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Abstract

A probabilistic inference rule is a general rule that provides bounds on a target probabil-
ity given constraints on a number of input probabilities. Example: fromP (AjB) � r inferP (:AjB) 2 [1 � r; 1℄. Rules of this kind have been studied extensively as a deduction
method for propositional probabilistic logics. Many different rules have been proposed,
and their validity proved – often with substantial effort. Building on previous work by T.
Hailperin, in this paper we show that probabilistic inference rules can be derived automati-
cally, i.e. given the input constraints and the target probability, one can automatically derive
the optimal bounds on the target probability as a functionalexpression in the parameters of
the input constraints.
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1 Introduction

Probabilistic information very often is obtained in the form of conditional probability state-

ments. An expert on tropical diseases, for example, will typically express his knowledge in

statements of the form “the probability of drowsiness giventhat a patient suffers from malaria

is at least 0.8”; a robot engaged in some navigation task might have to process statements like

“the probability that the exit is 90 degrees to the left giventhat the sensor readings are correct is

at least 0.6”. The formal representation and manipulation of such (conditional or unconditional)

constraints, therefore, was one of the earliest topics thatarose in probabilistic reasoning for AI

applications [15].

As a formal representation language one typically uses a probabilistic extension of propo-

sitional logic. Simple probability statements like the ones given above then become equivalent

to linear constraints on probability assignments to the (finitely many) truth assignments (or pos-

sible worlds) for the propositional variables. Probabilistic inference, then, consists of deriving

probability bounds that are entailed by the given constraints for propositions of interest.

A general problem that arises in this approach is that very often these entailed bounds will be

fairly unspecific, i.e. a knowledge base of probability statements (linear constraints) might entail

only a lower bound of 0.05, say, and an upper bound of 0.9 for the proposition of interest. For

this reason the focus of research has somewhat shifted from pure probabilistic (propositional)

logics to representation and inference systems that guarantee unique probability values to be

deducible – notably Bayesian networks. The precision of inference gained, however, here comes

at the cost of very stringent requirements for the specification of probabilistic knowledge. As

we cannot assume that these requirements can always be met, the general problem of deducing

(bounds on) probability values from arbitrary collectionsof probability statements still is of

fundamental importance.

For probability constraints expressed in propositional probabilistic logic there exist basically

two distinct approaches to deduction: the global optimization approach, and the local inference

rule approach. In the global optimization approach (e.g.[16, 13]) one obtains the bounds en-

tailed by a knowledge base of probability constraints for a specific target (conditional) proba-

bility by linear (fractional) optimization on the space of all probability assignments to possible

worlds. This method has the advantage of always yielding theexact bounds entailed for the

target probability, but has the disadvantage of requiring space and time exponential in the size

of the knowledge base.
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In the local inference rule approach one derives entailed bounds step-by-step by applying

probabilistic inference rules to the constraints in the knowledge base and/or intermediate con-

straints already derived. A very simple such inference ruleisP (A j B) � rP (:A j B) 2 [1� r; 1℄ (1)

In a particular deduction problem, this rule can be applied if, for instance, we have already

found thatP (A j B) � 0:7. An application of rule (1) will then yield the boundsP (:A j B) 2[0:3; 1℄. By successive applications of various rules one then triesto derive increasingly tight

bounds for the target probability. This method has the advantage that it operates on the level of

the propositional language, not on the level of truth assignments, and therefore avoids the initial

construction of an exponentially large state space. At any point in the derivation, the method

provides a current best bound derived, which can serve as an approximation to the ultimate

solution (“anytime” character of probabilistic deduction[6]). Disadvantages of the rule-based

derivations are that one usually cannot tell whether the current bounds already are optimal, or

whether further inferences may lead to tighter bounds; and that one has to find a suitable proof

strategy to derive any useful bounds at all. Moreover, depending on specific aspects of the

underlying representation language (which, for instance,may only admit atomic constraints of

the formP (� j  ) � r, or else arbitrary linear constraints on probability values, or even Boolean

combinations of linear constraints) and the available inference rules, rule-based deduction can

be incomplete, i.e. it can happen that for a given knowledge base and a target probability no

derivation of the optimal bounds exists.

Generally, rule based deduction tends to have its biggest advantage over global optimization

when one works in a restricted setting where knowledge basesare of some specialized type that

admit the design of special purpose inference rules and proof strategies. Thus, it is not surprising

that much of the work on probabilistic deduction was either in the context of such specialized

representation systems [20, 12, 14], or completeness results were only obtained for restricted

classes of knowledge bases [6].

Results by Fagin, Halpern and Megiddo [5], on the other hand,show that even for very

expressive representation languages one can devise complete local inference systems (in fact,

the expressiveness of the language here furthers, not hinders, completeness, because it allows us

to store more complex intermediate results in the course of the derivation). The system presented

in [5] essentially consists of the axioms of probability theory, and axioms for reasoning with

linear inequalities, together with a single inference rule, modus ponens. Rules of the form (1),
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thus, do not directly appear in this system. They might be added to the system as derived rules,

however, in order to allow for shorter proofs in this system.

A great number of different probabilistic inference rules have been proposed in the AI lit-

erature [1, 20, 6, 12, 14], mostly as part of a specialized representation and inference system.

To devise suitable inference rules, one has to solve the following problem: given a probabilistic

premise, e.g.P (A j B) � r in (1), and a target probability (P (:A j B)), what are the best up-

per and lower bounds one can infer for the target probabilityas a function of the parameters (r)
in the premise? Dubois, Prade and Toucas [4], for instance, solve the problem for the premisesP (A j B) = r1, P (B j A) = r2, P (C j B) = r3, P (B j C) = r4, and the target proba-

bility P (A j C). Lukasiewicz [14] solves the same problem with two generalizations: instead

of point-valued probabilities in the premise he treats the more general case of interval-valued

probabilities (P (A j B) 2 [l1; u1℄, : : : , P (B j C) 2 [l4; u4℄), and, more importantly, he adds

various “taxonomic” constraints to the premises (e.g.P (C ^ :A) = 0).

