
In: Proceedings of KR-94 1Probabilistic Reasoning in Terminological LogicsManfred JaegerMax-Planck-Institut f�ur Informatik,Im Stadtwald, D-66123 Saarbr�uckenAbstractIn this paper a probabilistic extensions forterminological knowledge representation lan-guages is de�ned. Two kinds of probabilis-tic statements are introduced: statementsabout conditional probabilities between con-cepts and statements expressing uncertainknowledge about a speci�c object. The usualmodel-theoretic semantics for terminologicallogics are extended to de�ne interpretationsfor the resulting probabilistic language. Itis our main objective to �nd an adequatemodelling of the way the two kinds of proba-bilistic knowledge are combined in common-sense inferences of probabilistic statements.Cross entropy minimization is a techniquethat turns out to be very well suited forachieving this end.1 INTRODUCTIONTerminological knowledge representation languages(concept languages, terminological logics) are used todescribe hierarchies of concepts. While the expressivepower of the various languages that have been de�ned(e.g. KL-ONE [BS85] ALC [SSS91]) varies greatly inthat they allow for more or less sophisticated conceptdescriptions, they all have one thing in common: thehierarchies described are purely qualitative, i.e. onlyinclusion, equality, or disjointness relations betweenconcepts can be expressed.In this paper we investigate an extension of termino-logical knowledge representation languages that incor-porate quantitative statements.A hybrid terminological logic that allows to expressboth general world knowledge about the relationshipsbetween concepts, and information about the natureof individual objects, gives rise to two kinds of quanti-tative statements: terminological (T-box) axioms maybe re�ned by stating graded or partial subsumption re-

lations, and assertions (A-box statements) can be gen-eralized by allowing to express uncertain knowledge.Let us illustrate the use of quantitative statements byan example. The following is a simple knowledge basethat could be formulated in any concept language:Example 1.1T-box: Flying bird � Bird (1)Antarctic bird � Bird (2)A-box: Opus 2 Bird (3)In this purely qualitative description a lot of infor-mation we may possess cannot be expressed. The twosubconcepts of Bird that are speci�ed, for instance, arevery di�erent with regard to the degree by which theyexhaust the superconcept. One would like to makethis di�erence explicit by stating relative weights, orconditional probabilities, for concepts in a manner likeP(Flying birdjBird) = 0:95 (4)P(Antarctic birdjBird) = 0:01 (5)Also, it may be desirable to express a degree by whichthe two concepts Antarctic bird and Flying bird, whichstand in no subconcept- superconcept relation, inter-sect: P(Flying birdjAntarctic bird) = 0:2 (6)For the A-box, apart from the certain knowledge Opus2 Bird, some uncertain information may be available,that we should be able to express as well. There maybe strong evidence, for example, that Opus is in factan antarctic bird. HenceP(Opus 2 Antarctic bird) = 0:9 (7)could be added to our knowledge base.It is important to realize that these two kinds of prob-abilistic statements are of a completely di�erent na-ture. The former codi�es statistical information that,generally, will be gained by observing a large numberof individual objects and checking their membershipof the various concepts. The latter expresses a degree



2of belief in a speci�c proposition. Its value most of-ten will be justi�ed only by a subjective assessment of\likelihood".This dual use of the term \probability" has causeda lot of controversy over what the true meaning ofprobability is: a measure of frequency, or of subjectivebelief (e.g. [Jay78]). A comprehensive study of bothaspects of the term is [Car50]. More recently, Bacchusand Halpern have developed a probabilistic extensionof �rst-order logic that accommodates both notions ofprobability [Bac90],[Hal90].Now that we have stressed the di�erences in assigninga probability to subsets of a general concept on the onehand, and to assertions about an individual object onthe other, we are faced with the question of how thesetwo notions of probability interact: how does a bodyof statistical information a�ect our beliefs in assertionsabout an individual?Among the �rst to address this problem was Carnap,who formulated the rule of direct (inductive) inference[Car50]: if for an object a it is known that it belongsto a class C, and our statistics say that an element ofC belongs to another class D with probability p, thenour degree of belief in a's membership of D should bejust p. Applied to the statements (1),(3) and (4) ofour example, direct inference yields a degree of beliefof 0.95 in the proposition Opus 2 Flying bird.A generalization of direct inference is Je�rey's rule[Jef65]: if all we know about a, is that it belongsto either of �nitely many mutually disjoint classesC1; : : : ;Cn, and to each possibility we assign a proba-bility pi (Pni=1 pi = 1), if furthermore, the statisticalprobability for D given Ci is qi, then our degree ofbelief for a being in D should be given bynXi=1 piqi:Bacchus et al. have developed a method to de-rive degrees of belief for sentences in �rst-order logicon the basis of �rst-order and statistical information[BGHK92], [BGHK93]. The technique they use is mo-tivated by direct inference, but is of a far more generalapplicability. However, it does not allow to derive newsubjective beliefs given both subjective and statisticalinformation.In this paper we develop a formal semantical frame-work that for terminological logics models the in
u-ence of statistical, generic information on the assign-ment of degrees of belief to speci�c assertions. In orderto do this, we will interpret both kinds of probabilis-tic statements in one common probability space thatessentially consists of the set of concept terms thatcan be formed in the language of the given knowledgebase 1. De�ning all the probability measures on the1Di�erent from [Bac90],[Hal90], for instance, where

