem states that this in-
variance property only holds for Haldane’s prior. In the formulation of the theo-
rem a little care has to be taken in dealing with the boundary of A"™, where the
density of Haldane’s prior is not defined. We therefore restrict the statement of
the theorem to the prior on the interior of A™, denoted intA™.

THEOREM 3.2. Let Pr be a measure on intA™ with Pr(intA™) > 0and Pr(A) <
oo for all compact subsets A of intA™. Pr is invariant under all transformations
t, € T, iff Pr has a density with respect to Lebesgue measure of the form
c¢[1; p; " with some constant ¢ > 0.

Justifications for particular invariance concepts that are based on specific sce-
narios like the one described in example 3.1 always leave room for the possibility
that different, similarly persuasive, scenarios can be constructed, which lead to
different invariance concepts, and hence to different noninformative priors. It
is therefore important that theorems 2.3 and 3.2 together provide a justification
for Haldane’s prior which is somewhat more robust (but also more abstract): any
invariance-based justification for a different prior must be based on invariance un-
der transformations that do not have the preservation properties of definition 2.1,
and therefore can be argued to be less natural or basic than the transformations
from which Haldane’s prior is derived.

Since theorem 2.3 only is valid for n > 3 (whereas theorem 3.2 also holds for
n = 2), this justification, in principle, only applies for n > 3 (though it would
seem very unnatural to adopt Haldane’s prior for n > 3, and use some other prior
forn = 2).

To conclude this section, we briefly review an earlier justification for Haldane’s
prior which was given by Jaynes (1968). This justification is based on deriving
a particular type of transformations from an intuitive scenario, very much as we
did in example 3.1. It is developed by Jaynes only for n = 2, though it clearly
generalizes to n > 3. In the following we adopt Jaynes’s notation and write
(0,1 — 0) for a binomial distribution with “success probability” € (rather than
writing (po, p1)).

The basis for Jaynes’s justification is an intuitive interpretation of a noninfor-
mative prior as a distribution of beliefs about the true value of # that one would
find in “a population in a state of total confusion”: according to this interpretation
one assumes that there exists a population I of individuals ¢, and each individual
believes the value of 6 to be 0; € [0, 1]. The distribution of beliefs in the popula-
tion I, thus, gives rise to a density f(#) on [0, 1]. This density can be interpreted
as a noninformative prior when the individuals ¢ € I base their beliefs on “differ-
ent and conflicting information”, and, thus, the population as a whole is in a state
of “total confusion”.

Jaynes’s argument then is that such a state of total confusion will remain to be
the same when some piece of evidence E is given to all individuals, and each



individual updates his or her beliefs by conditioning on E. By a suitable formal-
ization of this scenario, Jaynes shows that a single individual’s transition from an
original belief # to the new belief 6 is given by

0 ab/(1 — 0 + af). 3)

This can easily be seen as a transformation from our group 75> (note the simi-
larity between this derivation of a T»-transformation and our example 2.5). The
assumption of a collective state of ignorance being invariant under assimilation of
the evidence £ leads to the condition of invariance of f under the transformation
(3) !. Jaynes then proceeds to show that only Haldane’s prior is invariant under
these transformations (which is the special case n = 2 of our Theorem 3.2).

4. Equivariant Measure Selection

A fundamental probabilistic inference problem is the problem of measure se-
lection: given some incomplete information about the true distribution p on S,
what is the best rational hypothesis for the precise value of p?

EXAMPLE 4.1. (continuation of example 2.4) One of the research assistants has
lost his count sheet on his way home. Unwilling to discard the data from the
road watched by this assistant, the project leader tries to extract some informa-
tion about the counts that the assistant might remember. The assistant is able
to say that he observed at least 10 times as many cars as buses, and at least
5 times as many cars as buses and bicycles combined. The only way to enter
the observation from this particular road into the study, however, is in the form
of accurate relative frequencies of bus, car, and bicycle use. To this end, the
project leader has to make a best guess of the actual frequencies based on the
linear constraints given to him by the assistant.

EXAMPLE 4.2. (continuation of example 2.5) The doctor’s distribution p on
possible diagnoses will usually be the result of a measure selection process:
each examination or test he performs on the patient will provide some par-
tial information, e.g.: “(according to this test result) diagnosis s is twice as
probable as diagnosis s’”. All results combined leave the doctor with a set of
possible distributions p consistent with his information. To decide on the best
of a number of different therapies (potentially infinitely many — each associated
with different success probabilities and side effects), however, the doctor has to
choose a unique p to express his beliefs about the correct diagnosis.

'In Jaynes’s presentation the factor a is originally defined so as to be dependent on the particular
individual whose belief change is given by (3). The further arguments implicitly assume that a is a
common constant for all individuals.
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The general formulation of the measure selection problem given above admits
of a number of different more precise problem specifications. In particular, one
can distinguish different variants of the general problem according to the nature of
the distribution p, and the nature of the incomplete information available about p.
Several solutions that have been proposed for the measure selection problem are
based on quite different interpretations of p and incomplete information (Shore &
Johnson 1980, Paris & Vencovska 1990, Jaeger 2001). In order to clarify the role
of the equivariance principle that we will propose as a desideratum for measure
selection rules, we first take a closer look at these different interpretations.

4.1. Variantsof the Measure Selection Problem
We first make some general assumptions on the purely mathematical form of
incomplete information about p, and the measure selection problem: one assump-
tion is that incomplete information consists of a set ¢ = ¢, ..., ¢ of linear con-
straints on p, i.e. linear inequalities of the form
Ciapr+ ..+ cinbn <cio (1<i<k)

with real coefficients ¢; ;. This is quite a restrictive assumption on what types
of incomplete information are to be considered, as it excludes e.g. independence
constraints of the form “events A and B are independent”. In spite of this re-
strictiveness, the limitation to linear constraints usually has to be made in order to
make the measure selection problem at all feasible.

A set ¢ of linear constraints defines the set A(¢) C A™ of distributions that sat-
isfy all constraints (the solution set of ¢). One possible mathematical formulation
of the measure selection problem now is

define a selection function sel that maps sets ¢ of linear con-

(Sel 1) straints to nonempty subsets sel(c) C A™.

