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Abstract

In this paper a probabilistic extensions for
terminological knowledge representation lan-
guages is defined. Two kinds of probabilis-
tic statements are introduced: statements
about conditional probabilities between con-
cepts and statements expressing uncertain
knowledge about a specific object. The usual
model-theoretic semantics for terminological
logics are extended to define interpretations
for the resulting probabilistic language. It
is our main objective to find an adequate
modelling of the way the two kinds of proba-
bilistic knowledge are combined in common-
sense inferences of probabilistic statements.
Cross entropy minimization is a technique
that turns out to be very well suited for
achieving this end.

1 INTRODUCTION

Terminological knowledge representation languages
(concept languages, terminological logics) are used to
describe hierarchies of concepts. While the expressive
power of the various languages that have been defined
(e.g. KL-ONE [BS85] ALC [SSS91]) varies greatly in
that they allow for more or less sophisticated concept
descriptions, they all have one thing in common: the
hierarchies described are purely qualitative, i.e. only
inclusion, equality, or disjointness relations between
concepts can be expressed.

In this paper we investigate an extension of termino-
logical knowledge representation languages that incor-
porate quantitative statements.

A hybrid terminological logic that allows to express
both general world knowledge about the relationships
between concepts, and information about the nature
of individual objects, gives rise to two kinds of quanti-
tative statements: terminological (T-box) axioms may
be refined by stating graded or partial subsumption re-

lations, and assertions (A-box statements) can be gen-
eralized by allowing to express uncertain knowledge.

Let us illustrate the use of quantitative statements by
an example. The following is a simple knowledge base
that could be formulated in any concept language:

Example 1.1

T-box: Flying_bird C Bird (1)
Antarctic_bird C Bird (2)
A-box: Opus € Bird (3)

In this purely qualitative description a lot of infor-
mation we may possess cannot be expressed. The two
subconcepts of Bird that are specified, for instance, are
very different with regard to the degree by which they
exhaust the superconcept. One would like to make
this difference explicit by stating relative weights, or
conditional probabilities, for concepts in a manner like

P(Flying_bird|Bird) = 0.95 (4)
P(Antarctic_bird|Bird) = 0.01 (5)

Also, it may be desirable to express a degree by which
the two concepts Antarctic_bird and Flying_bird, which
stand in no subconcept- superconcept relation, inter-
sect:

P(Flying_bird|Antarctic_bird) = 0.2 (6)

For the A-box, apart from the certain knowledge Opus
€ Bird, some uncertain information may be available,
that we should be able to express as well. There may
be strong evidence, for example, that Opus is in fact
an antarctic bird. Hence

P(Opus € Antarctic_bird) = 0.9 (7)
could be added to our knowledge base.

It is important to realize that these two kinds of prob-
abilistic statements are of a completely different na-
ture. The former codifies statistical information that,
generally, will be gained by observing a large number
of individual objects and checking their membership
of the various concepts. The latter expresses a degree



of belief in a specific proposition. Its value most of-
ten will be justified only by a subjective assessment of

“likelihood”.

This dual use of the term “probability” has caused
a lot of controversy over what the true meaning of
probability is: a measure of frequency, or of subjective
belief (e.g. [Jay78]). A comprehensive study of both
aspects of the term is [Carb0]. More recently, Bacchus
and Halpern have developed a probabilistic extension
of first-order logic that accommodates both notions of

probability [Bac90],[Hal90].

Now that we have stressed the differences in assigning
a probability to subsets of a general concept on the one
hand, and to assertions about an individual object on
the other, we are faced with the question of how these
two notions of probability interact: how does a body
of statistical information affect our beliefs in assertions
about an individual?

Among the first to address this problem was Carnap,
who formulated the rule of direct (inductive) inference
[Carb0]: if for an object a it is known that it belongs
to a class C, and our statistics say that an element of
C belongs to another class D with probability p, then
our degree of belief in a’s membership of D should be
just p. Applied to the statements (1),(3) and (4) of
our example, direct inference yields a degree of belief
of 0.95 in the proposition Opus € Flying_bird.

A generalization of direct inference is Jeffrey’s rule
[Jef65]: if all we know about a, is that it belongs
to either of finitely many mutually disjoint classes
C1,...,C,, and to each possibility we assign a proba-
bility p; (3.r—, pi = 1), if furthermore, the statistical
probability for D given C; is ¢;, then our degree of
belief for a being in D should be given by

n
Zpiqz'-
i=1

Bacchus et al. have developed a method to de-
rive degrees of belief for sentences in first-order logic
on the basis of first-order and statistical information
[BGHK92], [BGHK93]. The technique they use is mo-
tivated by direct inference, but is of a far more general
applicability. However, it does not allow to derive new
subjective beliefs given both subjective and statistical
information.

In this paper we develop a formal semantical frame-
work that for terminological logics models the influ-
ence of statistical, generic information on the assign-
ment of degrees of belief to specific assertions. In order
to do this, we will interpret both kinds of probabilis-
tic statements in one common probability space that
essentially consists of the set of concept terms that
can be formed in the language of the given knowledge
base '. Defining all the probability measures on the

!Different from [Bac90],[Hal90], for instance, where

same probability space allows us to compare the mea-
sure assigned to an object a with the generic measure
defined by the given statistical information. The most
reasonable assignment of a probability measure to a,
then, is to choose, among all the measures consistent
with the constraints known for a, the one that most
closely resembles the generic measure. The key ques-
tion to be answered, therefore, is how resemblance of
probability measures should be measured. We argue
that minimizing the cross entropy of the two measures
is the appropriate way.

Paris and Vencovska, considering probabilistic infer-
ences very similar in nature to ours, use a different
semantical interpretation, which, too, leads them to
the minimum cross entropy principle [PV90], [PV92].

Previous work on probabilistic extensions of concept
languages was done by Heinsohn and Owsnicki-Klewe
[HOKS88],[Hei91]. Here the emphasis is on comput-
ing new conditional probabilities entailed by the given
ones. Formal semantics for the interpretation of prob-
abilistic assertions, which are the main contribution of
our work, are not given.

