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Abstract

We present a new approach to inferring a probabil-
ity distribution which is incompletely specified by
a number of linear constraints. We argue that the
currently most popular approach of entropy maxi-
mization depends on a “constraints as knowledge”
interpretation of the constraints, and that a different
“constraints as data” perspective leads to a com-
pletely different type of inference procedures by
statistical methods. With statistical methods some
of the counterintuitive results of entropy maximiza-
tion can be avoided, and inconsistent sets of con-
straints can be handled just like consistent ones. A
particular statistical inference method is developed
and shown to have a nice robustness property.

1 Introduction
Probabilistic representations of uncertainty usually consist of
a single probability distribution over a large (but finite) do-
main of possible statesD = fd1; : : : ; dng. It is thus required
to assign a probability valuepi to each statedi. Usually, a
direct, full assessment of all these values is very difficultor
impossible. All one usually is able to obtain are partial de-
scriptions ofp = (p1; : : : ; pn) by constraints of e.g. the formp(A j B) � z, p(A) + p(B) � p(C), or “A andB are inde-
pendent”, whereA;B;C are subsets ofD. Such constraints
can be derived by knowledge elicitation from an expert, by di-
rect observations of the domain, or by any other information
gathering process.

A set 
1; : : : ; 
N of constraints defines the set�(
1; : : : ; 
N ) of probability measures onD that are con-
sistent with the constraints. Very rarely will�(
1; : : : ; 
N )
consist of a single probability distribution. Instead, it will
either contain more than one element, or be empty (i.e., the
constraints are inconsistent). A fundamental problem in
probabilistic reasoning then is to select from the admissible
set�(
1; : : : ; 
N) a distributionp =: sel(
1; : : : ; 
N ) as the
best guess for the true distribution the constraints describe.

This measure selection problemis well studied in the lit-
erature, particularly for the case where the constraints are
linear and consistent. It is almost unanimously suggested
that in this case one should select the distribution with maxi-
mal entropy from�(
1; : : : ; 
N) [Shore and Johnson, 1980;

Lemmer and Barth, 1982; Jaynes, 1982; Cheeseman, 1983;
Paris and Vencovská, 1990; Rödder and Meyer, 1996]. A
more general class of constraints is considered by Drudzel
and van der Gaag[1995] who then employ the center of mass
selection rule (according to this rule one selects the center of
mass of the admissible region).

In this paper we propose a new selection rule which is rad-
ically different from either maximum entropy or center of
mass. It is motivated by the observation that in spite of the
very compelling justifications it has been given[Shore and
Johnson, 1980; Jaynes, 1982; Paris and Vencovská, 1990],
maximum entropy selection has some rather counterintuitive
properties. These are illustrated by the following examples.

Example 1.1 Overhearing two strangers talking at an airport,
we hear the first one saying “: : : Jones got at least 45% of
the votes: : : ”, and the second replying “: : : Smith didn’t
get any less than 5% either: : : ”. Before the two disappear
in the crowd, we also hear them both agreeing on the fact
that if anyone else had bothered to run for mayor, then nei-
ther Smith nor Jones would have had a chance of winning the
election. Suppose, now, that we need to assess the probabil-
ity P (Smith) of an arbitrary voter in the unnamed home town
of the two strangers having voted for Smith. The informa-
tion we have establishes a lower bound of 0.05 and an upper
bound of 0.55 onP (Smith). Moreover, we have learned that
the relevant underlying state space only consists ofSmithand
Jones. If we base our probability assessment on entropy max-
imization, then we will obtainP (Smith) = 0:5. Intuitively,
this assessment appears to be overly optimistic from Smith’s
point of view.

