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Abstract Lemmer and Barth, 1982; Jaynes, 1982; Cheeseman, 1983;

. . . Paris and Vencovska, 1990; Rodder and Meyer, 1996

We present a new appr(_)ach to inferring a _p_robabll- more general class of constraints is considered by Drudzel

ity distribution which is incompletely specified by and van der Gaald.995 who then employ the center of mass

a number of linear constraints. We argue that the  gojation rule (according to this rule one selects the cerite

cu_rrently most popular approach of entropy maxi- mass of the admissible region).

mt%?;'%?a(:; %ec;}ciﬁggois(t:%?ﬁgagﬁz ?ﬁalfg()&’}’]clfi?gﬁt ~n thl_s paper we propose a new selection rule which is rad-

“constraints as data” perspecti’ve leads to a com- ically dlff(_arent f.rom either maximum entropy or center of

pletely different type of inference procedures by mass. Itis motlv_ateq_by _the qbservatlon that in spite of the

statistical methods. With statistical methods some ~ “op. compelling justifications it has been givishore ,and

of the counterintuitive results of entropy maximiza- Johr]son, 1980 Jaynes,. 1982; Paris and Vencovska_t,],lQ_QO
maximum entropy selection has some rather counterinéuitiv

tion can be avoided, and inconsistent sets of con- ; ; .
straints can be handled just like consistent ones. A properties. These are illustrated by the following exaraple

particular statistical inference method is developed  Example 1.1 Overhearing two strangers talking at an airport,

and shown to have a nice robustness property. we hear the first one saying.. Jones got at least 45% of
the votes... ”, and the second replying .. Smith didn’t
1 Introduction get any less than 5% either. ”. Before the two disappear

S . . . in the crowd, we also hear them both agreeing on the fact
Probabilistic representations of uncertainty usuallysisiof 4t it anyone else had bothered to run for mayor, then nei-
a single probability distribution over a large (but finit&)-d e Smith nor Jones would have had a chance of winning the
main of possible state8 = {d;, ... ,dn}. Itisthusrequired  gjection, Suppose, now, that we need to assess the probabil
to assign a probability valug; to each state;. Usua_ll)_/, a ity P(Smith of an arbitrary voter in the unnamed home town
direct, full assessment of all these values is very diffioult ot {he two strangers having voted for Smith. The informa-
impossible. All one usually is able to obtain are partial de-joy \e have establishes a lower bound of 0.05 and an upper
scriptions ofp = (p1, ... , ) by constraints of e.g. the form 5, nq of 0.55 orP (SmitH. Moreover, we have learned that
p(A | B) < z,p(4) +p(B) <p(C),or"AandB areinde- 4 relevant underlying state space only consisSrofthand
pendent’, whered, B, C' are subsets ab. Such constraints joneg if we base our probability assessment on entropy max-
can be derived by knowledge elicitation from an expert, by di imization, then we will obtainP(Smith = 0.5. Intuitively,

rect observations of the domain, or by any other informationyis assessment appears to be overly optimistic from Sgnith’

gathering process. point of view.

A set ci,...,cy of constraints defines the set
A(cy, ... ,cn) of probability measures o that are con- Example 1.2 For the construction of a medical diagnosis
sistent with the constraints. Very rarely will(ci,... ,cn) system ten different experts are asked for bounds on the
consist of a single probability distribution. Instead, illw two crucial conditional probabilites?y, = P(stylosis |

either contain more than one element, or be empty (i.e., thpolycarpig, and P, = P(xylopserosis anameag Assume
constraints are inconsistent). A fundamental problem inthat 0.41 and 0.51 are the greatest lower bound and small-
probabilistic reasoning then is to select from the admissib est upper bound, respectively, mentioned by any expert for
setA(cy, ... ,cn) adistributionp =: selcy, ... ,cy) asthe  P;. Having complete confidence in the experts, we will then
best guess for the true distribution the constraints diescri  take it as given that the true value f&x lies in the interval
This measure selection probleis well studied in the lit- [0.41,0.51]. Let [0.49,0.61] be the correspondingly define
erature, particularly for the case where the constraings arinterval for P». Applying maximum entropy to find the best
linear and consistent. It is almost unanimously suggestedalues forP; and P, for our expert system, we will determine
that in this case one should select the distribution withimax P, = P, = 0.5. This appears somewhat counterintuitive be-
mal entropy fromA(cy, ... ,cn) [Shore and Johnson, 1980; cause we have chosen the same value for both probabilities,