2 SYNTAX

In order to facilitate the exposition of our approach we
shall use, for the time being, a very restricted, merely
propositional, concept language, which we call PCL.
In the last section of this paper an explanation will be
given of how the formalism can be extended to more
expressive concept languages, notably ALC.

The concept terms in our language are just proposi-
tional expressions built from a finite set of concept
names Sc = {A,B,C,...}. The set of concept terms
is denoted by T(Sc). Terminological azioms have the
form
ACC or A=C

with A € S¢ and CET(Sc). Probabilistic terminologi-
cal arioms are expressions

P(CID) = p,
where C and D are concept terms and p €]0, 1[. Fi-
nally, we have probabilistic assertions

P(a € C) = p,
where a is an element of a finite set of object names
So, and p € [0, 1].
A knowledge base (KB) in PCL consists of a set of

terminological axioms (7), a set of probabilistic ter-
minological axioms (P7) and a set of probabilistic as-
sertions (P,) for every object name a:

KB =T U PT U |J{Pula€So}.

statistical and propositional probabilities are interpreted
by probability measures on domains and sets of worlds,
respectively



There is a certain asymmetry in our probabilistic treat-
ment of terminological axioms on the one hand, and
assertions on the other. While deterministic assertions
were completely replaced by probabilistic ones (a €C
has to be expressed by P(a € C) = 1), deterministic
terminological axioms were retained, and not identified
with 0,1-valued probabilistic axioms (which, therefore,
are not allowed in PT).

There are several reasons for taking this approach:
First, our syntax for probabilistic terminological ax-
ioms is very general in that conditional probabilities
for arbitrary pairs of concept terms may be specified.
Terminological axioms, on the other hand, are gen-
erally required (as in our definition) to have only a
concept name on their left hand side. Also, in order to
make the computation of subsumption with respect to
a terminology somewhat more tractable, usually addi-
tional conditions are imposed on 7 (e.g. that it must
not contain cycles) that we would not want to have
on PT (it may be very important, for instance, to be
able to specify both P(C|D) and P(D|C)). In essence,
it can be said that the non-uniformity of our treat-
ment of deterministic and probabilistic terminological
axioms results from our intention to define a prob-
abilistic extension for terminological logics that does
not affect the scope and efficiency of standard termi-
nological reasoning in the given logics.

Furthermore, it will be seen that even for actual prob-
abilistic reasoning it proves useful to make use of the
deterministic information in 7 and the probabilistic
information in P77 in two different ways, and it would
remain to do so, if both kinds of information were en-
coded uniformly.

3 SEMANTICS

Our approach to formulating semantics for the lan-
guage PCL modifies and extends the usual model-
theoretic semantics for concept languages. The termi-
nological axioms 7 are interpreted by means of a do-
main D and an interpretation function I in the usual
way. In order to give meaning to the expressions in
PT and the P, (a € Sp), we first have to specify the
probability space on which the probability measures
described by these expressions shall be defined.

For this probability space we choose the language it-
self. That is to say, we take the Lindenbaum algebra

A(Sc) := ([T(Sc)], V, A, —,0,1)

as the underlying probability space. Here, [T(Sc)] is
the set of equivalence classes modulo logical equiva-
lence in T(S¢). The operations V, A, and — are defined
by performing disjunction, conjunction, and negation
on representatives of the equivalence classes. We shall
use letters C,D,... both for concept terms from T(Sc),
and their equivalence class in [T(Sc¢)].

An atom in a boolean algebra 2l is an element A0,
such that there is no A’ ¢ {0, A} with A’ C A (to be
read as an abbreviation for A’ A =A = 0). The atoms
of A(Sc¢) with Sc = {Aq,..., A, } are just the concept
terms of the form By A... A B, with B; € {A;, -A;}
for ¢ = 1,...,n. The set of atoms of A(S¢) is denoted
by A(Sc).

Every element of 2A(Sc), then, is (in the equivalence
class of) a finite disjunction of atoms.

On A(Sc) probability measures may be defined. Re-
call that ¢ : A(Sc) — [0,1] is a probability mea-
sure iff (1) = 1, and p(CV D) = p(C) 4+ (D) for all
C,D with CAD=0. The set of probability measures on
A(Sc) is denoted by AUA(Sc). Note that ;€ AU(Sc)
is fully specified by the values it takes on the atoms of
A(Sc).

The general structure of an interpretation for a vo-
cabulary S=ScUSo can now be described: a standard
interpretation (D,I) for 7 will be extended to an in-
terpretation (D, 1, i, (V4)aeso ), Where p € A(Sc)
is the generic measure used to interpret P7, and
ve € AU(Sc) interprets P,. Hence, we deviate from
the standard way interpretations are defined by not
mapping a € So to an element of the domain, but to
a probability measure expressing our uncertain knowl-
edge of a.

What conditions should we impose on an interpreta-
tion to be a model of a knowledge base? Certainly, the
measures p and v, must satisfy the constraints in P7T
and P,. However, somewhat more is required when
we intend to model the interaction between the two
kinds of probabilistic statements that takes place in
“commonsense” reasoning about probabilities.

The general information provided by P7 leads us to
assign degrees of belief to assertions about an object a
that go beyond what is strictly implied by P,.

What, then, are the rules governing this reasoning pro-
cess? The fundamental assumption in assigning a de-
gree of belief to a’s belonging to a certain concept C
is to view a as a random element of the domain about
which some partial information has been obtained, but
that, in aspects that no observation has been made
about, behaves like a typical representative of the do-
main, for which our general statistics apply.

