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Representation Independence of Nonmonotonic Inference RelationsManfred JaegerMax-Planck-Institut f�ur InformatikIm Stadtwald66123 Saarbr�uckenGermanyemail: jaeger@mpi-sb.mpg.deAbstractA logical concept of representation indepen-dence is developed for nonmonotonic log-ics, including probabilistic inference systems.The general framework then is applied to sev-eral nonmonotonic logics, particularly propo-sitional probabilistic logics. For these logicsour investigation leads us to modi�ed infer-ence rules with greater representation inde-pendence.1 INTRODUCTIONEntropy maximization is a rule for probabilistic in-ference for whose application to problems in arti�-cial intelligence there exist several independent andvery strong arguments (Grove, Halpern & Koller1992),(Paris & Vencovsk�a 1990). Unfortunately,though, there is a major drawback for which the max-imum entropy inference rule has often been criticized:the result of the inference depends on how given infor-mation is represented.The probably best known example used to illustratethis point is the \Life on Mars" example, a renditionof which may be given as follows: the belief that theprobability for the existence of life on mars exceeds 0.6may be expressed by the statement�1 :� P (LoM ) � 0:6;using the vocabulary fLoM g of propositional vari-ables. Entropy maximization, applied to this chosenlanguage and constraint �1 then yields P (LoM ) =0:6. Alternatively, we might choose the languagefALoM,PLoM g containing propositional variables for\Animal Life on Mars" and \Plant Life on Mars", andexpress our belief by�2 :� P (ALoM _ PLoM ) � 0:6:

Entropy maximization here yieldsP (ALoM _PLoM ) = 0:75. Thus, the result ofthe maximum entropy inference rule is dependenton the choice of language, and seemingly equivalentstatements yield di�erent results.Even though the charge of representation dependenceagainst maximum entropy methods has been aroundfor a long time, until recently there has neither beenany precise explication of what representation inde-pendence actually is, nor a systematic investigationinto the properties with regard to this property ofother inference rules.The �rst rigorous examination of these issues has beenpresented by Halpern and Koller (1995). They proceedfrom a de�nition of when two di�erent structures, orstate spaces, each equipped with a set of probabilitydistributions, are alternative representations (namely,when on structure can be \faithfully embedded" in theother), and then call a probabilistic inference proce-dure representation independent when applied to thetwo structures it picks out corresponding preferredprobability measures.In this paper the question of representation indepen-dence will be tackled from a somewhat di�erent per-spective, and in a much wider context: �rst, ratherthan looking at speci�c structures and their embed-dings, we here consider the purely logical question andask: when do two sets of formulas represent the sameinformation, and when is an inference relation de�nedon formulas of some language representation indepen-dent? From this syntactic perspective it is natural toextend the scope of the enquiry: a probabilistic in-ference rule, like entropy maximization, formally de-�nes a nonmonotonic inference relation j� that canbe studied with respect to the same formal proper-ties as have been investigated for nonmonotonic logics(Kraus, Lehmann & Magidor 1990), (Gabbay 1985).Conversely, a concept of representation independence,



framed entirely in terms of formulas and entailmentrelations, may be applied to a large class of nonmono-tonic logics, not only probabilistic ones. In this paperwe will develop the necessary tools for the investiga-tion of representation independence of nonmonotonicinference relations, and take some steps towards clar-ifying the degree of representation (in-)dependence ofexisting nonmonotonic logics.2 THE LOGICAL BACKBONEIn a similar spirit as Gabbay (1985), Kraus et al.(1990) and Makinson (1994) we will take a very gen-eral and abstract view of nonmonotonic logics. Thede�nition we here give of what a nonmonotonic logic isputs into focus two elements that usually are either as-sumed only implicitly for a nonmonotonic logic, or notdeemed necessary at all: the existence of a monotonic\background" entailment relation, and the possible de-pendence of the nonmonotonic entailment relation onthe underlying vocabulary. The �rst of these elementswill be crucial for our de�nition of when two knowl-edge bases are alternative representations; the secondmight be regarded as a borderline case of representa-tion dependence.The following de�nition is an adaptation of stan-dard de�nitions in generalized model theory (e.g.(Ebbinghaus 1985)), tailored for the purpose at handby the distinction of two entailment relations. Hereand elsewhere we denote the powerset of X byP(X).De�nition 2.1 A logic L consists of� a class of sets S, called the class of vocabularies ofL , which is closed under intersections and �niteunions,� for each vocabulary S a set LS of expressions ofL , such that S � S0 implies LS � LS0 .� for each vocabulary S a relation `S onP(LS)�LS(the classical entailment relation) that is mono-tonic (i.e. � � �0 � LS and � `S � implies�0 `S �), and that has the reduct property (i.e.� `S0 � and S0 � S implies � `S �).L is a nonmonotonic logic if in addition there is� for each vocabulary S a relation j�S on P(LS)�LS (the nonmonotonic entailment relation) with`S� j�S .Note that for the sake of simplicity we have alreadybuilt the property of supraclassicality into the de�ni-

tion of a nonmonotonic logic. The concept of non-monotonic logics is not restricted in any way by mak-ing the existence of a classical entailment relation partof the de�nition: whenever we have a nonmonotoniclogic that lacks a natural concept of classical entail-ment, we can extend it to �t de�nition 2.1 by simplyde�ning `S := ; for all S.By virtue of the reduct property we can delete thesubscript in the classical entailment relation `S , andsimply write � ` �, meaning that � `S � for any Swith � [ f�g � LS . Generally, we may not expectthe nonmonotonic inference relation of L to possessthe reduct property. One counterexample is suppliedby the probabilistic center of mass inference rule, see(Paris & Vencovsk�a 1992) (the maximum entropy prin-ciple, on the other hand, satis�es the reduct property).Therefore, for the nonmonotonic entailment relationj�S we have to retain the subscript S, unless the reductproperty has been established for j� in the logic underconsideration.3 REPRESENTATIONALVARIANTSBefore the question can be addressed, what it meansfor the nonmonotonic inference relation j� to be rep-resentation independent, we have to clarify what itmeans for two knowledge bases �;	 to represent thesame information. This will be formalized entirely interms of the classical entailment relation `. Through-out this section we will therefore be concerned onlywith the classical part of a logic.Reconsider our introductory example. Intuitively,both �1 and �2 represent the same information withrespect to the existence of life on mars. It is not im-mediate, however, how this intuition can be capturedby a formal logical property of �1 and �2. Clearly, weare looking for something weaker than logical equiv-alence, because for example with  :� P (ALoM ) <0:3! P (PLoM ) > 0:3 we have �2 `  , but �1 6`  .This, of course, is not surprising: by saying that �1 and�2 provide the same information with respect to theexistence of life on mars, we do not mean to imply that�1 and �2 provide the same information regarding anyother statement that can be formulated in either thevocabulary of �1, or the vocabulary of �2. Only withregard to statements that can be represented in eithervocabulary will we expect the same inferences from �1and �2. This \common ground" of the two languagescan be de�ned by generalizing what is known as aninterpretation in model theory (see (Hodges 1993)).2



