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Abstract

We propose a uniform semantic frame-
work for interpreting probabilistic con-
cept subsumption and probabilistic role
quantification through statistical sam-
pling distributions. This general se-
mantic principle serves as the founda-
tion for the development of a proba-
bilistic version of the guarded fragment
of first-order logic. A characterization
of equivalence in that logic in terms of
bisimulations is given.

1 Introduction

Several probabilistic description logics have been
proposed over the last ten years [7, 8, 9, 5]. They
all focus on replacing the strict subsumption rela-
tionC v D between concepts with a probabilistic
subsumption relation

P (D | C) = p (1)

(“the probability that an object belonging to class
C also belongs to class C is p”). For the spec-
ification of concept descriptions C,D a classi-
cal, non-probabilistic description logic is used.
A language allowing such probabilistic subsump-
tion expressions is then interpreted over standard
interpretations I for the underlying description
logic, which are augmented by a probability dis-
tribution P I over the domain. This induces prob-
abilities P I(CI) for the interpretations of concept
descriptions, and hence (1) will be true in the in-
terpretation iff P I((C uD)I)/P I((C)I) = p.

Besides probabilistic subsumption there are sev-
eral other ways of integrating quantitative, specif-
ically probabilistic, information into a description
logic framework. Notably, probabilistic condi-
tions may also be used as concept forming oper-
ators. A natural and useful such concept forming
operator is obtained by generalizing role quantifi-
cation ∀r : C , and ∃r : C to a probabilistic role
quantification

P=pr : C. (2)

The intended interpretation of the concept de-
scription (2) is that in a given interpretation I with
domain O it comprises all objects o ∈ O with the
following property: if we randomly select another
o′ ∈ O from all objects that are related via r to o,
then o′ ∈ C with probability p.

In this paper we will first investigate the seman-
tic foundations of probabilistic description logics
that allow expressions of the form (2). We will
argue that the adequate way of interpreting such
expressions is by interpreting roles as probabilis-
tic transition relations. We will then use this se-
mantic concept to define a probabilistic version
of the guarded fragment of first-order predicate
logic [1]. The resulting probabilistic guarded
fragment provides a general framework in which
many probabilistic description logics can be em-
bedded. In particular, both probabilistic sub-
sumption and probabilistic role quantification are
treated in a syntactically and semantically uni-
form manner.

2 Probabilistic roles

In this section we take a closer look at expressions
of the form (2). To make things more graphic, we



use a well-worn example. Consider the expres-
sion

P≥0.6eats : Fruit (3)

Intuitively, this expression denotes all objects in
the domain whose diet consists of at least 60%
fruit. Observe that probabilistic concepts of this
form are not a replacement for probabilistic sub-
sumption expressions (1), but a means of forming
probabilistic concepts. The two can be combined
to form statements like

P (Herbivore |

Animalu P≥0.6eats : Fruit) ≥ 0.9 (4)

(animals that eat at least 60% fruit are herbivores
with probability 0.9).

As a first approach to give semantics to (3), one
might just as for probabilistic subsumption state-
ments use a probability distribution P I on the do-
main of an interpretation I . This gives us a pos-
sible interpretation for the concept description (3)
as denoting the set of all objects o for which

P I(Fruito′ | eatsI(o, o′)) ≥ 0.6.

To see why this may be inadequate, consider the
three statements

Herbivore v P<0.4eats wild(Fruit) (5)

Herbivore v P>0.5eats zoo(Fruit) (6)

eats wild = eats zoo (7)

The roles eats wild and eats zoo represent
what types of food (banana, kiwi, leaves, in-
sects,. . . ) are consumed by different types of ani-
mals in the wilderness, respectively when kept in
a zoo. The probabilistic quantification of these
rules specifies the quantitative composition of the
diet. E.g. according to (5) fewer than 40% of
the meals of a wild antelope will consist of food
types in the class Fruit. When kept in a zoo,
however, this percentage will be greater than 50%
(6). In spite of the different quantitative compo-
sition, it may still be the case that all food types
consumed by an animal in the wilderness will at
some time or another also be fed at the zoo (7).