In the case that P, contains constraints only about
mutually exclusive concepts this intuition leads to Jef-
frey’s rule: If

PGI{P(GECi):pi|i:17"'7n}7

where the C; are mutually exclusive, and, as may be
assumed without loss of generality, exhaustive as well,
and p € A(Sc) reflects our general statistical knowl-
edge about the domain, then the probability measure



that interprets a should be defined by

n

va(C) =Y (i x n(C | C))  (C € ASe)).

i=1

For constraints on not necessarily exclusive concepts
we need to find a more general definition for a mea-
sure “most closely resembling” the given generic mea-
sure p and satisfying the constraints. Formally, we are
looking for a function d that maps every pair (y,v)
of probability measures on a given (finite) probability
space to a real number d(u,v) > 0, the “distance” of
v to u:
d: A" x A" - R2°

where

A" = {(x1,. .., 2n) €10,1]" | Z?:ll‘z’ =1}

denotes the set of probability measures on a probabil-
ity space of size n.

Given such a d, a subset N of A" and a measure p,
we can then define the set of elements of N that have
minimal distance to p:

m(u) = v € N | d(u,v) = inf{d(u, ') |/ € N}} (8)

Three requirements are immediate that have to be met
by a distance function d in order to be used for defin-
ing the belief measure v, most closely resembling the
generic j:

(i) If N is defined by a constraint-set P, then 7% (x)
is a singleton.

(ii) If g € N, then ng(p) = {u}.

(iii) If N is defined by a set of constraints on dis-
joint sets, then m%(y) is the probability measure
obtained by Jeffrey’s rule applied to g and these

constraints.

We propose to use the cross entropy of two proba-
bility measures as the appropriate definition for their

distance. For probability measures g = (p1,..., itn)
and v = (v1,...,vy,) define:
z”: Y ifforalli
! : =0=>v=0
CE(p,v) = i=1 e M v ’
Bi, Vi #0
) otherwise.

This slightly generalizes the usual definition of cross
entropy by allowing for 0-components in g and v.

Cross entropy often is referred to as a “measure of the
distance between two probability measures” [DZ82], or
a “measure of information dissimilarity for two prob-
ability measures” [Sho86]. These interpretations have
to be taken cautiously, however. Note in particular
that neither is C'E symmetric nor does it satisfy the

triangle inequality. All that CFE has in common with
a metric is positivity:

CE(p,v) >0,

where equality holds iff 4 = v. Hence property (ii)
holds for CE. It has been shown that cross entropy
satisfies (i) (for any closed and convex set N, provided
there is at least one v €N with CFE(p,v) < o), and
(iii) as well ([STJ80], [Wen88]). Therefore, we may de-
fine for closed and convex NC A” and p € A™:

if CE(p,v) < oo
for some v € N

the unique

s CE
m(p) = element in 7" (1)

undefined

otherwise.

There are several lines of argument that support the
use of cross entropy for forming our beliefs about a on
the basis of the given generic p and a set of constraints.

One is to appeal directly to cross entropy’s properties
as a measure of information discrepancy, and to ar-
gue that our beliefs about a should deviate from the
generic measure by assuming as little additional infor-
mation as possible.

Another line of argument does not focus on the prop-
erties of cross entropy directly, but investigates fun-
damental requirements for a procedure that changes
a given probability measure p to a posterior measure
v in a (closed and convex) set N. Shore and Johnson
[ST80], [ST83] formulate five axioms for such a proce-
dure (the first one being just our uniqueness condition
(1)), and prove that when the procedure satisfies the
axioms, and is of the form v = 7f(pt) for some func-
tion d, then d must be equivalent to cross entropy (i.e.
must have the same minima).

Paris and Vencovska, in a similar vein, have given an
axiomatic justification of the maxrimum entropy prin-
ciple [PV90], which, when applied to knowledge bases
expressing the two types of probabilistic statements in
a certain way, yields the same results as minimizing
cross entropy [PV92].

With cross entropy as the central tool for the inter-
pretation of P,, we can now give a complete set of
definitions for the semantics of PCL.

Definition 3.1 Let KB =T UPT UU{P4 | @ € Sc}
a PCL-knowledge base. We define for ;1 € AU(Sc):

e pis consistent with Tiff T |E C=0= p(C) = 0;

e 4 is consistent with PT ift P(C|D) =p € PT =
#(CAD) =p x p(D);

e 4 is consistent with Py iff Pla € C) =p € Py =
1(C)=p.

For a given KB, we use the following notation:



ATQ[(Sc) =

{p € AU(Sc) | p is consistent with T},
Gen(KB) :=

{p € AU(Sc) | p is consistent with 7 and PT},
Bel, (KB) :=

{p € AU(Sc) | p is consistent with 7 and P, }.

When no ambiguities can arise, we also write Gen (the
set of possible generic measures) and Bel, (the set of
possible belief measures for a) for short.

Definition 3.2 Let S = Sc U So be a vocabulary. A
PCL-interpretation forS is a triple (D, 1, 4), where D
is a set,

I:SC—>2D, I:So — AU(Sc),

and p € AU(Sc). Furthermore, for all concept terms
Cwith I(C) =0 : p(C) =0 and I{a)(C) =0 (a € So)

must hold. For I(a) we also write v,.

Definition 3.3 Let KB =T UPT UJ{P, |a € So}
be a PCL-knowledge base. Let (D,I, ) be a PCL-

interpretation for the language of XB. We define:
(D, L p) E KB ((D,1, i) is a model of KB) iff

(i) (D,I[Sc)E= T in the usual sense.
(ii) p € Gen(KB).

(iii) For all @ € So: 7ge, (k) is defined for y, and
l(a)=Tpe, (x5)(11)-

Definition 3.4 Let JC [0, 1]. We write
KBEPCD)elJ
iff for every (D,I, u)EKXB: p(C| D) €J (if p(D) = 0,

this is considered true for every J). Also, we use the
notation

KBEPCD) =]

iff B = P(C|D) € J, and J is the minimal subset of
[0,1] with this property. Analogously, we use KB |
Plae C)eJ,and KBEP(a e C) =1.