Example 1.2 For the construction of a medical diagnosis
system ten different experts are asked for bounds on the
two crucial conditional probabilitiesP1 = P (stylosis j
polycarpia), andP2 = P (xylopserosisj anameae). Assume
that 0.41 and 0.51 are the greatest lower bound and small-
est upper bound, respectively, mentioned by any expert forP1. Having complete confidence in the experts, we will then
take it as given that the true value forP1 lies in the interval
[0.41,0.51]. Let [0.49,0.61] be the correspondingly defined
interval forP2. Applying maximum entropy to find the best
values forP1 andP2 for our expert system, we will determineP1 = P2 = 0:5. This appears somewhat counterintuitive be-
cause we have chosen the same value for both probabilities,



even though the information provided would seem to indicate
a smaller value forP1 than forP2.

The reasons why the maximum entropy solution appears
counterintuitive in the two examples are very similar. In the
first example, an equal percentage of 50% of votes for both
Smith and Jones seems implausible, because the constraints
are highly asymmetric. Experience tells us that the disparity
of the given lower bounds probably reflects a similar dispar-
ity of the actual values, which will rather be assumed to be
approximately 90% for Jones and 10% for Smith. Such an
assessment could be based on a natural explanation for how
the constraints were generated in the first place: one might
suspect, for instance, that the constraints report the partial
count of 50% of the votes, among which 45% were found
to be for Jones, and 5% for Smith. In the second example it
appears unlikely that the experts would systematically state
larger upper and lower bounds forP2 than forP1 if these two
probabilities were really the same.

In both examples we have thus argued that the maximum
entropy distribution is a counterintuitive solution of these-
lection problem, because the given constraints are unlikely
to be observed when this is the true distribution. Underlying
this argument is a view of constraints that is fundamentally
different from the view which (implicitly) underlies the use
of the maximum entropy principle: entropy maximization is
predicated on the view that the given constraints are just a
description of a state of knowledge: the knowledge that the
true distribution is a member of the admissible region defined
by the constraints. We call this theconstraints as knowledge
perspective. In our examples – and, we would claim, in most
cases where we encounter the measure selection problem –
the given constraints are not only a description of our knowl-
edge, they also are the source of our knowledge. They thereby
carry not only the face-value information consisting of a re-
striction of the admissible region; they also carry the meta-
information consisting of the fact that we observed exactly
these constraints. This meta-information is relevant for the
solution of the measure selection problem as it allows us to
reason about the likelihood of observing the given constraints
for different true distributions. We call the view of constraints
that tries to take into account this meta-information thecon-
straints as dataperspective: constraints are seen as randomly
sampled pieces of information. The distribution of this con-
straint data (theconstraint distribution) is in part determined
by the true distribution on the domain (thedomain distribu-
tion), which we want to determine. In other words, the do-
main distribution is a parameter of the constraint distribution.
Our problem thus becomes a statistical one: to infer a param-
eter of a distribution from random samples drawn from that
distribution.

All statistical methods rely in part on considerations of
likelihood. The most direct way to use likelihood is by max-
imum likelihood inference: select the parameter that gives
highest probability to the observed sample. The measure se-
lection rule we develop in this paper is likelihood maximiza-
tion for the observed constraints. The main problem we face
in a formal development of this intuitive principle is that sta-
tistical methods usually require a specific model on how the

distribution of observed data depends on the parameter of in-
terest, i.e. the stipulation of some underlying parametricfam-
ily. Our goal, however, is to define a general rule for measure
selection that does not require any knowledge about the ran-
dom mechanism that produces the constraints. Our approach
towards solving this dilemma is that of robust statistics: we
do propose a specific model for the random generation of con-
straints, but this model is chosen such that in the long run it
will lead to correct inferences for a fairly wide class of con-
straint distributions.

The constraints as data perspective coupled with statistical
approaches to measure selection permits us to handle incon-
sistent sets of constraints just like consistent ones. Our sta-
tistical model for the constraint observation only must allow
for the observation of wrong constraints, i.e. constraintsnot
satisfied by the true distribution (as an erroneous assessment
given by an expert, the premature and incorrect report of an
election result, etc.). Such a model then assigns nonzero like-
lihoods to inconsistent sets of constraints, and a maximum
likelihood solution can be found just as for consistent con-
straint sets.