same probability space allows us to compare the mea-sure assigned to an object a with the generic measurede�ned by the given statistical information. The mostreasonable assignment of a probability measure to a,then, is to choose, among all the measures consistentwith the constraints known for a, the one that mostclosely resembles the generic measure. The key ques-tion to be answered, therefore, is how resemblance ofprobability measures should be measured. We arguethat minimizing the cross entropy of the two measuresis the appropriate way.Paris and Vencovsk�a, considering probabilistic infer-ences very similar in nature to ours, use a di�erentsemantical interpretation, which, too, leads them tothe minimum cross entropy principle [PV90], [PV92].Previous work on probabilistic extensions of conceptlanguages was done by Heinsohn and Owsnicki-Klewe[HOK88],[Hei91]. Here the emphasis is on comput-ing new conditional probabilities entailed by the givenones. Formal semantics for the interpretation of prob-abilistic assertions, which are the main contribution ofour work, are not given.2 SYNTAXIn order to facilitate the exposition of our approach weshall use, for the time being, a very restricted, merelypropositional, concept language, which we call PCL.In the last section of this paper an explanation will begiven of how the formalism can be extended to moreexpressive concept languages, notably ALC.The concept terms in our language are just proposi-tional expressions built from a �nite set of conceptnames SC = fA;B;C; : : :g. The set of concept termsis denoted by T(SC). Terminological axioms have theform A � C or A = Cwith A 2 SC and C2T(SC). Probabilistic terminologi-cal axioms are expressionsP(CjD) = p;where C and D are concept terms and p 2]0; 1[. Fi-nally, we have probabilistic assertionsP(a 2 C) = p;where a is an element of a �nite set of object namesSO, and p 2 [0; 1].A knowledge base (KB) in PCL consists of a set ofterminological axioms (T ), a set of probabilistic ter-minological axioms (PT ) and a set of probabilistic as-sertions (Pa) for every object name a:KB = T [ PT [ [fPaja 2 SOg:statistical and propositional probabilities are interpretedby probability measures on domains and sets of worlds,respectively



3There is a certain asymmetry in our probabilistic treat-ment of terminological axioms on the one hand, andassertions on the other. While deterministic assertionswere completely replaced by probabilistic ones (a 2Chas to be expressed by P(a 2 C) = 1), deterministicterminological axiomswere retained, and not identi�edwith 0,1-valued probabilistic axioms (which, therefore,are not allowed in PT ).There are several reasons for taking this approach:First, our syntax for probabilistic terminological ax-ioms is very general in that conditional probabilitiesfor arbitrary pairs of concept terms may be speci�ed.Terminological axioms, on the other hand, are gen-erally required (as in our de�nition) to have only aconcept name on their left hand side. Also, in order tomake the computation of subsumption with respect toa terminology somewhat more tractable, usually addi-tional conditions are imposed on T (e.g. that it mustnot contain cycles) that we would not want to haveon PT (it may be very important, for instance, to beable to specify both P(CjD) and P(DjC)). In essence,it can be said that the non-uniformity of our treat-ment of deterministic and probabilistic terminologicalaxioms results from our intention to de�ne a prob-abilistic extension for terminological logics that doesnot a�ect the scope and e�ciency of standard termi-nological reasoning in the given logics.Furthermore, it will be seen that even for actual prob-abilistic reasoning it proves useful to make use of thedeterministic information in T and the probabilisticinformation in PT in two di�erent ways, and it wouldremain to do so, if both kinds of information were en-coded uniformly.3 SEMANTICSOur approach to formulating semantics for the lan-guage PCL modi�es and extends the usual model-theoretic semantics for concept languages. The termi-nological axioms T are interpreted by means of a do-main D and an interpretation function I in the usualway. In order to give meaning to the expressions inPT and the Pa (a 2 SO), we �rst have to specify theprobability space on which the probability measuresdescribed by these expressions shall be de�ned.For this probability space we choose the language it-self. That is to say, we take the Lindenbaum algebraA(SC) := ([T(SC)];_;^;:; 0;1)as the underlying probability space. Here, [T(SC)] isthe set of equivalence classes modulo logical equiva-lence in T(SC). The operations _; ^, and : are de�nedby performing disjunction, conjunction, and negationon representatives of the equivalence classes. We shalluse letters C,D,... both for concept terms from T(SC),and their equivalence class in [T(SC)].

An atom in a boolean algebra A is an element A6=0,such that there is no A0 62 f0;Ag with A0 � A (to beread as an abbreviation for A0 ^ :A = 0). The atomsof A(SC) with SC = fA1; : : : ;Ang are just the conceptterms of the form B1 ^ : : : ^ Bn with Bi 2 fAi;:Aigfor i = 1; : : : ; n. The set of atoms of A(SC) is denotedby A(SC).Every element of A(SC), then, is (in the equivalenceclass of) a �nite disjunction of atoms.On A(SC) probability measures may be de�ned. Re-call that � : A(SC) ! [0; 1] is a probability mea-sure i� �(1) = 1, and �(C _D) = �(C) + �(D) for allC,D with C^D=0. The set of probability measures onA(SC) is denoted by �A(SC). Note that � 2 �A(SC)is fully speci�ed by the values it takes on the atoms ofA(SC).The general structure of an interpretation for a vo-cabulary S=SC[SO can now be described: a standardinterpretation (D,I) for T will be extended to an in-terpretation (D; I; �; (�a)a2SO ), where � 2 �A(SC)is the generic measure used to interpret PT , and�a 2 �A(SC) interprets Pa. Hence, we deviate fromthe standard way interpretations are de�ned by notmapping a 2 SO to an element of the domain, but toa probability measure expressing our uncertain knowl-edge of a.What conditions should we impose on an interpreta-tion to be a model of a knowledge base? Certainly, themeasures � and �a must satisfy the constraints in PTand Pa. However, somewhat more is required whenwe intend to model the interaction between the twokinds of probabilistic statements that takes place in\commonsense" reasoning about probabilities.The general information provided by PT leads us toassign degrees of belief to assertions about an object athat go beyond what is strictly implied by Pa.What, then, are the rules governing this reasoning pro-cess? The fundamental assumption in assigning a de-gree of belief to a's belonging to a certain concept Cis to view a as a random element of the domain aboutwhich some partial information has been obtained, butthat, in aspects that no observation has been madeabout, behaves like a typical representative of the do-main, for which our general statistics apply.In the case that Pa contains constraints only aboutmutually exclusive concepts this intuition leads to Jef-frey's rule: IfPa = fP(a 2 Ci) = pi j i = 1; : : : ; ng;where the Ci are mutually exclusive, and, as may beassumed without loss of generality, exhaustive as well,and � 2 �A(SC) re
ects our general statistical knowl-edge about the domain, then the probability measure