According to definition 3.2 we are dealing with prob-
ability measures on the concept algebra 2(Sc). An
explicit representation of any such measure, i.e. a com-
plete list of the values it takes on A(Sc¢), would always

be of size 215¢l. Fortunately, we usually will not have
to actually handle such large representations, though.
Since all the probability measures we consider for a
specific knowledge base KB are in A72(Sc), the rele-
vant probability space for models of B only consists
of those atoms in A(Sc) whose extensions are not nec-
essarily empty in models of KB:

A(T):={Ce€ASc) | TEC=0}

Antarctic_bird

Figure 1: The Algebras 4(Sc) and (7))

Denote the algebra that is generated by these atoms
with A(7). Technically speaking, 2A(7) is the rela-
tivization of A(Sc) to the element

C(7) =\ A(T)

of A(Sc). Figure 1 shows the structure of A(S¢) for the
vocabulary of our introductory example. The shaded
area represents the element C(7) for the 7 in the ex-
ample. A(T), here, consists of five atoms compared to
eight atoms in 2(Sc).

How much smaller than A(S¢) can 2(7) be expected
to be in general? This question obviously is difficult
to answer, because it requires a thorough analysis of
the structure that (7)) is likely to have for real-world
instances of 7. Here we just mention one property of
7 that ensures a non-exponential growth of | A(7) |
when new terminological axioms introducing new con-
cept names are added: call (7)) bounded in depth by k
iff every atom in A(7) contains at most k& non-negated
concept names from S¢ as conjuncts. It is easy to see
that if A(7) is bounded in depth by &, then |A(7)| will
have an order of magnitude of |Sc |¥ at most. Hence,
when new axioms are added to 7 in such a way that
2A(7) remains bounded in depth by some number k,
then the growth of | A(7)] is polynomial.

The use of the structural information in 7 for reduc-
ing the underlying probability space from 2(Sc) to
A(7) is the second reason for the nonuniform treat-
ment of deterministic and probabilistic terminological
axioms that was announced in section 2. If determin-
istic axioms were treated in precisely the same fashion
as probabilistic ones, this would only lead us to handle
probability measures all with zeros in the same large
set of components, but not to drop these components
from our representations in the first place.

Example 3.5 Let KB; contain the terminologi-
cal and probabilistic statements from example 1.1
(the assertion Opus € Bird being replaced by
P(Opus € Bird) = 1). The three statements (4)-(6) in
PT do not determine a unique generic measure g, but



for every pu € Gen(KBy)

#(Flying_bird | Antarctic_bird) = 0.2
and p(Flying_bird | Bird A —=Antarctic_bird) = 0.958

holds: the first conditional probability is explicitly
stated in (6), the second can be derived from (4)-(6)
by elementary computations.

Since the constraints in Popus are
equivalent to P(Opus € Antarctic_bird) = 0.9 and
P(Opus € Bird A —=Antarctic_bird) = 0.1, and in this
Case MBelo,,, (() is given by Jeffrey’s rule,

0.9x0.240.1 x 0.958
0.2758

TBeloya, (1) (Flying_bird) =

holds for every pu € Gen. Hence
KBy = P(Opus € Flying_bird) = 0.2758.

In the following section we investigate how inferences
like these can in general be computed from a PCL-
knowledge base.

4 COMPUTING PROBABILITIES

4.1 COMPUTING Gen AND Bel,

The constraints in P77 and P, are linear constraints
on A2(Sc). When we change the probability space we
consider from 2(Sc) to A(7), a constraint of the form
P(C|D) = p is interpreted as

P(CAC(T)IDAC(T)) =p.

Similarly, P(a€C)=p
Plae CAC(T)) =p.

If |A(T) |= n, then AU(T) is represented by A™. Each
of the constraints in P77 or P, defines a hyperplane in
R"™. Gen(KB) (Bel,(KB)) then, is the intersection of
A" with all the hyperplanes defined by constraints in
PT (Pa). Thus, if PT (P,) contains k linear indepen-
dent constraints, Gen(KB) (Bel,(KB)) is a polytope
of dimension < n — k.

must be read as

Figure 2 shows the intersection of A* with the two
hyperplanes defined by {(z1, 22, 3, 24) | 21 = 0.2(21+
z3)}and {(x1, 2, 23, x4) | #1 = 0.3(x1+2x3+24)}. The
resulting polytope is the line connecting a and b.

A simple algorithm that computes the vertices of the
intersection of A™ with hyperplanes H;,..., H, suc-
cessively computes P; := A" nHyN...NnH; ({ =
1,..., k). After each step P; is given by a list of its
vertices. P;y1 is obtained by checking for every pair of
vertices of P;, whether they are connected by an edge,
and if this is the case, the intersection of this edge with
H;41 (if nonempty) is added to the list of vertices of
Pit1.

0.3,0,0.7,0)

(0,0,1,0)

Figure 2: Intersection of A* With Two Hyperplanes

Example 4.1 The following knowledge base, KBa,
will be used as a running example throughout this sec-
tion.

7: CCAAB (9
PT: P(C 10

P. PlaeA)=105
P(a€B)=10.5 (13
The algebra 2(7) here is generated by the five atoms
A =-AA-BA-C, Ay =-AABA-C
As=AA-BA-C, As=AABA-C
As=AABAC

Gen(KBz) is the intersection of A® with the hyper-
planes

Hy = {(x1,...,25) | xﬁjﬁ =0.1} and
Hy, = {(xla"'axfx) | “ﬁﬁ = 0.9},

which is computed to be the convex hull of the three
points

/,LOI(l,O,O,O,O), /'le (0791_17%707 99_1)7

/’LZ = (07 07 %7 %7 99_0)'
These probability measures represent the extreme
ways in which the partial information in P77 can be
completed: p° is the borderline case, where (10) and
(11) are vacuously true, because of the probabilities of
the conditioning concepts being zero. u' and u?, on
the contrary, both assign probability 1 to AV B, but
represent two opposing hypotheses about the condi-
tional probability of A given B. This probability is 1
for p?, standing for the case that B is really a subset
of A, and 0.9 for u', representing the possibility that
A and B intersect only in C.