The idea of measure selection by likelihood maximization
for the observed constraints was already expressed in[Jaeger,
1998], but no concrete formalization of the idea was devel-
oped. The view of constraints as data has also been taken in
somewhat different form by Dickey[1980], who proposed a
model in which partial specifications of a probability distri-
butionP were treated as random variables with a distribution
depending onP . A major difference between Dickey’s and
our work is that Dickey does not consider partial specifica-
tions by arbitrary linear constraints, but only by values for
a fixed set of “aspects” ofP . It is interesting to note that
Dickey takes it for granted that in most cases the specified
aspects will overdetermine the model, i.e. be inconsistent,
whereas authors in artificial intelligence assume underdeter-
mined models.

In this paper we can only give an overview of our maxi-
mum likelihood approach to measure selection. Goal of this
paper is to convey the main ideas, and to provide some in-
sight into the feasibility of their mathematical development.
More technical details, including proofs of the theorems here
stated, will be given in a full technical paper.

2 The Constraint Sample Space
To treat constraints as random samples we have to view them
as elements of some sample space on which probability dis-
tributions can be defined. Throughout we assume that the
constraints refer to a distribution on a domain ofn elements.
The set of all these distributions can be identified with�n := f(p1; : : : ; pn) 2 Rn j pi � 0; nXi=1 pi = 1g:
A linear constraint then has the general form
 : x1p1 + : : :+ xnpn � z (x1; : : : ; xn; z 2 R): (1)

We could identify this constraint with its parametersx1; : : : ; xn; z, and thus takeRn+1 as our sample space. How-
ever, this would mean to view two equivalent constraints like
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p1 � 2p2 � 0:2 and2p1 � 4p2 � 0:4 as different sample
points. As it does not seem sensible that our method should
depend on such representational variants of constraints, we
prefer to distinguish constraints only according to the subsets
of distributions they define. This can be done by writing con-
straints in a normal forms1p1 + : : :+ snpn � 0; (2)

where s := (s1; : : : ; sn) is an element of then � 1-
dimensional unit sphereSn�1 = f(s1; : : : ; sn) jXi s2i = 1g:
As every linear constraint (1) can be transformed into a
unique normal form (2), we henceforward identify linear con-
straints
 with pointss 2 Sn�1, and model randomly ob-
served constraints by probability distributions onSn�1.

In the binomial case (n = 2), a constraint (2) is a (nontriv-
ial) lower bound onp1 iff s1 < 0 ands2 > 0; it is a (non-
trivial) upper bound iffs1 > 0 ands2 < 0. The following
definition generalizes this classification of constraints.

Definition 2.1 A sign vectoris any vector with components
in f�1; 0; 1g. For r 2 R we definesign(r) as�1; 0 or 1,
depending on whetherr < 0, r = 0, or r > 0. The sign
vectorsign(s) for s 2 Sn�1 is the vector(sign(si))i=1;::: ;n.
Each sign-vector� of lengthn defines asectorS� in Sn�1:S� := fs 2 Sn�1 j sign(s) = �g: (3)

The intuition behind this definition is that sectors contain
constraints of the same qualitative type. The classification
of constraints according to sectors gives rise to the following
coarser, three-way distinction: a constraints is vacuousiff
sign(si) 6=2 f�1; 0g for all i (a vacuous constraint is satis-
fied by allp 2 �n); s is asupport constraintiff sign(si) 2f0; 1g for all i (a support constraint is satisfied by allp 2 �n
whose set of support is a subset offi j sign(si) = 0g); s is
proper iff sign(si) = 1 andsign(sj) = �1 for somei; j (a
proper constraints divides the interior of�n, i.e. there existp 2 int�n that satisfys, andp0 2 int�n that do not satisfys).

Figure 1 illustrates constraints from different sectors.
Shown in the figure is the polytope�3 with its 3 vertices cor-
responding to domain distributions that assign unit mass to
one of the states inD. Six different constraints from three dif-
ferent sectors are represented by the halfplanes of points satis-
fying the constraint. Halfplanes are shown by their boundary
line, and a shading that indicates to which side of the bound-
ary the halfplane extends.