even though the information provided would seem to indicatedistribution of observed data depends on the parameter of in
a smaller value foP; than forP;. terest, i.e. the stipulation of some underlying paramédaric-
ily. Our goal, however, is to define a general rule for measure
The reasons why the maximum entropy solution appearselection that does not require any knowledge about the ran-
counterintuitive in the two examples are very similar. Ie th dom mechanism that produces the constraints. Our approach
first example, an equal percentage of 50% of votes for bothowards solving this dilemma is that of robust statistice w
Smith and Jones seems implausible, because the constraigs propose a specific model for the random generation of con-
are highly asymmetric. Experience tells us that the dispari straints, but this model is chosen such that in the long run it
of the given lower bounds probably reflects a similar disparwill lead to correct inferences for a fairly wide class of eon
ity of the actual values, which will rather be assumed to bestraint distributions.
approximately 90% for Jones and 10% for Smith. Such an The constraints as data perspective coupled with statistic
assessment could be based on a natural explanation for happroaches to measure selection permits us to handle incon-
the constraints were generated in the first place: one mightistent sets of constraints just like consistent ones. @ur s
suspect, for instance, that the constraints report theapart tistical model for the constraint observation only musbwail
count of 50% of the votes, among which 45% were foundfor the observation of wrong constraints, i.e. constraimis
to be for Jones, and 5% for Smith. In the second example iatisfied by the true distribution (as an erroneous assegsme
appears unlikely that the experts would systematicallfesta given by an expert, the premature and incorrect report of an
larger upper and lower bounds &% than for P, if these two  election result, etc.). Such a model then assigns nonzego li
probabilities were really the same. lihoods to inconsistent sets of constraints, and a maximum
In both examples we have thus argued that the maximurfikelihood solution can be found just as for consistent con-
entropy distribution is a counterintuitive solution of tke-  straint sets.
lection problem, because the given constraints are uglikel The idea of measure selection by likelihood maximization
to be observed when this is the true distribution. Undegyin for the observed constraints was already expresskthiger,
this argument is a view of constraints that is fundamentally199d, but no concrete formalization of the idea was devel-
different from the view which (implicitly) underlies the e@s oped. The view of constraints as data has also been taken in
of the maximum entropy principle: entropy maximization is somewhat different form by Dickejd98d, who proposed a
predicated on the view that the given constraints are just aodel in which partial specifications of a probability distr
description of a state of knowledge: the knowledge that thdoution P were treated as random variables with a distribution
true distribution is a member of the admissible region define depending orP. A major difference between Dickey’s and
by the constraints. We call this tloenstraints as knowledge our work is that Dickey does not consider partial specifica-
perspective. In our examples — and, we would claim, in mostions by arbitrary linear constraints, but only by values fo
cases where we encounter the measure selection problema-fixed set of “aspects” oP. It is interesting to note that
the given constraints are not only a description of our knowl Dickey takes it for granted that in most cases the specified
edge, they also are the source of our knowledge. They therelgspects will overdetermine the model, i.e. be inconsistent
carry not only the face-value information consisting of a re whereas authors in artificial intelligence assume underdet
striction of the admissible region; they also carry the meta mined models.
information consisting of the fact that we observed exactly In this paper we can only give an overview of our maxi-
these constraints. This meta-information is relevant fer t mum likelihood approach to measure selection. Goal of this
solution of the measure selection problem as it allows us tgaper is to convey the main ideas, and to provide some in-
reason about the likelihood of observing the given constsai  sight into the feasibility of their mathematical developrhe
for different true distributions. We call the view of cormitits ~ More technical details, including proofs of the theoremiehe
that tries to take into account this meta-information¢be-  stated, will be given in a full technical paper.
straints as datgerspective: constraints are seen as randomly
sampled pieces of information. The distribution of thiscon 2 The Constraint Sample Space
straint data (theonstraint distributio is in part determined

by the true distribution on the domain (themain distribu- To treat constraints as random samples we have to view them

; . . as elements of some sample space on which probability dis-
tion), which we want to determine. In other words, the do'tributions can be defined. Throughout we assume that the

main distribution is a parameter of the constraint disbitm. . oaints refer to a distribution on a domainmoélements.
Our problem thus becomes a statistical one: to infer a Paramy, o set of all these distributions can be identified with

eter of a distribution from random samples drawn from that
distribution.