Independent from (and preceding) this work in AI, the same problem of deriving proba-

bilistic inference rules has been studied by T. Hailperin [9, 10, 11], motivated by his studies

of the work of George Boole, who, in turn, already was concerned with probabilistic inference

rules [2, 3]. Hailperin pursued a general approach, and, beyond deriving particular inference

rules, investigated general methods for their derivation.Based on this work of Hailperin we will

describe in this paper a general algorithmic method that derives for arbitrary conditional proba-

bility bounds given as a premise the optimal bounds that can be inferred for a given conditional

target probability. In other words, the algorithm we describe can be used to automatically gen-

erate probabilistic inference rules of any desired form. The contribution of this paper, thus, is

methodological: the algorithm presented can be used as a design tool for probabilistic inference

systems; it is not to be confused with probabilistic inference algorithms that are used at run time

in actual application systems.

2 Rules, Polytopes, and Bound Functions

In this section we first make precise the problem statement ofderiving a probabilistic inference

rule, then present in Lemma 2.1 the mathematical foundationfor the algorithm we will propose,

an outline of which is given at the end of the section. Sections 3 and 4 contain a more detailed

description of the algorithm.
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The general form of probabilistic inference rules that we are going to consider is given byP (�1 j  1) �1 r1
...P (�N j  N ) �N rNP (� j 
) 2 [L(r1; : : : ; rN ); U(r1; : : : ; rN )℄ (2)

where�1;  1; : : : ; �N ;  N ; �; 
 are propositional formulas in a language ofK propositional

variablesfA1; : : : ; AKg, the�i are one of�;�;=, theri areparameter symbols, andL(: : : ),U(: : : ) are functions from[0; 1℄N to [0; 1℄ whose arguments are denoted by the parameter sym-

bols. A formula i may, in particular, be a propositional tautology, in which case we obtain an

unconditional premiseP (�i) �i ri.
To define the correctness and optimality of an inference rule, we briefly have to review some

standard concepts pertaining to propositional probabilistic models and linear constraints. The

propositional variablesfA1; : : : ; AKg generate a Boolean algebraB(A1; : : : ; AK) of proposi-

tions in these variables. Using�A for the negation ofA, and concatenation for conjunction, we

can then identifyB with its 2K atomsA�1A�2 : : : A�K (A�i 2 fAi; �Aig (1 � i � K)). Probability

distributions onB are given by probability assignments to its atoms, and thus by elements of

the set�2K , where, generally,�n := f(p1; : : : ; pn) 2 [0; 1℄n j nXi=1 pi = 1g:
Now return to the inference rule (2). For brevity, in the sequel we denote theith premiseP (�i j  i) �i ri by 
i, and sometimes refer to it as theith input constraint. Furthermore, we

let C := f
1; : : : ; 
Ng. Let I : fr1; : : : ; rNg ! [0; 1℄
be aninstantiationof the parameter symbols. Then theinstantiated constraintI(
i) := P (�i j  i) �i I(ri) (3)

defines a set of probability distributions onB: usingxk as a variable for the probability of thekth atom�k ofB (k = 1; : : : ; 2K), we can write (3) asXk:�k!�i^ ixk = Xk:�k! ixk �i I(ri); (4)

or, equivalently, as the linear (in-)equationXk:�k!�i^ i(1� I(ri))xk � Xk:�k!:�i^ iI(ri)xk �i 0: (5)
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I(
i), thus, defines the set of distributionsp 2 �2K that are a solution of (5). We do not strictly

distinguish between an (instantiated) input constraint (3) and its algebraic form (5), and useI(
i) also to refer to the latter.

Geometrically, the solutions of (5) in�2K are given by the intersection of�2K with a

hyperplane (if�i is =) or a halfspace (if�i2 f�;�g). The elements of�2K that satisfyI(C ) := fI(
1); : : : ; I(
N )g then are the intersection of�2K with N hyperplanes or halfs-

paces, i.e. a polytope. This polytope we denote by�(I(C )).
For any instantiationI(C ) of the input constraints, we now are interested in bounds entailed

by I(C ) for the target conditional probabilityP (� j 
). Defining for a subset� � �2K�(� j 
) := fp(� j 
) j p 2 �; p(
) > 0g;
this means that we wish to compute�(I(C ))(� j 
).

We can rephrase this in a more logical terminology: a set of instantiated constraintsI(C ) is

(part of) a knowledge base, the set�(I(C )) is the set of models ofI(C ), and�(I(C ))(� j 
)
is the set of conditional probabilities of� given
 in some model ofI(C ). Thus, to compute�(I(C ))(� j 
) is to deduce the bounds onP (� j 
) that are entailed byI(C ).

Note that�(I(C ))(� j 
) = ; can hold for two reasons: either because�(I(C )) = ;,
i.e. because of the instantiated constraints being inconsistent, or becausep(
) = 0 for allp 2 �(I(C )), i.e. the constraints imply thatP (
) = 0. In the following we will not distinguish

between these two cases, i.e. we will be content to deduceP (� j 
) = ; in both cases. It

would not be difficult, however, to modify the inference rules we derive in such a way, that they

will let us deduceP (� j 
) = ; only when�(I(C )) = ;, whereas in the case�(I(C )) 6= ;,
but p(
) = 0 for all p 2 �(I(C )), a distinct conclusionP (� j 
) = undefined would be

obtained.