If we try to interpret (5)-(7) by a domain distri-
bution P I , we find that because of (7) for all an-
imals a: P I({f | eats wildaf}) = P I({f |

eats zooaf}), so that the concepts on the right-
hand sides of (5) and (6) are mutually exclusive,
and hence the Herbivore concept is inconsis-
tent.

The watchful reader will have noticed that the pre-
ceding argument depends on our intuitive read-
ing the meaning of (5)-(7), and that somewhat
different semantics were attributed to the roles
eats ... as they appear in (5),(6) on the one
hand, and in (7) on the other hand: in the first two
expressions, the roles were associated with quan-
titative information on what animals will typi-
cally eat; in the last expression they were taken
to provide only the qualitative information of
what animals will possibly eat at all. Only un-
der such a dualistic interpretation of the roles can
we argue that (5)-(7) should not imply that the
concept Herbivore is empty. Otherwise we
should argue that (7) enables us to substitute e.g.
eats wild for eats zoo in (6), which would
then necessarily make the right-hand sides of (5)
and (6) inconsisten.

It is the goal of the present paper to develop a
framework where roles can serve the dual purpose
of expressing both what is accessible in principle,
and with what frequency different role fillers will
be chosen. We may then want to introduce two
different roles that coincide with regard to their
first, qualitative, interpretation, but not with re-
gard to their second, quantitative, interpretation.
As we have seen, this cannot be realized with a
semantics based on a single domain probability
distribution P I . Similarly, one can see that in-
tended behavior of the logic cannot be obtained
by basing the semantics on a probability distri-
bution over a set of possible interpretations – the
second semantic paradigm usually considered for
the interpretation of probabilistic logics [6].

Interpreting roles as accessibility relations in the
sense of modal logic, it is natural to consider se-
mantics where a qualitative accessibility relation
is replaced by probabilistic transition probabili-
ties between states (or possible worlds). This
leads to the notion of a probabilistic transition
system, as widely studied in the context of dis-
tributed and concurrent systems [13, 10]. Such a
system consists of a set of states, a set of primitive
propositions interpreted at each state, and a set
of probabilistic transition relations, each of which



determines for each state a probability distribu-
tion over the states of the system. In concurrent
systems theory, each transition relation is associ-
ated with a possible action the system can per-
form; they determine the probabilities over possi-
ble successor states when that action is taken at a
given current state.

In the context of probabilistic description logics,
the usual temporal interpretation of probabilistic
transitions between states can be replaced with
an interpretation as a probabilistic choice of role-
fillers among objects. The mathematical struc-
ture of the probabilistic model is the same. How-
ever, transition probabilities between states are
not quite strong enough a semantic concept to
support some modeling tasks one might want to
solve in a probabilistic description logic. For ex-
ample, transition probabilities do not determine a
probability distribution over possible predecessor
states, given that we have just reached a certain
state by executing a certain action. Such probabil-
ities, however, are required when we also want to
reason e.g. about inverses of probabilistic roles.
By a small modification of the model such rea-
soning can also be supported: instead of assign-
ing to each object and role a conditional distribu-
tions over role-fillers, one can define for each role
a global distribution over object pairs. For any ob-
ject o, this global distribution can be conditioned
either on o being the first component of an object
pair, yielding the distribution of role-fillers for o,
or on o being the second argument of an object
pair, yielding the distribution of objects that have
o as a role-filler.

The interpretation of a role as a probability dis-
tribution over pairs of objects induces a coarser,
qualitative interpretation as the set of all pairs
with nonzero probability. Using these two as-
pects of a probabilistic role for the interpretation
of (5)-(7), we obtain the desired consistency of
the Herbivore concept.