4that interprets a should be de�ned by�a(C) := nXi=1(pi � �(C j Ci)) (C 2 A(SC)):For constraints on not necessarily exclusive conceptswe need to �nd a more general de�nition for a mea-sure \most closely resembling" the given generic mea-sure � and satisfying the constraints. Formally, we arelooking for a function d that maps every pair (�; �)of probability measures on a given (�nite) probabilityspace to a real number d(�; �) � 0, the \distance" of� to �: d : �n ��n ! R�0;where�n := f(x1; : : : ; xn) 2 [0; 1]n jPni=1xi = 1gdenotes the set of probability measures on a probabil-ity space of size n.Given such a d, a subset N of �n and a measure �,we can then de�ne the set of elements of N that haveminimal distance to �:�dN(�) := f� 2 N j d(�; �) = inffd(�; � 0) j � 0 2 Ngg (8)Three requirements are immediate that have to be metby a distance function d in order to be used for de�n-ing the belief measure �a most closely resembling thegeneric �:(i) If N is de�ned by a constraint-set Pa, then �dN(�)is a singleton.(ii) If � 2 N, then �dN(�) = f�g.(iii) If N is de�ned by a set of constraints on dis-joint sets, then �dN(�) is the probability measureobtained by Je�rey's rule applied to � and theseconstraints.We propose to use the cross entropy of two proba-bility measures as the appropriate de�nition for theirdistance. For probability measures � = (�1; : : : ; �n)and � = (�1; : : : ; �n) de�ne:CE(�; �) :=8>><>>: nXi=1�i;�i 6=0 �i ln �i�i if for all i :�i = 0) �i = 0;1 otherwise.This slightly generalizes the usual de�nition of crossentropy by allowing for 0-components in � and �.Cross entropy often is referred to as a \measure of thedistance between two probabilitymeasures" [DZ82], ora \measure of information dissimilarity for two prob-ability measures" [Sho86]. These interpretations haveto be taken cautiously, however. Note in particularthat neither is CE symmetric nor does it satisfy the

triangle inequality. All that CE has in common witha metric is positivity:CE(�; �) � 0;where equality holds i� � = �. Hence property (ii)holds for CE. It has been shown that cross entropysatis�es (i) (for any closed and convex set N, providedthere is at least one � 2N with CE(�; �) < 1), and(iii) as well ([SJ80], [Wen88]). Therefore, we may de-�ne for closed and convex N� �n and � 2 �n:�N(�) :=8><>: the unique if CE(�; �) <1element in �CEN (�) for some � 2 Nunde�ned otherwise.There are several lines of argument that support theuse of cross entropy for forming our beliefs about a onthe basis of the given generic � and a set of constraints.One is to appeal directly to cross entropy's propertiesas a measure of information discrepancy, and to ar-gue that our beliefs about a should deviate from thegeneric measure by assuming as little additional infor-mation as possible.Another line of argument does not focus on the prop-erties of cross entropy directly, but investigates fun-damental requirements for a procedure that changesa given probability measure � to a posterior measure� in a (closed and convex) set N. Shore and Johnson[SJ80], [SJ83] formulate �ve axioms for such a proce-dure (the �rst one being just our uniqueness condition(i)), and prove that when the procedure satis�es theaxioms, and is of the form � = �dN(�) for some func-tion d, then d must be equivalent to cross entropy (i.e.must have the same minima).Paris and Vencovsk�a, in a similar vein, have given anaxiomatic justi�cation of the maximum entropy prin-ciple [PV90], which, when applied to knowledge basesexpressing the two types of probabilistic statements ina certain way, yields the same results as minimizingcross entropy [PV92].With cross entropy as the central tool for the inter-pretation of Pa, we can now give a complete set ofde�nitions for the semantics of PCL.De�nition 3.1 Let KB = T [ PT [SfPa j a 2 SCga PCL-knowledge base. We de�ne for � 2 �A(SC):� � is consistent with T i� T j= C = 0) �(C) = 0;� � is consistent with PT i� P(CjD) = p 2 PT )�(C ^D) = p � �(D);� � is consistent with Pa i� P(a 2 C) = p 2 Pa )�(C)=p.For a given KB, we use the following notation:



5�TA(SC) :=f� 2 �A(SC) j � is consistent with T g;Gen(KB) :=f� 2 �A(SC) j � is consistent with T and PT g;Bela(KB) :=f� 2 �A(SC) j � is consistent with T and Pag:When no ambiguities can arise, we also write Gen (theset of possible generic measures) and Bela (the set ofpossible belief measures for a) for short.De�nition 3.2 Let S = SC [ SO be a vocabulary. APCL-interpretation for S is a triple (D; I; �), where Dis a set, I : SC ! 2D; I : SO ! �A(SC);and � 2 �A(SC). Furthermore, for all concept termsC with I(C) = ; : �(C) = 0 and I(a)(C) = 0 (a 2 SO)must hold. For I(a) we also write �a.De�nition 3.3 Let KB = T [ PT [SfPa j a 2 SOgbe a PCL-knowledge base. Let (D; I; �) be a PCL-interpretation for the language of KB. We de�ne:(D; I; �) j= KB ((D; I; �) is a model of KB) i�(i) (D,I� SC)j= T in the usual sense.(ii) � 2 Gen(KB).(iii) For all a 2 SO: �Bela(KB) is de�ned for �, andI(a)=�Bela(KB)(�).De�nition 3.4 Let J� [0; 1]. We writeKB j= P(CjD) 2 Ji� for every (D; I; �)j=KB: �(C j D) 2J (if �(D) = 0,this is considered true for every J). Also, we use thenotation KB j= P(CjD) = Ji� KB j= P(CjD) 2 J, and J is the minimal subset of[0,1] with this property. Analogously, we use KB j=P(a 2 C) 2 J, and KB j= P(a 2 C) = J.According to de�nition 3.2 we are dealing with prob-ability measures on the concept algebra A(SC). Anexplicit representation of any such measure, i.e. a com-plete list of the values it takes on A(SC), would alwaysbe of size 2jSCj. Fortunately, we usually will not haveto actually handle such large representations, though.Since all the probability measures we consider for aspeci�c knowledge base KB are in �TA(SC), the rele-vant probability space for models of KB only consistsof those atoms in A(SC) whose extensions are not nec-essarily empty in models of KB:A(T ) := fC 2 A(SC) j T 6j= C = 0g