For the rest of the paper we make two simplifying assump-
tions. Assumption 1:All constraints in the observed sample
are proper.Assumption 2:The modelp 2 �n we want to
determine lies in the interiorint�n of �n. The two assump-
tions are somewhat connected. Non-proper constraints are
essentially constraints on the set of support ofp. Thus, both
assumptions will be satisfied if in an initial inference stepwe
use all observed non-proper constraints to determine a set of
support for our model, and then use the method we shall de-
velop on the remaining proper constraints to determinepwith

(0,0,1)

(1,0,0) (0,1,0)

2 S(�1;1;1) (proper)2 S(1;�1;0) (proper)2 S(1;0;1) (support)

Figure 1: Constraints from different sectors

that set of support. With these assumptions, the measure se-
lection problem consists of finding selection rules in the fol-
lowing sense.

Definition 2.2 A selection ruleis any function that for everyn 2 N maps any tuples1; : : : ; sN 2 (Sn�1)N (N 2 N) of
proper constraints to a setsel(s1; : : : ; sN ) � int�n.

This definition of a selection rule is not directly tied to
constraints as data, and is very similar to Paris and Ven-
covská’s [1990] notion of an inference process. It is
very general in two respects: first, it is not required that
sel(s1; : : : ; sN ) consists of a unique point. While it is ob-
viously desirable that a selection rule yields unique solutions
as often as possible, one needs to take the possibility into
account that no principled statistical method can guarantee
unique solutions in all cases. Second, it is not demanded that
sel(s1; : : : ; sN ) be a subset of�(s1; : : : ; sN ) (the distribu-
tions onD that actually satisfy the constraints). Such a de-
mand, which is natural from the constraints as knowledge per-
spective, is not required from the constraints as data perspec-
tive. To see why, recall that in order to deal with inconsistent
constraint sets (and also for greater realism) we should work
with probabilistic models according to which it is possibleto
observe false constraints. This means that even for consistent
constraint sets we must take the possibility into account that it
contains false constraints, and that therefore the true domain
distribution does not belong to�(s1; : : : ; sN ).
3 Invariance and Equivariance
A selection rule in the sense of Definition 2.2 is a maximum
likelihood selection rule, if it takes the following form: for
everyN 2 N, and for everyp 2 int�n a probability distribu-
tionFNp on(Sn�1)N is defined, and for a samples1; : : : ; sN
of N constraints we select the distributions inint�n that
maximize the likelihood of the sample:

selF (s1; : : : ; sN ) := arg maxp fNp (s1; : : : ; sN ); (4)

wherefNp is the density function ofFNp . Usually, constraints
will be assumed to be independent, so that withfp := f1pfNp (s1; : : : ; sN ) = NYi=1 fp(si): (5)
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Whenever some information about the random process that
generates the constraints is available, then one will choose in
(4) a family (FNp )p that is a plausible model for this ran-
dom process. The question we shall be concerned with, how-
ever, is what to do when no particular information about the
generation of the constraints is available. Thus, we address
the same inference problem as addressed by maximum en-
tropy inference: input of the selection problem is a set of
constraints, and nothing else.

The justification of the maximum entropy principle, in
broad outline, takes the following form: because there is no
information except the constraints, one should select the do-
main distributionp that encodes the least additional informa-
tion beyond the face-value information provided by the con-
straints. Minimal information content, in turn, is realized by
distributionsp that, roughly speaking, maximize independen-
cies and uniformity. Our approach to dealing with the lack
of information is somewhat similar, only applied to the con-
straint distribution: because we have no information on the
family (FNp )p, we should assume the least specific structure
of this family. In particular, we will assume that the con-
straints are independent, and that the family(Fp)p is homo-
geneous inp, in a sense that will be formalized by the notion
of G-invariance, which is developed in this section.

We derive the concept ofG-invariance from the semantic
concept of a random constraint generating mechanism that
works uniformly for all p. Additional support for theG-
invariance assumption on(Fp)p will be given by the obser-
vation that maximum likelihood selection with respect toG-
invariant families isG-equivariant, and that this can be un-
derstood as the formalization of the intuitive principle that a
uniform shift applied to all constraints should induce a similar
shift of the selected distributions (cf. Example 1.2).