De�nition 3.1 Let L be a logic, S; S0 vocabulariesof L . An abstract interpretation in L of LS into LS0with admissibility conditions 
(f) � LS0 is a mappingf : LS ! LS0such for all � [ f g � LS :� `S  ) f(�) [
(f) `S0 f( ); (1)where f(�) := ff(�) j � 2 �g. The class of abstractinterpretations in L is denoted Int(L ).Example 3.2 Let L prop be propositional logic withlanguages LpropS . Let S and S0 be two sets of proposi-tional variables. The extension of any functionf : S ! LpropS0 :to LpropS via the conditions f(:�) � :f(�); f(�_ ) �f(�) _ f( ) is an abstract interpretation of LpropS intoLpropS0 with 
(f) = ;. We call it a propositional inter-pretation and denote the class of propositional inter-pretations by PI(L prop).As in this example, throughout this paper we will onlyencounter abstract interpretations for which we maylet 
(f) = ;. The admissibility conditions becomerelevant, for example, when we move to the standardconcept of interpretations in �rst-order logic. Here,an atomic formula h(x) = y 2 LS is mapped to aformula �(x; y) 2 LS0 . The admissibility condition
(f) then would have to contain the condition that �is functional, i.e. include the axiom 8x9=1y�(x; y).With abstract interpretations at our disposal, we cande�ne what it means for two knowledge bases �;	 of alogicL to represent the same information with respectto a common ground { which is any language LS� thatcan be interpreted in both the language of � and thelanguage of 	.De�nition 3.3 Let LS� , LS1 , LS2 be languages insome logic L . Let f : LS� ! LS1 and g : LS� ! LS2be abstract interpretations with admissibility condi-tions 
(f) and 
(g). Let � � LS1 ; 	 � LS2 . � and	 are called representational variants with respect tof and g, written � f;g ! 	, i� for all � 2 LS� :� [
(f) `S1 f(�) i� 	 [
(g) `S2 g(�):The concept of representational varianthood beingcentral to our development of representation indepen-dence, we shall here digress for a short while from thestraightforward presentation of our main topic, andfor the remainder of this section take a closer look atrepresentational variants.

First, we turn to the question of how given knowledgebases � and 	 can be proved to be representationalvariants, and to the even more elementary question ofwhen a given mapping f : LS ! LS0 is an abstractinterpretation.For this purpose we here narrow down the class oflogics to be considered to such logics in which the con-cepts introduced in de�nitions 3.1 and 3.3 as purelysyntactical relations correspond to relations betweensemantical structures, so that questions about repre-sentational varianthood can be answered by construct-ing and comparing semantical structures.Still adopting standard notions from generalized modeltheory, we consider logics that have a model theo-retic presentation, and the Boole property. For alogic to have a model theoretic presentation meansthat for every vocabulary S there is de�ned a classof S-structures M , and a satisfaction relation j=Sbetween S-structures and sets of S-expressions, suchthat � `S  i� for all S-structures M : M j=S �implies M j=S  . In propositional logic, for exam-ple, an S-structure is simply a truth assignment to thepropositional variables, in �rst-order logic we have theusual model-theoretic S-structures. For � � LS wedenote by Mod(�; S) the class of S-structuresM withM j= �. Two classes M and N of S-structures arecalled elementarily equivalent, writtenM � N , whenfor all � 2 LS : M j= � for allM 2M i� N j= � for allN 2 N . A logic with a model theoretic presentationhas the Boole-property i� for every �;  2 LS thereexist expressions :�; � _  2 LS such that for everyS-structure M : M j= :� i� M 6j= �, and M j= � _  i� M j= � or M j=  .Logics with a model-theoretic presentation and theBoole property permit us to apply the usual rules ofclassical logic for the manipulation of boolean connec-tives with respect to the classical entailment relation.Particularly, in any such logic the deduction theoremis valid: � [ f�g `  i� � ` � !  (� !  being, ofcourse, and abbreviation for :� _  ).We now obtain the following connection between S-structures and interpretations:Lemma 3.4 Let L be a logic with a model theoreticpresentation, f : LS ! LS0 , 
(f) � LS0 . If for everyS0-structure M with M j= 
(f) there exists an S-structure N such that for all � 2 LS :M j= f(�) i� N j= � (2)then f is an abstract interpretation with admissibilityconditions 
(f).When L has the Boole-property, and f is compat-3