Bird Antarctic birdFlying birdFigure 1: The Algebras A(SC) and A(T )Denote the algebra that is generated by these atomswith A(T ). Technically speaking, A(T ) is the rela-tivization of A(SC) to the elementC(T ) :=_A(T )ofA(SC). Figure 1 shows the structure ofA(SC) for thevocabulary of our introductory example. The shadedarea represents the element C(T ) for the T in the ex-ample. A(T ), here, consists of �ve atoms compared toeight atoms in A(SC).How much smaller than A(SC) can A(T ) be expectedto be in general? This question obviously is di�cultto answer, because it requires a thorough analysis ofthe structure that A(T ) is likely to have for real-worldinstances of T . Here we just mention one property ofT that ensures a non-exponential growth of jA(T ) jwhen new terminological axioms introducing new con-cept names are added: call A(T ) bounded in depth by ki� every atom in A(T ) contains at most k non-negatedconcept names from SC as conjuncts. It is easy to seethat if A(T ) is bounded in depth by k, then jA(T )j willhave an order of magnitude of jSC jk at most. Hence,when new axioms are added to T in such a way thatA(T ) remains bounded in depth by some number k,then the growth of jA(T ) j is polynomial.The use of the structural information in T for reduc-ing the underlying probability space from A(SC) toA(T ) is the second reason for the nonuniform treat-ment of deterministic and probabilistic terminologicalaxioms that was announced in section 2. If determin-istic axioms were treated in precisely the same fashionas probabilistic ones, this would only lead us to handleprobability measures all with zeros in the same largeset of components, but not to drop these componentsfrom our representations in the �rst place.Example 3.5 Let KB1 contain the terminologi-cal and probabilistic statements from example 1.1(the assertion Opus 2 Bird being replaced byP(Opus 2 Bird) = 1). The three statements (4)-(6) inPT do not determine a unique generic measure �, but



6for every � 2 Gen(KB1)�(Flying bird j Antarctic bird) = 0:2and �(Flying bird j Bird ^ :Antarctic bird) = 0:958holds: the �rst conditional probability is explicitlystated in (6), the second can be derived from (4)-(6)by elementary computations.Since the constraints in POpus areequivalent to P(Opus 2 Antarctic bird) = 0:9 andP(Opus 2 Bird ^ :Antarctic bird) = 0:1, and in thiscase �BelOpus(�) is given by Je�rey's rule,�BelOpus(�)(Flying bird) = 0:9� 0:2 + 0:1� 0:958= 0:2758holds for every � 2 Gen. HenceKB1 j= P(Opus 2 Flying bird) = 0:2758:In the following section we investigate how inferenceslike these can in general be computed from a PCL-knowledge base.4 COMPUTING PROBABILITIES4.1 COMPUTING Gen AND BelaThe constraints in PT and Pa are linear constraintson �A(SC). When we change the probability space weconsider from A(SC) to A(T ), a constraint of the formP(CjD) = p is interpreted asP(C ^C(T )jD ^C(T )) = p:Similarly, P(a 2 C) = p must be read asP(a 2 C ^C(T )) = p.If jA(T ) j= n, then �A(T ) is represented by �n. Eachof the constraints in PT or Pa de�nes a hyperplane inRn. Gen(KB) (Bela(KB)) then, is the intersection of�n with all the hyperplanes de�ned by constraints inPT (Pa). Thus, if PT (Pa) contains k linear indepen-dent constraints, Gen(KB) (Bela(KB)) is a polytopeof dimension � n� k.Figure 2 shows the intersection of �4 with the twohyperplanes de�ned by f(x1; x2; x3; x4) j x1 = 0:2(x1+x2)g and f(x1; x2; x3; x4) j x1 = 0:3(x1+x3+x4)g. Theresulting polytope is the line connecting a and b.A simple algorithm that computes the vertices of theintersection of �n with hyperplanes H1; : : : ;Hk suc-cessively computes Pi := �n \ H1 \ : : :\Hi (i =1; : : : ; k). After each step Pi is given by a list of itsvertices. Pi+1 is obtained by checking for every pair ofvertices of Pi, whether they are connected by an edge,and if this is the case, the intersection of this edge withHi+1 (if nonempty) is added to the list of vertices ofPi+1.

(1,0,0,0)(0,1,0,0) (0,0,1,0)(0,0,0,1)(0.2,0.8,0,0) (0.3,0,0.7,0)(0.3,0,0,0.7)a b
Figure 2: Intersection of �4 With Two HyperplanesExample 4.1 The following knowledge base, KB2,will be used as a running example throughout this sec-tion. T : C � A ^ B (9)PT : P(CjA) = 0:1 (10)P(CjB) = 0:9 (11)Pa P(a 2 A) = 0:5 (12)P(a 2 B) = 0:5 (13)The algebra A(T ) here is generated by the �ve atomsA1 = :A^ :B ^ :C; A2 = :A ^ B ^:C;A3 = A ^ :B^ :C; A4 = A ^ B ^ :C;A5 = A ^ B ^ C:Gen(KB2) is the intersection of �5 with the hyper-planesH1 = f(x1; : : : ; x5) j x5x3+x4+x5 = 0:1g andH2 = f(x1; : : : ; x5) j x5x2+x4+x5 = 0:9g;which is computed to be the convex hull of the threepoints�0 = (1; 0; 0; 0; 0); �1 = (0; 191 ; 8191 ; 0; 991);�2 = (0; 0; 8090 ; 190 ; 990):These probability measures represent the extremeways in which the partial information in PT can becompleted: �0 is the borderline case, where (10) and(11) are vacuously true, because of the probabilities ofthe conditioning concepts being zero. �1 and �2, onthe contrary, both assign probability 1 to A _B, butrepresent two opposing hypotheses about the condi-tional probability of A given B. This probability is 1for �2, standing for the case that B is really a subsetof A, and 0.9 for �1, representing the possibility thatA and B intersect only in C.The set Bela is the convex hull of�0 = (0:5; 0; 0; 0:5;0); �1 = (0:5; 0; 0; 0; 0:5);�2 = (0; 0:5; 0:5;0;0):