The following lemma describes�(� j 
) for the case of� being a polytope. It is instru-

mental for all that follows.

Lemma 2.1 Let� � �2K be a polytope with verticesfp1; : : : ;pmg, and�; 
 2B(A1; : : : ; AK).
Then�(� j 
) is a closed interval[l; u℄ withl = minfpi(� j 
) j 1 � i � m; pi(
) > 0gu = maxfpi(� j 
) j 1 � i � m; pi(
) > 0g
(assuming the conventionsmin; = 1, max; = 0, and[1; 0℄ = ;). 1

1The first part of this lemma has also been stated by Frisch and Haddawy [6], whose proof, however, did not
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Proof: That �(� j 
) is an interval follows directly from the fact thatp 7! p(� j 
) is a

continuous function on the connected domainfp 2 � j p(
) > 0g. We thus have to show

that the endpoints of the interval are actually attained at some vertices of�. We first make a

simple observation: ifp;q 2 �2K are such thatp(
) > 0 andq(
) > 0, then the function� 7! (�p+(1��)q)(� j 
) (� 2 [0; 1℄) is monotone, i.e. the conditional probability of� given
 increases or decreases monotonically along the line segment joining p andq. If p(
) > 0,

but q(
) = 0, then(�p + (1 � �)q)(� j 
) = p(� j 
) for all � 2 (0; 1℄, i.e.the conditional

probability of� given
 is constant on the half open line segment joiningp andq.

Now we can prove the lemma by induction on the dimensiond of �. For d = 0, � is a

single point, and the statement is trivially true. Now letd > 0, and letp be a vertex of� with

minimal valuep(� j 
). Assume that there exists some other elementp0 2 � with p0(
) > 0
andp0(� j 
) < p(� j 
). Let l be the (unbounded) line throughp andp0. The intersec-

tion of l with � is a line segment whose one endpoint isp, and whose other endpoint is someq. By our observation above we haveq(
) > 0 andq(� j 
) < p(� j 
), since otherwisep0(� j 
) < p(� j 
) could not hold. Now we have found inq an element on the (relative)

boundary of� with q(� j 
) < p(� j 
). But being on the boundary means thatq lies in a(d � 1)-dimensional facet of�. To this facet the induction hypothesis applies, and shows thatq(� j 
) cannot be smaller than the minimal conditional probabilityof � given 
 attained at

some vertex of that facet, and hence cannot be smaller thanp(� j 
). �
One can construct examples that show that Lemma 2.1 cannot beextended to arbitrary closed

and convex subsets� of �2K , i.e. there exist such� for which�(� j 
) is not closed.

Letting� := �(I(C )), Lemma 2.1 gives for a setC of input constraints, a target conditional

probability P (� j 
), and a parameter instantiationI the optimal boundsl(I); u(I) for the

target probability under the instantiated constraints. Toobtain the probabilistic inference rule

for the input constraintsC and the target probabilityP (� j 
), we have to determine explicit

representations of thebound functionsL(r1; : : : ; rN ); U(r1; : : : ; rN ) : [0; 1℄N ! [0; 1℄
correctly establish the closure of the entailed interval: the sentence that in their proof starts with “If for some point
in the feasible regionW� = 0, : : : ” should correctly read “If forall points: : : ”. But then in the “Otherwise” case
the domain of optimization is not closed, and hence the closure of the entailed interval does not follow by continuity
arguments.
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such that for all instantiationsII(L) := L(I(r1); : : : ; I(rN )) = l(I)I(U) := U(I(r1); : : : ; I(rN )) = u(I): (6)

When the bound functionsL andU satisfy (6) for allI, then we say that (2) is a correct and

optimal2 inference rule. IfL andU only satisfyI(L) � l(I), I(U) � u(I), then rule (2) would

be called correct, but not optimal. The algorithm we developalways derives correct and optimal

inference rules.

Our strategy for findingL andU is derived from the second part of Lemma 2.1, and in broad

outline is as follows: we shall first compute a complete list of the vertices of the�(I(C )) in

parameterized form, i.e. we determine a list ofM parameterized pointsvj = (vj;1(r1; : : : ; rN ); : : : ; vj;2K (r1; : : : ; rN )) (7)(1 � j �M) with functions vj;i : [0; 1℄N ! [0; 1℄;
such that for every instantiationI the set of all pointsI(vj) := (I(vj;1); : : : ; I(vj;2K )):= (vj;1(I(r1); : : : ; I(rN )); : : : ; vj;2K (I(r1); : : : ; I(rN )))(1 � j � M) is just the set of vertices of�(I(C )). We then evaluate the target condi-

tional probability at every parameterized vertex, obtaining functionsvj(� j 
) in the parametersr1; : : : ; rN . Finally, we putL(r1; : : : ; rN ) := minfvj(� j 
) j 1 � j �M; vj(
) > 0gU(r1; : : : ; rN ) := maxfvj(� j 
) j 1 � j �M; vj(
) > 0g; (8)

which, by Lemma 2.1, defines the optimal bound functions. We divide the following detailed

description of this method into two parts: the first part (Section 3) describes how to compute the

parameterized vertex list (7); the second part (Section 4) describes how to obtainL andU from

the vertex list.