This formalization, on the one hand, is very strong in that it requires sel to be
defined for all, even inconsistent, sets of constraints; on the other hand it is very
weak in that sel(¢) is allowed to be a subset of A™, rather than a unique element,
and, moreover, it is not required that sel(¢) C A(¢) (which would be incompati-
ble with the requirement that sel also is defined for inconsistent ¢). An alternative,
more traditional formalization of the problem is

define a selection function sel that maps consistent sets ¢ of lin-

(Sel 2) ear constraints to points sel(c) € A(e).

Identifying a set of constraints ¢ with its solution set A(c), and generalizing from
such polytopes to arbitrary closed and convex subsets A C A", one can finally
put the problem in the following form:

define a selection function sel that maps nonempty, closed and

(Sel3) o vex subsets A C A" to points sel(c) € A.
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Sel 1-3 are purely mathematical formalizations of the problem which do not di-
rectly represent any specific interpretations of the nature of p, or the constraints c.
However, which of these formalizations is most appropriate is partly determined
by the interpretation given to p and c.

First turning to p, we can distinguish the cases that p represents a statistical,
observable probability, or that p represents a subjective probability (degree of be-
lief). These two different types of distributions give rise to two distinct interpre-
tations of the “true” distribution p that we want to identify by measure selection:
In the case of statistical probabilities the “true” p describes actual long-run fre-
quencies, which, in principle, given sufficient time and experimental resources,
one could determine exactly. In the case of subjective probability, the “true” p is
a rational belief state that an ideal intelligent agent would arrive at by properly
taking into account all its current, incomplete knowledge.

A second dichotomy arises through different interpretations of the nature of the
constraints c: these can either be seen as a complete description of a state of infor-
mation, or as randomly sampled pieces of (possibly unreliable) information. This
distinction between constraints as knowledge and constraints as data was intro-
duced in (Jaeger 2001). It is a distinction that is independent from the distinction
between statistical and subjective probabilities p. The following examples illus-
trate all four combinations of interpretations for p and c.

EXAMPLE 4.3. (Statistical probabilities, constraints as data) Let p be a proba-
bility distribution in a medical domain that represents relative frequencies of
certain diseases and symptoms. A linear constraint can, for instance, provide
an upper bound on the probability of disease D given symptom S. We can now
obtain a great number of such constraints by evaluating patient data from differ-
ent hospitals and/or by interviewing numerous medical experts. Each individ-
ual constraint we elicit in this manner can then be seen as a randomly sampled
piece of information on the true distribution p that describes the actual relative
frequencies in the population we actually want to model. Note that constraints
obtained in this manner can easily be inconsistent (patient data from different
hospitals may show quite different conditional probabilities). Note, too, that
we will probably have greater confidence in, and pay more attention to, con-
straints that we have observed multiple times (e.g. the conditional probability
of D given S has been determined for many different hospitals, and similar val-
ues have been found in all cases) than “isolated” constraints (e.g. a conditional
probability for D’ given S has only been mentioned by one expert, and not
been corroborated otherwise).

EXAMPLE 4.4. (Statistical probabilities, constraints as knowledge) Let p be as
in the preceding example, but now suppose that the constraints are obtained
by systematically interviewing a single expert, for instance by requiring him to



12

state for every possible conditional probability in the domain a best lower and
upper bound, according to his knowledge.

EXAMPLE 4.5. (Subjective probabilities, constraints as data) Let p represent
the subjective probabilities some European football enthusiast holds about the
results in the upcoming champion’s league season. Suppose we meet this fan
at some late hour in the local pub, and that the conversation turns to football.
Every now and then he will make a statement that, in effect, is a linear con-
straint on p: “Barcelona has at least twice the chance of reaching the finals that
Madrid has”, “I’d bet 10:1 that Bayern Munich will exit in the first round again
— no, make that 20:17,... As in example 4.3, the constraints so obtained can be
interpreted as randomly sampled pieces of evidence on the true beliefs p. As
before, these constraints can be inconsistent, and we will pay greater attention
to those constraints that have been consistently repeated several times.

EXAMPLE 4.6. (Subjective probabilities, constraints as knowledge) Let p be
the beliefs held by a professional bookmaker on the results in the upcoming
champion’s league season. Before the season starts, he offers certain odds on
some possible bets, e.g. 10:1 that Madrid will reach the semifinals. Assuming
the bookmaker to be rational, we can interpret these odds as constraints on his
beliefs p (the probability that Madrid will reach the semifinals is at most 0.1).
As the bookmaker will aim to offer bets on all events for which he believes
to have some reasonable probability assessment, and will also want to offer
competitive odds, one can view the collection of bets he offers as a complete
description of his state of knowledge.

Clearly, in any given situation it need not be obvious whether the constraints
as data or constraints as knowledge interpretation is more appropriate — both in-
terpretations are idealizations that will never be encountered in a pure form in
reality. A good criterion by which one can judge which interpretation of the given
constraints is the right one is to decide whether one should base measure selection
on the raw set of observed constraints ¢, taking into account possible multiple oc-
currences of the same constraint, or whether A(c) alone already encodes all the
relevant information provided by c. This also means that under the constraints
as data interpretation the mathematical shape of the measure selection problem
is (Sel 1), whereas under the constraints as knowledge interpretation (Sel 2) and
(Sel 3) are more natural.

More important than the technicalities of the problem formalization, however,
is the question whether the different interpretations for p and ¢ will lead to com-
pletely different solution paradigms, or whether the same formal selection rules
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are appropriate in all cases. Paris (1994, n.d.) emphasizes that the principles he
postulates for measure selection are meant to apply to subjective probabilities p
and the constraints as knowledge interpretation only. In (Jaeger 2001), on the
other hand, it has been argued that the constraints as data perspective requires dif-
ferent selection principles than the constraints as knowledge perspective. This is
already supported by the discussion of examples 4.3-4.6, where we saw that the
constraints as data perspective leads to selection rules that must be sensitive to
multiple occurrences of identical constraints, but under the constraints as knowl-
edge perspective such multiplicities would be ignored.

