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Abstract

A probabilistic inference rule is a general rule that praddounds on a target probabil-
ity given constraints on a number of input probabilitiesaBple: fromP(A|B) < r infer
P(—-A|B) € [1 —r,1]. Rules of this kind have been studied extensively as a drxfuct
method for propositional probabilistic logics. Many diféat rules have been proposed,
and their validity proved — often with substantial effortuiling on previous work by T.
Hailperin, in this paper we show that probabilistic infezemules can be derived automati-
cally, i.e. given the input constraints and the target pbilig, one can automatically derive
the optimal bounds on the target probability as a functiexaression in the parameters of
the input constraints.
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1 Introduction

Probabilistic information very often is obtained in therfoof conditional probability state-
ments. An expert on tropical diseases, for example, willagity express his knowledge in
statements of the form “the probability of drowsiness gitlesit a patient suffers from malaria
is at least 0.8”; a robot engaged in some havigation task thig¥ee to process statements like
“the probability that the exit is 90 degrees to the left giteat the sensor readings are correct is
at least 0.6”. The formal representation and manipulatfcuoh (conditional or unconditional)
constraints, therefore, was one of the earliest topicsétase in probabilistic reasoning for Al
applications [15].

As a formal representation language one typically uses lgmibstic extension of propo-
sitional logic. Simple probability statements like the siggven above then become equivalent
to linear constraints on probability assignments to thetéiyymany) truth assignments (or pos-
sible worlds) for the propositional variables. Probalidisnference, then, consists of deriving
probability bounds that are entailed by the given consts&ior propositions of interest.

A general problem that arises in this approach is that veilgnahese entailed bounds will be
fairly unspecific, i.e. a knowledge base of probability staénts (linear constraints) might entail
only a lower bound of 0.05, say, and an upper bound of 0.9 f@ptioposition of interest. For
this reason the focus of research has somewhat shifted frmengrobabilistic (propositional)
logics to representation and inference systems that gieaamique probability values to be
deducible — notably Bayesian networks. The precision @frgrice gained, however, here comes
at the cost of very stringent requirements for the specitioadf probabilistic knowledge. As
we cannot assume that these requirements can always bénmgeneral problem of deducing
(bounds on) probability values from arbitrary collectiooiprobability statements still is of
fundamental importance.

For probability constraints expressed in propositionabailistic logic there exist basically
two distinct approaches to deduction: the global optinnra&pproach, and the local inference
rule approach. In the global optimization approach (e@.[l13]) one obtains the bounds en-
tailed by a knowledge base of probability constraints fopac#fic target (conditional) proba-
bility by linear (fractional) optimization on the space dff grobability assignments to possible
worlds. This method has the advantage of always yieldingettaet bounds entailed for the
target probability, but has the disadvantage of requiripgce and time exponential in the size

of the knowledge base.



In the local inference rule approach one derives entailathde step-by-step by applying
probabilistic inference rules to the constraints in thewlsolge base and/or intermediate con-
straints already derived. A very simple such inference isile

P(A| B) <r
PA[B) el 1] (1)

In a particular deduction problem, this rule can be applfedor instance, we have already
found thatP(A | B) < 0.7. An application of rule (1) will then yield the bound¥—A4 | B) €
[0.3,1]. By successive applications of various rules one then tdegerive increasingly tight
bounds for the target probability. This method has the aidegnthat it operates on the level of
the propositional language, not on the level of truth assigmts, and therefore avoids the initial
construction of an exponentially large state space. At angtpn the derivation, the method
provides a current best bound derived, which can serve apamxdmation to the ultimate
solution (“anytime” character of probabilistic deductif8]). Disadvantages of the rule-based
derivations are that one usually cannot tell whether theectibounds already are optimal, or
whether further inferences may lead to tighter bounds; hatldne has to find a suitable proof
strategy to derive any useful bounds at all. Moreover, dépgnon specific aspects of the
underlying representation language (which, for instantay only admit atomic constraints of
the formP(¢ | ) < r, or else arbitrary linear constraints on probability valper even Boolean
combinations of linear constraints) and the availablergatiee rules, rule-based deduction can
be incomplete, i.e. it can happen that for a given knowledageland a target probability no
derivation of the optimal bounds exists.

Generally, rule based deduction tends to have its biggesintalge over global optimization
when one works in a restricted setting where knowledge bargesf some specialized type that
admit the design of special purpose inference rules and ptadegies. Thus, itis not surprising
that much of the work on probabilistic deduction was eitlmethie context of such specialized
representation systems [20, 12, 14], or completenesstsesere only obtained for restricted
classes of knowledge bases [6].

Results by Fagin, Halpern and Megiddo [5], on the other hahdw that even for very
expressive representation languages one can devise denfgatal inference systems (in fact,
the expressiveness of the language here furthers, notrsimm®mpleteness, because it allows us
to store more complex intermediate results in the courskeeofierivation). The system presented
in [5] essentially consists of the axioms of probability dhg and axioms for reasoning with

linear inequalities, together with a single inference rut@dus ponens. Rules of the form (1),
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thus, do not directly appear in this system. They might beeddd the system as derived rules,
however, in order to allow for shorter proofs in this system.