3 The Parameterized Vertex List

The first part of the algorithm outlined at the end of the previous section consists of the com-

putation of the parameterized vertices (7). We first illustrate the general method of computation
2Also called “locally complete” [1] or “(quasi-) tight” [6]
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by considering as an example the two input constraints
1 : P (A j B) � r (9)
2 : P (A j A _B) � s (10)

(the target probability of the desired inference rule playsno role at this point). We number the

atoms of the algebraB generated by the two propositional variablesA andB as follows�1 := AB; �2 := A �B; �3 := �AB; �4 := �A �B:
The constraints (9) and (10) in algebraic form then become(1� r)x1 � rx3 � 0 (11)(1� s)x1 + (1� s)x2 � sx3 � 0: (12)

Figure 1 shows the polytopes defined by (11) and (12) for threedifferent instantiations ofr ands. The individual figures show the set�4 whose vertices(1; 0; 0; 0), (0; 1; 0; 0), (0; 0; 1; 0),(0; 0; 0; 1) correspond to the distributions that assign probability 1 to either of the four atoms ofB. The halfspaces defined by the instantiated constraintsI(
1); I(
2) are indicated as shaded

regions, the intersection of both halfspaces by a darker shading. The vertices of the resulting

polytopes�(I(
1; 
2)) are marked by dots. As this example shows, the number and position of

the vertices of�(I(C )) can change substantially for different parameter instantiations. How-

ever, each vertex is given as the intersection of hyperplanes defined by the constraints with faces

of �4. Figure 2 shows the general position of these intersection points, and Table 1 presents

them as a list. The third column of Table 1 states the conditions on the parameters for when

the intersection point is an actual vertex of the polytope. Such conditions we will subsequently

encounter in great numbers; they are formally introduced bythe following definition.

Definition 3.1 A parameter constraint(p-constraint for short) for the parametersr1; : : : ; rN is

an inequality of the form p(r1; : : : ; rN ) � 0;
wherep(: : : ) is a polynomial in the variablesr1; : : : ; rN with rational coefficients, and� is one

of �;�; <;>;=.

We use� to denote a single p-constraint, and� for lists �1; : : : ; �m of p-constraints (and

often take the liberty to write a p-constraint in the formp � q with polynomialsp andq). The
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(0,1,0,0)

(0,0,0,1)

(0,1,0,0)(0,1,0,0)

(0,0,0,1)

(1,0,0,0) (1,0,0,0)(1,0,0,0)

(0,0,0,1)

I(r)=0.4, I(s)=0.6I(r)=0.4, I(s)=0.2

(0,0,1,0)(0,0,1,0)

I(r)=0, I(s)=0

(0,0,1,0)

Figure 1: Polytopes for different parameter values
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4
8

6

7

1

Figure 2: General vertex positions

problem statement for generating a complete parameterizedvertex list can now be refined as

follows: given input constraintsC, we have to find a listvj : �j (1 � j �M) (13)

where eachvj is a parameterized vertex as in (7), and the�j are lists of p-constraints, such that

for every parameter instantiationI the set of vertices of�(I(C )) is justfI(vj) j I satisfies�jg
(where, naturally,I satisfies� iff for every �i � pi � 0 2 �: I(pi) � 0).

Table 1 provides this list for the input constraints (9) and (10). To obtain a systematic method

for generating such a list it is convenient to consider one byone the different faces of�2K , in
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Vertex
Position

Coordinates Parameter
constraintsj vj;1 vj;2 vj;3 vj;4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0 r = 0; s = 0
4 0 0 0 1
5 0 s 1� s 0 r = 0
6 r 0 1� r 0 r � s
7 s 0 1� s 0 s � r
8 r(1�s)1�r s�r1�r 1� s 0 r 6= 1; s � r

Table 1: Parameterized vertices

increasing order of their dimension, say, and for any given face to compute the parameterized

vertices lying in this face.

Thed-dimensional facesf of �2K are just the convex hulls of any subset ofd+ 1 vertices

of �2K , and thus are given byd+ 1-element subsetsH of f1; : : : ; 2Kg according tof(H) := f(p1; : : : ; p2K ) 2 �2K j i 62 H ) pi = 0g:
The (relative) interior of a facef(H) is the set

int f(H) := f(p1; : : : ; p2K ) 2 �2K j i 62 H , pi = 0g:
The vertices of�(I(C )) lying inside a specific face of�2K are characterized by the following

lemma.

Lemma 3.2 Let I(C ) = fI(
1); : : : ; I(
N )g be a set of instantiated input constraints. LetH � f1; : : : ; 2Kg with jH j = d+1 andp 2 int f(H). Thenp is a vertex of�(I(C )) iff there

existd constraintsI(
i1); : : : ; I(
id) in I(C ) such that the following two conditions hold:

(i) p is the unique solution of the following system of2K linear equationsP2Ki=1 xi = 1 (14)xi = 0 (i 62 H) (15)I(
=ij ) (1 � j � d) (16)

where
=ij is the constraint obtained from
ij by replacing�ij with =,
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(ii) p satisfies the linear inequationsxi � 0 (i 2 H) (17)I(
j) (
j 2 C n f
i1 ; : : : ; 
idg): (18)

Proof: For any polytopeP � Rn that is defined byk linearly independent linear equations andl linear inequations, we have that the vertices ofP are the points that, first, are the unique solu-

tions to a system ofn equations obtained by combining thek given equations with the equality

versions ofn � k of the given inequations, and, second, satisfy all the remaining inequations

(see e.g. [18, Section 8.5]).

The polytope�(I(C )) is given by the one equation
Pxi = 1, and the inequationsxi � 0

andI(
j) (1 � j � N ). With n = 2K we obtain that the vertices of�(I(C )) are just the points

that satisfy (i) and (ii). Moreover, forp 2 int f(H) we have thatp satisfies the equationsxi = 0
exactly wheni 62 H. If p is vertex, then the defining equations forp, therefore, must containd
of the equationsI(
=i ). �

To compute the parameterized vertex list we now solve the systems (14)-(16) of linear equa-

tions symbolically for the parameterized constraints
=ij instead of the instantiated constraintsI(
=ij ). Table 2 summarizes the algorithm. For the subroutine of solving the systems (14)-(16)

in step 1 all methods for solving systems of linear equationsare potentially applicable. A par-

ticularly suitable method is fraction free Gaussian elimination (see e.g. [7]). This is a variant of

Gaussian elimination that avoids divisions, which is useful for us, as otherwise we would have

to divide by symbolic expressions that might be zero for someparameter values and nonzero for

others, thereby requiring us to make a number of case distinctions.