All statistical methods rely in part on considerations of
likelihood. The most direct way to use likelihood is by max-
imum likelihood inference: select the parameter that givedA linear constraint then has the general form
highest probability to the observed sample. The measure se-
lection rule we develop in this paper is likelihood maximiza
tion for the observed constraints. The main problem we fac&Ve could identify this constraint with its parameters
in a formal development of this intuitive principle is thaas z:,... ,z,, z, and thus tak&”*! as our sample space. How-
tistical methods usually require a specific model on how theever, this would mean to view two equivalent constraints lik

A" :={(p1,... ,pn) ER" | p; ZO,Zpiz 1}.

i=1

c: T1p1+ ..+ Tppn <z (T1,...,2n,2€R). (1)



p1 — 2p; < 0.2 and2p; — 4p, < 0.4 as different sample € SC1Y (proper) |
points. As it does not seem sensible that our method should

depend on such representational variants of constrairgs, w = ==-==-=={ € S 19 (proper)
prefer to distinguish constraints only according to thesaib
of distributions they define. This can be done by writing con- == € 501 (support)
straints in a normal form
$1p1 + - -+ 8P <0, 2)
where s := (s1,...,8,) IS an element of then — 1- 100) & %7010,

dimensional unit sphere :
- _{81,..., ‘ZS

As every linear constraint (1) can be transformed into a

unique normal form (2), we henceforward identify linear €on 4t set of support. With these assumptions, the measure se-

! . . el _ \ se : _ r
straintsc with pointss € S", and model randcimly 0b- |ection problem consists of finding selection rules in thie fo
served constraints by probability distributions 8f-. lowing sense.

In the binomial casen( = 2), a constraint (2) is a (nontriv- . ) ) _
ial) lower bound orp; iff s; < 0 ands, > 0; it is a (non- Definition 2.2 A selection rulds any function that for every
trivial) upper bound iffs; > 0 ands, < 0. The following ™ € Nmaps any tuples,... sy € (S" )Y (N € N) of
definition generalizes this classification of constraints. proper constraints to a seé((s1, ..., sn) CintA™.
Definition 2.1 A sign vectoris any vector with components This definition of a selection rule is not directly tied to
in {~1,0,1}. Forr € R we definesignr) as—1,0 or 1,  constraints as data, and is very similar to Paris and Ven-
depending on whether < 0, r = 0, orr > 0. The sign covska’s [199q notion of an mferen_ce_ process It is
vectorsign(s) for s € S”~ ! is the vector(sign(s;))i=1... n.  VeIY general in two respects: first, it is not required that

Figure 1: Constraints from different sectors

Each sign-vecto¢ of lengthn defines asectorS¢ in $71: sel(s,...,sn) consists of a unique point. While it is ob-
viously desirable that a selection rule yields unique sohs
S¢:={s e 8" |signs) = (}. (3) as often as possible, one needs to take the possibility into

account that no principled statistical method can guasante
unique solutions in all cases. Second, it is not demanded tha
selsy,...,sy) beasubset oA(sy,...,sy) (the distribu-
tions on D that actually satisfy the constraints). Such a de-
mand, which is natural from the constraints as knowledge per
spective, is not required from the constraints as data persp
tive. To see why, recall that in order to deal with inconsiste
constraint sets (and also for greater realism) we shouldkwor
with probabilistic models according to which it is possihide

St T NI o ; observe false constraints. This means that even for censist
proper connstralns divides the ’|ntgr|or (zfA €. there exist . yraint sets we must take the possibility into accouattith

p € intA" that satisfys, andp' € int A" that do not satisty ., ains false constraints, and that therefore the trueaiiom

s). it
Figure 1 illustrates constraints from different sectors.dlsmbunon does notbelong t(sy, ..., sn).