However, in contrast to Paris, we see no reason to believe that measure selec-
tion for subjective probabilities should follow different principles than measure
selection for statistical probabilities. This is supported by a uniform philosophi-
cal interpretation of measure selection for statistical and subjective probabilities:
as already observed above, in the statistical case, the “true” p represents unob-
served long-run frequencies. Measure selection for statistical probabilities can
then be seen as a prediction on actual long-run frequencies that, in principle, one
would be able to observe in a suitable experimental setup (or simply by making
observations over a sufficiently long period of time).

Measure selection for subjective probabilities admits of a quite similar interpre-
tation: following earlier suggestions of a frequentist basis for subjective probabil-
ity (Reichenbach 1949, Carnap 1950), it is argued in (Jaeger 1995) that subjective
probability is ultimately grounded in empirical observation, hence statistical prob-
ability. In particular, in (Jaeger 1995) the process of subjective measure selection
is interpreted as a process very similar to statistical measure selection, namely
a prediction on the outcome of hypothetical experiments (which, however, here
even unlimited experimental resources may not permit us to carry out in practice).
Under the uniform interpretation of statistical and subjective measure selection as
a prediction of frequencies in (hypothetical) experiments, it seems reasonable that
both selection processes should follow the same formal rules. This is furthermore
supported by the observation that Shore and Johnson (1980) on the one hand,
and Paris and Vencovskd (1990) on the other hand, derive very similar principles
for measure selection, but Shore and Johnson assumed statistical probabilities,
whereas Paris and Vencovska consider subjective probabilities.

We can summarize our perspective on the measure selection problem by the
following three hypotheses. The first two summarize the preceding discussion;
the third is a combined result of the arguments in the following section 4.2, and
arguments in (Jaeger 2001).

e Selection rules under the constraints as data interpretation are different from
selection rules under the constraints as knowledge interpretation.

e Under either interpretation for the constraints, the same selection rules are
applicable to statistical and subjective probabilities.

e The equivariance principle, introduced below, is applicable (in slightly dif-
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ferent forms) under both interpretations for the constraints.

4.2. EquivariancePrinciple

In the following we focus on the measure selection problem under the con-
straints as knowledge perspective, taking (Sel 3) to be its mathematical structure.
We propose an equivariance principle for this setting. An analogous principle
adapted to the constraints as data perspective and the mathematical form (Sel 1)
is described in (Jaeger 2001). Additional results relevant for the constraints as
data case (including a dual version of the representation theorem that is more di-
rectly geared towards the needs of measure selection under constraints as data
than the formulation of theorem 2.3) can be found in (Jaeger 2003b).

The most widely favored solution to the measure selection problem under the
constraints as knowledge interpretation is the entropy maximization rule: define
selme(A) to be the distribution p in A that has maximal entropy (for closed and
convex A this is well-defined). Axiomatic justifications for this selection rule are
given in (Shore & Johnson 1980, Paris & Vencovska 1990). Both these works
postulate a number of formal principles that a selection rule should obey, and
then proceed to show that entropy maximization is the only rule satisfying all
the principles. Paris (1999) argues that all these principles, in essence, are just
expressions of one more general underlying principle, which is expressed by an
informal statement (or slogan) by van Fraassen (1989): Essentially similar prob-
lems should have essentially similar solutions.

In spite of its mathematical sound derivation, entropy maximization does ex-
hibit some behaviors that appear counterintuitive to many (see (Jaeger 2001) for
two illustrative examples). Often this counterintuitive behavior is due to the fact
that the maximum entropy rule has a strong bias towards the uniform distribu-
tion u = (1/n,...,1/n). As u is the element in A™ with globally maximal
entropy, u will be selected whenever u € A. Consider, for example, figure 1
(i) and (ii). Shown are two different subsets A and A’ of A3. Both contain u,
and therefore Selye(A) = selye(A’) = w. While none of Paris’ rationality prin-
ciples explicitly demands that w should be selected whenever possible, there is
one principle that directly implies the following for the sets depicted in figure 1:
assuming that sel(A) = w, and realizing that A’ is a subset of A, one should
also have sel(A’) = w. This is an instance of what Paris (1994) calls the obsti-
nacy principle: for any A, A’ with A’ C A and sel(A) € A’ it is required that
sel(A’) = sel(A). The intuitive justification for this is that additional information
(i.e. information that limits the previously considered distribution A to A’) that is
consistent with the previous default selection (i.e. sel(A) € A’) should not lead
us to revise this default selection. While quite convincing from a default reason-
ing perspective (in fact, it is a version of Gabbay’s (1985) restricted monotonicity
principle), it is not entirely clear that this principle is an expression of the van
Fraassen slogan. Indeed, at least from a geometric point of view, there does seem
to exist little similarity between the two problems given by A and A’, and thus the
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requirement that they should have similar solutions (or even the same solution)
hardly seems a necessary consequence of the van Fraassen slogan.

Figure 1. Maximum Entropy and T, - equivariant selection

An alternative selection rule that avoids some of the shortcomings of selpe is
the center of mass selection rule Selem: Selem(A) is defined as the center of mass
of A. With selcy, one avoids the bias towards u, and, more generally, the bias of
selye towards points on the boundary of the input set A is reversed towards an
exclusive preference for points in the interior of A. A great part of the intuitive
appeal of selcy, is probably owed to the fact that it is translation equivariant, i.e.
(1) is satisfied with sol = selgm and 7 = A.

Such an equivariance property can be understood as a much more direct formal-
ization of the van Fraassen slogan than the individual postulates proposed in the
derivations of the maximum entropy principle. Indeed, van Fraassen (1989), after
giving the informal slogan, proceeds to explain it further as a general symmetry
requirement of the form

h(R(4)) = R(h(A)), 4)

where A is the input to some inference problem, R is a solution rule for the prob-
lem, and h is some problem transformation (van Fraassen 1989, p.260). This
symmetry requirement, thus, is a very general principle that can be applied to
many different types of inference problems. The equivariance principle (1) is a
special form of (4) with h the translation by . For our special measure selection
problem we have that A is any closed and convex subset of A™, and R is a selec-
tion rule. To apply van Fraassen’s general symmetry requirement to our special
problem, it thus remains to specify the transformation(s) h for which (4) should
be required.