The set Bel, is the convex hull of

9 = (0.5,0,0,0.5,0), v'=(0.5,0,0,0,0.5),
v = (0,0.5,0.5,0,0).



For the remainder of this paper we will assume that
Gen and Bel, are given explicitly by a list of their
vertices, because this allows for the easiest formula-
tion of general properties of PCL. Since the number
of vertices in Gen and Bel, can grow very large, it
will probably be a more efficient strategy in practice,
to just store a suitable normal form of the sets of lin-
ear constraints, and to compute specific solutions as
needed.

4.2 CONSISTENCY OF A KNOWLEDGE
BASE

The first question about a knowledge base KB that
must be asked is the question of consistency: does
KB have a model? Following (i)-(iii) in definition 3.3,
we see that B is inconsistent iff one of the following
statements (a), (b), and (c¢) holds:

(a) 7 is inconsistent.
(b) Gen(KB) = 0.

(¢) For all 4 € Gen there exists a € Sp such that
Tgel, (1) is not defined.

Inconsistency that is due to (a) usually is ruled out by
standard restrictions on 7: a T-box that does not con-
tain terminological cycles, and in which every concept
name appears at most once on the left hand side of a
terminological axiom, always has a model. It is trivial
to check whether KB is inconsistent for the reason of
Gen(KB) being empty. Also, KB will be inconsistent
if Bel,(KB) = §§ for some a € Sp, because in this case
Tgel, (1) is undefined for every .

It remains to dispose of the case where Gen(KB) and
all Bel,(KB) are nonempty, but (c) still holds. By
the definition of 7pe, (1) this happens iff for all y €
Gen(KB) there exists a € Sp such that CE(u,v) = oo
for all v € Bel,(KB). Since C'E(u,v) is infinite iff
for some index 2: p; = 0 and v; > 0, it is the set
of 0-components of p and v that we must turn our
attention to.

Definition 4.2 Let p € A™. Define
Z(ﬂ) = {iE {17---777'} | Hi = 0}

For a polytope M the notation intM is used for the set
of interior points of M; conv{u®, ..., u*} stands for the
convex hull of p',..., u* € A". The next theorem is
a trivial observation.

Theorem 4.3 Let M C A" be a polytope and
i € intM. Then for every py' €M:

Z(p) C Z(1).
Particularly, Z(p')=Z(p) if p’ € intM.

With these provisions we can now formulate a simple
test for (c):

Theorem 4.4

Let M=conv{p!,...,u*} and N=conv{v',...,v'} be
polytopes in A", Define i := 1 (u' + ...+ p¥). Then
the following are equivalent:

(i) Ve MVveN: CE(u,v) = co.
(ii) Z(g) € Z(v9) for j =1,...,1.

Proof: (i) is equivalent to Z(u) € Z(v) for all g € M
and all v €N, which in turn is equivalent to (ii), be-
cause by theorem 4.3 Z(1) is minimal in {Z(y) | p €
M}, and the sets Z (/) are maximal in {Z(v) | v € N}
(i.e. Vv € N 35 € {1,...,1} with Z(v) C Z(1?)). a

Example 4.5 KB is consistent: T clearly is consis-
tent, Gen(KB3) and Bel,(KBz) are nonempty, and
Z(i) = 0 holds for 1 := 1/3(p® + pt + p?).

4.3 STATISTICAL INFERENCES

Statistical inferences from a knowledge base KB are

computations of sets J for which £B = P(C|D)=J.

Definition 4.6 Let KB be a PCL- knowledge base.

Gen™(KB) :=
{n € Gen(KB) | Ya € So : 7ger, (k5) (1) is defined }

Thus, Gen*(KB) is the set of generic measures that ac-
tually occur in models of KB. Gen*(KB) is a convex
subset of Gen(KB), which, if £B is consistent, con-
tains at least all the interior points of Gen(KB). If
KB = P(C|D)=J we then have

J={u(C|D)|pe€ Gen™(KB), p(D) > 0}.

The following theorem, however, states that J can be
essentially computed by simply looking at Gen, rather
than Gen*. Essentially here means that the closure of
J (¢lJ) does not depend on the difference Gen \ Gen*.

Theorem 4.7

Let KB be a consistent PCL-knowledge base, C,D €
T(Sc). Let Gen=conv{u',...,n "}, and suppose that
KB = P(C|D)=1J. Then, either p*(D) = 0 for

i=1,...,k and J=0, or J is a nonempty interval and
infJ = min{g*(C | D) | 1<i<k, p'(D)>0} (14)
supJ = max{(C | D) [ 1< <k, @/(D) > 0} (15)

Proof: The proof is straightforward. The continuous
function p — p(C | D) attains its minimal and maxi-
mal values at vertices of Gen. From the continuity of
this function it follows that for computing the closure
of J one can take the minimum and maximum in (14)
and (15) over every vertex of Gen, even though they
may not all belong to Gen*. Furthermore, it is easy
to see that vertices p' with p!(D) = 0 need not be



considered. The details of the proof are spelled out in
[Jae94]. O

Applying theorem 4.4 to the face of Gen on which
#(C | D) = infJ yields a method to decide whether
one point of this face is in Gen®, i.e. whether infJ € J.
Analogously for supJ.

Corollary 4.8 Let KB =T UPT and KB = T' U
PT UU{P, | a € So} be two consistent knowledge
bases with 7 = 7" and PT = PT'. For C,DET(Sc)
let KB = P(C|D) =J and KB’ = P(C|D) = J'. Then
J=cl)'.

By corollary 4.8 the statistical probabilities that can
be derived from a consistent knowledge base are es-
sentially independent from the statements about sub-
jective beliefs contained in the knowledge base. The
influence of the latter is reduced to possibly removing
endpoints from the interval J that would be obtained
by considering the given terminological and statistical
information only. This is a very reasonable behaviour
of the system: generally subjective beliefs held about
an individual should not influence our theory about
the quantitative relations in the world in general. If]
however, we assign a strictly positive degree of belief to
an individual’s belonging to a set C, then this should
preclude models of the world in which C is assigned
the probability 0, i.e. C is seen as (practically) impos-
sible. Those are precisely the conditions under which
the addition of a set P, to a knowledge base will cause
the rejection of measures from (the boundary of) Gen

for models of XB.