A great number of different probabilistic inference rules/@ been proposed in the Al lit-
erature [1, 20, 6, 12, 14], mostly as part of a specializedesgmtation and inference system.
To devise suitable inference rules, one has to solve thewolg problem: given a probabilistic
premise, e.gP(A | B) < rin (1), and a target probability{(—A | B)), what are the best up-
per and lower bounds one can infer for the target probalalitya function of the parameters (
in the premise? Dubois, Prade and Toucas [4], for instarudee $he problem for the premises
P(A| B)=r;, P(B| A) =ry, P(C| B) =r3, P(B| C) = ry4, and the target proba-
bility P(A | C). Lukasiewicz [14] solves the same problem with two geneadibns: instead
of point-valued probabilities in the premise he treats th@argeneral case of interval-valued
probabilities (P(A | B) € [l1,u1], ..., P(B | C) € [l4,u4]), and, more importantly, he adds
various “taxonomic” constraints to the premises (2gC A —A) = 0).

Independent from (and preceding) this work in Al, the san@blgm of deriving proba-
bilistic inference rules has been studied by T. Hailperin10, 11], motivated by his studies
of the work of George Boole, who, in turn, already was conedrwith probabilistic inference
rules [2, 3]. Hailperin pursued a general approach, andpteyleriving particular inference
rules, investigated general methods for their derivat®ased on this work of Hailperin we will
describe in this paper a general algorithmic method thavelefor arbitrary conditional proba-
bility bounds given as a premise the optimal bounds that eanferred for a given conditional
target probability. In other words, the algorithm we desercan be used to automatically gen-
erate probabilistic inference rules of any desired forme Thntribution of this paper, thus, is
methodological: the algorithm presented can be used asgndes! for probabilistic inference
systems; it is not to be confused with probabilistic infeealgorithms that are used at run time

in actual application systems.

2 Rules, Polytopes, and Bound Functions

In this section we first make precise the problem statemedén¥ing a probabilistic inference
rule, then present in Lemma 2.1 the mathematical found#tiotine algorithm we will propose,
an outline of which is given at the end of the section. Sest®m@and 4 contain a more detailed

description of the algorithm.



The general form of probabilistic inference rules that we going to consider is given by

P(¢1 [ Y1) ~1m1

: 2)
P(¢n | YN) ~N TN
P(x |v) €[L(r1,...,rn),U(re,. .. ,rn)]
where ¢y, 91, ..., 0N, ¥N, X,y are propositional formulas in a language Bf propositional
variables{ Ay, ... , Ak}, the~; are one oK, >, =, ther; areparameter symboJandL(...),

U(...) are functions from0, 1] to [0, 1] whose arguments are denoted by the parameter sym-
bols. A formulay; may, in particular, be a propositional tautology, in whicse we obtain an
unconditional premis@ (¢;) ~; r;.

To define the correctness and optimality of an inference maebriefly have to review some
standard concepts pertaining to propositional probaigilimodels and linear constraints. The
propositional variable§A,, ... , Ax} generate a Boolean algeb#(A4,, ... , Ak ) of proposi-
tions in these variables. Using for the negation of4, and concatenation for conjunction, we
can then identify with its 2% atomsA; A% ... A% (A € {4;, A;} (1 <i < K)). Probability
distributions on# are given by probability assignments to its atoms, and tlyusl&ments of

the setA2”, where, generally,

A" :={(p1,... ,pn) €10,1]" | Zpi =1}
=1
Now return to the inference rule (2). For brevity, in the selqwe denote théth premise
P(¢; | ;i) ~; ri by ¢;, and sometimes refer to it as th input constraint Furthermore, we
let#:= {c1,... ,cn}. Let
I: {7’1,... ,’I’N} — [0,1]
be aninstantiationof the parameter symbols. Then tinstantiated constraint
I(ci) == P(¢i | i) ~i I(ri) 3)
defines a set of probability distributions @8 usingz;, as a variable for the probability of the
kth atomay, of  (k = 1,... ,2K), we can write (3) as
Sowe /Y w o~ I(m), (4)
k:ap—o¢; N, k:ap—Y;
or, equivalently, as the linear (in-)equation

S -Iri)me — Y, I(ri)zp ~i 0. 5)

kiag—¢iNY; kiag——¢i\Y;



I(¢;), thus, defines the set of distributiopse A2 that are a solution of (5). We do not strictly
distinguish between an (instantiated) input constraiftag® its algebraic form (5), and use
I(c;) also to refer to the latter.

Geometrically, the solutions of (5) in2“ are given by the intersection ak2” with a
hyperplane (if~; is =) or a halfspace (ifv;€ {<,>}). The elements ofA2" that satisfy
I(%) := {I(c1),... ,I(cn)} then are the intersection @§2“ with N hyperplanes or halfs-
paces, i.e. a polytope. This polytope we denote\gy(%’)).

For any instantiatiod (") of the input constraints, we now are interested in boundsilent

by I(%) for the target conditional probability(x | ). Defining for a subseil C A2

O(x [ v) ={p(x [7) | p €1, p(y) > 0},

this means that we wish to compu 1(%))(x | 7).

We can rephrase this in a more logical terminology: a setstfintiated constraints %) is
(part of) a knowledge base, the ge{I(%)) is the set of models of(%’), andA(1(%))(x | v)
is the set of conditional probabilities af given~ in some model of (¥’). Thus, to compute
A(I(%))(x | v) is to deduce the bounds dNx | ) that are entailed by(%).