Interpreting roles by probability distributions over
object pairs does not provide an interpretation for
a probabilistic concept subsumption (1). Con-
sider, in particular, the case that the condition-
ing concept description C is a primitive concept
A. Then (1) says that an object randomly se-
lected from A will belong to D with probabil-
ity p. Just as we see roles as random selectors

of pairs of objects, we can view primitive con-
cepts as random selectors of single objects, and
interpret each primitive concept by a probability
distribution on the domain. Then “randomly se-
lecting from A” means: sampling according to
the domain distribution associated with A, and
a formal semantics for P (C | A) is obtained.
Again we can have the situation that two primitive
concepts are identical in their qualitative appear-
ance as to what domain objects can possibly be
sampled, but differ with respect to the probabili-
ties. For instance the two concepts Wild Mammal

and Zoo Mammal might very well include exactly
the same species (assuming, perhaps not realis-
tically, that every species is kept in at least one
zoo somewhere). However, the probability of be-
ing a giraffe is much higher for a randomly ob-
served Zoo Mammal than for a randomly ob-
served Wild Mammal (which will tend to be a
rabbit or squirrel).

We have thus outlined our approach for a very
general probabilistic description logic: interpret
each role by a probability distribution on pairs
of domain objects, and each primitive concept
by a probability distribution on the domain. In
the following sections we develop this seman-
tic approach. However, rather than introducing a
specific probabilistic description logic, we pursue
this program in the much more general context of
the guarded fragment of first-order logic.

3 The Probabilistic Guarded Fragment

The guarded fragment was introduced by
Andréka et al. [1] as a natural fragment of
first-order predicate logic that, on the one hand,
is general enough to allow most modal logics
to be interpreted in that fragment, and on the
other hand preserves the nice decidability prop-
erties of modal logics. The guarded fragment
is characterized by the syntactic condition that
all quantifiers must be relativized (“guarded”)
by an atomic expression that contains all the
variables occurring free in the formula quantified
over. Furthermore, a relational vocabulary is
assumed. In the following we develop the
probabilistic guarded fragment by replacing
guarded existential and universal quantification
with probabilistic quantification relative to



relation-induced probability distributions.

We begin by introducing some notational con-
ventions. We assume a relational vocabulary
S = {r1, . . . , rm} where each ri is a rela-
tion symbol of arity ≥ 1 (unlike the standard
guarded fragment, no constant symbols will be al-
lowed). Throughout, x1, x2, . . . , y1, y2 . . . denote
variables and a1, a2, . . . , b1, b2 . . . denote domain
objects. Tuples of variables or objects are writ-
ten in bold font: x,a, . . .. The length of a tuple
x is denoted | x |. When r ∈ S, then r(x,a)
denotes an atomic expression consisting of the re-
lation r with arguments from x and a. The no-
tation neither implies any particular order of the
arguments, nor that all components of x and a

must actually be used: if e.g. x = (x1, x2),
a = (a1), then r(x,a) can be any of the atoms
rx1x2a1, rx2a1x1, rx1a1x1, etc. Similarly, φ(x)
denotes a formula all of whose free variables are
in x.

Definition 3.1 Let S be a relational vocabulary.
The language Lpgf(S) of the probabilistic guarded
fragment is defined as follows.

• Relational atoms r(x) (r ∈ S) and equality
atoms xi = xj are in Lpgf(S).

• Lpgf(S) is closed under boolean operators.

• If φ(x,y), ψ(x,y) ∈ Lpgf(S), α(x,y) is
a positive S-atom such that all free vari-
ables of φ(x,y) and ψ(x,y) also occur in
α(x,y), and p a rational number in [0, 1],
then

P∼py.α(x,y)(φ(x,y) | ψ(x,y)) (8)

is in Lpgf(S) for ∼∈ {<,>,=,≥,≤}.

We here make expressions for conditional prob-
abilities the basic syntactic construct of our lan-
guage. This is because reasoning with conditional
probabilities is key to all interesting probabilistic
inference tasks, and the absence of algebraic oper-
ators in our language means that we cannot build
conditional probability expressions out of uncon-
ditional ones. However, we may freely use un-
conditional expressions P ... . . . (φ(x,y)), which
can be seen as abbreviations for conditional ex-
pressions with tautological ψ.