Shown in the figure is the polytop®® with its 3 vertices cor- . A

responding to domain distributions that assign unit mass t§ Invariance and Equivariance

one of the states iP. Six different constraints from three dif- A selection rule in the sense of Definition 2.2 is a maximum

ferent sectors are represented by the halfplanes of paitisss  likelihood selection rule, if it takes the following formpif

fying the constraint. Halfplanes are shown by their boupdar everyN € N, and for evernyp € int A™ a probability distribu-

line, and a shading that indicates to which side of the boundtion FII,V on(S" 1)V is defined, and for a sampég, . .. , sy

ary the halfplane extends. of N constraints we select the distributionsimt A™ that
For the rest of the paper we make two simplifying assump-maximize the likelihood of the sample:

tions. Assumption 1:All constraints in the observed sample

are proper.Assumption 2:The modelp € A™ we want to

determine lies in the interidnt A™ of A™. The two assump-

tions are somewhat connected. Non-proper constraints asgheref.) is the density function of Y. Usually, constraints

essentially constraints on the set of supporpofThus, both  will be assumed to be mdependent so that wigh= fl

assumptions will be satisfied if in an initial inference step

use all observed non-proper constraints to determine afset o

support for our model, and then use the method we shall de- (81, ) = [ folsa)- (5)

velop on the remaining proper constraints to deterrpiméth j

The intuition behind this definition is that sectors contain
constraints of the same qualitative type. The classifioatio
of constraints according to sectors gives rise to the fahow
coarser, three-way distinction: a constrasnis vacuousiff
sign(s;) #€ {—1,0} for all i (a vacuous constraint is satis-
fied by allp € A™); s is asupport constraintff sign(s;) €
{0, 1} for all 7 (a support constraint is satisfied by alk A™
whose set of support is a subset{of| sign(s;) = 0}); s is
properiff sign(s;) = 1 andsign(s;) = —1 for somes, j (a

selr(s1,...,sn) = argmaxf) (s1,...,sn), (4)
P



Whenever some information about the random process thalementary qualitative properties of constraints. Twaureidt
generates the constraints is available, then one will ahoos preservation conditions are:
(4) a family ('), that is a plausible model for this ran- ggcyqy preservation: g maps every sectoS¢ bijectively
dom process. The question we shall be concerned with, how- J .+ icalf
ever, is what to do when no particular information aboutthe )
generation of the constraints is available. Thus, we addredmplication preservation: Forallk € N, s1, ... , s
the same inference problem as addressed by maximum en- &-1 k-1
tropy inference: input of the selection problem is a set of ﬂ A(s;) C A(sy) & ﬂ A(g(si)) C Ag(sz)) (8)
constraints, and nothing else. i—1 im1

The justification of the maximum entropy principle, in S . h di
broad outline, takes the following form: because there is no ector preservation means that two corresponding con-

information except the constraints, one should select the d Straints should be of the same qualitative type, as expiiesse

main distributionp that encodes the least additional informa- by their men_ﬂbershlp.ln a sector. Implication preservation
tion beyond the face-value information provided by the con-S&YS that Iog|cal_ relatlonsh|ps be_twe_en constraints shoell
preserved. Implication preservation is equivalent to the-c

straints. Minimal information content, in turn, is realizby ! - ) -
distributionsp that, roughly speaking, maximizeindependen-lunCt'onkmcltWO simpler congnionsg(—s) = —g(s) for all
cies and uniformity. Our approach to dealing with the lacks, and;_; A(s;) = 0 < ;= A(g(s;)) = 0 (consistency
of information is somewhat similar, only applied to the con- preservation). o
straint distribution: because we have no information on the The following definition introduces a class of transforma-
family (FV),,, we should assume the least specific structurdions that satisfy both properties.
of this family. In particular, we will assume that the con- Definition 3.1 Letr = (rq,...,r,) € (R*t)". The transfor-
straints are independent, and that the faniify),, is homo-  mationg, : S»~! — S 1 is defined by
geneous irp, in a sense that will be formalized by the notion
of G-invariance which is developed in this section. gr (51, 80)) = (1181, Tnsn) _

We derive the concept ak-invariance from the semantic I(ris1, ... rnsn)ll
concept of a random constraint generating mechanism thafje write G,, for the set{g,. | r € (R*)"}.
works uniformly for all p. Additional support for theG-
invariance assumption off}), will be given by the obser-
vation that maximum likelihood selection with respectio
invariant families isG-equivariant and that this can be un-
derstood as the formalization of the intuitive principlatka
uniform shift applied to all constraints should induce aim
shift of the selected distributions (cf. Example 1.2).