Appealing to theorem 2.3, we argue that the transformations in 77, are the most
relevant transformations to consider in our problem setting, so that we arrive at
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the following T),-equivariance principle for selection rules:
Forallt, € T,, : sel(t,A) = t.sel(A). (5)

Figure 1 (iii)-(v) illustrates the T),-equivariance principle: shown are three
different transformations A;, Ao, A3 of a polytope defined by three linear con-
straints, and the corresponding transformations p,, p,, p; of one distinguished
element inside the A;. T, -equivariance now demands that sel(4;) = p, <
sel(A2) = p, < sel(A3) = ps. The following example provides an intuitive
justification for requiring 7,,-equivariant selection rules.

EXAMPLE 4.7. (continuation of example 4.2) Let c be the set of constraints the
doctor obtains through his initial interview and examinations. By a measure
selection process he obtains the distribution p expressing his precise degrees
of belief for the different diagnoses. Now he performs the test 7" and obtains
a positive result. He now has two ways to combine this new evidence with his
previous reasoning: he can first integrate the new evidence with his original
partial information by conditioning each distribution g in A = A(¢) on T =
pos, thus obtaining a new set A’ = ¢,.(A) of possible distributions, and then
perform measure selection on A’. Alternatively, he can simply condition his
already selected distribution p on 7' = pos. If the doctor’s measure selection
rule is T}, -equivariant, then both ways will lead to the same result p’ = ¢,.p.

T,,-equivariance imposes no restriction on what sel(A;) should be for any sin-
gle A; in figure 1. It only determines how the selections for the different A;
should be related. This principle alone, thus, is far from providing a unique se-
lection rule, like the rationality principles of Paris and Vencovska (1990). On the
other hand, we have not yet shown that 7},-equivariant selection rules even exist.
This will be the subject of the remainder of this section where we construct a
concrete selection rule.

From (5) one immediately derives a limitation of possible T},-equivariant se-
lection rules: let A = A™ in (5). Then ¢t,,A = A for every t,. € T, and equiv-
ariance demands that ¢,.sel(A) = sel(A) for all ¢,., i.e. sel(A) has to be a fixpoint
under all transformations. The only elements of A™ that have this property are
the n vertices v, ..., v,, where v; is the distribution that assigns unit probabil-
ity to s; € S. Clearly a rule with sel(A™) = w; for any particular ¢ would be
completely arbitrary, and could not be argued to follow any rationality principles
(more technically, such a rule would not be permutation equivariant, which is
another equivariance property one would demand in order to deal appropriately
with reorderings of the state space, as discussed in section 2).

Similar problems arise whenever sel is to be applied to some A C A™ that
is invariant under some transformations of 7},. To evade these difficulties, we
restrict in the following the domain of sel to sets A that are not invariant under
any transformation ¢,. (except the identity transformation). Let .A denote the set
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of closed and convex A that are contained in the interior of A™ (i.e. support(p) =
{1,...,n} forall p € A), and that have full dimension (i.e. the affine hull of A
has dimension n — 1)?. One can show that A € A are not invariant under any
non-trivial ¢, € T;, (A is not the most general class of sets with this property, and
the following construction can also be extended to more general classes).

We first consider the special case n = 2. We identify A? with the interval
[0, 1] via the mapping (po, p1) — po. Then A consists of all closed intervals [I, u]
with 0 < [ < u < 1. Out of symmetry considerations, one will require from a
selection rule that

sel(fa,1 —a])=1/2 (0<a<1/2). (6)

One can show that for

(1 —u)(1 = DIBud)/4
lu

T =

the interval [I, u] is transformed by ¢,. into a symmetric interval of the form [a, 1 —
a]. Both this symmetric transform and the transformation ¢, are unique for the
given [I, u]. Assuming (6), then sel([l,u]) = ¢,~1(1/2), which is explicitly given
by
12 2
sel([l,u]) = - . %
VB3 = 1)1 —u) + 12u?

Figure 2 illustrates the value of sel([l, u]) as a function of [ for the two fixed values
u=0.5and u = 0.99.
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Figure 2. T>-equivariant selection

Thus, for n = 2 there exists a unique 75-equivariant selection rule that also
satisfies (6). This uniqueness result, however, comes with two qualifications: first
it must be remembered that theorem 2.3 does not apply for n = 2, so that T,-
equivariance does not carry the same weight for n = 2 as for n > 3. Second, this
uniqueness result only applies to the case where the input of the selection process

2The notation here is slightly modified from the one used in (Jaeger 2003a)
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is an interval [l,u], i.e. we are here considering the form (Sel 3) of selection
problem, which is appropriate under the constraints as knowledge only. Under
the constraints as data interpretation, we have as possible inputs to the selection
process arbitrary collections {l; | ¢ = 1,...,k}, {u; | j =1,...,1} of lower and
upper bounds. For this more general class of inputs no uniqueness result holds.

Following basically the same construction leading to (7), we can define 7,-
equivariant rules for n > 3.

We begin by defining on A an equivalence relation ~:

A~A & F.eT,: A =t A

The equivalence class orb(A) := {A’ | A" ~ A} (= {t,A | t, € T}, }) is called
the orbit of A (these are standard definitions). It is easy to verify that for A € A
also orb(A4) C A, and that for every A’ € orb(A) there is a unique ¢, € T,, with
A =t A

Suppose that sel(4) = p = (p1,...,pn). Withr = (1/p1,...,1/p,) then
tp = u, and by equivariance sel(¢,, A) = w. It follows that in every orbit there
must be some set A’ with sel(A’) = w. On the other hand, if sel(4’) = wu,
then this uniquely defines sel(A) for all A in the orbit of A’: sel(A) = p, where
p = tru with t,. the unique transformation with ¢,. A’ = A. One thus sees that the
definition of an equivariant selection rule is equivalent to choosing for each orbit
in A a representative A’ for which sel(A”) = w shall hold.

In the case n = 2 an orbit consists just of the set of all intervals [/, u] that can
be transformed into the same symmetric interval [a,1 — a], and this symmetric
element is the orbit’s representative A’ with sel(A’) = w.