7For the remainder of this paper we will assume thatGen and Bela are given explicitly by a list of theirvertices, because this allows for the easiest formula-tion of general properties of PCL. Since the numberof vertices in Gen and Bela can grow very large, itwill probably be a more e�cient strategy in practice,to just store a suitable normal form of the sets of lin-ear constraints, and to compute speci�c solutions asneeded.4.2 CONSISTENCY OF A KNOWLEDGEBASEThe �rst question about a knowledge base KB thatmust be asked is the question of consistency: doesKB have a model? Following (i)-(iii) in de�nition 3.3,we see that KB is inconsistent i� one of the followingstatements (a), (b), and (c) holds:(a) T is inconsistent.(b) Gen(KB) = ;.(c) For all � 2 Gen there exists a 2 SO such that�Bela (�) is not de�ned.Inconsistency that is due to (a) usually is ruled out bystandard restrictions on T : a T-box that does not con-tain terminological cycles, and in which every conceptname appears at most once on the left hand side of aterminological axiom, always has a model. It is trivialto check whether KB is inconsistent for the reason ofGen(KB) being empty. Also, KB will be inconsistentif Bela(KB) = ; for some a 2 SO, because in this case�Bela (�) is unde�ned for every �.It remains to dispose of the case where Gen(KB) andall Bela(KB) are nonempty, but (c) still holds. Bythe de�nition of �Bela (�) this happens i� for all � 2Gen(KB) there exists a 2 SO such that CE(�; �) =1for all � 2 Bela(KB). Since CE(�; �) is in�nite i�for some index i: �i = 0 and �i > 0, it is the setof 0-components of � and � that we must turn ourattention to.De�nition 4.2 Let � 2 �n. De�neZ(�) := fi 2 f1; : : : ; ng j �i = 0gFor a polytope M the notation intM is used for the setof interior points of M; convf�1; : : : ; �kg stands for theconvex hull of �1; : : : ; �k 2 �n. The next theorem isa trivial observation.Theorem 4.3 Let M � �n be a polytope and� 2 intM. Then for every �0 2M:Z(�) � Z(�0):Particularly, Z(�0)=Z(�) if �0 2 intM.With these provisions we can now formulate a simpletest for (c):

Theorem 4.4Let M=convf�1; : : : ; �kg and N=convf�1; : : : ; � lg bepolytopes in �n. De�ne �� := 1k (�1 + : : :+ �k). Thenthe following are equivalent:(i) 8� 2M 8� 2 N : CE(�; �) =1:(ii) Z(��) 6� Z(�j) for j = 1; : : : ; l:Proof: (i) is equivalent to Z(�) 6� Z(�) for all � 2Mand all � 2N, which in turn is equivalent to (ii), be-cause by theorem 4.3 Z(��) is minimal in fZ(�) j � 2Mg, and the sets Z(�j) are maximal in fZ(�) j � 2 Ng(i.e. 8� 2 N 9j 2 f1; : : : ; lg with Z(�) � Z(�j)). 2Example 4.5 KB2 is consistent: T clearly is consis-tent, Gen(KB2) and Bela(KB2) are nonempty, andZ(��) = ; holds for �� := 1=3(�0 + �1 + �2).4.3 STATISTICAL INFERENCESStatistical inferences from a knowledge base KB arecomputations of sets J for which KB j= P(CjD)=J.De�nition 4.6 Let KB be a PCL- knowledge base.Gen�(KB) :=f� 2 Gen(KB) j 8a 2 SO : �Bela(KB)(�) is de�nedgThus, Gen�(KB) is the set of generic measures that ac-tually occur in models of KB. Gen�(KB) is a convexsubset of Gen(KB), which, if KB is consistent, con-tains at least all the interior points of Gen(KB). IfKB j= P(CjD)=J we then haveJ = f�(C j D) j � 2 Gen�(KB); �(D) > 0g:The following theorem, however, states that J can beessentially computed by simply looking at Gen, ratherthan Gen�. Essentially here means that the closure ofJ (clJ) does not depend on the di�erence Gen nGen�.Theorem 4.7Let KB be a consistent PCL-knowledge base, C,D 2T(SC). Let Gen=convf�1; : : : ; �kg, and suppose thatKB j= P(CjD) = J. Then, either �i(D) = 0 fori = 1; : : : ; k and J=;, or J is a nonempty interval andinf J = minf�i(C j D) j 1 � i � k; �i(D) > 0g (14)sup J = maxf�i(C j D) j 1 � i � k; �i(D) > 0g (15)Proof: The proof is straightforward. The continuousfunction � 7! �(C j D) attains its minimal and maxi-mal values at vertices of Gen. From the continuity ofthis function it follows that for computing the closureof J one can take the minimum and maximum in (14)and (15) over every vertex of Gen, even though theymay not all belong to Gen�. Furthermore, it is easyto see that vertices �i with �i(D) = 0 need not be