To motivate the concept of a random constraint generat
ing mechanism that works uniformly for @il reconsider Ex- k-1 k—1
ample 1.1, and the subsequently given explanation of how ﬂ H(s;) C H(sg) & ﬂ H(g(s:)) € H(g(sx)). ()
the constraints might have been generated from a partial i=1 i=1

count of 50% of the votes. If the true distribution is indeedjith condition (7) we look at constraints as defining sets of
p = (p1,p2) = (.1,.9) (= (P(Smith), P(Jones)), thenthe  yaq numbers, not sets of probability distributions. In con-

observation of the constrain$s < p; < .55 follow as are- eyt condition (6) seems to be the more pertinent one. We
sult of a sequence of chance events: the partial count of 50%eyertheless here introduce the global version (7), becaus

of the votes becomes known, this partial count happens tQiith this version we can prove the following representation
be an accurate projection of the full count, and two strasigerineorem.

happen to mention these partial counts in their convensatio 1 1

This sequence of chance events does not depend on the dig’€orem3.2Letn > 3, g : S"% — S~ 1. g preserves

tribution p. If the true distribution wag* = (.4,.6), then  Sectors and is globally implication preservinggft G,

the same sequence of events would occur with the same like- The theorem does not hold fer = 2. The proof is by

lihood, but now generate the constrairts< p; < .7. reduction to a classical representation result in projeagie-
Generalizing from this example, we obtain the (yet infor- ometry which characterizes mappings that preserve caltine

mal) notion of a random constraint generating process thaty. We may conjecture that the theorem also holds when the

works uniformly for allp: the constraint generating mecha- condition of global implication preservation is replaceg b

nism will produce a constrairitwhen the true domain distri- implication preservation in our preferred sense (6). A roo

bution isp with the same likelihood as it will produce a con- of this modified theorem appears to be considerably harder,

straints* corresponding té when the true distribution ip*. however.

To make this idea precise, we have to find a transformation In light of Theorem 3.2 we see the transformatignse

g on constraints that maps evesye S”~! to a correspond- G, as the adequate realization of the concept of correspon-

ing g(s) € S™!, such that an observation efunder the dence of constraints. To relate this correspondence terdiff

true distributionp corresponds to an observationgifs) un-  ent domain distributions, we define dual transformations on

derp*. The correspondence expressedgbshould preserve A™.

It is obvious that transformations. satisfy sector preser-
vation. They also satisfy a slightly strengthened versibn o
implication preservation. For this, denote Hys) C R™ the
set of all real solutions of (2), without the restriction ws
tionsp € A™ (so thatA(s) = H(s) N A™). In analogy to
(6) we can then definglobal implication preservatiowf g
by the condition



___+ Firsttransformation

__+ Second transformation

. Third transformation

Figure 2:G-transformations and equivariant selection

Definition 3.3 Letr = (ry,...,r,) € (RT)™. The transfor-

mationg, : A" — A" is defined by

_ (pl/rla s ap’n/r’n)
2?:1 pi/Ti

We write G, for the set{g, | » € (R*)"}.

The mappingj, is dual tog,. in that it is the only transforma-
tion of A™ such that for alp,s:

p € A(s) gr(p) € A(gr(s))- (8)
Our initial intuition of corresponding observations of eon

Jr ((plv"' 7pn)) :

=

Note that the concept d@F-equivariance does not, in turn,
rely on maximum likelihood selection rules. Indeed, in-
dependently from the constraints as data interpretation,
equivariance captures the idea that when the given contsrai
undergo a shift in one directions, then the selected distri-
butions should undergo a similar shift. In Figure 2(Ga
equivariant rule would have to select the distribution indi
cated by a cross given the solid constraints iff it selects th
distribution indicated by a diamond given the dashed con-
straints iff it selects the distribution indicated by a baxen
the dotted constraints.