For n > 3 it is no longer so straightforward to identify the representative A’,
because now not every A € A has a transform that is symmetric in a similarly
strong sense as an interval [a,1 — a]. For this reason there does not seem to
exists a single principle like (6) that together with 7T),-equivariance determines a
unique selection rule. However, we can generalize the intuition we followed in
the n = 2 case by trying to identify, for each orbit, the *'maximally symmetric’
representative A’. In the following we base this identification on the condition
that u is the center of mass of A’.

For A € A we denote with chm(A) the center of mass of A with respect to
Haldane’s prior H. Thus, p = chm(A4) iff fori =1,...,n:

ps = / PLdH (p)/H(A) ®)
A

Since A is full-dimensional, closed, and contained in the interior of A", one has
0 < H(A) < 00, so that the p; are well-defined.

LEMMA 4.8. Let A € A. There exists a unique A’ € orb(A4) with chm(4’) =
u.
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By this lemma the following is a well-defined selection rule for A € A:

Selequ_chm(A) =P = A= t',-AI7 Chm(Al) =u, andp = t',-u.

It appears to be difficult to give a more direct definition of Selequiv-chm(A). In
particular, it is not the case that Selequiv-chm(A) = chm(A) (the intuitively appeal-
ing rule sel(A4) = chm(A) is not T},-equivariant).

In (Jaeger 2003a) the same construction as given here was sketched using
center-of-mass with respect to Lebesgue measure instead of Haldane’s prior. While
the analogue of lemma 4.8 might be expected to also hold for cm in place of chm,
this appears to be much harder to prove, so that at this point it must be considered
an open question whether the construction also works for cm.

5. Conclusions

Many probabilistic inference problems that are characterized by a lack of in-
formation have to be solved on the basis of considerations of symmetries and
invariances. These symmetries and invariances, in turn, can be defined in terms
of transformations of the mathematical objects one encounters in the given type
of inference problem.

The representation theorem we have derived provides a strong argument that
in inference problems whose objects are elements and subsets of A™, one should
pay particular attention to invariances (and equivariances) under the transforma-
tions T},. These transformations can be seen as the analogue in the space A™ of
translations in the space R™.

One should be particularly aware of the fact that it usually does not make sense
to simply restrict symmetry and invariance concepts that are appropriate in the
space R™ to the subset A™. A case in point is the problem of noninformative
priors. In R™ Lebesgue measure is the canonical choice for an (improper) nonin-
formative prior, because its invariance under translations makes it the unique (up
to a constant) “uniform” distribution. Restricted to A™, howeyver, this distinction
of Lebesgue measure does not carry much weight, as translations are not a mean-
ingful transformation of A™. Our results indicate that the choice of Haldane’s
prior for A™ is much more in line with the choice of Lebesgue measure on R",
than the choice of the “uniform” distribution, i.e. Lebesgue measure restricted to
A™.

In a similar vein, we have conjectured in section 4 that some of the intuitive
appeal of the center-of-mass selection rule is its equivariance under translations.
Again, however, translations are not the right transformations to consider in this
context, and one therefore should aim to construct 7),-equivariant selection rules.
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T),-equivariance, in this context, is furthermore supported by the intuitive desider-
atum that measure selection should permute with conditioning in an extended
state space.

An interesting open question is how many of Paris and Vencovskd’s (1990)
rationality principles can be reconciled with T,-equivariance. As the combination
of all uniquely identifies maximum entropy selection, there must always be some
that are violated by T,-equivariant selection rules. Clearly the obstinacy principle
is rather at odds with T},-equivariance (though it is not immediately obvious that
the two really are inconsistent). Can one find T},-equivariant selection rules that
satisfy most (or all) principles except obstinacy?

6. APPENDIX

6.1. Proofsfor Sections2 -4
Theorem 2.3 Let n > 3 and ¢ be a transformation of A™.

(i) t preserves sets of support and mixtures iff t € T7,.

(ii) t preserves cardinalities of support and mixtures iff ¢ = ¢’ o 7 for some per-
mutation 7 and some t’ € T,.

Proof: (i) Forz € (R™)™ we denote with [z] the linear subspace of R™ generated
by x. We use RY, to denote the first quadrant of R", i.e. the set of all points
with only non-negative coordinates. With P"~1 we denote the set of all one-
dimensional linear subspaces of R, i.e. the (n — 1)-dimensional projective space
over R. Furthermore, with P{g ! we denote the subset of P! containing those
subspaces that intersect R, not only in 0. Thus,

Pig' ={lpl|p €A™},

and, moreover, every [z] € P{g ! is uniquely represented by one p € A™. The
transformation ¢, therefore, immediately induces a (bijective) transformation on
PfQ_ ! which, for simplicity, we also denote with ¢.

The main part of the proof now consists of showing that ¢ can be extended to
a linear transformation ¢* of RY,. The arguments used to establish this closely
follow the proofs of the representation theorem for projective colineations (also
known as the fundamental theorem of projective geometry) as given in (Faure
& Frolicher 2000) and (Beutelspacher & Rosenbaum 1998). That representation
theorem states that every transformation ¢ on P"~! that preserves colinearity is
induced by a linear transformation t* of R™. Here we show basically a version of
this result that, on the one hand, is restricted to P{g ! and ]R?Q, and, on the other
hand, starts with the slightly stronger requirement of preservation of mixtures,
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rather than preservation of colinearity (the former requires also that the relative
order of colinear points is preserved). The main work in adapting the proof of the
representation theorem for colineations to our problem consists of making sure
that all geometric constructions in the original proof can be contained within the
subset 73{51. Since large parts of the resulting proof are virtually identical to the
originals, we here give it in fairly condensed form.

We require some additional notation: [z, y] stands for the linear subspace gen-
erated by « and y. If  and y are linearly independent, this is a two-dimensional
plane, which, in projective geometry terms, is the line connecting [x] and [y]. We
say that subspaces [z1], ..., [xf] are linearly independent if the x; are linearly
independent. A vector z € RY is a positive combination of z, y € Rj if there
exists o, 3 € RT with 2 = ax + By. In that case we also say that [2] is a positive
combination of [x] and [y]. Observe that the mixture preservation property of ¢
just means that ¢[z] is a positive combination of ¢[x] and ¢[y] whenever z is a
positive combination of x and y.