To motivate the concept of a random constraint generat-
ing mechanism that works uniformly for allp, reconsider Ex-
ample 1.1, and the subsequently given explanation of how
the constraints might have been generated from a partial
count of 50% of the votes. If the true distribution is indeedp̂ = (p̂1; p̂2) = (:1; :9) (= (P (Smith); P (Jones))), then the
observation of the constraints:05 � p1 � :55 follow as a re-
sult of a sequence of chance events: the partial count of 50%
of the votes becomes known, this partial count happens to
be an accurate projection of the full count, and two strangers
happen to mention these partial counts in their conversation.
This sequence of chance events does not depend on the dis-
tribution p̂. If the true distribution wasp� = (:4; :6), then
the same sequence of events would occur with the same like-
lihood, but now generate the constraints:2 � p1 � :7.

Generalizing from this example, we obtain the (yet infor-
mal) notion of a random constraint generating process that
works uniformly for allp: the constraint generating mecha-
nism will produce a constraint̂s when the true domain distri-
bution isp̂ with the same likelihood as it will produce a con-
straints� corresponding tôs when the true distribution isp�.
To make this idea precise, we have to find a transformationg on constraints that maps everys 2 Sn�1 to a correspond-
ing g(s) 2 Sn�1, such that an observation ofs under the
true distributionp̂ corresponds to an observation ofg(s) un-
derp�. The correspondence expressed byg should preserve

elementary qualitative properties of constraints. Two natural
preservation conditions are:

Sector preservation: g maps every sectorS� bijectively
onto itself.

Implication preservation: For allk 2 N, s1; : : : ; sk:k�1\i=1 �(si) � �(sk), k�1\i=1 �(g(si)) � �(g(sk)) (6)

Sector preservation means that two corresponding con-
straints should be of the same qualitative type, as expressed
by their membership in a sector. Implication preservation
says that logical relationships between constraints should be
preserved. Implication preservation is equivalent to the con-
junction of two simpler conditions:g(�s) = �g(s) for alls, and

Tk�1i=1 �(si) = ; , Tk�1i=1 �(g(si)) = ; (consistency
preservation).

The following definition introduces a class of transforma-
tions that satisfy both properties.

Definition 3.1 Letr = (r1; : : : ; rn) 2 (R+ )n. The transfor-
mationgr : Sn�1 ! Sn�1 is defined bygr ((s1; : : : ; sn)) := (r1s1; : : : ; rnsn)k(r1s1; : : : ; rnsn)k :
We writeGn for the setfgr j r 2 (R+ )ng.

It is obvious that transformationsgr satisfy sector preser-
vation. They also satisfy a slightly strengthened version of
implication preservation. For this, denote byH(s) � Rn the
set of all real solutions of (2), without the restriction to solu-
tionsp 2 �n (so that�(s) = H(s) \ �n). In analogy to
(6) we can then defineglobal implication preservationof g
by the conditionk�1\i=1 H(si) � H(sk), k�1\i=1 H(g(si)) � H(g(sk)): (7)

With condition (7) we look at constraints as defining sets of
real numbers, not sets of probability distributions. In ourcon-
text condition (6) seems to be the more pertinent one. We
nevertheless here introduce the global version (7), because
with this version we can prove the following representation
theorem.

Theorem 3.2 Let n � 3, g : Sn�1 ! Sn�1. g preserves
sectors and is globally implication preserving iffg 2 Gn.

The theorem does not hold forn = 2. The proof is by
reduction to a classical representation result in projective ge-
ometry which characterizes mappings that preserve collinear-
ity. We may conjecture that the theorem also holds when the
condition of global implication preservation is replaced by
implication preservation in our preferred sense (6). A proof
of this modified theorem appears to be considerably harder,
however.