As an illustration for the working of the algorithm we retrace how vertex 8 in Table 1 was

generated. This vertex is the solution of the system (14)-(16) defined byd = 2, H = f1; 2; 3g
and the (then mandatory) selection of both constraints
1; 
2 for (16). This system leads to

an initial matrix for Gaussian elimination as shown in the upper half of Table 3. Only one

elimination step is needed to produce the bottom matrix in the table, which already is in upper

triangular form. The system to have a unique solution now is equivalent to all the entries in the

main diagonal being nonzero, which leads to the p-constraint r 6= 1. Under this constraint, the

solution obtained is v = (r(1� s)1� r ; s� r1� r ; 1� s; 0):
11



procedure generate vertex list

Input: constraints C = f
1; : : : ; 
Ng
Output: list of parameterized vertices of�(C ).
For d = 0::minf2K � 1; Ng

For all H � f1; : : : ; 2Kg with jH j = d+ 1
For all subsets f
i1 ; : : : ; 
idg � C
1. solve the systemP2Ki=1 xi = 1; xi = 0 (i 62 H); 
=ij (1 � j � d)
# The solution returned is either the message “solution not
# unique”, or a parameterized point
# v = (v1(r1; : : : ; rN ); : : : ; v2K (r1; : : : ; rN ))
# together with a list� of p-constraints for the
# point to be the unique solution of the system.
If solution v : � was returned
2. For all i 2 H

append vi(r1; : : : ; rN ) � 0 to �
For all 
j 2 C n f
i1 ; : : : ; 
idg

append 
j [x1=v1(r1; : : : ; rN ); : : : ; x2K=v2K (r1; : : : ; rN )℄ to �
3. append v : � to parameterized vertex list

Table 2: The first part of the algorithm

The solution returned by step 1 thus isv together with the p-constraintr 6= 1. In step 2 we now

append the p-constraints r(1� s)1� r � 0; s� r1� r � 0; 1� s � 0
(the first and last of which, however, are vacuous becauser; s 2 [0; 1℄). Step 3 here is void,

becauseC does not contain any constraints not used in the definition ofv.

To conclude this section, we derive a bound on the number of parameterized vertices we

will generate by this method, i.e. a bound onM in (13). For a fixed dimensiond there are
� 2Kd+1�

faces of dimensiond in �2K , and for each face there are
�Nd � possibilities to selectd constraints

from the set ofN input constraints. This leads to a number of� 2Kd+ 1��Nd� � Nd2K(d+1)
systems of linear equations in the form of (14)-(16), each ofwhich may lead to one parame-

terized vertex in a face of dimensiond. Adding overd = 0; : : : ; N leads to a (crude) upper
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x1 x2 x31 1 1 11� r 0 �r 01� s 1� s �s 01 1 1 10 1� r 1 1� r0 0 1 1� s
Table 3: Solving linear equations

bound (N + 1)NN2K(N+1) � NN+12K(N+1) (19)

for the total number of parameterized vertices.

4 The Bound Functions

In the second part of the algorithm the representation (8) ofthe bound functions is computed.

This is a trivial step in principle, but as we shall see a nontrivial complication arises in practice.

To illustrate the general method, we continue with our example, takingP (:A j B) to be the

target probability of the inference rule to be derived. The probability of :A givenB at the

vertices listed in Table 1 is evaluated by computingv3=(v1+v3), which leads to the values listed

in Table 4. Note that the possible values ofP (:A j B) are still annotated with the parameter

constraints on the vertices at which they are attained, and that for vertices 5 and 8 the new

p-constraints < 1 has been added. This additional p-constraint specifies the condition under

which v1 + v3 > 0, and thusv(:A j B) being well-defined. At vertex 4 this is not the case for

any parameter values. Table 4 now gives for every instantiation of the parameters the possible

extremal values of�(I(C ))(:A j B), and thus provides essentially the representation of the

bound functions via (8). It is apparent, however, that this representation is highly redundant.

For the lower bound, for instance, we always have the possible value 0, no matter howr ands
are instantiated. Thus, we can simply putL(r; s) :� 0. The upper bound function, too, can be

simplified from the full representation (8). Here one finds that the maximum in (8) will always

be attained at one of the verticesv6;v7;v8, so that verticesv1;v2;v3;v4;v5 can be eliminated

from the representation ofU(r; s). To turn the usually highly redundant representation (8) into

a more succinct form will turn out to be the most difficult problem to handle in the general

13



j vj(:A j B) Parameter
constraints

1 0
2 0
3 1 r = 0; s = 0
4 undefined
5 1 r = 0; s < 1
6 1� r r � s
7 1� s s � r
8 1� r r 6= 1; s � r; s < 1

Table 4: Values ofP (:A j B)
computation of the bound functions.