We prepare the main part of the proof with the following lemma (cf. lemmas
10.1.1 and 10.1.2 in (Faure & Frolicher 2000)).

LEMMA 6.1. (A) Let x,y,z € RY, such that z, y are linearly independent,
and z is a positive combination of  and y. Then there exists exactly one
¥ € [yl NRY, withx + g € [2].

(B) Let t[x1], t[x2], t[xs] be linearly independent, and let y, € t[z;] (i =
1,2, 3) such that

tler + @] = [y, +y,] and  tlwy +x3] = [y, +ys).
Then

tleo +xs] = [y2 +ys] and  tler + a0 + @3] = [y1 + Y2 + Y]

Proof of lemma: (A) Independent from n, this is a statement only about the
plane spanned by x, vy, z. The construction of y, therefore is illustrated in full
generality by Figure 3.

(B) 1 + @2 + x3 is a positive combination of x; and x5 + x3. It follows
that t[z; + @2 + 3] is a positive combination of ¢[x;] and ¢[x2 + x3], and that
t[xa + x3] is in the linear subspace generated by t[z1] and t[x; + x2 + x3], i.e.

tlee + 23] C [y1, 1 + Y2 + ys). )]
Analogously, one obtains

tlze + 3] C [y, Y3 (10)
tlxer +x2 + 23] C [y; + Ya, Y3 an
tley +x2 + 23] C [y; + Y3, Yol 12)
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Figure 3. Lemma 6.1 (A)

Taking the intersections of the right hand sides of (9) and (10), respectively (11)
and (12), one obtains from the linear independence of the y, that t[xy + @3] C
[yo + y3] and t[xy + @2 + x3] C [y; + Yy, + y3]. Since both sides of these
inclusions are 1-dimensional linear subspaces, equality holds. (|

Let a1, as, a3 be such that t[ai],t[as],t[as] are linearly independent. Let

[b1] = tla1]. We have that t[a; + as] is a positive combination of t[a;] and
t[az], so that by part (A) of the lemma there exists a unique by € t[as] such
that tja; + ag] = [by + bz]. Similarly, there exists a unique by € t[ag] with

tla1 + ag] = [b1 + bz]. With part (B) of the lemma it furthermore follows that
t[ag + ag] = [bg + bg]

We can now define ¢*: first, define t*(0) := 0. Now let z € Rj, \ 0. Let
a; € {a1, a2, as} suchthat {[a;] # [x]. Then t[a; + x] is a positive combination
of t[a;] and ¢[x], so that by part (A) of the lemma there exists a unique z €
tlz] NRY, with [b; + 2] = t[a; + x]. Define t*(x) := z.

We have to show that the definition of ¢*(x) does not depend on the particular
choice of a;. For this, assume that t[a;] # [x] # t[a;], and that by above
construction we have obtained z;, z; with [b; + z;] = tla; + x], [b; + z;] =
tla; + x|.

To show that z;, = z; first consider the case that t[x] & [t[a;], t[a;]]. Applying
part (B) of the lemmato ¢y = a;,x2 = ¢, x3 = a; andy, = b;, Yy, = 21,Y3 =
b;, one obtains t[a; + x| = [b; + z;] and hence by the uniqueness statement of
part (A) of the lemma z; = z;.

In the case t[x] € [t[a;], t[a;]] we obtain from the linear independence of the
tla;] that t{z] & [t[a;],tlak]] U [t[a;], t{ak]] where k = {1,2,3} \ {i,5}. In
particular, t[ax] # t[x], so that z, is defined by our construction. Applying the
first case twice we obtain z; = 2z} = z;.

We next proceed to show that t*(z + y) = t*(x) + t*(y) forall ¢,y € Ri,.
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For this, first assume that ¢*(x) and ¢*(y) are linearly independent. There exists
a; (i € {1,2,3}) with t[a;] € [t[x],t[y]]. Applying part (B) of the lemma to
x1 = a;,x3 = x,x3 = yand y; = b;,y, = t*(x),y; = t*(y) one obtains
to +y) = ["(2) + *(y)] and tla; + @ + y] = [b; + (@) + £ (y)]. As
tla;] # t[x + y] therefore t*(x + y) = t*(x) + t*(y).

Now assume that [t*(x)] = [¢t*(y)], and hence ¢[x] = t[y] and [z] = [y].
Choose any z such that ¢*(z) is linearly independent from ¢*(x + y) (and there-
fore also from t*(x) and ¢*(y)). Then also t*(x) and t*(y + z) are linearly
independent, because [z] # [y + z]. Applying the previous case twice, we obtain
on the one hand t*(x + y + 2) = t*(x + y) + ¢t*(z), and on the other hand
te+y+z)=t"(y+2) +t*(x) =t*(y) + t*(z) + t*(x).

Next we show that t*(ax) = at*(x) for « € RT. By definition we have
that t*(ax) = St*(x), where 3 = B5(a) € RT might depend both on « and
on . We first show that § does not depend on x, i.e. Gz(a) = [y(a) for
all &, y. For this, first assume that [x] # [y]. By additivity we have on the
one hand t*(a(x + y)) = Bz(a)t*(x) + By(a)t*(y), and on the other hand
t"(a(x + Y)) = Baty(a)(t*(z) + t*(y)). From the linear independence of
t*(z) and t*(y) it follows that O (o) = Bp1y() = By ().

If [x] = [y] we pick z with [z] # [x] and obtain with the previous case
Ba (Oé) = [ (a) = ﬂy (Oé)

It remains to show that 5(«) = «. For this, we first show that 5«1 + ag) =
B(a1) + B(az). For this, let « be any point. Then 5(a1 + ag)t*(x) = t* (a1 +
asx) = [(ar)t*(x) + B(ag)t*(x). Similarly, we obtain S(ajae)t*(x) =
t"(a1aoz) = Blar)t* (azz) = Blar)B(az)t* (z), so that B(araz) = B(a1)B(az).