In light of Theorem 3.2 we see the transformationsgr 2Gn as the adequate realization of the concept of correspon-
dence of constraints. To relate this correspondence to differ-
ent domain distributions, we define dual transformations on�n.
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2 S(�1;1;1)2 S(1;�1;0)2 S(1;0;1)
First transformation

Second transformation

Third transformation

Figure 2:G-transformations and equivariant selection

Definition 3.3 Letr = (r1; : : : ; rn) 2 (R+ )n. The transfor-
mation�gr : �n ! �n is defined by�gr ((p1; : : : ; pn)) := (p1=r1; : : : ; pn=rn)Pni=1 pi=ri :
We write �Gn for the setf�gr j r 2 (R+ )ng.
The mapping�gr is dual togr in that it is the only transforma-
tion of�n such that for allp,s:p 2 �(s) , �gr(p) 2 �(gr(s)): (8)

Our initial intuition of corresponding observations of con-
straints now can be phrased as follows: the observation of
constraints under the true domain distributionp corresponds
to the observation of constraintgr(s) under the true domain
distribution�gr(p). Figure 2 shows three different transforma-
tions of a set of three constraints, and the dual transformations
of one probability measure inside the admissible region of the
constraints. Each of the three sets of constraints can be trans-
formed into any of the other two sets by uniquegr 2 Gn.
The dual transformations�gr at the same time transform the
indicated points in�3 into each other.

With the transformationsGn and �Gn we can now finally
formalize the idea of a constraint generating mechanism that
works uniformly for allp:

Definition 3.4 Let (Fp)p2int�n be a family of distributions
onSn�1. The family is calledG-invariant if for all gr 2 G
and allp 2 int�n: gr(Fp) = F�gr(p): (9)

When the distributionsFp are represented by densitiesfp
relative to a suitably chosen underlying measure onSn�1,
then (9) can be expressed by the conditionfp(s) = f�gr(p)(gr(s)): (10)

By using such appropriate density functions, it is immediate
that the maximum likelihood selection rule given by (4) and
(5) becomesG-equivariantin the sense of the following def-
inition.

Definition 3.5 A selection ruleselis calledG-equivariantiff
for samples(s1; : : : ; sN ) of constraints, and everygr 2 Gn

sel(gr(s1); : : : ; gr(sN )) = �gr(sel(s1; : : : ; sN )): (11)

Note that the concept ofG-equivariance does not, in turn,
rely on maximum likelihood selection rules. Indeed, in-
dependently from the constraints as data interpretation,G-
equivariance captures the idea that when the given constraints
undergo a shift in one directions, then the selected distri-
butions should undergo a similar shift. In Figure 2, aG-
equivariant rule would have to select the distribution indi-
cated by a cross given the solid constraints iff it selects the
distribution indicated by a diamond given the dashed con-
straints iff it selects the distribution indicated by a box given
the dotted constraints.

A second homogeneity assumption one will make about(Fp)p in the absence of any information to the contrary is
permutation invariance: if � is any permutation of1; : : : ; n,
then for allp �(Fp) = F�p: (12)

Maximum likelihood selection with respect to a permutation
invariant family(Fp)p leads to apermutation equivariantse-
lection rule:

sel(�s1; : : : ; �sN ) = �(sel(s1; : : : ; sN )): (13)

4 Robust Estimation
In the previous section we have argued that when no particu-
lar information about the constraint generating family(Fp)p
is given, then reasonable assumptions on this family areG-
and permutation invariance. These assumptions alone are
not nearly sufficient to identify a unique such family: ifF
is any distribution onSn�1 that satisfiesF (�s) = F (s)
for all s 2 Sn�1 and all permutations�, thenF gives rise
to a G- and permutation invariant family(Fp)p by lettingFu := F , whereu = (1=n; : : : ; 1=n) is the uniform do-
main distribution, andFp := gr(Fu), wheregr 2 G is the
transformation uniquely determined byp = �gr(u). Con-
versely, everyG- and permutation invariant family(Fp)p is
uniquely determined by its memberFu, which has to satisfyFu(�s) = Fu(s).