ible with boolean connectives, i.e. f(:�) � :f(�),f(�_ ) � f(�)_ f( ) (�;  2 LS), then the conversealso holds: if f is an abstract interpretation with ad-missibility conditions 
(f) then for each M j= 
(f)there exists an S-structure N with (2).Proof: For the �rst part of the lemma let f and 
(f)be given. Let �[f g � LS with � `  . If M 6j= f(�)for all S0-structures M with M j= 
(f) then (1) istrivially satis�ed. Now suppose thatM j= f(�)[
(f),and let N be an S-structure satisfying (2). Then N j=�[f g, henceM j= f( ), and therefore f(�)[
(f) `f( ).For the second part assume that f is an abstract in-terpretation with admissibility conditions 
(f) that iscompatible with boolean connectives. Let M j= 
(f)be given, and de�ne � := f� 2 LS j M j= f(�)g.Assume that there does not exist an S-structure Nwith N j= �. Then � ` � ^ :� for arbitrary � 2 LS ,and by (1) f(�) [ 
(f) ` f(�) ^ :f(�), contradictingthe assumption that M j= f(�) [ 
(f). �When for an abstract interpretation f : LS ! LS0and any S0-structure M an S-structure N with (2)exists, then f is said to de�ne associated structures.The mapping that assigns an associated structure Nto S0-structures M is denoted by �f . Generally, thismapping will not be uniquely determined by condition(2), and �f(M) can be any (usually canonical) selectionof one of the associated S-structures for M .Example 3.5 Let S = fA1; : : : ; Akg; S0 =fB1; : : : ; Blg be propositional vocabularies, f : LS !LS0 ; f(Ai) :� �Ai a propositional interpretation.Let M : S0 ! ftrue; falseg be a truth assignment.Then the unique truth assignment �f(M) : S !ftrue; falseg for which (2) holds is de�ned by�f(M)(Ai) :=M(�Ai) (Ai 2 S):A criterion for representational varianthood now isgiven by the following lemma.Lemma 3.6 Let L be a logic with a model theoreticpresentation. Let f : LS� ! LS1 ; g : LS� ! LS2 beabstract interpretations that de�ne associated struc-tures �f(�); �g(�). Let � � LS1 ; 	 � LS2 . Then � f;g ! 	i� �f(Mod(� [
(f); S1)) � �g(Mod(	 [ 
(g); S2)):The proof is immediate from the de�nitions.

Example 3.7 Let S1 be the set of propositional vari-ables LoM (Life on Mars), LoE (Life on Earth), LiSS(Life in Solar System), IntL (Intelligent Life), and EalL(Earth-like Life). Let S2 consist of ALoM (Animal Lifeon Mars), PLoM (Plant Life on Mars), LiSS (Life inSolar System), and HL (Human Life).Let� � (LoM! LiSS ^ :IntL) ^ (LoE! EalL) 2 LS1 � (ALoM _ PLoM)! (LiSS ^ :HL) 2 LS2Here we think of the propositional variables rather asrelation symbols, designating the set of all objects thatare \life on mars", \intelligent life", and so on, ratherthan as propositions \there exists life on mars", etc.The only propositional variable that the two vocabu-laries have in common is LiSS. Still we can extract thesame information about the relation of life on mars,life in the solar system, and human life from the twoformulas. To make this precise, consider the proposi-tional interpretations f; g of S� := fA,B,C g into S1and S2, respectively de�ned byf : A 7! LoM; B 7! (IntL ^ EalL);C 7! LiSS;g : A 7! (ALoM _ PLoM); B 7! HL;C 7! LiSS:We may now use lemma 3.6 to show that � f;g !  .For this example, and for propositional logic in gen-eral, this is particularly simple, because here for anyclasses M, N of structures M � N is equivalent toM = N . In the current example it is readily veri�edthat both �f(Mod(�; S1)) and �g(Mod( ; S2)) are equalto the set f(t; f; t); (f; f; t); (f; t; t); (f; t; f); (f; f; f)g oftruth assignments to the variables (A;B;C), whichcorresponds to the set of models of the S�-formulaA! C ^ :B.The two formulas � and  in this example di�er inone aspect that we will later �nd to be quite essential:while  actually is the formula g(A ! C ^ :B), it isnot the case that � � f(A ! C ^ :B). Moreover, �is not even equivalent to any formula f(�) with � 2LS� , because � makes a nontrivial statement about thepropositional variable LoE, which does not appear inthe range of f .The following example is useful to caution us againstexpecting more from the relation � f;g ! 	 than thereactually is in it. For this example and further use be-low we introduce the notation id(LS) to denote the\identity interpretation" of LS , i.e. the abstract inter-pretation id : LS ! LS with id(�) � � for all � 2 LS ,and 
(id) = ;.4



Example 3.8 Let S� = S1 = fAg, S2 = fB;Cg bepropositional vocabularies, f = id(LS�), g : LpropS� !LpropS2 ; g(A) :� B_C be propositional interpretations.Let � :� A and  :� B ^ C. Then � f;g !  . Itis not true, however, that also :� f;g ! : , because:� ` f(:A), whereas : 6` :(B _ C) � g(:A).By a similar example it can also be shown that� f;g !  and �0 f;g !  0 does not imply � ^ �0 f;g ! ^  0.Interestingly, however, in any logic with a model-theoretic presentation and the Boole property � f;g !  and �0 f;g !  0 does imply � _ �0 f;g !  _  0, becausefor � 2 LS� we then have �_�0 ` f(�) i� � ` f(�) and�0 ` f(�) i�  ` g(�) and  0 ` g(�) i�  _  0 ` g(�).4 REPRESENTATIONINDEPENDENCEHaving de�ned what it means that � and 	 representthe same information (with respect to a commonly in-terpretable language LS�), we can address our mainissue, and de�ne representation (in)dependence of j�.Now that we will be dealing with the nonmonotonicentailment relation of a logic, somewhat greater carethan in the preceding section has to be taken with re-spect to specifying what vocabulary is being assumedas de�ning the background language in which a knowl-edge base is to be evaluated. Basically, this just meansthat we have to more conscientiously use the properlyindexed entailment operator j�S . In addition, it willbe convenient to also add the speci�cation of a vo-cabulary S with � � LS as an external attribute toa knowledge base. We therefore de�ne the class ofknowledge bases of L as the set of pairsKB(L ) = f(�; S) j � � LS ; S vocabularyg:Whenever the speci�cation of the vocabulary S can bedispensed with, either because the logic under consid-eration is known to have the reduct property for j�,or because the underlying vocabulary is clear or irrel-evant in the given context, we will continue to simplywrite � for (�; S).The general thrust of the de�nition of representationindependence should be quite obvious: the nonmono-tonic logic L is representation independent (r.i.) if,whenever (�; S1) and (	; S2) represent the same infor-mation about LS� , then L also permits the same non-monotonic inferences from (�; S1) and (	; S2) about