Note thatA(I(%))(x | v) = 0 can hold for two reasons: either becauséel (%)) = 0,
i.e. because of the instantiated constraints being instardi or becausg(y) = 0 for all
p € A(I(%)), i.e. the constraints imply tha(+y) = 0. In the following we will not distinguish
between these two cases, i.e. we will be content to ded(ge| v) = 0 in both cases. It
would not be difficult, however, to modify the inference il@e derive in such a way, that they
will let us deduceP(x | 7) = 0 only whenA(I(%)) = 0, whereas in the cas&(1(%)) # 0,
butp(y) = 0 for all p € A(I(%)), a distinct conclusioP(x | v) = undef i ned would be
obtained.

The following lemma describeH(x | ) for the case ofl being a polytope. It is instru-

mental for all that follows.

Lemma 2.1 LetII C A2" pe a polytope with vertice§p,, ... ,p,,}, andyx,y € #(A,... , Ax).
ThenII(x | v) is a closed interval, u] with

L=min{p;(x|7)|1<i<m, p(y) >0}
u=maxp;(x|v)|1<i<m, p;(y) >0}

(assuming the conventiomsin = 1, maxy = 0, and[1,0] = (). !

1The first part of this lemma has also been stated by Frisch amttiaivy [6], whose proof, however, did not



Proof: ThatII(x | ) is an interval follows directly from the fact that — p(x | v) is a
continuous function on the connected domgm € II | p(y) > 0}. We thus have to show
that the endpoints of the interval are actually attainedoatesvertices ofl. We first make a
simple observation: ip,q € A% are such thap(y) > 0 andgq(v) > 0, then the function
A= (Ap+(1—-X)g)(x | v) (A € [0,1]) is monotone, i.e. the conditional probability piiven
v increases or decreases monotonically along the line sdgoirimg p andgq. If p(v) > 0,
butg(v) = 0, then(Ap + (1 — N\)q)(x | 7) = p(x | ) for all A € (0, 1], i.e.the conditional
probability of x given~ is constant on the half open line segment joiningndg.

Now we can prove the lemma by induction on the dimensgiaf II. Ford = 0, ITis a
single point, and the statement is trivially true. Nowdet- 0, and letp be a vertex ofI with
minimal valuep(y | 7). Assume that there exists some other elemgérg II with p’(y) > 0
andp'(x | v) < p(x | 7). Letl be the (unbounded) line throughandp’. The intersec-
tion of [ with IT is a line segment whose one endpoinpjsand whose other endpoint is some
g. By our observation above we hagéy) > 0 andg(x | v) < p(x | ), since otherwise
P'(x | 7v) < p(x | 7) could not hold. Now we have found ipan element on the (relative)
boundary ofII with g(x | 7v) < p(x | 7). But being on the boundary means tigelies in a
(d — 1)-dimensional facet ofI. To this facet the induction hypothesis applies, and shbas t
q(x | ) cannot be smaller than the minimal conditional probabitifyy given attained at

some vertex of that facet, and hence cannot be smallergfany). O

One can construct examples that show that Lemma 2.1 caneatdreded to arbitrary closed
and convex subsef$ of A2” | i.e. there exist sucH for which II( | ) is not closed.

LettingIl := A(I(%)), Lemma 2.1 gives for a s&fof input constraints, a target conditional
probability P(x | v), and a parameter instantiatidnthe optimal bound$(I),«(I) for the
target probability under the instantiated constraints.ofbtain the probabilistic inference rule
for the input constraint$’ and the target probability?(y | ), we have to determine explicit

representations of tHeound functions

L(ri,...,rn),U(r1,... ,rn) @ [0, 1}N — [0,1]

correctly establish the closure of the entailed interviaé $entence that in their proof starts with “If for some point
in the feasible regio’; = 0, ... ” should correctly read “If forall points... ”. But then in the “Otherwise” case
the domain of optimization is not closed, and hence the dbostithe entailed interval does not follow by continuity
arguments.




such that for all instantiations

I(L) := L(I(ry),... ,I(ry)) = I(I) )
I(U) = U(I(rl)v aI(rN)) = U(I)

When the bound functions andU satisfy (6) for allZ, then we say that (2) is a correct and
optimal? inference rule. IfL, andU only satisfyI(L) < I(I), I(U) > u(I), then rule (2) would
be called correct, but not optimal. The algorithm we devellyays derives correct and optimal
inference rules.

Our strategy for findind. andU is derived from the second part of Lemma 2.1, and in broad
outline is as follows: we shall first compute a complete listne vertices of theA(1(%)) in

parameterized form, i.e. we determine a listddfparameterized points
v = (vj1(r1,...,7N),--- ,'U]‘72K(7'1, ... ,TN)) 7
(1 <j < M) with functions
vji: 0,1V —0,1],
such that for every instantiatiohthe set of all points

I(’Uj) = (I(vj,l)a---,I(vaK))

= (vj1(I(r1),--., I(rN)),- -+, vjox (I(r1), ... , I(rN)))

(1 < 5 < M) is just the set of vertices oA (I(%)). We then evaluate the target condi-
tional probability at every parameterized vertex, obtagniunctionsv;(x | v) in the parameters
ri, ... ,ry. Finally, we put

Liry,... ;i) == minfo;(x | ) |1 < j < M, v;(y) > 0} @®
Ulry,-..,rn) = maXv;(x | v) | 1 <j < M, vi(y) > 0},

which, by Lemma 2.1, defines the optimal bound functions. Wielel the following detailed
description of this method into two parts: the first part (8et3) describes how to compute the
parameterized vertex list (7); the second part (Sectioredgdbes how to obtaih andU from

the vertex list.