In the following, we define a particular family(Lp)p by
way of definingLu. The motivation for this family comes
out of the robustness of maximum likelihood selection with
respect to this family (Theorem 4.2).Lu can be thought of as
a mixture of multivariate Laplace distributions that are sepa-
rately defined on each sector. The usual multivariate Laplace
distribution onRn has a densityf(x) that depends on the
Euclidean distance betweenx and the meanm of the distri-
bution. To define Laplace-like distributions on the sectorsofSn�1, we first introduce a suitable metric on sectors:

Definition 4.1 Let � 2 f�1; 0; 1gn, s; s0 2 S� . Defined�(s; s0) := 0� Xi;j: �i 6=0;�j 6=0 Log2(s0isjs0jsi )1A1=2 : (14)

A densitylu(s) now is defined as a function of the distance
betweens and a reference constraintm(�) 2 S� , which can
be thought of as the mean constraint in sectorS� .

In order forLu to satisfyLu(�s) = Lu(s) for all permu-
tations�, them(�) have to be chosen such thatm(��) =
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�m(�) for all sign vectors� and permutations�. Apart from
this condition, no restriction has to be imposed on the choice
of them(�) in order to obtain our robustness result. We there-
fore only assume at this point that somem(�) 2 S� have
been appropriately fixed, and definelu(s) := exp(�d�(s;m(�))): (s 2 S�) (15)

The functionlu(s) is the density of a probability distribu-
tionLu, which induces aG- and permutation invariant family(Lp)p. The maximum likelihood selection ruleselL based on
this family is distinguished by the following robustness prop-
erty.

Theorem 4.2 Let n � 3. Let (Fp)p be a G- and
permutation-invariant family of probability distributions on
proper constraints such thatFu(S�) > 0 for all proper sectorsS� . Let F1p denote the distribution of an infinite sequences1; s2; : : : of independent constraints drawn according toFp.
Then F1p (limN!1selL(s1; : : : ; sN ) = p) = 1: (16)

The theorem says that in the long run we will select with
probability 1 the correct distributionp by usingselL, even
when the constraints are actually generated according to dis-
tributions (Fp)p. The conditionsn � 3 andFu(S�) > 0
make sure that with probability 1selL(s1; : : : ; sN ) will be a
unique point for all sufficiently largeN . To obtain an anal-
ogous result forn = 2 a mild additional condition on(Fp)p
must be added. The proof of theorem 4.2 follows the proof
of a general robustness result given as theorem 1 in[Huber,
1967].

Theorem 4.2 provides a good justification for usingselL on
“large” samples. It does not provide any guarantee thatselL
will show a sensible behavior on small samples. In particu-
lar, the behavior on small samples can be strongly affected by
the special choice of the reference constraintsm(�). Thus,
the definition ofselL and Theorem 4.2 do not yet provide a
full answer to the measure selection problem from the con-
straints as data perspective. To extend these first results to-
wards a fully satisfactory solution, one will have to develop
suitable criteria by which to judge the performance of a max-
imum likelihood selection rule on small samples, and to spe-
cialize or modify the definition ofselL to obtain a selection
rule that performs well according to these criteria (but retains
the asymptotic behavior (16)).

5 Conclusion

We have seen that an interpretation of constraints as data, not
as knowledge, leads to a completely new perspective on the
measure selection problem. This perspective calls for statis-
tical methods of parameter estimation as the tool for mea-
sure selection. The key problem we then face is that statis-
tical methods call for a statistical model for the data genera-
tion, but that (according to the traditional problem statement
that we deal with) no information about the appropriate sta-
tistical model is given. We have argued that in the absence
of any such informationG- and permutation invariance are

natural homogeneity assumptions for the constraint distribu-
tions. (Lp)p is a relatively simpleG- and permutation in-
variant family of constraint distributions that leads to a robust
maximum likelihood selection rule.

Future work will have two major directions: first, the def-
inition of selL will be refined in order to obtain a sensible
small sample behavior of the selection rule. Second, it will
be explored to which degree the assumptions made in The-
orem 4.2 on the constraint generating family(Fp)p can be
relaxed without loosing (16) forselL.
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