As (3 is not identically zero, the multiplicativity of 3 implies that 3(«) # 0 for
all @ # 0. Also by multiplicativity, 3(1) = 1. From additivity and multiplica-
tivity we then obtain 5(n) = n and 5(1/n) = 1/n for all n € N, and hence
B(a) = a forall @« € Q7. Finally, from additivity and 3(«) > 0 for all o, we
obtain that o« < «' implies 3(a) < [(’). With 3 restricted to Q* being the
identity, this implies that 3 is in fact the identity on all R™. This concludes the
proof that t*(ax) = at*(x).

Let e; be the ith unit vector, i.e. e; = (0,...,0,1,0,...,0) with 1 in the ith
component. As the transformation ¢ preserves sets of support, we have t[e;] =
le;], and hence t*(e;) = r;e; for some r; € RT. Forx = ), x;e; then t*(x) =
> rixie;. In particular, for p € A™ we have t*(p) = >, mipie; € t[p]. As,
furthermore, t(p) € t[p], where ¢(p) is the original transformation on A™, and
t[p] the induced transformation on 7?{51, we have t(p) = t*(p)/ >, mipi = Jr
forr = (r1,...,7mn).

(ii) Since ¢ preserves cardinalities of support, we have that t(e;) = e, (; for
some permutation 7 of 1, ..., n. Using the preservation of mixtures it is straight-
forward to show by induction on k that p € A™ with support {i1,...,ix} C
{1,...,n} is transformed to some p’ with support(p’) = {w(i1),...,7(ix)}
The transformation ¢ can thus be decomposed into the form ¢’ o 7, where ¢’ pre-
serves sets of support and mixtures, i.e. ' € T), by (i). (]
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Theorem 3.2 Let Pr be a measure on intA™ with Pr(intA™) > 0 and Pr(A) < oo
for all compact subsets A of intA™. Pr is invariant under all transformations
t, € T, iff Pr has a density with respect to Lebesgue measure of the form
c[1; p; ! with some constant ¢ > 0.

Proof: We first show the invariance of distributions Pr given by densities g.(p) :=
cllL; p[l. It is sufficient to consider the case ¢ = 1. We write g for g;. Further-
more, we may restrict attention to transformations ¢, given by vectors r with
r; = 1 in all but one coordinate 7. General ¢,. can be obtained as compositions
of such primitive transformations, and therefore the invariance of Pr under each
primitive transformation implies invariance under all transformations. Moreover,
without loss of generality, we may take 7 = (r,1,...,1). In the following we
write ¢ for this ¢,

t(p) =1/(rp1 + > _pi)(rp1. D2, - Pn).
=2

Saying that a distribution Pr on A" has density g means that A™ is identified
as a subset of the n — 1-dimensional affine space L := {x € R" | > x; = 1},
and that g is a density with respect to n — 1-dimensional Lebesgue measure on
this space. To simplify the parameterization of our problem, we can identify L
with R"~! via the embedding

n—1

7w (21, 1,1 — le) — (1,0 Tpe1)-
i=1

This embedding is measure preserving up to a constant: for all measurable A C L
with finite Lebesgue measure A"~ 1(A) we have \"~!(7(A4)) = ¢, A"~ 1(A) with
¢n, a constant depending on n. In particular, we have

m(A") ={ze[0,1]" " | <1} =D"".

The distribution Pr induces a distribution 7Pr on int D"~! given by the density

-1
f@1, .oy tn1) = cng(@y .o @1, L= Y i ).
The invariance of Pr under ¢ is equivalent to the invariance of 7Pr under

t" (1, 1) — /(14 (r — D) (rar, z2, .-, Tp—1)-

We thus have transformed our original problem on A™ C L into a similar problem
for D"~! C R™"~L, To simplify notation, we write in the following again ¢ for the
reparameterized transformation ¢™, and Pr for the induced distribution 7Pr.

According to the transformation theorem for integrals, the density of the trans-
formed distribution ¢(Pr) is given by

fi@) = ft7 @)/ [t ()] (ze D", (13)
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where J; is the Jacobian matrix of £. We have to show that f! = f.
For this, we first evaluate the Jacobian. With a := 1 + (r — 1)z the partial
derivatives of ¢ are

r/a? i=j=1
ot 0 i=1j#1
5i= —(r—Daj/a® i#1,j=
Ti 1/a i=j#1

0 1#i#j#1

The Jacobian matrix, thus, is in lower triangular form, and its determinant is the
product of the main diagonal elements:

| Ji(x)|=r/a". (14)

For x € D"~ ! we can write with b := 7 + (1 — r)x; (= —a +7r + 1):

t (@) = r/b(xy/r, 20, ..., Tp_1). (15)
Thus
. [ e 2 o
[t (@) =cn _(1 -7 2 Exi)b”—*l 1 ’Iz]

=Cn b (;—7—2%)11331

L =2 =1
[ n—1 n—1 n—1 -1
T
=Cn MO_Z“JUJ’ (16)
L =1 =1
where the last equality follows from (b — x1)/r =1 — 2.
With (14) and (15):
_ r rb" b"
[Tt () |= = ()

I+ (r—Dx /)  (b+ -1z 7

From (13),(16) and (17) now f* = f follows.

The uniqueness assertion of the theorem follows from general results on the
uniqueness of invariant measures (Halmos 1950, Sec.60,Theorem C). For a straight-
forward application of these results it is only necessary to realize that A™ is a
locally compact Hausdorff space, and that the condition Pr(A) < oo for compact
A entails that Pr is regular (Cohn 1993, Proposition 7.2.3). (]

Lemma4.8Let A € A. There exists a unique A’ € orb(A4) with chm(A’) = w.



26

Proof: In the following we denote with {x,y) the scalar product of vectors in
R™. Assume that no ¢, € T, with chm(¢,.A) = w exists. Let

e = inf{|jchm(t4) — u|| | t € T}, }.

The infimum here is attained for some ¢ € T, i.e. there exists B € orb(A) with
|lchm(B) — u|| = € > 0. Let ¢ := chm(B). We show that there exists ¢, € T},
with |[chm(¢,.B) — u| < e.

Figure 4. Proof of Lemma 4.8

Consider the function p — (¢ — u,p) on A™. The subset of A™ with (¢ —
u, p) = d for a constant d € R is the intersection of A™ with a hyperplane that is
orthogonal to ¢ — w. Figure 4 shows as dashed lines several such hyperplanes for
different values of d.