Turning now to the general procedure for computingL(: : : ) andU(: : : ) from the parame-

terized vertex list, letP (� j 
) be the target probability of the desired inference rule. Letv : � a

parameterized vertex annotated with its p-constraints from the vertex list. To evaluatev(� j 
)
we bring the expression Pk:�k!�^
 vk(r1; : : : ; rN )Pk:�k!
 vk(r1; : : : ; rN ) (20)

into the formp(r1; : : : ; rN )=q(r1; : : : ; rN ) with polynomialsp; q.
For a specific parameter instantiationI two conditions must be met for (20) to actually

define the conditional probability of� given
 at a vertex of�(I(C )): first, I must satisfy the

p-constraints ofv, so thatI(v) is indeed a vertex of�(I(C )); second,
Pk:�k!
 I(vi) > 0

must hold, so that the conditional probability of� given 
 is defined at the vertexI(v). This

latter condition can be expressed by yet another p-constraint �0, which we append to the list�
to obtain a new list�0 of p-constraints. The preliminary definition (8) can now be brought into

the form L(r1; : : : ; rN ) := min[v1(� j 
) : �01; : : : ;vM (� j 
) : �0M ℄ (21)U(r1; : : : ; rN ) := max[v1(� j 
) : �01; : : : ;vM (� j 
) : �0M ℄ (22)

with the semanticsI(L) = minfI(vj(� j 
)) j 1 � j �M; I satisfies�0jgI(U) = maxfI(vj(� j 
)) j 1 � j �M; I satisfies�0jg:
Note that Table 4 just gives the arguments ofmin[: : : ℄, resp.max[: : : ℄, in (21) and (22) for our

example.
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In principle, we now have solved the problem of deriving the inference rule for the given

input constraints and the target conditional probability.However, this result is as yet unsatis-

factory, because of the size of the representation of the bound functions. We will therefore now

consider the problem of transformingL(: : : ); U(: : : ) into a more manageable form. This will

simply be done by deleting from the representation (21),(22) values that never define the optimal

conditional probabilities.

Definition 4.1 Let G � f1; : : : ;Mg, j 2 G. Valuevj(� j 
) : �0j is calledredundant for

minimization (maximization)in fvk(� j 
) : �0k j k 2 Gg iff for every parameter instantiationI that satisfies�0j there exists somek 2 G n fjg such thatI satisfies�0k, andI(vj(� j 
)) �(�)I(vk(� j 
)).
Our aim, now, will be to delete values that are redundant for minimization from (21) until

a subsetfvi(� j 
) : �0i j i 2 Gg (G � f1; : : : ;Mg) without redundant values is found.

Similarly, values redundant for maximization are to be deleted from (22). In our example we

deleted from Table 4 all entries except the first for minimization, and the first five entries for

maximization. Usually, there will exist more than one irredundant subset of the original value

list. If, for instance, we begin with the list of the following five values0 : ;; 1 : ;; 1� r : r = 1; 1� s : s = 1; 0 : r 6= 1; s 6= 1; (23)

then both the subset consisting of the first value only, and the subset consisting of the last three

values only are irredundant for minimization.

To compute irredundant representations for (21) and (22), amethod is needed to decide

whether a given value is redundant within a list of values. Many different heuristics can be used

to determine redundancy in some cases (the simplest being that of checking for duplicates).

A completely general decision procedure for redundancy, however, only seems to exist in the

form of general decision procedures for the first-order theory of the real numbers (see [17] for

a comprehensive treatment of this subject, also [8] for a recent exposition of the subject and its

relevance to uncertain reasoning). To see why such a decision procedure can be used to decide

redundancy, we express redundancy for minimization as stated in Definition 4.1 by the formula8r1 : : : 8rN (�0j ! _k2Gnfjg(�0k ^ vk(� j 
) � vj(� j 
)): (24)

As the expressions� andv(� j 
) that appear in this formula are (fractions of) polynomials,this

formula can be rewritten as a (universal) sentence in pure first-order logic over the vocabulary
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f0; 1;+; �;�g. By classic results in model theory [19] the validity of suchformulas, when

interpreted over the real numbers, is decidable. For the special case of universal formulas,

decision procedures exist with a time complexity essentially3 of the formmN ; (25)

wherem is the number of polynomial inequalities appearing in (24) [17].

Table 5 summarizes the second part of the algorithm, leadingfrom the parameterized ver-

tex list to the final representation of the bound functions. The algorithm calls subroutines

redundant for minimization andredundant for maximization, which decide

whether a given value is redundant in a given list of values. For simplicity, the algorithm of

Table 5 checks the redundancy of values just in the order in which they appear in the original

list. Applied to the list (23), for instance, this means thatthe algorithm will yield the last three

values as an irredundant representation of the lower bound function, rather than the shorter rep-

resentation given by the first value alone. In order to obtainsmaller representations of the bound

functions, one may modify the algorithm by checking for redundancy in a different order, e.g. by

decreasing complexity of the expressionsvj(� j 
) : �0j , thereby favoring simple expressions

to be retained.

To obtain some bound on the complexity of the second part of the algorithm, we first have

to find bounds on the complexity of the subroutines for redundancy checking. When these sub-

routines are implemented by a decision procedure for the universal first-order theory of the real

numbers, this means that we have to find bounds on the numberm of polynomial inequations

appearing in (24). An examination of the procedure for generating the parameterized vertex list

shows that the number of p-constraints in the�0k is bounded by2K +N , so thatm is bounded

by jG j(2K +N + 1): (26)

In order to find a minimal irredundant subset of values, we have to check the redundancy of

all M values, in the worst case always with respect to the full setG = f1; : : : ;Mg. Combining

(25) with (26), we find that a time bound for the computation ofa minimal irredundant set of

values is essentially of the formM(M(2K +N + 1))N �MN+1(2K +N)N : (27)

3The exact bounds also depend on the maximal degrees of the polynomials and the maximal size of the coeffi-
cients in (24). This dependency appears to be non-critical for our application.
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procedure generate bound functions

Input: parameterized vertex list vj : �j (1 � j �M)
target probability P (� j 
)