3 The Parameterized Vertex List

The first part of the algorithm outlined at the end of the pregi section consists of the com-

putation of the parameterized vertices (7). We first illatgrthe general method of computation

2Also called “locally complete” [1] or “(quasi-) tight” [6]



by considering as an example the two input constraints

ci: PA|B)>r 9)

ca: P(AJAVB)>s (10)

(the target probability of the desired inference rule plaggole at this point). We number the

atoms of the algebr&g generated by the two propositional variablésnd B as follows
ai = AB, ay := AB, a3 := AB, a4 := AB.
The constraints (9) and (10) in algebraic form then become

(1-7r)zy —r23 >0 (112)

(1 —-s)z1+ (1 —8s)zg —sx3 > 0. (12)

Figure 1 shows the polytopes defined by (11) and (12) for thiferent instantiations of and

s. The individual figures show the sé&t* whose verticeg1,0,0,0), (0, 1,0,0), (0,0,1,0),
(0,0,0,1) correspond to the distributions that assign probabilitg gither of the four atoms of
2. The halfspaces defined by the instantiated constrdifats), I(c2) are indicated as shaded
regions, the intersection of both halfspaces by a darkedisba The vertices of the resulting
polytopesA(I(c1,ce)) are marked by dots. As this example shows, the number antiqrosf
the vertices ofA(I(%)) can change substantially for different parameter insatiotis. How-
ever, each vertex is given as the intersection of hypergldeéined by the constraints with faces
of A*. Figure 2 shows the general position of these intersect@mnt® and Table 1 presents
them as a list. The third column of Table 1 states the condition the parameters for when
the intersection point is an actual vertex of the polytopecttconditions we will subsequently

encounter in great numbers; they are formally introducethieyfollowing definition.

Definition 3.1 A parameter constrainfp-constraint for short) for the parametets... ,ry is

an inequality of the form

p(ri,...,rn) ~ 0,
wherep(. .. ) is a polynomial in the variables, . .. , ry with rational coefficients, and is one
Of Sa 27 <a >7 =
We user to denote a single p-constraint, andor lists 7y, ... , m,, of p-constraints (and

often take the liberty to write a p-constraint in the fopm- ¢ with polynomialsp andg). The
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(0,0,1,0) (0,0,1,0) (0,0,1,0)

0,0,0,1) 0,0,0,1) 0,0,0,1
0100 (0’1’ (0’1’

(1,0,0,0) (1,0,0,0) (1,0,0,0)

I(r=0, I(s)=0 I(r)=0.4, 1(s)=0.2 I(r)=0.4, 1(s)=0.6

Figure 1: Polytopes for different parameter values

3

Figure 2: General vertex positions

problem statement for generating a complete parameteviegdx list can now be refined as

follows: given input constraint®’, we have to find a list
vi:m; (1<j< M) (13)

where each; is a parameterized vertex as in (7), and #heare lists of p-constraints, such that

for every parameter instantiatianthe set of vertices oA (1(%’)) is just
{I(v;) | I satisfiesr;}

(where, naturally/ satisfiesr iff for every m; = p; ~0 € = I(p;) ~ 0).
Table 1 provides this list for the input constraints (9) abd)( To obtain a systematic method

for generating such a list it is convenient to consider onety the different faces ak2” in
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Vertgx Coordinates Paramgter
Position constraints
J V51 Vj2 Uj3 Vj 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0 r=0,s=0
4 0 0 0 1
5 0 s 1-s O r=20
6 r 0 1-» O r>s
7 s 0 1-s O s>r
8 T(ll;s) = 1-s 0 r#£1l,s>r

Table 1;: Parameterized vertices

increasing order of their dimension, say, and for any giasefto compute the parameterized
vertices lying in this face.
Thed-dimensional faceg of A% are just the convex hulls of any subsetdof 1 vertices

of A2“, and thus are given by + 1-element subsetd of {1,... ,2K} according to
FH) = {(pr,... ,pox) € A" |i ¢ H = p; = 0}.
The (relative) interior of a fac¢(H) is the set
int f(H) := {(p1,.. ,pox) € A" |i ¢ H & p; = 0}.

The vertices ofA (I()) lying inside a specific face k2" are characterized by the following

lemma.

Lemma3.2 Let I(¥¢) = {I(c1),...,I(cn)} be a set of instantiated input constraints. Let
HC{1,...,2K}with |[H| = d+1andp € int f(H). Thenp is a vertex ofA(I(¥)) iff there

existd constraintsl(c;, ), ... , I(c;,) in I(%) such that the following two conditions hold:

(i) pisthe unique solution of the following systemf linear equations

Y2 ai=1 (14)
zi=0 (¢ H) (15)
I(c;;) (1<j<d) (16)

wherec; is the constraint obtained from, by replacing~;, with =,

10



(i) p satisfies the linear inequations
z; >0 (i€ H) a7)

I(Cj) (Cj €e?\{ci,--- 7Cid})' (18)

Proof: For any polytopeP C R" that is defined by linearly independent linear equations and
[ linear inequations, we have that the verticesPadire the points that, first, are the unique solu-
tions to a system of equations obtained by combining theiven equations with the equality
versions ofn — k of the given inequations, and, second, satisfy all the remgiinequations
(see e.g. [18, Section 8.5]).