With (u, p) = 1/nforall p € A™ one obtains (c—u, u) = 0, and (c—u, c) =
(e,e) — 1/n > 0. We show that there exists a set {r(d) | 6 € [1/2,2]} of
parameters of transformations in 7}, such that tr(1) is the identity transformation,
and

f((;) = <C —u, Chm(tr(é)B»

is decreasing in ¢ with f/(1) < 0. It follows that the parametric curve § +—
chm(t,.(s)B) is as shown in Figure 4, i.e. it intersects the e-ball around u, which
then contradicts the definition of B.

Define

I":={ie{l,...,n}|ci—u; <0} IT:={ie{l,....,n}| ¢ —u; >0},
and 5
tel”
r(9): '—{ 1/5 ielt

From the definition of () it is immediate that (c — u, t,.(5)p) is decreasing in
6 forall p € A™.
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We next show that also the derivative of (¢ — u, t,5p) with respect to ¢ is
negative for all p.
Let p € A" be fixed, and define

a:= Z i, b= Z pi, €= Z (¢; — ui)pi, d:= Z (¢; — ui)p;.

iel— ielt €I~ eIt
Then 5 2/5
c+
_ t _ =
<C u, r(é)p> Sa + b/67
and
0(cb — da)

c—u,tp5p) =2 (18)

Ry olcb — da)
95 (0%a + b)2

Since both I~ and I are nonempty, and ¢; — u; < O for at least one i € I,
one obtains @ > 0, b > 0, ¢ < 0, d > 0. It follows that (18) is negative for all §
and p.

We now transfer these pointwise results for single p to the function f(§). By
the definition of the center of mass and the linearity of the scalar product

1(6) = / (o= up)dH (p)/H(tr5) )
tr(s)

From the invariance of H under the ¢,.(s) it follows that the normalizing factor
v :=1/H(t,)B) is a constant that does not depend on d, and that

/ (e — u,p)dH(p) = / (¢ — w, triop)dH (p). (19)
tr5)B B

Since %(c — u,t,(5)p) is uniformly continuous as a function of (p,d) on B x
[1/2,2], we can move the differentiation into the integration, and obtain

0 0
—f(6 :1// —(c— u,t, dH (p).
EYS (6) 5 85< (5)p> (p)

The integrand here is strictly negative at § = 1. With H(B) > 0 it follows that
ZF(6)(1) <. O

References

Beutelspacher, A. & Rosenbaum, U. (1998), Projective Geometry, Cambridge University
Press.



28

Carnap, R. (1950), Logical Foundations of Probability, The University of Chicago Press.
Cohn, D. (1993), Measure Theory, Birkhiuser.

Faure, C.-A. & Frolicher, A. (2000), Modern Projective Geometry, Kluwer Academic Pub-
lishers.

Gabbay, D. (1985), Theoretical foundations for nonmonotonic reasoning in expert sys-
tems, in K. Apt, ed., ‘Logics and Models of Cuncurrent Systems’, Springer-Verlag,
Berlin.

Hacking, 1. (1975), The Emergence of Probability: a Philosophical Study of Early Ideas
About Probability, Induction and Statistical Inference, Cambridge University Press.

Haldane, J. (1932), ‘A note on inverse probability’, Proceedings of the Cambridge Philo-
sophical Society 28, 55-61.

Halmos, P. R. (1950), Measure Theory, Van Nostrad Reinhold Company.

Hartigan, J. (1964), ‘Invariant prior distributions’, Annals of Mathematical Statistics
35(2), 836-845.

Holbrook, J. & Kim, S. S. (2000), ‘Bertrand’s paradox revisited’, The Mathematical Intel-
ligencer pp. 16-19.

Jaeger, M. (1995), Minimum cross-entropy reasoning: A statistical justification, in C. S.
Mellish, ed., ‘Proceedings of the Fourteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI-95)’, Morgan Kaufmann, pp. 1847-1852.

Jaeger, M. (2001), Constraints as data: A new perspective on inferring probabilities, in
‘Proceedings of the Seventeenth International Joint Conference on Artificial Intel-
ligence (IJCAI-01)’, pp. 755-760.

Jaeger, M. (2003a), A representation theorem and applications, in ‘Proceedings of the Sev-
enth European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU)’, number 2711 in ‘Lecture Notes in Artificial Intel-
ligence’, Springer, pp. 50-61.

Jaeger, M. (2003b), A representation theorem and applications to measure selection and
noninformative priors, Technical Report MPI-I-2003-2-002, Max-Planck-Institut
fiir Informatik.

Jaynes, E. (1968), ‘Prior probabilities’, IEEE Transactions on Systems Science and Cyber-
netics 4(3), 227-241.

Jeffreys, H. (1961), Theory of Probability, third edn, Oxford University Press.

Novick, M. R. & Hall, W. J. (1965), ‘A Bayesian indifference procedure’, Journal of the
American Statistical Association 60, 1104-1117.

Paris, J. (1999), ‘Common sense and maximum entropy’, Synthese 117, 75-93.



29

Paris, J. (n.d.), On filling-in missing information in causal networks, Submitted to
Knowledge-based Systems.

Paris, J. & Vencovskd, A. (1990), ‘A note on the inevitability of maximum entropy’, Inter-
national Journal of Approximate Reasoning 4, 183-223.

Paris, J. B. (1994), The Uncertain Reasoner’s Companion, Cambridge University Press.
Reichenbach, H. (1949), The Theory of Probability, University of California Press.
Schafer, J. L. (1997), Analysis of Incomplete Multivariate Data, Chapman & Hall/CRC.

Shore, J. & Johnson, R. (1980), ‘Axiomatic derivation of the principle of maximum entropy
and the principle of minimum cross-entropy’, IEEE Transactions on Information
Theory I T-26(1), 26-37.

Skilling, J. (1985), ‘Prior probabilities’, Synthese 63, 1-34.
van Fraassen, B. C. (1989), Laws and Symmetry, Clarendon.

Villegas, C. (1977), ‘On the representation of ignorance’, Journal of the American Statis-
tical Association 72, 651-654.