8considered. The details of the proof are spelled out in[Jae94]. 2Applying theorem 4.4 to the face of Gen on which�(C j D) = inf J yields a method to decide whetherone point of this face is in Gen�, i.e. whether inf J 2 J.Analogously for sup J.Corollary 4.8 Let KB = T [ PT and KB0 = T 0 [PT 0 [ SfP0a j a 2 SOg be two consistent knowledgebases with T = T 0 and PT = PT 0. For C,D2T(SC)let KB j= P(CjD) = J and KB0 j= P(CjD) = J0. ThenJ=clJ0.By corollary 4.8 the statistical probabilities that canbe derived from a consistent knowledge base are es-sentially independent from the statements about sub-jective beliefs contained in the knowledge base. Thein
uence of the latter is reduced to possibly removingendpoints from the interval J that would be obtainedby considering the given terminological and statisticalinformation only. This is a very reasonable behaviourof the system: generally subjective beliefs held aboutan individual should not in
uence our theory aboutthe quantitative relations in the world in general. If,however, we assign a strictly positive degree of belief toan individual's belonging to a set C, then this shouldpreclude models of the world in which C is assignedthe probability 0, i.e. C is seen as (practically) impos-sible. Those are precisely the conditions under whichthe addition of a set Pa to a knowledge base will causethe rejection of measures from (the boundary of) Genfor models of KB.Example 4.9 Suppose we are interested in what KB2implies with respect to the conditional probability ofC given A ^ B, i.e. we want to compute J withKB2 j= P(CjA^ B) = J:From �1(C j A ^ B) = 1, �2(C j A ^B) = 0:9, and the-orem 4.7 clJ = [0:9; 1]immediately follows. Since, furthermore, �1 2Gen�(KB2), and �(C j A ^ B) = 0:9 also holds for ev-ery � 2 int convf�2; �0g � Gen�(KB2), we even haveJ = [0:9; 1]: (16)4.4 INFERENCES ABOUT SUBJECTIVEBELIEFSProbabilistic inferences about subjective beliefspresent greater di�culties than those about statisticalrelations. If KB j= P(a 2 C) = J, then, by de�nition3.3 and 3.4,J = f�Bela(�)(C) j � 2 Gen�g =: �Bela (Gen�)(C):Theorem 4.10 If KB j= P(a 2 C) = J, then J is aninterval.

Proof: A simple proof shows that the mapping�Bela : �n ! Belais continuous (see [Jae94]). Hence, the codomain�Bel(Gen�) of the connected set Gen� is connected.Applying another continuous function � 7! �(C) to�Bel(Gen�) yields a subset of [0,1] that again is con-nected, hence an interval. 2A procedure that computes the sets �Bela(Gen�)(C)will certainly have to compute the minimum cross en-tropy measure �Bela (�) for certain measures �. This isa nonlinear optimization problem. Generally no closedform solution (like the one given by Je�rey's rule forthe case of constraints on disjoint sets) exists, but anoptimization algorithm must be employed to producea good approximation of the actual solution. Thereare numerous algorithms available for this problem.See [Wen88] for instance for a C-program, based on analgorithm by Fletcher and Reeves ([FR64]) that im-plements a nonlinear optimization procedure for crossentropy minimization.The greatest di�culty encountered when we try todetermine �Bela (Gen�)(C) does not lie in individualcomputations of �Bela (�), but in the best choices of� for which to compute �Bela(�). Unlike the case ofstatistical inferences, it does not seem possible to givea characterization of �Bela(Gen�)(C) in terms of a �-nite set of values �Bela (�i)(C) for a distinguished setf�1; : : : ; �kg � Gen.At present we cannot o�er an algorithm for com-puting �Bela(Gen�)(C) any better than by using asearch algorithm in Gen� based on some heuris-tics, and yielding increasingly good approximations of�Bela (Gen�)(C). Such a search might start with ele-ments � of Gen� that are themselves maximal (mini-mal) with respect to �(C), and then proceed withinGen� in a direction in which values of �Bela (�)(C)have been found to increase (decrease), or which hasnot been tried yet. The maximal (minimal) valuesof �Bela (�)(C) found so far can be used as a currentapproximation of �Bela (Gen�)(C) at any point in thesearch. The search may stop when a certain numberof iterations did not produce any signi�cant increase(decrease) for these current bounds.Obviously, the complexity of such a search depends onthe dimension and the number of vertices of Gen. Thecost of a single computation of �Bela depends on thesize of the probability space A(T ) and the number ofconstraints in Pa. In the following we show that thesearch-space Gen� can often be reduced to a substan-tially smaller space.We show that the interval �Bela(Gen�)(C) only de-pends on the restrictions of the measures in Gen� andBela to the probability space generated by C and theconcepts that appear in Pa.
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N�A0�N(�)�N�A0(�)restrict restrict�N(M)�N(M)�A0 = �N�A0(M�A0)Figure 3: Theorem 4.12De�nition 4.11 Let A be an algebra and A0 a sub-algebra of A. Let � 2 �A and M � �A. ��A0 thendenotes the restriction of � to A0, and M�A0 is the setf��A0 j � 2Mg.Theorem 4.12 Let A0 be a subalgebra of the �nite al-gebra A generated by a partition A01; : : : ;A0k of A. LetM,N� �A, where N is de�ned by a set of constraintson A0, i.e.N = f� 2 �A j �(Ci) = pi; i = 1; : : : ; lgfor some pi 2 [0; 1] and Ci 2 A0. Then:�N(M)�A0 = �N�A0(M�A0):Furthermore, for every C2 A and � 2M:�N(�)(C) = kXi=1 �N�A0 (��A0)(A0i)�(C j A0i):Figure 3 illustrates the �rst part of the theorem.Proof: The theorem is contained in [SJ81] in a ver-sion for probability measures given by density func-tions, from which the discrete version can be derived.A direct proof for the discrete case on a more elemen-tary level than the one given in [SJ81] is contained in[Jae94]. 2Theorem 4.12 also plays a vital role in the generaliza-tion of PCL to a probabilistic version of ALC whichwe turn to in the next section.Example 4.13 We conclude our discussion of KB2 bylooking at its implications with respect to P(a 2 C).Unlike in our previous example 3.5, the probabilisticinformation about a in KB2 does not refer to disjointconcepts, so that here Je�rey's rule can not be used,and cross entropy minimization in its general formmust be put to work.