Example 3.2 Let Herbivore,Fruit be unary
relation symbols and eats wild binary. Then

χ(x) := P<0.4y.eats wildxy(Fruity)

is a Lpgf-formula in the free variable x that cor-
responds to the concept description on the right-
hand side of (5), and

P=1x.Herbivorex(χ(x))

is the Lpgf-sentence encoding the terminological
axiom (5). The sentence

P≥0.7x.Herbivorex(χ(x))

(at least 70% of herbivores eat less than 40%
fruit in the wild) combines probabilistic subsump-
tion and probabilistic quantification in the unified
form provided by the probabilistic guarded frag-
ment.

Following the discussion in section 2, the seman-
tics for Lpgf is straightforward – with one excep-
tion: we restrict the semantics to models with
at most countable domains. This is because two
key concepts we need – conditional distributions
and the support of a probability measure – re-
quire some non-trivial topological measure theory
when applied to uncountable domains.

Definition 3.3 A probabilistic S-structure M has
the form (M, (PMr )r∈S), where

• M is a finite or countably infinite domain.

• For r ∈ S of arity k, PM
r is a probability

distribution on M k.

To define the satisfaction relation between mod-
els and Lpgf-formulas, we require some additional
notation. To simplify matters, the following def-
initions are given by examples for a ternary rela-
tion symbol r.

Let PMr be an interpretation of r. Let a, a′ ∈
M . Then PM

r(a,·,·) denotes the distribution on

M2 obtained by conditioning PM
r on the set

{(a1, a2, a3) | a1 = a}. (Strictly speaking, this
conditional is still a distribution onM 3. However,
the first component being fixed, it effectively be-
comes a distribution on M 2). Similarly, PM

r(·,a,a′)

is the conditional of PM
r on the first component,



given that the second is a and the third is a′. We
use PM

r(a,·) as a generic expression that can stand
for fixing arbitrary components of r to values
from a. If r(x,y) = rx1y1x2 and a = (a, a′),
then PM

r(x,y)[x/a] stands for PM
r(a,·,a′).

Definition 3.4 The satisfaction relation between
Lpgf-formulas and probabilistic structures under a
variable assignment β is defined by

• M , β |= rx iff Pr(β(x)) > 0.

Assuming that the satisfaction relation has been
defined for φ(x,y), we abbreviate the probability

PMr(x,y)[x/a]({b |M , [y/b] |= φ(x,y)})

with
PMr(x,y)[x/a](φ(x,y)).

The semantics for probabilistic quantification
then is

• M , β |= P∼py.r(x,y)(φ(x,y) | ψ(x,y))
iff PM

r(x,y)[x/β(x)](φ(x,y)∧ψ(x,y)}) ∼ p ·

PM
r(x,y)[x/β(x)](ψ(x,y)).

We can identify formulas in the standard guarded
fragments with probabilistic guarded formulas
of the forms P=1y.α(x,y)(φ(x,y)) (universal
quantification) and P>0y.α(x,y)(φ(x,y)) (ex-
istential quantification). One can then show that a
formula in the standard guarded fragment (with-
out constants) is satisfiable iff its corresponding
formula in the probabilistic guarded fragment is
satisfiable (for the direction from left to right here
the finite-model property of the standard guarded
fragment is needed to obtain that our restriction to
at most countable structures does not impose any
extra limitations on satisfiability). Thus, the prob-
abilistic guarded fragment is a proper extension of
the constant-free standard guarded fragment.

4 Inference

Having defined syntax and semantics of Lpgf, we
must address the question of inference in this
logic. It is beyond the scope of the present paper
to prove either the completeness of some proof
system for this logic, or to answer the key ques-
tion whether Lpgf is decidable. Instead we will

here just propose a Gentzen-style sequent calcu-
lus for the logic, and illustrate some inferences it
supports. The material in this section must be re-
garded as preliminary.