The polytopeA(I(%’)) is given by the one equation, z; = 1, and the inequations; > 0
andI(c;) (1 < j < N). With n = 2K we obtain that the vertices @f(1(%)) are just the points
that satisfy (i) and (ii). Moreover, fgv € int f(H) we have thap satisfies the equations = 0
exactly wheni ¢ H. If p is vertex, then the defining equations fmrtherefore, must contai

of the equationd(c;"). O

To compute the parameterized vertex list we now solve thiesys(14)-(16) of linear equa-
tions symbolically for the parameterized constraicggsinstead of the instantiated constraints
I(cij). Table 2 summarizes the algorithm. For the subroutine ofisglthe systems (14)-(16)
in step 1 all methods for solving systems of linear equatemespotentially applicable. A par-
ticularly suitable method is fraction free Gaussian eliation (see e.g. [7]). This is a variant of
Gaussian elimination that avoids divisions, which is usifuus, as otherwise we would have
to divide by symbolic expressions that might be zero for spar@ameter values and nonzero for
others, thereby requiring us to make a number of case distirec

As an illustration for the working of the algorithm we reteabhow vertex 8 in Table 1 was
generated. This vertex is the solution of the system (18)-@efined byd = 2, H = {1, 2,3}
and the (then mandatory) selection of both constrainte, for (16). This system leads to
an initial matrix for Gaussian elimination as shown in theephalf of Table 3. Only one
elimination step is needed to produce the bottom matrix éntétible, which already is in upper
triangular form. The system to have a unique solution novgisvalent to all the entries in the
main diagonal being nonzero, which leads to the p-constraia 1. Under this constraint, the

solution obtained is




procedure generatevertexli st

I nput: constraints%={c,...,cn}
Qutput: list of paraneterized vertices of A(%).

For d = 0.min{2X — 1, N}
Forall HC{l,...,25} with |H|=d+1
For all subsets {c¢,...,c,} CF
1. solve the system
St wi=1, 2 =0(i ¢ H), ci (1<j<d)
# The solution returned is either the message “solution not
# unique”, or a parameterized point
#v= (1)1(7‘1,... ,’I’N),... ,1)21((7‘1,... ,’I’N))
# together with a listr of p-constraints for the
# point to be the unique solution of the system.
If solutionwv:mwas returned
2. Forall ie H

append v;(r1,... ,ry) >0tom
For all ¢; € €\ {ciy,... ,¢i,}
append cj[z1/vi(r1,... ,rN), ... ,Tox [Vgr (T1,... ,TN)]tOT

3. appendv:wto paraneterized vertex |ist

Table 2: The first part of the algorithm

The solution returned by step 1 thusvisogether with the p-constraimt£ 1. In step 2 we now

append the p-constraints

r(lfs)zo’ 877’20,1—320
1—r 1—r7r

(the first and last of which, however, are vacuous because= [0,1]). Step 3 here is void,
because&s’ does not contain any constraints not used in the definitian of

To conclude this section, we derive a bound on the number i@npeterized vertices we
will generate by this method, i.e. a bound &hin (13). For a fixed dimensiod there are(;fl)
faces of dimensiod in A2", and for each face there af¥) possibilities to seleaf constraints

from the set ofV input constraints. This leads to a number of

2K \ (N < NdoK(d+1)
d+1 d) —

systems of linear equations in the form of (14)-(16), eaclwbich may lead to one parame-

terized vertex in a face of dimensieh Adding overd = 0,... , N leads to a (crude) upper

12



T T2 3
1 1 1 1
1—7r 0 —r 0
1-s5s 1—s -—s 0

1 1 1 1
0 1—-» 1 |1—7
0 0 1 |1-—s

Table 3: Solving linear equations

bound

for the total number of parameterized vertices.

4 The Bound Functions

In the second part of the algorithm the representation (&8hefoound functions is computed.
This is a trivial step in principle, but as we shall see a rigialrcomplication arises in practice.
To illustrate the general method, we continue with our examiaking P(—A | B) to be the
target probability of the inference rule to be derived. Thelability of -A given B at the
vertices listed in Table 1 is evaluated by computing(v, +vs), which leads to the values listed
in Table 4. Note that the possible valuesif—A | B) are still annotated with the parameter
constraints on the vertices at which they are attained, hatdfor vertices 5 and 8 the new
p-constraints < 1 has been added. This additional p-constraint specifiesahdition under
which v, + v3 > 0, and thusv(—A | B) being well-defined. At vertex 4 this is not the case for
any parameter values. Table 4 now gives for every instaoiaif the parameters the possible
extremal values ofA(I(%¢'))(—A | B), and thus provides essentially the representation of the
bound functions via (8). It is apparent, however, that tleigresentation is highly redundant.
For the lower bound, for instance, we always have the passilue 0, no matter howand s
are instantiated. Thus, we can simply dut, s) := 0. The upper bound function, too, can be
simplified from the full representation (8). Here one findattthe maximum in (8) will always
be attained at one of the verticeg, v, vg, SO that verticew, vy, v3, v4, v5 can be eliminated
from the representation @f(r, s). To turn the usually highly redundant representation (8) in

a more succinct form will turn out to be the most difficult pletm to handle in the general
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i | vi(-4] B) Paramgter
constraints

1 0

2 0

3 1 r=0,s=0

4 | undefined

5 1 r=0,s<1

6 1—7r r>s

7 1—3s s>r

8 1—7r r£l,s>rs<1

Table 4: Values ofP(—A | B)

computation of the bound functions.

Turning now to the general procedure for computihg..) andU(...) from the parame-
terized vertex list, leP(y | v) be the target probability of the desired inference rule.detr a
parameterized vertex annotated with its p-constraints: filee vertex list. To evaluate(x | v)

we bring the expression

Zkiak—*X/\’Y ’Uk(Tl, . ,TN)
(20)
Zk:ak%'y vk(rl, . ,TN)
into the formp(ry,... ,7n)/q(r1,... ,rn) with polynomialsp, q.