LS� , i.e. if � f;g ! 	, then for all � 2 LS� :� [ 
(f) j�S1f(�) i� 	 [
(g) j�S2g(�): (*)This is essentially the de�nition of r.i. that we willgive below. However, a few complications are in-evitable: we can not hope to obtain (*) for any inter-esting nonmonotonic logic for arbitrary �;	; f , andg. Usually, we will have to look a little closer at how�;	; f , and g can interact in a speci�c logic, and tryto obtain only quali�ed statements of the form (*).There are basically two ways to impose restrictions onthe statements of this form: we may consider only aspecial set of abstract interpretations, not arbitraryones, and we may restrict the set of admissible knowl-edge bases � and 	, where these sets may also dependon the interpretations considered.The �rst of these limitations is really inevitable: when-ever we consider a speci�c logic L , we will be con-cerned with certain classes of natural interpretations,e.g. in the context of propositional logic the proposi-tional interpretations of example 3.2, and not with anyabstract interpretation in the sense of de�nition 3.1.Restrictions of the second type, on the other hand,usually mean a real compromising of the strength ofthe results obtained.De�nition 4.1 Let L be a nonmonotonic logic. LetF � Int(L )� Int(L )�KB(L )�KB(L ):L is representation independent with respect to F, i�(f; g; (�; S1); (	; S2)) 2 F and � f;g ! 	 implies8� 2 LS� :� [ 
(f) j�S1f(�) i� 	 [
(g) j�S2g(�); (3)where LS� is the common domain of f and g.Note that in this de�nition the condition(f; g; (�; S1); (	; S2)) 2 F in itself does not guaranteethat f and g are de�ned on the same language LS� .However, this is implicit in the additional condition� f;g ! 	.The following examples show how the general conceptof representation independence of de�nition 4.1 sub-sumes special properties previously considered in theliterature.Example 4.2 The reduct property for the nonmono-tonic entailment relations j�S may be represented inthe framework of de�nition 4.1 as follows. Let FRPcontain all tuples of the form (f; f; (�; S1); (�; S2))where f = id(LS) for some LS with � � LS . For5



any such tuple � f;f ! � then holds, and nonmono-tonic entailment in L has the reduct property i� Lis r.i. with respect to FRP.Example 4.3 One of the simplest changes of repre-sentation one can devise is by renaming the nonlogicalsymbols in an expression. Since de�nition 2.1 doesnot require that the expressions in LS will actually bestrings constructed from elements of S, we may nothave a feasible concept of renaming for every logic inthe sense of de�nition 2.1. Therefore, assume thatL isa logic in which each bijection f : S ! S0 of vocabular-ies (respecting such attributes as sort and arity of sym-bols, if these exist) induces a bijection f : LS ! LS0 ofthe corresponding languages such that f is an abstractinterpretation of LS in LS0 , and f�1 is an abstract in-terpretation of LS0 in LS with 
(f) = 
(f�1) = ;(this just means that the classical part or L has therenaming property (Ebbinghaus 1985)).Now let FR contain all tuples of the form(f; g; (�; S); (g(�); S0)) where f = id(LS), and g : S !S0 is a renaming. By the renaming property of ` anysuch tuple already satis�es � f;g ! g(�), and nonmono-tonic entailment in L is invariant under renaming i�L is r.i. with respect to FR.Example 4.4 Another basic form of changing repre-sentation is by choosing a logically equivalent knowl-edge base (in the sense of the classical entailment rela-tion) in the same language. When such a change doesnot a�ect the set of formulas entailed by j� a non-monotonic logic L is said to have the property of leftlogical equivalence (cf. (Makinson 1994)).This property, too, can be very easily captured as aform of representation independence in the sense ofde�nition 4.1. Let FLLE contain all tuples of the form(f; f; (�; S1); (	; S2)) where f = id(LS) for some Swith �;	 � LS . The condition � f;f ! 	 then meansthat � and 	 are logically equivalent, and L is r.i.with respect to FLLE i� L satis�es left logical equiv-alence.Note that FRP � FLLE, so that left logical equivalenceas de�ned here implies the reduct property.De�nition 4.1, once again, is formulated on a purelysyntactical level. Pursuing our endeavor to supple-ment these syntactical concepts with corresponding se-mantical notions, we shall now describe a semanticalapproach to representation independence for a certainclass of nonmonotonic logics.As previously we had to narrow down the class of log-ics to be considered to those in which classical entail-

ment is de�ned by a model-theoretic presentation, wenow have to focus on such logics in which nonmono-tonic entailment, too, has a semantical background. Alarge and natural such class is comprised of those logicsin which nonmonotonic entailment has a preferentialmodel semantics (Shoham 1987). We here generalizethe notion of preferential models in one aspect, forwhich we need the following preparatory de�nition.De�nition 4.5 Let L be a logic with a model-theoretic presentation, S a vocabulary, and S the classof S-structures. We say that S is locally ordered i� onevery subset S 0 � S a unique partial order is de�ned.S is said to be globally ordered i� S is locally ordered,and for each S 0 � S the order on S 0 is given by therestriction to S 0 of the order on S. We denote by bS 0cthe set of elements of S 0 that are minimal in the or-dering of S 0.De�nition 4.6 Let L be a nonmonotonic logic witha model-theoretic presentation. L has a local prefer-ential model semantics i� for each vocabulary S theclass S is locally ordered, and for each � [ f�g � LS :� j�S� i� M j= � for all M 2 bMod(�; S)c. L has aglobal preferential model semantics i� L has a localpreferential model semantics de�ned by a global orderon each S.Hence, the usual notion of preferential model seman-tics corresponds to a global preferential model seman-tics as de�ned here. The generalization to local prefer-ential model semantics is necessary in order to accom-modate certain probabilistic logics (cf. section 5.3),and may also deserve some attention in other contexts.We now obtain the following criterion for representa-tion independence.Lemma 4.7 LetL be a logic with a local preferentialmodel semantics, let F be as in de�nition 4.1 such thatall f and g that appear in a tuple of F de�ne associatedstructures. Then L is r.i. with respect to F i� forevery tuple (f; g; (�; S1); (	; S2)) 2 F with � f;g ! 	�f(bMod(� [
(f); S1)c) � �g(bMod(	 [ 
(g); S2)c):The proof is immediate from the de�nitions.5 CASE STUDIESIn this section the general framework developed so faris applied to a selection of speci�c nonmonotonic log-ics.6