We adopt the propositional inference rules and the
rules relating to equality from a standard sequent
calculus for first-order logic (see e.g. [3]). To
simplify matters we here limit ourselves to infer-
ence with unconditional probability expressions.
A calculus for conditional expressions can be de-
veloped along very much the same lines, but will
require some additional rules, resp. additional
preconditions on some rules. Table 1 shows in-
ference rules relating to probabilistic quantifica-
tion. The notation P∼ is used for inference rules
that refer equally to P> and P=. Rules (P1)-(P5)
characterize the basic probabilistic properties of
the P -quantifier. Rules (I1)-(I3) characterize the
interplay of the qualitative and the quantitative as-
pects of relation symbols. Rules (Q1)-(Q3) are for
quantifier introduction.

Example 4.1 Consider the sentence

P=1x.Omnivorex

(P≤0.5y.feedingxy(likesxy)). (9)

Here the role feedingxy represents the relation
that animal x is being fed food y at a (public)
feeding at the zoo. The probabilities attached to
this role may represent the probability that a ran-
dom visitor to the zoo watches this feeding (i.e.
the distribution Pfeeding is essentially given by
the average number of spectators for this feeding).
Then (9) says that when we pick some omnivore
and watch one of its feedings, then the probability
that the animal actually likes the food it is given
is less than 0.5. Using the inference rules given
above, one can derive the sequent

Omnivorex→ P≤0.5y.feedingxy(likesxy)

` P≤0.5y.feedingxy(likesxy∧Omnivorex)

(this uses essentially (Q1) and propositional rea-
soning). The antecedent of this sequent can be
derived from (9) using (I2). Since x is not free in
(9), we can finally derive using (Q3):

P≤0.5xy.feedingxy(likesxy ∧ Omnivorex).
(10)



Γ`φ↔ψ Γ`P∼py.α(φ)
Γ`P∼py.α(ψ) (P1)

Γ`P=1y.α(y=y)
(P2)

Γ`P∼py.α(φ)
Γ`P>qy.α(φ) (q<p) (P3)

Γ`φ→ψ Γ`P∼qy.α(φ)
Γ`P≥qy.α(ψ)

(P4)

Γ`¬(ψ∧φ) Γ`P∼py.α(φ) Γ`P∼qy.α(ψ)
Γ`P∼p+qy.α(φ∨ψ) (P5)

Γ`P∼py.α(φ)
Γ`P∼py.α(φ∧α) (I1)

Γ`P=1y.α(φ)
Γ`α→φ (I2)

Γ`α→φ
Γ`P=1y.α(φ)

(I3)

Γ,φ`ψ
Γ,P>px.α(φ)`P>px.α(ψ) (Q1)

Γ,φ`ψ Γ,ψ`φ
Γ,P=px.α(φ)`P=px.α(ψ) (Q2)

Γ`P∼py.α(φ)
Γ`P∼pxy.α(φ) (Q3)

x not free in Γ

Table 1: Inference rules

This is a quite different statement than (9): it says
that when we randomly pick some feeding event
in the zoo, then the probability that we will watch
an omnivore eating food it likes is less than 0.5.
Unlike (9) this statement can also be true sim-
ply due to the fact that we are unlikely to select
an omnivore feeding to watch. Note, too, that if
the first quantifier in (9) had stated just a lower
bound P>0.9 . . ., then no non-trivial upper bound
P≤q . . . could have been derived for the sentence
(10), as then it would be possible that the distribu-
tion Pfeeding is in its first argument highly biased
towards the few omnivores that actually like most
of their food.

5 Bisimulations

In this section we provide a semantic charac-
terization of logical equivalence in Lpgf. For
predicate logics, characterizations of this kind
are typically given in a game-theoretic or al-
gebraic setting (the Ehrenfeucht-Fraı̈ssé method,
see e.g. [4]). In the context of modal log-
ics, closely related methods are called bisimu-
lations [10, 1]. Here we use the terminology
of bisimulations, but the techniques we use are
in fact very close to the Fraı̈ssé style algebraic
method.

Definition 5.1 Let M ,N be two probabilistic
S-structures. A partial isomorphism is a bijec-
tion f : a 7→ b between a finite subset a ⊆ M
and a finite subset b ⊆ N , such that for all r ∈ S
and all ã ⊆ a: M |= rã iff N |= rf(ã).