Output: irredundant representations of bound functions

1. Initialize: lower bound list := ;, upper bound list := ;
2. For j = 1::M

evaluate vj(� j 
)
generate �0j by appending

Pk:�k!
 vj;k > 0 to �j
append vj(� j 
) : �0j to lower bound list
append vj(� j 
) : �0j to upper bound list

3. For j = 1::M
If redundant for minimization (vj(� j 
) : �0j,lower bound list)
Then delete vj(� j 
) : �0j from lower bound list
If redundant for maximization (vj(� j 
) : �0j,upper bound list)
Then delete vj(� j 
) : �0j from upper bound list

4. L(r1; : : : ; rN ) := min(lower bound list)U(r1; : : : ; rN ) := max(upper bound list)
Table 5: The second part of the algorithm

When we substitute forM the bound given in (19), the first of the two factors in (27) is seen to

dominate the second, so that we obtain the boundN (N+1)22K(N+1)2 : (28)

Clearly, this computation of an irredundant subset of values dominates the complexity of com-

puting the initial set of values, so that (28) also expressesa bound on the overall complexity

of the complete algorithm consisting of the generation of the parameterized vertex list and the

subsequent computation ofL andU .

5 An Example

In this section we demonstrate our general method by a second, slightly more complicated,

example. We apply our method to derive an inference rule thatwas given as rule (v) by Frisch
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and Haddawy [6] in the following form.P (� ^ � j Æ) 2 [r; t℄P (� j Æ) 2 [u; v℄P (� j � ^ Æ) 2 [r=v; z℄
wherez = 8<: 1; if t > u0; if t = u = 0t=u; otherwise

providedr � v; v > 0: (29)

Here the applicability of the rule is constrained by the conditions r � v andv > 0. We can

easily extend the rule to also cover the degenerate casesr > v or v = 0, and obtain the bound

functions L(r; t; u; v) = � 1 if r > v or v = 0r=v otherwise
(30)U(r; t; u; v) = 8<: 1 if t > u andr � v andv > 00 if t = u = 0 or r > v or v = 0t=u otherwise
(31)

(in agreement with the conventions of Lemma 2.1 we then obtain the boundsP (� j � ^ Æ) 2[1; 0℄ = ; for parameter values that entailP (� ^ Æ) = 0 or that lead to inconsistent premises).

To fit our general pattern (2), we have to express the premisesof (29) by the four inequalitiesP (A ^B j D) � r (32)P (A ^B j D) � t (33)P (B j D) � u (34)P (B j D) � v (35)

Here�; �; Æ that in [6] are meant to represent arbitrary propositional formulas have been re-

placed by simple propositional variablesA;B;D. This changes the semantics of the rule only

in an inessential way, and has no impact on the bound functions to be derived.

We number the atoms ofB(A;B;D) as follows:�1 � ABD;�2 � �ABD;�3 � �A �BD;�4 � A �BD; : : :
(atoms with the conjunct�D will not play any role), and can then write (32)-(35) in the algebraic
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form (5) as (1� r)x1 � rx2 � rx3 � rx4 � 0 (36)(1� t)x1 � tx2 � tx3 � tx4 � 0 (37)(1� u)x1 � (1� u)x2 � ux3 � ux4 � 0 (38)(1� v)x1 � (1� v)x2 � vx3 � vx4 � 0 (39)

Our first task now is to generate the parameterized vertex list, i.e. we have to set up and solve the

systems (14)-(16) of linear equations. The parameters of the given problem areK = 3; N = 4,

so that our crude upper bound (19) for the number of systems tobe solved is45215 = 225.
Several simple observations enable us to reduce this numberto 38. First, it follows from the

fact that the equality forms of (36) and (37) are either linearly dependent (whenr = t), or

inconsistent (whenr 6= t), that the system (14)-(16) has no unique solution when (16)contains

both (36) and (37). Analogously for (38) and (39). In particular, at most two of the constraints

(36)-(39) have to be used to generate all the solutions of (14)-(16), i.e. we have to set up

the systems only ford = 0; 1; 2. A second useful observation is that eventually we are only

interested in vertices at which the probability ofB ^ D is positive. Given our numbering of

variables, this means that we are looking for solutions of (14)-(16) with x1 + x2 > 0. A

necessary condition for this to hold is thatH\f1; 2g 6= ;, whereH is as in Lemma 3.2. Finally,

we can exclude from our considerations systems defined byH with H \ f5; 6; 7; 8g 6= ;. This

is because the variablesx5; : : : ; x8 (representing the probabilities of atoms with negatedD) do

not appear in (36)-(39), so that a unique solution of (14)-(16) defined by such aH will simply

bexi = 1; xj = 0 (j 6= i) for somei 2 f5; 6; 7; 8g. These solutions, again, are uninteresting

because thenx1 + x2 = 0.

In summary, we have to set up and solve system (14)-(16) ford = 0; 1; 2; for H �f1; : : : ; 4g with jH j = d + 1, H \ f1; 2g 6= ;; and for all selections of constraints from

(36)-(39) that do not contain both (36) and (37), or both (38)and (39). Note that analogous sim-

plifications will be possible in the computation of other inference rules as well. We are left with

38 systems of equations, 24 of which possess unique solutions, listed in Table 6. Columns 2

and 3 give the parameters that define a particular system, column 4 their unique solution (blank

spaces represent 0-entries; the assignmentsv5 = v6 = v7 = v8 = 0 are common to all these

solutions, and therefore omitted). Column 5 gives the p-constraints for the solutions. Not listed

in this column are the p-constraints� :� r � t; u � v; r � v; which are generated for every
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vertex (except in some cases where stronger constraints like t = 1 or r � u are generated).