5.1 CLOSED WORLD ASSUMPTION ANDNEGATION AS FAILUREThe closed world assumption is a very general form ofnonmonotonic reasoning that is not restricted to anyspeci�c logical framework. Any classical logic L thathas a model theoretic presentation and the Boole prop-erty (actually, only any feasible concept of negationis required) can be extended to a nonmonotonic logicL cwa by the de�nition � j�� i� � 6` :� (or � ` :�^�).It is obvious that L cwa is r.i. in a very strong sense,namely with respect to F = Neg�Neg�KB(L cwa)�KB(L cwa), where Neg � Int(L cwa) is the class of ab-stract interpretations f with f(:�) � :f(�) for all�.In logic programming an approximation of the closedworld assumption may be implemented by the nega-tion as failure rule (Clark 1978). Here we lose com-pletely the representation independence of the closedworld assumption; in fact, negation as failure does noteven satisfy left logical equivalence: from the two logicprogramsP : Rf(x) Rf(x)Qa and P 0 : Rf(x) RxQathe same literals are provable (namely, just Qa), sothat in the sense of logic programming they are logi-cally equivalent. However, for any literal L � Rfn(a)(n � 1), an attempted proof of L from P will notterminate, while it will fail from P 0. Hence we getP j6�:Rfn(a), but P 0 j�:Rfn(a) for all n � 1.5.2 RATIONAL CLOSURELehmann's (1989) rational closure and Pearl's (1990)system Z are two systems for evaluating conditionalknowledge bases that for �nitary knowledge bases havebeen found to be equivalent (Pearl 1990). Pearl (1990)also has shown that this logic can be de�ned by a pref-erential model semantics using �-rankings going backto Spohn (1990). We here use this last approach forde�ning the (�nitary) rational closure logic L rc.The class of vocabularies of L rc consists of all �nitepropositional vocabularies. An S-expression is a con-ditional �  with �;  2 LpropS . An S-structure is aranking function � :WS ! N [ f1gwhere WS = fw1; : : : ; wng is the set of the n = 2jSjtruth assignments for S. A ranking function � satis�esa conditional �  i�minf�(w) j w j= � ^  ; w 2WSg <minf�(w) j w j= � ^ : ; w 2WSg;

using the conventions min ; = 1 and 1 < 1. Theclass S of ranking functions for S is globally orderedby: � < �0 i� 8w 2 WS : �(w) � �0(w) and9w 2 WS : �(w) < �0(w). Nonmonotonic entail-ment in L rc then is de�ned by the preferential modelsemantics with respect to this ordering.The de�nition of L rc in one important aspect is ofa somewhat di�erent nature than those of many othernonmonotonic logics: in L rc the nonmonotonic entail-ment relation of the logic, i.e. the entailment of condi-tionals �  from a set � of given conditionals, is notdirectly an image of the nonmonotonic commonsensereasoning that the logic wants to describe. Such rea-soning, rather, is represented by the object-languageoperator  , and a commonsense inference of  froma given fact � and a set � of default rules is modeledin the formal logic by the nonmonotonic entailment of�  from �.L rc satis�es the reduct property for nonmonotonic en-tailment, so that most of the time a reference to theunderlying vocabulary here is unnecessary.Lehmann & Magidor (1992) have observed that ra-tional closure is invariant under renaming. We hereextend this result for L rc and show that this logic isr.i. in a more general sense.We consider abstract interpretations f� : LrcS ! LrcS0obtained by extending propositional interpretationsf 2 PI(L prop) to LrcS viaf�(�  ) :� f(�) f( ): (4)The following lemma tells us that f� really is an ab-stract interpretation for L rc.Lemma 5.1 Let f 2 PI(L prop), f : LpropS ! LpropS0 .Then f� : LrcS ! LrcS0 as de�ned by (4) is an abstractinterpretation with 
(f�) = ;.Proof: We use lemma 3.4 and show that f� de�nesassociated structures. Let � : WS0 ! N [ f1g be anarbitrary S0-structure. An S-structure �f�(�) is de�nedby letting for w 2 WS :�f�(�)(w) := minf�(w0) j w = �f(w0); w0 2 WS0g:For every � 2 LpropS we then haveminf �f�(�)(w) j w j= �; w 2WSg= minf�(w0) j w = �f(w0); w j= �; w0 2WS0g= minf�(w0) j w0 j= f(�); w0 2 WS0g(note that in the special case that � only is true inw 2 WS for which fw0 2 WS0 j �f(w0) = wg = ; wereceive the value 1 for the terms in this identity).7



It now follows immediately that � j= f�(�  �) i��f�(�) j= �  � for all �  � 2 LrcS , and hence thatf� is an abstract interpretation. �The class of abstract interpretations de�ned by (4) isdenoted PI(L rc). For simplicity, in the sequel we willno longer distinguish in our notation an interpretationf 2 PI(L rc) from its underlying propositional inter-pretation f 2 PI(L prop). The distinction is implicitin the argument of the function, which may be eithera propositional formula, or a conditional, and in thecase of �f , a truth assignment, or a ranking function.LettingFR := f(f; g;�;	) j f; g 2 PI(L rc);� � f(LrcS�);	 � g(LrcS�)g;we now obtain the following result about representa-tion independence of L rc.Theorem 5.2 L rc is r.i. with respect to FR.Proof: The theorem is proved using lemma 4.7 byshowing that�f(bMod(�; S1)c) = �g(bMod(	; S2)c) (5)for (f; g;�;	) 2 FR with � f;g ! 	.For this, let �1 2 bMod(�; S1)c. We de�ne a rankingfunction �2 on WS2 by�2(w) := �f(�1)(�g(w)) (w 2 WS2):It now has to be veri�ed that �g(�2) = �f(�1), and that�2 2 bMod(	; S2)c.Let w 2WS� . Then�g(�2)(w)=minf�2(w0) j w = �g(w0); w0 2WS2g=minf �f(�1)(�g(w0)) j w = �g(w0); w0 2WS2g=minf �f(�1)(w) j w = �g(w0); w0 2WS2g:When �g�1(w) 6= ; we clearly obtain �f(�1)(w) on theright hand side of this equation. Else, we get min ; =1. To see that in this case �f(�1)(w) = 1 also musthold, let ! be a propositional S�-formula that is trueonly under the truth assignment w. From �g�1(w) = ;it follows that g(!) is not satis�able in L prop. Hence,in L rc: ` g(!) false. From � f;g ! 	 it then followsthat � ` f(!) false, meaning that1 = minf�1(w0) j w0 j= f(!); w0 2WS1g= minf�1(w0) j w = �f(w0); w0 2WS1g= �f(�1)(w):