For a specific parameter instantiatidntwo conditions must be met for (20) to actually
define the conditional probability of given~ at a vertex ofA(I(%)): first, I must satisfy the
p-constraints of, so that/(v) is indeed a vertex oA (I(%)); second,y ;.. .. I(vi) > 0
must hold, so that the conditional probability pfgiven v is defined at the vertek(v). This
latter condition can be expressed by yet another p-constrai which we append to the list
to obtain a new listr’ of p-constraints. The preliminary definition (8) can now eught into

the form
L(ry,...,rn) s=minor(x | y) s, om(x [ y) : wyl (21)
Ulre,...,rn) = maXoi(x | y) 7, om(x [ 7)  wy) (22)
with the semantics

I(L) = min{I(v;(x | 7)) | 1< j < M, I satisfiesr}

I(U) = max{I(vj(x 7)) |1<3j< M, I satisfiesr’; }.

Note that Table 4 just gives the argumentsrof. . . |, resp.max. .. ], in (21) and (22) for our

example.
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In principle, we now have solved the problem of deriving thierence rule for the given
input constraints and the target conditional probabilidowever, this result is as yet unsatis-
factory, because of the size of the representation of thedéunctions. We will therefore now
consider the problem of transformirig(... ), U(...) into a more manageable form. This will
simply be done by deleting from the representation (21),y2Rues that never define the optimal

conditional probabilities.

Definition 4.1 Let G C {1,... ,M}, j € G. Valuew;(x | v) : =} is calledredundant for
minimization (maximizationn {vy(x | 7) : 7}, | k € G} iff for every parameter instantiation

I that satisfiest; there exists somé € G \ {;j} such thatl satisfiesm;, andI(v;(x | 7)) >

(<) (vr(x | 7))

Our aim, now, will be to delete values that are redundant fovimmization from (21) until
a subsef{v;(x | v) : w | i € G} (G C {1,...,M}) without redundant values is found.
Similarly, values redundant for maximization are to be tilefrom (22). In our example we
deleted from Table 4 all entries except the first for mininticia, and the first five entries for
maximization. Usually, there will exist more than one imedant subset of the original value

list. If, for instance, we begin with the list of the follovgrfive values
0:0; 1:0; 1—r:r=1;, 1—s:s=1; 0:r#1,s#1, (23)

then both the subset consisting of the first value only, aeastipset consisting of the last three
values only are irredundant for minimization.

To compute irredundant representations for (21) and (22)ethod is needed to decide
whether a given value is redundant within a list of valuesniyldifferent heuristics can be used
to determine redundancy in some cases (the simplest bedigotichecking for duplicates).
A completely general decision procedure for redundancwewer, only seems to exist in the
form of general decision procedures for the first-order thaxf the real numbers (see [17] for
a comprehensive treatment of this subject, also [8] for ankexposition of the subject and its
relevance to uncertain reasoning). To see why such a degisaxedure can be used to decide

redundancy, we express redundancy for minimization asgiatDefinition 4.1 by the formula

Vo Yrn(ay =\ (m Avk(x [ y) < 0i(x [ 7)) (24)
keG\(s}

As the expressions andw(x | ) that appear in this formula are (fractions of) polynomi#iss

formula can be rewritten as a (universal) sentence in pwedider logic over the vocabulary
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{0,1,+,-,<}. By classic results in model theory [19] the validity of suicimulas, when
interpreted over the real numbers, is decidable. For theiapease of universal formulas,

decision procedures exist with a time complexity essdpfialf the form
m™, (25)

wherem is the number of polynomial inequalities appearing in (249][

Table 5 summarizes the second part of the algorithm, leafdomg the parameterized ver-
tex list to the final representation of the bound functionshe Rlgorithm calls subroutines
redundant for m ni m zati onandr edundant f or _maxi m zat i on, which decide
whether a given value is redundant in a given list of valuesr dimplicity, the algorithm of
Table 5 checks the redundancy of values just in the order ichwitney appear in the original
list. Applied to the list (23), for instance, this means ttie algorithm will yield the last three
values as an irredundant representation of the lower baumetibn, rather than the shorter rep-
resentation given by the first value alone. In order to obsaialler representations of the bound
functions, one may modify the algorithm by checking for redancy in a different order, e.g. by
decreasing complexity of the expressiangx | v) : =, thereby favoring simple expressions
to be retained.

To obtain some bound on the complexity of the second parteathorithm, we first have
to find bounds on the complexity of the subroutines for redumog checking. When these sub-
routines are implemented by a decision procedure for theetsal first-order theory of the real
numbers, this means that we have to find bounds on the numlérpolynomial inequations
appearing in (24). An examination of the procedure for getieg the parameterized vertex list

shows that the number of p-constraints in teis bounded bpX + N, so thatm is bounded

by
GI2K + N +1). (26)

In order to find a minimal irredundant subset of values, weelhtawcheck the redundancy of
all M values, in the worst case always with respect to the fulGset {1, ... , M }. Combining
(25) with (26), we find that a time bound for the computatioraaghinimal irredundant set of

values is essentially of the form

M(ME2¥ + N+1)N =~ MV (2K L NN, (27)

*The exact bounds also depend on the maximal degrees of theqgpaials and the maximal size of the coeffi-
cients in (24). This dependency appears to be non-critigaddir application.