The information about the likelihood for a being in Cis particularly ambiguous: the conditional probabili-ties of C given the two reference classes A and B, thata may belong to with equal probability, are very dis-similar, thereby providing con
icting default informa-tion. Also, the generic probability �(A _ B) covers thewhole range [0,1] for � 2 Gen. Since assigning a valueto P(a 2 A _B) (which, given the other informationin Pa, is equivalent to making up one's mind aboutP(a 2 A^ B)) is an important intermediate step for areasonable estimate of P(a 2 C), and the result of thisstep depends on the prior value �(A _ B), this is an-other reason why it is di�cult to propose any narrowinterval as appropriate for P(a 2 C).It does not come as a surprise, therefore, that nobounds for P(a 2 C) can be derived from KB2 apartfrom those that directly follow from Pa: from the in-formation in Pa aloneKB2 j= P(a 2 C) 2 [0; 0:5]is obtained. These bounds can not be substantiallyimproved as computations of �Bela(KB2)(��)(C) with�� := ��1 + (1� �)�0 (with �0; �1 as in example 4.1)for some � 2]0; 1] show. For � = 1, �Bela(KB2)(�1)(C)is just �2(C) = 0, �2 being the only measure inBela(KB2) with �nite cross entropy with respect to�1. With decreasing �, �Bela(KB2)(��)(C) is foundto increase, having, for example, the value 0.495 at�=0.001. Hence, KB2 j= P(a 2 C) = J for an intervalJ with [0; 0:495] � J � [0; 0:5]:Looking at this result may arouse the suspicion thatthe whole process of cross entropy minimization re-ally is of little avail, because in the end almost everypossible belief measure for a will be in the codomainof �Bela(Gen). While this can certainly happen, oneshould not adopt too pessimistic a view based on thecurrent example, where the poor result can really beblamed on the ambiguity of the input. If, for in-stance, (13) was removed fromKB2, thereby obtaininga smaller knowledge base KB02, then the much strongerinferenceKB02 j= P(a 2 C) = 0:5� 0:1 = 0:05could be made. If, on the other hand, KB002 is de�nedby adding P(a 2 A ^ B) = 0:25 (17)to KB2, thenKB002 j= P(a 2 C) = [0:25� 0:9; 0:25] = [0:225; 0:25]by our previous result (16).5 A PROBABILISTIC VERSION OFALC5.1 ROLE QUANTIFICATIONThe probabilistic concept language PCL we have de-scribed so far does not supply some of the concept-



10forming operations that are common to standard con-cept languages. Most notably, role quanti�cation wasnot permitted in PCL. In this section we show how theformalism developed in the previous sections can begeneralized to yield probabilistic extensions for moreexpressive languages. Our focus, here, will be on ALC,but the results obtained for this language equally ap-ply to other concept languages.In ALC the concept-forming operations of section 2 areaugmented by role quanti�cation: the vocabulary nowcontains a set SR = fr; s; : : :g of role names in additionto, and disjoint from, SC and SO. New concept termscan be built from a role name r and a concept term Cby role quanti�cation8r : C and 9r : C:The set of concept terms constructible from SC andSR via the boolean operations and role quanti�cationis denoted T(SC,SR). This augmented set of conceptterms together with the syntax rules for terminolog-ical axioms, probabilistic terminological axioms, andprobabilistic assertions from section 2 yields a proba-bilistic extension ofALC which, unsurprisingly, we callPALC. Note that probabilistic assertions of the formP((a; b) 2 r) = p are not included in our syntax.Example 5.1 Some pieces of information relating theworld of birds and �sh are encoded in the followingPALC-knowledge base KB3.T : Herring � FishPenguin � Bird ^ 8feeds on : HerringPT : P(PenguinjBird ^ 8feeds on : Herring) = 0:2POpus : P(Opus 2 Bird ^ 8feeds on : Fish) = 1The presence of quanti�cation over roles in this knowl-edge base does not prevent us from forming a sub-jective degree of belief for the proposition Opus 2Penguin: Since 8feeds on : Herring is subsumed by8feeds on : Fish, we know that the conditional proba-bility of Penguin given Bird ^ 8feeds on : Fish must liein the interval [0,0.2], but no better bounds can bederived from T [ PT . Opus is only known to belongto Bird ^ 8feeds on : Fish, so that we would concludethat the likelihood for this individual actually being apenguin is in [0,0.2] as well.This example indicates that probabilistic reasoningwithin the richer language PALC works in very muchthe same way as in PCL. In the following section it isshown how the semantics for PCL can be generalizedto capture this kind of reasoning in PALC.5.2 PROBABILISTIC SEMANTICS FORPALCCentral to our semantics for the language PCL werethe concepts of the Lindenbaum algebra A(SC) andof the cross entropy of probability measures on thisalgebra.

The Lindenbaum algebra for PALC can be de�nedin precisely the same manner as was done for PCL.The resulting algebra A(SC,SR) is quite di�erent fromA(SC) however: not only is it in�nite, it also isnonatomic, i.e. there are in�nite chains C0 � C1 � : : :in [T(SC; SR)] with Ci 6= Ci+1 6= 0 for all i.The set of probability measures on A(SC,SR) is de-noted �A(SC,SR). Probability measures, here, arestill required to only satisfy �nite additivity. A(SC,SR)not being closed under in�nite disjunctions, there isno need to consider countable additivity. Observethat even though A(SC,SR) is a countable algebra,probability measures on A(SC,SR) can not be repre-sented by a sequence (pi)i2N of probability values withPi2N pi = 1 (i.e. a discrete probability measure), be-cause these pi would have to be the probabilities of theatoms in A(SC,SR).Replacing A(SC) with A(SC,SR) and �A(SC) with�A(SC,SR) de�nitions 3.1 and 3.2 can now be repeatedalmost verbatim for PALC (with the additional provi-sion in de�nition 3.2 that role names are interpretedby binary relations on D).So, things work out rather smoothely up to the pointwhere we have to de�ne what it means for a PALC- in-terpretation to be a model of a PALC knowledge base.In the corresponding de�nition for PCL (de�nition 3.3)cross entropy played a prominent role. When we try toadopt the same de�nition for PALC we are faced witha problem: cross entropy is not de�ned for probabil-ity measures on A(SC,SR). While we may well de�necross entropy for measures that are either discrete, orgiven by a density function on some common probabil-ity space, measures on A(SC,SR) do not fall into eitherof these categories. Still, in example 5.1 some kind ofminimum cross entropy reasoning (in the special formof direct inference) has been employed. This has beenpossible, because far from considering the whole alge-bra A(SC,SR), we only took into account the conceptterms mentioned in the knowledge base in order to ar-rive at our conclusions about P(Opus 2 Penguin). Thesame principle will apply for any other, more compli-cated knowledge base: when it only contains the con-cept terms C1; : : : ;Cn, and we want to estimate theprobability for P(a 2 Cn+1), then we only need to con-sider probability measures on the �nite subalgebra ofA(SC,SR) generated by fC1; : : : ;Cn+1g.The following de�nition and theorem enables us to re-cast this principle into formal semantics for PALC.De�nition 5.2 Let A0 be a �nite subalgebra ofA(SC,SR) with fA01; : : : ;A0kg the set of its atoms. LetN� �A(SC,SR) be de�ned by a set of constraints onA0 (cf. theorem 4.12). Let � 2 �A(SC,SR) such that�N�A0(��A0) is de�ned. For every C2 A(SC,SR) de�ne��N(�)(C) := kXi=1 �N�A0(��A0)(A0i)�(C j A0i):