From 	 � g(LrcS�) it immediately follows that �2 j= 	:for every conditional g(�)  g(�) 2 	 (�; � 2 LpropS� )trivially 	 ` g(�)  g(�), and hence � ` f(�)  f(�). Thus, �f(�1) = �g(�2) j= �  �, and �2 j=g(�) g(�).Now assume that there exists �02 2 Mod(	; S2) with�02 < �2. From the special form of �2 (namely, the factthat w1; w2 2 WS2 with �g(w1) = �g(w2) have the samerank in �2) it follows that then �g(�02) < �g(�2). Inthe same manner as �2 was de�ned we now construct�01 2 Mod(�; S1) with �f(�01) = �g(�02). By the specialform of �01, and from �f(�01) < �f(�1) it now follows that�01 < �1, contradicting the minimality of �1. Thus,�2 2 bMod(	; S2)c, which concludes the proof that�f(bMod(�; S1)c) � �g(bMod(	; S2)c). By symmetry,the converse inclusion holds as well, which proves (5) �Results similar to theorem 5.2 also hold for defaultlogic (Reiter 1980) and Boutelier's (1994) conditionallogic CT4O, among others. In each of these casesrepresentation independence holds with respect to aset F whose de�nition includes the condition that(f; g;�;	) 2 F only when � � f(LS�) and 	 �g(LS�). This condition (which we will also encounterin the following section) so far we have only been ableto dispense with in case of the simple logic L cwa. Itmay be possible in some cases to relax this conditionwhen at the same time the class of interpretations ad-mitted in F is further restricted. One natural restric-tion one may consider for interpretations f is to de-mand that for f the converse implication also holdsin (1) (this is the syntactic analogue to Halpern andKoller's (1995) condition of \faithfulness" for embed-dings of state spaces).5.3 PROPOSITIONAL PROBABILISTICLOGICWe now return to our starting point: probabilisticinference rules, speci�cally a type of inference rulesthat have been studied extensively (e.g. (Diaconis &Zabell 1982), (Paris & Vencovsk�a 1992), (Halpern &Koller 1995)), and which might be designated measureselection inferences.In order to �t these rules into our framework, we �rsthave to present them as nonmonotonic logics in thesense of de�nition 2.1. The classical parts of each ofthese logics will be the same and similar to severalpreviously de�ned formalisms (e.g. (Nilsson 1986),(Frisch & Haddaway 1994)). We denote it by L pp,and de�ne it as follows.The class of vocabularies of L pp is the class of all8



�nite sets S of propositional variables. To de�ne thelanguage LppS , we �rst inductively de�ne an S-term tobe either a constant symbol for a rational number, aprobability expression P (�), where � 2 LpropS , or to beof the form t1 + t2 or t1 � t2 with S-terms t1 and t2.An atomic S-formula now is de�ned as an expressionof the form t1 � t2 with S-terms t1 and t2. Finally,LppS consists of the closure of atomic S-formulas underboolean connectives.An S-structure is a probability measure � on the setWS of truth assignments for S (more precisely: � is ameasure on the algebra P(WS)). To de�ne the satis-faction relation j= between � and LppS -formulas, �rst,for � 2 LpropS let�(�) := �(fw 2 WS j w(�) = trueg):For an atomic S-formula t1 � t2 we then de�ne� j= t1 � t2 i� by substituting for each probabilityexpression P (�) occurring in t1 or t2 the value �(�)we obtain a valid numerical inequality. The obviousconditions for boolean connectives then complete thede�nition of the relation � j= � for arbitrary � 2 LppS .The relation j= now provides a model theoretic pre-sentation for an entailment relation ` of L pp.Next, what Paris & Vencovsk�a (1992) and Halpern& Koller (1995) have called an inference process (orprocedure) is turned into a nonmonotonic entailmentrelation with a preferential model semantics for L pp.We proceed by �rst giving a formal de�nition for ameasure selection function.De�nition 5.3 For n � 1 let�n := f(x1; : : : ; xn) 2 Rn j xi � 0; Xxi = 1g:For each n � 1 let In : P(�n) ! P(�n) withIn(G) � G for all G � �n, and In(�(G)) = �(In(G))for all permutations � of f1; : : : ; ng. We then callI := [nIn a measure selection functionWhile I is here de�ned to only work on subsets of �n,it clearly induces a selection rule for measures on any�nite algebra A: the set of probability measures on A,denoted �A, after ordering the atoms a1; : : : ; an of Ain an arbitrary way, can be identi�ed with �n, anda measure selection function I can be used to selecta subset I(G) for every G � �A. The condition ofIn being compatible with permutations makes I(G)independent of the chosen ordering of the atoms of A.Any measure selection function I now induces a pref-erential model semantics for L pp. For � � LppS wehere denote Mod(�; S) � �P(WS) by �(�; S), and