The following is the crucial concept needed to ex-
tend the standard techniques for predicate logics
to the probabilistic setting.

Definition 5.2 Let F be a set of partial isomor-
phisms between M and N . Let ∼F be the

symmetric and transitive closure of the relation
{(a, b) | ∃f ∈ F : f(a) = b)}. For a ∈ M k

let [a]F be the equivalence class in M k of a with
respect to ∼F . Thus, a′ ∈ [a]F iff there exists a

finite sequence a
f1
→ b1

f2
← a2

f3
→ . . . bm

fm+1

← a′

with f1, . . . , fm+1 ∈ F . Finally, define for a,a′:

[a′]Fa := {a′′ | aa′′ ∈ [aa′]F } (11)

(the section of the equivalence class [aa′] along
a).

For the following definition, dom(f) denotes the
domain of the partial isomorphism f . A tuple
a, resp. b is called guarded, if M |= ra, resp.
N |= rb, for some r ∈ S.

Definition 5.3 A k-bisimulation between M and
N is a sequence F0, F1, . . . , Fk of non-empty
sets of partial isomorphisms, such that

• (forth) for all f : a 7→ b ∈ Fi and for all
guarded a′ there exists g ∈ Fi−1 with a′ ∈
dom(g), such that for a∗ := a′ ∩ a, a∗∗ :=
a′ \ a, and b∗ := f(a∗):

g(a∗) = b∗ (12)

and for all r ∈ S

PMr(a∗,·)([a
∗∗]

Fi−1

a∗ ) = PNr(b∗,·)([b
∗∗]

Fi−1

b∗ )
(13)

• (back) for all f : a 7→ b ∈ Fi and for all
guarded b′ there exists g ∈ Fi−1 with b′ ∈
dom(g−1), such that for b∗ := b′ ∩ b, b∗∗ :=
b′\b, and a∗ := f−1(b∗) (12) and (13) hold.

A bisimulation is an infinite sequence F0, F1, . . .
with the back and forth property.

Following a common strategy, we will derive a
stratified characterization of logical equivalence



in Lpgf by classifying formulas according to their
nesting depth [12]. Nesting depth is a variation of
quantifier rank: the application of any probability
quantifier P∼qy.α increments the nesting depth
of a formula by one, irrespective of the number
of variables in y. We denote with Lkpgf the set of
formulas with nesting depth at most k.

For a ⊆ M, b ⊆ N with | a |=| b | we write
M [a] ≡Lk

pgf
N [b] iff for all φ(x) ∈ Lkpgf: M |=

φ(a) iff N |= φ(b).

Theorem 5.4 The following are equivalent for fi-
nite M ,N :

(i) M [a] ≡Lk
pgf

N [b]

(ii) There exists a k − bisimulation F : M →
N with f(a) = b for some f ∈ Fk .

If M or N is infinite, then the implication (ii)→
(i) holds.

Due to space limitations the proof is omitted here.
For the direction (i) → (ii) it heavily relies on
the finiteness of M ,N . However, it is an open
problem whether this implication might actually
also hold for infinite structures.

.1;0

.1;0

.4;.2 0;.3

0;.4.4;.1

.2;0 0;.1

0;.2

0;.1.8;.3

0;.2

0;.1

r

s

r

s

PSfrag replacements

M N

Figure 1: Bisimilar unary structures

Example 5.5 Figure 1 shows two finite structures
for a vocabulary consisting of unary relations r
and s. The distributions Pr, Ps are specified in
the format Pr(a);Ps(a) at each domain element
a. The structures differ in the size of their (qual-
itative) interpretations of r,s. However, both
structures agree on the probabilities with which
an object sampled from one relation will belong
to the other relation as well (for instance, with
probability 0.8 is an object sampled from r also in
s). This means that the two structures are bisim-
ilar: let F be the set of all partial isomorphisms

f with dom(f ) of size one. The dashed arrow in
Figure 1 indicates one f in F . We show that the
constant sequence Fi := F has the forth prop-
erty. For this let f : a 7→ b ∈ F . Since the vo-
cabulary is unary, and all domain elements in M
belong to at least one relation, guarded tuples a′

are just all singletons a′. For a′ = a one obtains
that g = f is as required for the forth property
((12) trivially holds, and (13) is vacuous because
a∗∗ = ∅). If a′ 6= a then there exists some b′ such
that g : a′ 7→ b′ ∈ F (possibly b′ = b). Now
(12) is vacuous, because a∗ = ∅. Condition (13)
becomes