The first part of the algorithm thus leaves us with 24 parameterized verticesv at which we

have to evaluate the target probabilityv(� j 
), i.e. the quotientx1=(x1 + x2). The results of

this evaluation are shown in column 6. Column 7 states the additional p-constraint�0 for the

denominator to be positive. It remains to bring the solutionnow found into a more compact,

useful, form by deleting redundant values. Minimal irredundant sets of values for minimization

and maximization ofP (A j B ^ D) are indicated by the +-marks in the columns 8 and 9,

respectively. The final bound functions we obtain now areL(r; t; u; v) = min[r=v : � ; v > 0℄ (40)U(r; t; u; v) = max[0 : r = 0; v = 1;1 : � ; u � r; r > 0;1 : � ; u � t; t � v; t > 0;1 : � ; r � u; u � t; u > 0;1 : � ; v � t; v > 0;t=u : � ; t � u; u > 0℄: (41)

where the p-constraints� suppressed in Table 1 have been reinstated. Remembering thecon-

ventionsmin; = 1; max; = 0, and taking into account that the conditionsr � t; u � v are

taken for granted in (29), these functions can be seen to be the same as (30) and (31).

The bound functions (40) and (41) here were derived essentially by a faithful (manual)

execution of the general algorithm given in Tables 2 and 5. Intwo places, however, we did not

follow the algorithm to the letter: first, initially we analyzed the given problem a little more

closely in order to reduce the number of systems of linear equations we had to solve. This

analysis is applicable in general, and the substantial reductions it gives rise to in most cases can

easily be integrated into the first part of the algorithm. Second, the computation of minimal

irredundant value sets in this example was not done by checking values for redundancy in the

order in which they appear in the list, or, indeed, by following any other strictly mechanical

procedure. It may very well be the case, therefore, that every reasonably simple fully automatic

process for the computation of minimal irredundant value sets (given by some prescribed order

in which values are checked for redundancy) will yield a representation of the bound functions

that is somewhat different from the one given by (40) and (41).
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1 2 3 4 5 6 7 8 9j H constraints vj;1 vj;2 vj;3 vj;4 �j vj(� j 
) �0j L U1 1 ; 1 t = 1; v = 1 12 2 ; 1 r = 0; v = 1 0 +3 1; 2 (36) r 1� r v = 1 r4 1; 2 (37) t 1� t v = 1 t5 1; 3 (36) r 1� r u � r 1 r > 0 +6 1; 3 (37) t 1� t u � t; t � v 1 t > 0 +7 1; 3 (38) u 1� u r � u; u � t 1 u > 0 +8 1; 3 (39) v 1� v v � t 1 v > 0 +9 1; 4 (36) r 1� r u � r 1 r > 010 1; 4 (37) t 1� t u � t; t � v 1 t > 011 1; 4 (38) u 1� u r � u; u � t 1 u > 012 1; 4 (39) v 1� v v � t 1 v > 013 2; 3 (38) u 1� u r = 0 0 u > 014 2; 3 (39) v 1� v r = 0 0 v > 015 2; 4 (38) u 1� u r = 0 0 u > 016 2; 4 (39) v 1� v r = 0 0 v > 017 1; 2; 3 (36); (38) r u� r 1� u r � u r=u u > 018 1; 2; 3 (36); (39) r v � r 1� v r=v v > 0 +19 1; 2; 3 (37); (38) t u� t 1� u t � u t=u u > 0 +20 1; 2; 3 (37); (39) t v � t 1� v t � v t=v v > 021 1; 2; 4 (36); (38) r u� r 1� u r � u r=u u > 022 1; 2; 4 (36); (39) r v � r 1� v r=v v > 023 1; 2; 4 (37); (38) t u� t 1� u t � u t=u u > 024 1; 2; 4 (37); (39) t v � t 1� v t � v t=v v > 0
Table 6: Example

6 Conclusion

We have described an algorithm for the automatic derivationof probabilistic inference rules.

The general form (2) of probabilistic inference rules we have considered covers most of the

rules studied in the literature. An exception are rule schemata that have a variable number of

input constraints (rule (viii) in [6]).

The approach presented here is based on previous work by Hailperin [9, 10, 11]. It extends

the work of Hailperin in that it provides for a general methodfor conditional probabilities in

the premise and the target probability. Hailperin presented his method in general form only

for unconditional probabilities. This case is substantially simpler, because most of the sym-

bolic calculations that we have to perform in our algorithm can be avoided. It should be noted,

however, that several of the extensions that we presented are already implicit in some exam-

ples Hailperin [11] gives for inference rules with conditional probabilities. New elements in

the present paper are the general strategy of optimization following Lemma 2.1, the concept of
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p-constraints, and the final step of algorithmically eliminating redundant values.

In spite of the disheartening bound (28), computational complexity may not be a major

obstacle for the applicability of the given method: first, the algorithm is mainly intended for

relatively small inputs, because interesting probabilistic inference rules usually are of a relatively

simple structure. Of the 32 different inference rules presented in [6], for instance, all but two

haveK � 4 andN � 6. Second, it must be born in mind that the algorithm is not to beused at

run time in an application system, but only as a design tool for probabilistic inference systems.

Here it will not matter much when the algorithm takes a day or two to obtain a result, if this

saves the developer an at least equal amount of tedious manual computations.
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[20] H. Thöne, U. Güntzer, and W. Kießling. Towards precision of probabilistic bounds prop-

agation. InProceedings of the Eighth Annual Conference on Uncertaintyin Artificial

23



Intelligence (UAI–92), pages 315–322, San Francisco, CA, 1992. Morgan Kaufmann Pub-

lishers.

24