de�ne a partial order on �(�; S) simply by � < �0 i�� 2 I(�(�; S)) and �0 62 I(�(�; S)). Hence, in thisordering, I(�(�; S)) = b�(�; S)c. The nonmonotoniclogic de�ned by adding the resulting nonmonotonic en-tailment relation to L pp is denoted by L ppI . As al-ready noted in section 2, L ppI may or may not havethe reduct property for j�, depending on I .In many cases the measure selection function I isde�ned by maximizing some (permutation invariant)function K : �n ! R [ f1g. In that case we ac-tually have a global preferential model semantics de-�ned by the preference relation on �P(WS): � < �0i� K(�) > K(�0). The most prominent example, ofcourse, being Ime, the maximum entropy selection rule.In some other interesting cases, however, we reallyonly have a local preferential model semantics. Thenonmonotonic logic L ppIcm obtained from the center ofmass selection rule Icm, for example is not de�ned bya global preferential model semantics.The de�nitions given so far now provide the for-mal framework for our introductory example fromsection 1: we get �1 j�P (LoM ) = 0:6 and�2 j�P (ALoM _ PLoM ) = 0:75 in L ppIme . To makeprecise the representation dependence of maximum-entropy inference we �rst de�ne a suitable subclass ofInt(L pp).Let S; S0 be �nite propositional vocabularies, f :LpropS ! LpropS0 a propositional interpretation. In astraightforward way f then induces an abstract in-terpretation f� of LppS into LppS0 by inductively de�n-ing: f�(r) :� r for rational constants r, f�(P (�)) :�P (f(�)) (� 2 LpropS ), and extending these de�nitionsto arbitrary S-terms and LppS -formulas via the canon-ical de�nitions for +; �;�;:, and _.Though this will be fairly obvious, we may formallyappeal to lemma 3.4 in order to show that the mappingf� really is an abstract interpretation with 
(f�) = ;:for � 2 �P(WS0) let �f�(�) 2 �(P(WS)) be de�nedby�f�(�)(w) := �(fw0 2 WS0 j �f(w0) = wg) (w 2 WS):To see that (2) holds for � and �f�(�) we may use aninduction on the structure of � 2 LppS , founded on thefollowing identity for 
 2 LpropS :�(f(
)) = �(fw0 2WS0 j w0(f(
)) = trueg)= �(fw0 2WS0 j �f(w0)(
) = trueg)= �f�(�)(fw 2WS j w(
) = trueg)= �f�(�)(
):PI(L pp) denotes the class of all abstract interpreta-9



tions of L pp derived from propositional interpreta-tions in the manner here described.In the sequel, once again, we use f both for the un-derlying propositional interpretation, and the inducedinterpretation for L pp. Note that then, whereas theargument of f may be either � 2 LpropS or � 2 LppS , theargument of the associated operator �f can be either atruth assignment w, or a probability measure �.To continue the discussion of our example, let S� =fAg, f : A 7! LoM , g : A 7! ALoM_PLoM . Then �1and �2 are respectively f(�) and g(�) for � � P (A ) �0:6. Furthermore, �1 f;g ! �2, but for � :� P (A ) = 0:6:�1 j�f(�), �2 j6�g(�). Thus, L ppIme is not r.i. with respectto any F with (f; g; �1; �2) 2 F.We now show how L ppIme and any other nonmonotoniclogic of the type L ppI can be modi�ed, so as to be r.i.with respect toFP := f(f; g; (�; S1); (	; S2)) j f; g 2 PI(L pp);� � f(LppS�); 	 � g(LppS�)g;which clearly contains the tuple (f; g; �1; �2) fromabove.To this end, we �rst take a closer look at the set�(�; S) for � � LppS . By de�nition, �(�; S) is aset of probability measures on the algebra P(WS).Now consider �(�2; S2): this is a set of probabil-ity measures on WS2 = fw1; : : : ; w4g, where S2 =fALoM,PLoM g. �(�2; S2) is de�ned by a single con-straint on the subset of truth assignments wi for whichwi(ALoM _ PLoM ) = true. Assume that these arejust w1; w2; w3. Then, in order to decide whether� 2 �(�2; S2), we only have to consider the restric-tion of � to the subalgebraA�(�2;S2) := f;; fw1; w2; w3g; fw4g;WS2gof P(WS2). Generally, for every �nite algebra A, G ��A, and subalgebra A0 � A, we say that G is de�nedby constraints on A0 i�8� : � 2 G i� ��A0 2 f��A0 j � 2 Gg =: G�A0:In (Jaeger 1995) it is shown that when G � �A isde�ned by constraints on A0 � A and by constraintson A00 � A, then G is also de�ned by constraints onA0 \ A00. Thus, there always exists a unique smallestalgebra AG � A, such that G is de�ned by constraintson AG. For any measure selection function I we maytherefore de�ne a modi�ed measure selection function~I by ~I(G) := f� j ��AG 2 I(G�AG)g: (6)

Returning to our example, we here obtain�(�1; S1)�A�(�1;S1) = �(�2; S2)�A�(�2;S2)= f(x1; x2) 2 �2 j x1 � 0:6g:(assuming suitable corresponding orderings of theatoms of A�(�1;S1) and A�(�2;S2)). The maximum en-tropy element of this set is (0.6,0.4). Using the modi-�ed maximum entropy selection rule ~Ime we then get~Ime(�(�1; S1)) = f(0:6; 0:4)g~Ime(�(�2; S2)) = f(x1; x2; x3; x4) 2 �4 jx1 + x2 + x3 = 0:6g;and hence in L pp~Ime : �2 j�P (ALoM _PLoM ) = 0:6, aswell as �1 j�P (LoM ) = 0:6.A general result on the representation indepen-dence of logics L pp~I with respect to FP can nowbe proven essentially by showing that the iden-tity �(�; S1)�A�(�;S1) = �(	; S2)�A�(	;S2) gen-erally holds when � f;g ! 	. However in certaincases it may only be true that �(�; S1)�A�(�;S1) =�(	; S2)�A�(	;S2) � f0g, or �(	; S2)�A�(	;S2) =�(�; S1)�A�(�;S1) �f0g, i.e. one of the two sets mayconsist of measures having an additional component,not corresponding to a component of measures fromthe other set, with constant value 0. In such cases wealso write G[�0] = J to express that either G = J orG�f0g = J . On account of this possibility we have tolimit our general theorem to measure selection func-tions I that satisfy the condition: for all n; G � �n:I(G � f0g) = I(G) � f0g. We call such functions Idimension independent. Observe that all common se-lection functions are dimension independent.Theorem 5.4 Let I be a dimension independentmeasure selection function, and ~I de�ned by (6). ThenL pp~I is r.i. with respect to FP .Proof: Let (f; g; (�; S1); (	; S2)) 2 FP , � f;g ! 	.The theorem is proved using lemma 4.7 by showingthat �f(~I(�(�; S1))) = �g(~I(�(	; S2))), which is ac-complished by proving the identities�f(~I(�(�; S1))) = ~I( �f(�(�; S1))) (7)(and the corresponding statement for �g;	) and�f(�(�; S1)) = �g(�(	; S2)): (8)Let WS� = fw1; : : : ; wng. The (possibly empty)sets �f�1(wi) � WS1 (i = 1; : : : ; n) form a parti-tion of WS1 and therefore are the atoms of a subal-gebra Af of P(WS1). A subalgebra A �f of P(WS�)10