16



procedure generat e_.bound_functions

I nput: paraneterized vertex list v;:m; (1<j<M)
target probability P(x|7)
Qutput: irredundant representations of bound functions

1. Initialize: |ower_boundlist :=0,upper _boundlist :=0

2. For j=1.M
eval uat e v;(x | 7)
generate m; by appending3,. . . vk >0tom,
append v;(x | y) : m; t o | ower bound.i st
append vj(x | v) : m; to upper _bound.li st

3. For y=1.M
I f redundant for _nininization(v;(x|v): ;| ower bound.list)
Then del ete v;(x|~v):@; fromlower_boundli st
I f redundant for_maxi m zation (v;(x |v): w;,upper bound_li st)
Then del etewv;(x|7v): w; from upper boundli st

4. L(rqy,...,ry) :=min(l ower bound.l i st)

U(ri,...,rn) := maxupper bound. i st)

Table 5: The second part of the algorithm

When we substitute fak/ the bound given in (19), the first of the two factors in (27)ésis to

dominate the second, so that we obtain the bound

NN+ 9K (N+1)? (28)

Clearly, this computation of an irredundant subset of aldeminates the complexity of com-
puting the initial set of values, so that (28) also expressbsund on the overall complexity
of the complete algorithm consisting of the generation efpharameterized vertex list and the

subsequent computation 6fandU.

5 An Example

In this section we demonstrate our general method by a secbigtitly more complicated,

example. We apply our method to derive an inference rulewlaatgiven as rule (v) by Frisch
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and Haddawy [6] in the following form.

PlaNB|9) €rt]

P(B19) € [u,v]
Pla| BNO) € [r/v, 2]

1, ift>u (29)
wherez = ¢ 0, ift=u=0

t/u, otherwise

providedr < v,v > 0.

Here the applicability of the rule is constrained by the dbods r < » andv > 0. We can
easily extend the rule to also cover the degenerate eases or v = 0, and obtain the bound

functions

Lirt,u,v) = 1 ifr>vorv=20
T r/v otherwise

{1 if t>wuandr <vandv >0

(30)

U(r,t,u,v) =< 0 ft=u=0o0rr>vorv=0 (31)

t/u otherwise

(in agreement with the conventions of Lemma 2.1 we then olite@ boundsP(a | 5 A J) €
[1,0] = 0 for parameter values that entd&l3 A §) = 0 or that lead to inconsistent premises).

To fit our general pattern (2), we have to express the premig@9) by the four inequalities

P(AAB|D) > r (32)
P(ANB|D) < t (33)
P(B|D) > u (34)
P(B|D) < w (35)

Herea, 3,4 that in [6] are meant to represent arbitrary propositiormahiulas have been re-
placed by simple propositional variablds B, D. This changes the semantics of the rule only
in an inessential way, and has no impact on the bound fursctmbe derived.

We number the atoms ¢B( A, B, D) as follows:
a1 = ABD, oy = ABD, a3 = ABD,ay = ABD, . ..

(atoms with the conjuncb will not play any role), and can then write (32)-(35) in thgetbraic
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form (5) as

(1 =r)zy —reg —rzz —rzq >0 (36)
(1 —t)zy — tog —txg —txg <0 (37)
(1—wxy — (1 —u)zg —uzrs —uxrg >0 (38)
(1—-v)zy — (1 —v)zg —vrg —v24 <0 (39)

Our first task now is to generate the parameterized vertex.ks we have to set up and solve the
systems (14)-(16) of linear equations. The parameterseofitren problem aré&l = 3, N =4,

so that our crude upper bound (19) for the number of systenieteolved is4°2!5 = 225,
Several simple observations enable us to reduce this nutal88. First, it follows from the
fact that the equality forms of (36) and (37) are either Imheaependent (whem = t¢), or
inconsistent (whem # t), that the system (14)-(16) has no unique solution when ¢tfjains
both (36) and (37). Analogously for (38) and (39). In pafécuat most two of the constraints
(36)-(39) have to be used to generate all the solutions of-(&), i.e. we have to set up
the systems only fod = 0,1,2. A second useful observation is that eventually we are only
interested in vertices at which the probability BfA D is positive. Given our numbering of
variables, this means that we are looking for solutions @)-(16) withz; + zo > 0. A
necessary condition for this to hold is th {1, 2} # (), whereH is as in Lemma 3.2. Finally,
we can exclude from our considerations systems defineHl mjith H N {5,6,7,8} # 0. This

is because the variables, . .. , zg (representing the probabilities of atoms with negafBdio
not appear in (36)-(39), so that a unique solution of (14)defined by such & will simply
bex; = 1,z; = 0 (j # ¢) for somei € {5,6,7,8}. These solutions, again, are uninteresting
because themn; + z5 = 0.

In summary, we have to set up and solve system (14)-(16)ifer 0,1,2; for H C
{1,...,4} with |H| = d + 1, H n {1,2} # 0; and for all selections of constraints from
(36)-(39) that do not contain both (36) and (37), or both @&) (39). Note that analogous sim-
plifications will be possible in the computation of otherarénce rules as well. We are left with
38 systems of equations, 24 of which possess unique sadytiisted in Table 6. Columns 2
and 3 give the parameters that define a particular systemneodl their unique solution (blank
spaces represent 0-entries; the assignments vg = v7; = vg = 0 are common to all these
solutions, and therefore omitted). Column 5 gives the pstraints for the solutions. Not listed

in this column are the p-constraings := r < t,u < v,r < v, which are generated for every
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vertex (except in some cases where stronger constraimts k1 or r < u are generated).