11Clearly, ��N(�) is a probability measure on A(SC,SR).The following theorem shows that ��Bel(�) realizescross entropy minimization for every �nite subalge-bra of A(SC,SR) containing the concepts used to de�neBel.Theorem 5.3 Let � 2 �A(SC,SR), let Bel ��A(SC,SR) be de�ned by a �nite set of constraintsfP(Ci) = pi j pi 2 [0; 1]; Ci 2 A(SC,SR); i = 1; : : : ; ng:Let A0 be the �nite subalgebra generated byfC1; : : : ;Cng, and assume that �Bel�A0(��A0) is de-�ned. Then, for every �nite A� � A0: �Bel�A� (��A�)is de�ned and equal to ��Bel(�)�A�.Proof: Substituting A� for A, f��A�g for M, andBel�A� for N in theorem 4.12 gives�Bel�A� (��A�)(C) = kXi=1 �Bel�A0 (��A0)(A0i)�(C j A0i)for every C2 A�. The right hand side of this equationis just the de�nition of ��Bel(�)(C). 2With ��Bel(�) as the measure that, in a generalizedway, minimizes cross entropy with respect to � inBel, it is now straightforward to de�ne when a PALC-interpretation (D; I; �) shall be a model of a PALC-knowledge base KB: just replace �Bela(KB)(�) with��Bela(KB)(�) in the corresponding de�nition for PCL(de�nition 3.3).Probabilistic inferences from a PALC-knowledge baseKB can now be made in basically the same manner asin PCL: to answer a query about a conditional prob-ability P(CjD) for two concepts, consider the algebragenerated by C, D, and the concept terms appearing inPT . Call this algebra MC;D. The relativized algebraMC;D(T ) is de�ned as above, and Gen�MC;D(T ) canbe computed as in section 4.1. Theorem 4.7, appliedto Gen�MC;D(T ) can then be used to compute the Jwith KB j= P(CjD) = J.When J with KB j= P(a 2 C) = J shall be computed,the relevant algebra to be considered is generated by Cand the concept terms appearing in Pa. Writing Na;Cfor this algebra,J = f�Bela�Na;C(T )(�)(C) j � 2 Gen�Na;C(T )gthen holds. Note that Gen�Na;C(T ) can not be com-puted directly in the manner described in section 4.1,because Gen will usually be de�ned by constraints onconcepts not all contained in Na;C. One way to obtaina representation for Gen�Na;C(T ) is to �rst computeGen�B(T ), with B the algebra generated by C andthe concept terms appearing in either PT or Pa, andthen restrict the result to Na;C.

Example 5.4 Suppose we want to determine J0 withKB3 j= P(PenguinjBird ^ 8feeds on : Fish) = J0:This query and PT together contain three di�erentconcept terms which generate an algebraM whose rel-ativization by T contains just the four atomsA1 : P;A2 : B^ 8f o : H ^ :P;A3 : B^ 8f o : F ^ :8f o : H;A4 : :(B^ 8f o : F)(using suitable abbreviations for the original names).Gen�M(T ) then is de�ned byf(�1; : : : ; �4) 2 �4 j �1�1 + �2 = 0:2g:The value for �1=(�1 + �2 + �3), representingP(PjB^ 8f o : F), ranges over the interval [0,0.2] inthis set, so the answer to our query is the expectedinterval.To compute J1 withKB3 j= P(Opus 2 P) = J1;we consider the even smaller algebra N(T ) consistingof the atomsB1 : P; B2 : :P^ B ^ 8f o : F;B3 : :(B ^ 8f o : F):BelOpus�N(T ) then isf(�1; �2; �3) 2 �3 j �1 + �2 = 1g:It is easy to see thatGen�N(T ) = f(�1; �2; �3) 2 �3 j �1�1 + �2 � 0:2g:For every � = (�1; �2; �3) 2 Gen�N(T ), (�1; �2; �3) :=�Bel�N(T )(�) is de�ned by Je�rey's rule, so that�1 = �1=(�1 + �2) = �1=(�1 + �2). Hence,J1 = f�1 j (�1; �2; �3) 2 �Bel�N(T )(Gen�N(T ))g= [0; 0:2]in accordance with our intuitive reasoning in example5.1.6 CONCLUDING REMARKSThe semantics we have given to probabilistic exten-sions of terminological logics are designed for sound-ness rather than for inferential strength. Allowing anygeneric measure � consistent with the constraints tobe used in a model is the most cautious approach thatcan be taken. In cases where it seems more desirableto always derive unique values for probabilities P(CjD)or P(a 2 C) instead of intervals, this approach can bemodi�ed by using the maximum entropy measure in
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