Example 4.9 Suppose we are interested in what Bs
implies with respect to the conditional probability of
C given A A B, i.e. we want to compute J with

KBy EP(CIAAB) =1.
From p'(C|AAB) =1, p2(C|AAB) = 0.9, and the-

orem 4.7

eld = [0.9, 1]
immediately follows.  Since, furthermore, u' €
Gen*(KBs3), and pu(C| AAB) = 0.9 also holds for ev-
ery p € int conv{p?, u°} C Gen*(KBz), we even have

J =10.9,1]. (16)
4.4 INFERENCES ABOUT SUBJECTIVE
BELIEFS
Probabilistic inferences about subjective beliefs

present greater difficulties than those about statistical
relations. If KB |= P(a € C) = J, then, by definition
3.3 and 3.4,

J = {mBet.(1)(C) | p € Gen™} =: mper, (Gen™)(C).
Theorem 4.10 If KB = P(a € C) = J, then J is an

interval.

Proof: A simple proof shows that the mapping

Tgel, : A" — Bel,

is continuous (see [Jae94]). Hence, the codomain
mpei(Gen™) of the connected set Gen* is connected.
Applying another continuous function v — v(C) to
Tpei(Gen®) yields a subset of [0,1] that again is con-
nected, hence an interval. a

A procedure that computes the sets mpe;, (Gen*)(C)
will certainly have to compute the minimum cross en-
tropy measure mge, (¢¢) for certain measures y. This is
a nonlinear optimization problem. Generally no closed
form solution (like the one given by Jeffrey’s rule for
the case of constraints on disjoint sets) exists, but an
optimization algorithm must be employed to produce
a good approximation of the actual solution. There
are numerous algorithms available for this problem.
See [Wen88] for instance for a C-program, based on an
algorithm by Fletcher and Reeves ([FR64]) that im-
plements a nonlinear optimization procedure for cross
entropy minimization.

The greatest difficulty encountered when we try to
determine g, (Gen™)(C) does not lie in individual
computations of mpe, (1), but in the best choices of
p for which to compute mp;, (¢). Unlike the case of
statistical inferences, it does not seem possible to give
a characterization of mge;, (Gen™)(C) in terms of a fi-
nite set of values mp, (¢*)(C) for a distinguished set
{pt, ..., 1*} C Gen.

At present we cannot offer an algorithm for com-
puting mpe, (Gen*)(C) any better than by using a
search algorithm in Gen* based on some heuris-
tics, and yielding increasingly good approximations of
Tgel, (Gen*)(C). Such a search might start with ele-
ments p of Gen™ that are themselves maximal (mini-
mal) with respect to pu(C), and then proceed within
Gen* in a direction in which values of mpe, (-)(C)
have been found to increase (decrease), or which has
not been tried yet. The maximal (minimal) values
of mper, (+)(C) found so far can be used as a current
approximation of mpe, (Gen*)(C) at any point in the
search. The search may stop when a certain number
of iterations did not produce any significant increase
(decrease) for these current bounds.

Obviously, the complexity of such a search depends on
the dimension and the number of vertices of Gen. The
cost of a single computation of mp.;, depends on the
size of the probability space 2(7) and the number of
constraints in P,. In the following we show that the
search-space Gen™ can often be reduced to a substan-
tially smaller space.

We show that the interval mp, (Gen*)(C) only de-
pends on the restrictions of the measures in Gen* and
Bel, to the probability space generated by C and the
concepts that appear in P,.
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Figure 3: Theorem 4.12

Definition 4.11 Let 2 be an algebra and 2" a sub-
algebra of A. Let p € A and M C A2l u[ A then
denotes the restriction of u to 2, and M| 2 is the set
{ulA | p e M}

Theorem 4.12 Let 2’ be a subalgebra of the finite al-
gebra 2l generated by a partition Aj,..., A//,c of A. Let
M,NC A%, where N is defined by a set of constraints
on 2, i.e.

N={ve AU |v(C;) =p;,i=1,...,1}
€ [0,1] and C; € 2. Then:

(M) 20 = gy (M 2).
Furthermore, for every Ce 2 and p € M:

ZWN s (1

for some p;

ADp(C | AY).

Figure 3 illustrates the first part of the theorem.

Proof: The theorem is contained in [SJ81] in a ver-
sion for probability measures given by density func-
tions, from which the discrete version can be derived.
A direct proof for the discrete case on a more elemen-
tary level than the one given in [SJ81] is contained in

[Jae94]. O

Theorem 4.12 also plays a vital role in the generaliza-
tion of PCL to a probabilistic version of ALC which
we turn to in the next section.

Example 4.13 We conclude our discussion of B3 by
looking at its implications with respect to P(a € C).
Unlike in our previous example 3.5, the probabilistic
information about a in KBy does not refer to disjoint
concepts, so that here Jeffrey’s rule can not be used,
and cross entropy minimization in its general form
must be put to work.

The information about the likelihood for a being in C
is particularly ambiguous: the conditional probabili-
ties of C given the two reference classes A and B, that
a may belong to with equal probability, are very dis-
similar, thereby providing conflicting default informa-
tion. Also, the generic probability u(A V B) covers the
whole range [0,1] for ;1 € Gen. Since assigning a value
to P(a € AV B) (which, given the other information
in Pg, is equivalent to making up one’s mind about
P(a € AAB)) is an important intermediate step for a
reasonable estimate of P(a € C), and the result of this
step depends on the prior value p(A V B), this is an-
other reason why it is difficult to propose any narrow
interval as appropriate for P(a € C).