The first part of the algorithm thus leaves us with 24 paranmsé verticesv at which we
have to evaluate the target probabilityy | v), i.e. the quotient:; /(z1 + x2). The results of
this evaluation are shown in column 6. Column 7 states théiaddl p-constraintr’ for the
denominator to be positive. It remains to bring the solutianv found into a more compact,
useful, form by deleting redundant values. Minimal irredant sets of values for minimization
and maximization ofP(A | B A D) are indicated by the +-marks in the columns 8 and 9,

respectively. The final bound functions we obtain now are

L(r,t,u,v) =minr/v:p,v > 0] (40)
U(r,t,u,v) =max0:r =0,v =1,

1:p,u<r,r>0;

1:p,u<tt<uv,t>0;

l:p,r <uyu<t,u>0;

1:p,v<tv>0;

t/u:p,t <u,u>0l. (412)

where the p-constraintg suppressed in Table 1 have been reinstated. Rememberingrihe
ventionsmin@ = 1, max() = 0, and taking into account that the conditions< ¢,u < v are
taken for granted in (29), these functions can be seen toebsaime as (30) and (31).

The bound functions (40) and (41) here were derived esdlgnbig a faithful (manual)
execution of the general algorithm given in Tables 2 and Swimplaces, however, we did not
follow the algorithm to the letter: first, initially we anagd the given problem a little more
closely in order to reduce the number of systems of lineamtgus we had to solve. This
analysis is applicable in general, and the substantialcteshs it gives rise to in most cases can
easily be integrated into the first part of the algorithm. @et; the computation of minimal
irredundant value sets in this example was not done by chgakdlues for redundancy in the
order in which they appear in the list, or, indeed, by follogriany other strictly mechanical
procedure. It may very well be the case, therefore, thatyene=rsonably simple fully automatic
process for the computation of minimal irredundant valus égiven by some prescribed order
in which values are checked for redundancy) will yield a esgntation of the bound functions

that is somewhat different from the one given by (40) and.(41)
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1 2 3 4 ) 6 7 819
j H constraints Vj1 Vj2 Vj.3 Vj 4 ™ (] (X | ’y) 71'; L|U
T 1 ] 1 i=1,0= 1

2 2 0 1 r=0,v=1 0 +
3 1,2 (36) r 1l—r v=1 T

41 1,2 (37) t 11—t v=1 t

51 1,3 (36) r 1—r u<r 1 r>0 +
6| 1,3 (37) t 1t w<tt<wv 1 t>0 +
71 1,3 (38) u 1—u r<u,u<t 1 u>0 +
81 1,3 (39) v 1—w v<t 1 v>0 +
9| 1,4 (36) r 1—rju<r 1 r>0

10| 1,4 (37) t 1-t|lu<tt<w 1 t>0

11| 1,4 (38) U l1—u|r<u,u<t 1 u >0

12| 1,4 (39) v 1-v|v<t 1 v>0

13| 2,3 (38) u 1—u r= 0 u>0

14| 2,3 (39) v 1—w r=0 0 v>0

15| 2,4 (38) u l—u|r=0 0 u>0

16 | 2,4 (39) v l—v|r=0 0 v>0
1711,2,3] (36),(38) |  u—r 1l—u r<u r/u u>0
1811,2,3| (36),(39) | r wv—r 1—w r/v v>0 |+
1911,2,3| 37),38) | t w—t 1l—uw t<u t/u u>0 +
201 1,2,3| (37),(39) | ¢ wv—t 1—w t<w t/v v>0
21(1,2,4| (36),(38) | » wu-—r l—u|r<u r/u u>0
2211,2,4] (36),(39) |  ov-—r 1-v r/v v>0
2311,2,4| (37),(38) | t wu—t l—u|t<u t/u u>0

24 11,2,4| (37),(39) | t wv—t l1—v|t<w t/v v>0

Table 6: Example

6 Conclusion

We have described an algorithm for the automatic derivatibprobabilistic inference rules.
The general form (2) of probabilistic inference rules we daonsidered covers most of the
rules studied in the literature. An exception are rule scitenthat have a variable number of
input constraints (rule (viii) in [6]).

The approach presented here is based on previous work byedail[9, 10, 11]. It extends
the work of Hailperin in that it provides for a general methiod conditional probabilities in
the premise and the target probability. Hailperin presgts method in general form only
for unconditional probabilities. This case is substahtiaimpler, because most of the sym-
bolic calculations that we have to perform in our algoritham ©e avoided. It should be noted,
however, that several of the extensions that we presentedlaady implicit in some exam-
ples Hailperin [11] gives for inference rules with conditad probabilities. New elements in

the present paper are the general strategy of optimizatitowing Lemma 2.1, the concept of
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p-constraints, and the final step of algorithmically eliating redundant values.

In spite of the disheartening bound (28), computational mexity may not be a major
obstacle for the applicability of the given method: firste thlgorithm is mainly intended for
relatively small inputs, because interesting probaldlistference rules usually are of a relatively
simple structure. Of the 32 different inference rules pnésé in [6], for instance, all but two
haveK < 4 andN < 6. Second, it must be born in mind that the algorithm is not toifed at
run time in an application system, but only as a design taopfobabilistic inference systems.
Here it will not matter much when the algorithm takes a dayww to obtain a result, if this

saves the developer an at least equal amount of tedious r@mputations.
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