PMr(·)([a
′]F ) = PNr(·)([b

′]F ),

(and similarly for s). Since here an equivalence
class [a]F just contains all a′ that agree with a
with respect to membership in r, s, these condi-
tions are satisfied by M ,N .

The preceding example can be easily generalized
to provide a simple and complete characterization
of bisimilar unary structures. It can be interpreted
as showing that for unary vocabularies Lpgf essen-
tially becomes a propositional probability logic in
the style of Nilsson [11].

PSfrag replacements

M N

a1

a2a3

a4
b1

b2

Figure 2: Bisimilar structures with binary r

Example 5.6 Figure 2 shows two structures
M ,N for a single binary relation r. The solid ar-
rows in the figure indicate the pairs with nonzero
probability Pr. Irrespective of the concrete prob-
ability values, the two structures are bisimilar. To
see this, let F be the set of all partial isomor-
phisms f with dom(f) of size two. The dashed
arrows indicate one such f : (a1, a2) 7→ (b1, b2).
Again, let Fi = F for all i. For f and a tu-
ple a′ = (a′1, a

′
2) in the forth property there ex-

ist three possibilities: either 0,1 or 2 components
of a′ can be equal to one of a1 or a2. We con-
sider the case of one component being equal, e.g.
a′(a1, a4). Then g : (a1, a4) 7→ (b1, b2) ∈ F ,
and (12) is satisfied. In M all pairs of neighbor-
ing elements are equivalent with respect to ∼F .



In particular, [a4]
F
a1 consists of the two neighbors

{a2, a4} of a1. In N [b2]
F
b1

consists of the sin-
gle element b2. In both cases, the probability of
reaching these sets from a1, resp. b1 is equal to
one, i.e. (13) holds. The other cases for a′ are
similar.

In both of our examples, the bisimulation se-
quence was a constant F . It is easy to see that
for finite bisimilar structures the Fi can always be
chosen to be the same for all i.

6 Conclusion

In this paper we have introduced a probabilistic
version of the guarded fragment, and shown how,
in particular, it can be used as a probabilistic ex-
tension of description logics that permits proba-
bilistic subsumption and probabilistic role quan-
tification in a uniform framework.

The key design choice in the logic presented here
is to view each k-ary relation as a random selector
of k-tuples from the domain. It is not always nat-
ural to assume that there should be a one-to-one
correspondence between different sampling dis-
tributions that should be distinguished for a do-
main, and the relations used to describe qualita-
tive dependencies between objects in the domain.
However, the logic Lpgf allows, for instance, to
use some relation symbols exclusively as standard
logical atoms, and others exclusively as guards in
probability quantifiers. In this way one can effec-
tively undo the assumed duality of relation sym-
bols, and reason with arbitrary sampling distribu-
tions and arbitrary qualitative relations.

In introducing our semantics in section 2 we have
emphasized its basis in the semantics of proba-
bilistic transition systems. However, it is also
quite closely related to some other probabilis-
tic frameworks. First, being essentially given
through probabilities on (products of) the domain
of a structure, our semantics can be viewed as a
variant of statistical probability semantics [6, 2]
with multiple sampling distributions. In the con-
text of probabilistic description logics, Koller et
al. [9] also have proposed a framework where
probabilistic selection of role fillers can be rep-
resented by different domain distributions. Apart
from this similarity, however, the system in [9] is

entirely different from the one presented here, as
it is a Bayesian network based representation lan-
guage for completely specified probability distri-
butions, not a logic-based representation language
for (partial) probabilistic knowledge.

Key problem for future work is the decidability
question for the probabilistic guarded fragment.
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