It does not come as a surprise, therefore, that no
bounds for P(a € C) can be derived from KBy apart
from those that directly follow from P,: from the in-
formation in P, alone
KBy | P(a € C) €[0,0.5]

is obtained. These bounds can not be substantially
improved as computations of ﬂBela(KB2)(u>‘)(C) with

A= Apt 4 (1= M) p® (with pO, pt as in example 4.1)
for some A €]0, 1] show. For A = 1, WBela(KBQ)(ﬂl)(C)
is just v2(C) = 0, v? being the only measure in
Bel,(KBz) with finite cross entropy with respect to
', With decreasing A, ﬂBela(KB2)(u>‘)(C) is found
to increase, having, for example, the value 0.495 at
A=0.001. Hence, KB; = P(a € C) = J for an interval
J with

[0,0.495] C J C [0,0.5].

Looking at this result may arouse the suspicion that
the whole process of cross entropy minimization re-
ally is of little avail, because in the end almost every
possible belief measure for a will be in the codomain
of mpei, (Gen). While this can certainly happen, one
should not adopt too pessimistic a view based on the
current example, where the poor result can really be
blamed on the ambiguity of the input. If, for in-
stance, (13) was removed from KBz, thereby obtaining
a smaller knowledge base K B5, then the much stronger
inference

KBy = P(aeC)=0.5x%x0.1=0.05
could be made. If, on the other hand, KB is defined
by adding
P(a€e AAB)=10.25 (17)
to KB, then
KBy = P(a € C)=10.25x 0.9,0.25] =

by our previous result (16).

[0.225, 0.25]

5 A PROBABILISTIC VERSION OF
ALC

5.1 ROLE QUANTIFICATION

The probabilistic concept language PCL we have de-
scribed so far does not supply some of the concept-



forming operations that are common to standard con-
cept languages. Most notably, role quantification was
not permitted in PCL. In this section we show how the
formalism developed in the previous sections can be
generalized to yield probabilistic extensions for more
expressive languages. Our focus, here, will be on ALC,
but the results obtained for this language equally ap-
ply to other concept languages.

In ALC the concept-forming operations of section 2 are
augmented by role quantification: the vocabulary now
contains a set Sg = {r,s, ...} of role names in addition
to, and disjoint from, Sc and Sp. New concept terms
can be built from a role name r and a concept term C
by role quantification

Vr:C and 3dr:C.

The set of concept terms constructible from S¢ and
Sr via the boolean operations and role quantification
is denoted T(Sc,Sg). This augmented set of concept
terms together with the syntax rules for terminolog-
ical axioms, probabilistic terminological axioms, and
probabilistic assertions from section 2 yields a proba-
bilistic extension of ALC which, unsurprisingly, we call
PALC. Note that probabilistic assertions of the form
P((a, b) € r) = p are not included in our syntax.

Example 5.1 Some pieces of information relating the
world of birds and fish are encoded in the following

PALC-knowledge base KBs.
T: Herring C Fish

Penguin C Bird A Vfeeds_on : Herring
PT : P(Penguin|Bird A Vfeeds_on : Herring) = 0.2
Popus :  P(Opus € Bird A Vfeeds_on : Fish) =1

The presence of quantification over roles in this knowl-
edge base does not prevent us from forming a sub-
jective degree of belief for the proposition Opus €
Penguin: Since Vfeeds_on: Herring is subsumed by
Vfeeds_on : Fish, we know that the conditional proba-
bility of Penguin given Bird A Vfeeds_on : Fish must lie
in the interval [0,0.2], but no better bounds can be
derived from 7 UP7T. Opus is only known to belong
to Bird A Vfeeds_on : Fish, so that we would conclude
that the likelihood for this individual actually being a
penguin is in [0,0.2] as well.

This example indicates that probabilistic reasoning
within the richer language PALC works in very much
the same way as in PCL. In the following section it is
shown how the semantics for PCL can be generalized
to capture this kind of reasoning in PALC.

5.2 PROBABILISTIC SEMANTICS FOR
PALC

Central to our semantics for the language PCL were
the concepts of the Lindenbaum algebra 20(Sc) and
of the cross entropy of probability measures on this
algebra.

The Lindenbaum algebra for PALC can be defined
in precisely the same manner as was done for PCL.
The resulting algebra 2(Sc,Sr) is quite different from
A(Sc) however: mnot only is it infinite, it also is
nonatomic, i.e. there are infinite chains Co D C; D ...

in [T(Sc,Sr)] with C; # C;41 # 0 for all <.

The set of probability measures on 2(Sc,Sr) is de-
noted ARA(Sc¢,Sg). Probability measures, here, are
still required to only satisfy finite additivity. 2((Sc,Sr)
not being closed under infinite disjunctions, there is
no need to consider countable additivity. Observe
that even though 2A(Sc,Sr) is a countable algebra,
probability measures on 2(Sc,Sr) can not be repre-
sented by a sequence (p;);en of probability values with
Y ien Pi = 1 (i.e. a discrete probability measure), be-
cause these p; would have to be the probabilities of the
atoms in A(Sc,Sr).

Replacing A(Sc) with (Sc,Sr) and AA(S¢) with
AU(Sc,Sr) definitions 3.1 and 3.2 can now be repeated
almost verbatim for PALC (with the additional provi-
sion in definition 3.2 that role names are interpreted
by binary relations on D).

So, things work out rather smoothely up to the point
where we have to define what it means for a PALC- in-
terpretation to be a model of a PALC knowledge base.
In the corresponding definition for PCL (definition 3.3)
cross entropy played a prominent role. When we try to
adopt the same definition for PALC we are faced with
a problem: cross entropy is not defined for probabil-
ity measures on 2(Sc,Sr). While we may well define
cross entropy for measures that are either discrete, or
given by a density function on some common probabil-
ity space, measures on 20(S¢,Sg) do not fall into either
of these categories. Still, in example 5.1 some kind of
minimum cross entropy reasoning (in the special form
of direct inference) has been employed. This has been
possible, because far from considering the whole alge-
bra 2A(Sc,Sr), we only took into account the concept
terms mentioned in the knowledge base in order to ar-
rive at our conclusions about P(Opus € Penguin). The
same principle will apply for any other, more compli-
cated knowledge base: when it only contains the con-
cept terms Cq,...,C,, and we want to estimate the
probability for P(a € C,,41), then we only need to con-
sider probability measures on the finite subalgebra of

2(Sc,Sr) generated by {Cy,...,C, 41}

The following definition and theorem enables us to re-
cast this principle into formal semantics for PALC.