A second homogeneity assumption one will make about
(Fp)p in the absence of any information to the contrary is

permutation invarianceif 7 is any permutation of, ... ,n,
then for allp
(Fp) = Frp. (12)

Maximum likelihood selection with respect to a permutation
invariant family (F} ), leads to gpermutation equivariarge-
lection rule:

selrsy,... ,msn) = w(sels1,...,sn))- (13)

4 Robust Estimation

In the previous section we have argued that when no particu-
lar information about the constraint generating fantify,),
is given, then reasonable assumptions on this familyCare

straints now can be phrased as follows: the observation cind permutation invariance. These assumptions alone are

constraints under the true domain distributigncorresponds
to the observation of constraipf (s) under the true domain
distributiong,. (p). Figure 2 shows three different transforma-
tions of a set of three constraints, and the dual transfaomsit
of one probability measure inside the admissible regiohef t
constraints. Each of the three sets of constraints can bs-tra
formed into any of the other two sets by uniqge € G,,.
The dual transformationg,. at the same time transform the
indicated points im\3 into each other.

With the transformations:,, andG,, we can now finally

not nearly sufficient to identify a unique such family: Af
is any distribution onS™~! that satisfiesF'(ws) F(s)
for all s € S*~! and all permutations, thenF' gives rise
to a G- and permutation invariant familyF,), by letting
F, := F, whereu = (1/n,...,1/n) is the uniform do-
main distribution, and”, := g¢.(F,), whereg, € G is the
transformation uniquely determined by = g.(u). Con-
versely, evenyG- and permutation invariant familgFy,), is
uniquely determined by its membey,, which has to satisfy
Fu(ms) = Fu(s).

formalize the idea of a constraint generating mechanismn tha In the following, we define a particular familfZ,), by

works uniformly for allp:

Definition 3.4 Let (Fp)peinta~ be a family of distributions
on S"~!. The family is calledz-invariantif for all g, € G
and allp € intA™:

gr (Fp) = Fg, (p)- )
When the distributiong’, are represented by densitigs
relative to a suitably chosen underlying measureStim?!,

then (9) can be expressed by the condition

fp(8) = f3.(p)(9r(8)). (10)

By using such appropriate density functions, it is immealiat
that the maximum likelihood selection rule given by (4) and
(5) becomess-equivariantin the sense of the following def-
inition.

Definition 3.5 A selection ruleselis calledG-equivariantff

for samplegsi, ... , sy) of constraints, and evewy. € G,

selgr(s1),.-. ,9r(sn)) = gn(S€(S1,...,8n)). (1)

way of definingL,,. The motivation for this family comes
out of the robustness of maximum likelihood selection with
respect to this family (Theorem 4.2}, can be thought of as
a mixture of multivariate Laplace distributions that arpae
rately defined on each sector. The usual multivariate Laplac
distribution onR™ has a densityf () that depends on the
Euclidean distance betweanand the meamn of the distri-
bution. To define Laplace-like distributions on the sectafrs
Sm—1 we first introduce a suitable metric on sectors:

Definition 4.1 Let¢ € {-1,0,1}", s,s' € S¢. Define

1/2
>

i,3: Gi#0,(5#0

(s, s') = %y
s

Log®

s
> (14)
J
A densityl,, (s) now is defined as a function of the distance
betweens and a reference constraint(¢) € S¢, which can
be thought of as the mean constraint in seétor

In order for L,, to satisfyL,,(wrs) = L./(s) for all permu-

tationsw, the m(¢) have to be chosen such that(w() =



wm(() for all sign vectorg and permutations. Apart from  natural homogeneity assumptions for the constraint Bistri

this condition, no restriction has to be imposed on the ahoictions. (L,), is a relatively simplez- and permutation in-

of them(() in order to obtain our robustness result. We there-variant family of constraint distributions that leads taaust

fore only assume at this point that some(¢) € S¢ have  maximum likelihood selection rule.

been appropriately fixed, and define Future work will have two major directions: first, the def-
inition of sel, will be refined in order to obtain a sensible

lu(8) := exp(—d*(s,m(¢))). (s€ S (15)  small sample behavior of the selection rule. Second, it will

be explored to which degree the assumptions made in The-

The functioni, (s) is the density of a probability distribu- 5rem 4.2 on the constraint generating fam(§,), can be
tion L,,, which induces & - and permutation invariantfamily  a|axed without loosing (16) fcsel; .

(Lp)p- The maximum likelihood selection rugel, based on
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