Definition 5.2 Let 2l be a finite subalgebra of
A(Sc,Sr) with {A],.. .,A;} the set of its atoms. Let
NC A(Sc,Sr) be defined by a set of constraints on
A (cf. theorem 4.12). Let pu € ARU(Sc,Sr) such that
mnpor (] ) is defined. For every C€ 2(Sc,Sr) define

N ()(C) = ZFNrm'(M%’)(Aé)u(C | A



Clearly, n%(p) is a probability measure on 2(Sc,Sg).
The following theorem shows that % ,(x) realizes
cross entropy minimization for every finite subalge-
bra of 2(Sc,Sr) containing the concepts used to define
Bel.

Theorem 5.3 Let py € ARUA(Sc,Sr), let Bel C
AU(Sc,Sr) be defined by a finite set of constraints

{P(Cy) =pi |pi €

Let 21’ be the finite subalgebra generated by
{C1,...,C,}, and assume that mg oy (k| 2') is de-
fined. Then, for every finite A™ D A': 7o« (u] A*)
is defined and equal to w5, (p)[ 2*.

Proof: Substituting A* for 2, {u[20*} for M, and
Bel|[ 2" for N in theorem 4.12 gives

k
Tgeaporr (1T A)(C) = D mparpaw (] W) (ADu(C | A)
i=1

for every Ce 2*. The right hand side of this equation
is just the definition of 75, (1) (C). O

With 7%,,(¢) as the measure that, in a generalized
way, minimizes cross entropy with respect to p in
Bel, it is now straightforward to define when a PALC-
interpretation (D, T, i) shall be a model of a PALC-
knowledge base KB: just replace mp, (x5)(¢t) with
Tr*Bela(KB)(/’L) in the corresponding definition for PCL

(definition 3.3).

Probabilistic inferences from a PALC-knowledge base
KB can now be made in basically the same manner as
in PCL: to answer a query about a conditional prob-
ability P(C|D) for two concepts, consider the algebra
generated by C, D, and the concept terms appearing in
PT. Call this algebra Mc p. The relativized algebra
Mc p(7T) is defined as above, and Gen| Mc p(7) can
be computed as in section 4.1. Theorem 4.7, applied
to Gen|Mc p(7T) can then be used to compute the J
with £B = P(C|D) =1J.

When J with £XB |= P(a € C) = J shall be computed,
the relevant algebra to be considered is generated by C
and the concept terms appearing in P,. Writing 9, ¢
for this algebra,

J = A{7Bet, | Nu.c() (1) (C) | 1 € Gen| Na c(T)}

then holds. Note that Gen| 9, c(7) can not be com-
puted directly in the manner described in section 4.1,
because Gen will usually be defined by constraints on
concepts not all contained in M, c. One way to obtain
a representation for Gen|N, c(7) is to first compute
Gen|B(T), with B the algebra generated by C and
the concept terms appearing in either P7 or P,, and
then restrict the result to 91, c.

[0, 1], C; € Q[(Sc,SR), 1=1,.. .,n}.

Example 5.4 Suppose we want to determine Jg with
K B3 |= P(Penguin|Bird A Yfeeds_on : Fish) = Jo.

This query and P7T together contain three different
concept terms which generate an algebra 9 whose rel-
ativization by 7 contains just the four atoms

Ali P,

Ay : BAVfo:HA=P,

As: BAVfo:FA—-Vfo:H,
Ay 2(BAVfo:F)

(using suitable abbreviations for the original names).

Gen| 9M(T) then is defined by

H1
ey e At =0.2).
{myoopa) € 81| - = 02)

The wvalue for p1/(p1+ p2 + p3), representing
P(P|BAVf_o: F), ranges over the interval [0,0.2] in

this set, so the answer to our query is the expected
interval.

To compute J; with
KBs |=P(Opus € P) = Iy,

we consider the even smaller algebra 91(7) consisting
of the atoms

B1 : P,

Bs: =(BAVfo: F).

Belopus [ M(T) then is

B::=PABAVYfo: F,

{(v1,va,v3) € A3 |1+ vy = 1}

It is easy to see that

Gen|N(T) = g, piz) € A3 L < .9y
en] M(T) = {(p1, p2s p13) |ﬂ1+ﬂ2_ }

For every = (p1, pr2, pi3) € Gen N(T), (v1,v2,v3) 1=
Tgepo(7) (1) is defined by Jeffrey’s rule, so that

vy =vi/(v1+va) = pa /(1 + p2). Hence,

Ji = {1/1 | (1/1,1/2,1/3) € ﬂBe”m(T)(Gen[‘ﬂ(T))}
= [0,0.2]

in accordance with our intuitive reasoning in example

5.1.

6 CONCLUDING REMARKS

The semantics we have given to probabilistic exten-
sions of terminological logics are designed for sound-
ness rather than for inferential strength. Allowing any
generic measure i consistent with the constraints to
be used in a model is the most cautious approach that
can be taken. In cases where it seems more desirable
to always derive unique values for probabilities P(C|D)
or P(a € C) instead of intervals, this approach can be
modified by using the maximum entropy measure in



Gen only (as the one most reasonable generic mea-
sure).

Generalizations of the formalism here presented are
possible in various directions. It could be permitted,
for instance, to also state subjective degrees of belief
for expressions of the form (a,b) € r. Since these es-
tablish a connection between a and b, it will then no
longer be possible to interpret a and b by individual
probability measures on 24(Sc,Sg). Rather, for a lan-
guage containing object names {ay,...,a,}, a joint
probability measure v4, 4, on the Lindenbaum alge-
bra of all n-ary expressions constructible from Sc USg
will have to be used.
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