is de�ned by joining all the wi 2 WS� for which�f�1(wi) = ;, i.e. the atoms of A �f are the sets fwigwith �f�1(wi) 6= ; and A �f := fwi j �f�1(wi) = ;g (ifthis set is nonempty). We can view �f : �f�1(wi) 7!fwig as an embedding of Af into A �f , which is anisomorphism i� A �f = ;. Furthermore, taking mea-sures on A �f and Af to be tuples in �k(+1) de�nedby the corresponding orderings (wi1 ; : : : ; wik ; A �f ) and( �f�1(wi1 ); : : : ; �f�1(wik )) (wij 2 WS� ; �f�1(wij ) 6= ;)we obtain�(�; S1)�Af [�0] = �f(�(�; S1))�A �f : (9)From the condition that � � f(LppS�) it follows that�(�; S1) is de�ned by constraints on Af , becausethe evaluation of any probability term P (f(�)) (� 2LpropS� ) that may occur in some � 2 � only depends onthe measure of the set [f �f�1(wi) j wi 2WS� ; wi(�) =trueg 2 Af . Also, �f(�(�; S1)) is de�ned by con-straints on A �f , because �f(�)(wi) = 0 for all � 2�(�; S1) and wi 2 A �f . Therefore, from (9) we ob-tain �(�; S1)�A�(�;S1)[�0]= �f(�(�; S1))�A �f(�(�;S1)); (10)where corresponding atoms of A �f(�(�;S1)) andA�(�;S1) now are of the form fwi1 ; : : : ; wilg andf �f�1(wi1 ); : : : ; �f�1(wil)g (wij 2 WS�). In case that�( �f�1(wij )) = 0 for some wij 2WS� with �f�1(wij ) 6=; and all � 2 �(�; S1) there also is a pair ofcorresponding atoms of the form fwi1 ; : : : ; wil ; A �fgand f �f�1(wi1); : : : ; �f�1(wil)g, so that A �f(�(�;S1)) andA�(�;S1) are actually isomorphic.By the dimension independence of I it follows from (9)and (10) that~I(�(�; S1)�Af )[�0] = ~I( �f(�(�; S1))�A �f ) (11)from which (7) now follows by �f(~I(�(�; S1))) =�f(~I(�(�; S1)�Af )), ~I( �f(�(�; S1))) =~I( �f(�(�; S1))�A �f ), and the fact that for � 2 �Af ,�0 2 �A �f with �[�0] = �0 we have �f(�) = �0.To prove (8) let � 2 �(	; S2). For each wi 2 WS�let !i be a propositional S�-formula that is true ex-actly under the truth assignment wi. For wi 2 A �fwe now have ` P (f(!i)) = 0, because f(!i) is un-satis�able. From � f;g ! 	 it then follows that 	 `P (g(!i)) = 0, and hence �g(�)(fwig) = 0. It followsthat �( �f�1(wi)) := �g(�)(fwig) de�nes a probabilitymeasure on Af . Taking any extension of � toP(WS1)we receive an S1-structure � with �f(�) = �g(�).

To see that � 2 �(�; S1) let � 2 �, � � f(�) for some� 2 LppS� . Then � j= � i� �f(�) j= � i� �g(�) j= � i�� j= g(�). By � f;g ! 	 and � j= 	 this last conditionclearly is satis�ed, and the inclusion from left to rightof (8) is proven. The other inclusion follows from thesymmetrical argument. �The theorem is no longer true when the condition � �f(LppS�); 	 � g(LppS�) is dropped from the de�nition ofFP : for �3 :� P (ALoM _PLoM ) � 0:6 ^ P (ALoM ) <0:4 we still have �1 f;g ! �3. But now �(�3; S2)is de�ned by constraints on no smaller algebra thanP(WS2) itself, and ~Ime(�(�3; S2)) = Ime(�(�3; S2)) =;. Thus, we get �3 j�false, yet �1 j6�false in L pp~Ime .FP clearly contains the sets FRP , FR and FLLE of ex-amples 4.2-4.4. Thus, for any dimension independentmeasure selection function I , ~I possesses the reduct-,renaming-, and left logical equivalence property. Forexample, ~Icm now has the reduct property that Icm islacking.The modi�ed maximum entropy selection rule, ~Ime canbe shown to retain the property of Ime that Halpernand Koller (1995) have called \enforcing minimal irrel-evance": when �[f�g � LppS , 	 � LppS0 with S\S0 = ;,then � j�� i� � [ 	 j�� in L pp~Ime . Clearly, L pp~Ime alsois not trivial in the sense of being \essentially entail-ment" (Halpern & Koller 1995). Finally, the repre-sentation independence of L pp~Ime with respect to FPimplies that the measure selection rule ~Ime is repre-sentation independent (for state spaces consisting ofpropositional truth assignments and knowledge basesin KB(L pp)) in Halpern and Koller's sense. This re-sult puts Theorem 3.10 in (Halpern & Koller 1995)somewhat into perspective: it shows that this theo-rem must actually rely on Halpern and Koller's condi-tion that a measure selection function I to qualify asan inference procedure must preserve consistency, i.e.I(G) 6= ; for everyG 6= ;. This rather severe conditionis not satis�ed by Ime, ~Ime, or most other natural selec-tion rules. Therefore, these rules are outside the scopeof theorem 3.10 as stated in (Halpern & Koller 1995).The selection function ~Ime shows that this theorem cannot be extended to selection rules that may violate thepreservation of consistency condition.6 CONCLUSIONWe have developed a very general and purely logicalframework for analyzing representation independenceof nonmonotonic logics. Representation independencedoes not emerge as a property as clear cut and un-11



equivocal as, say, compactness. Rather, it comes (orfails to come) in many di�erent forms and strengths,in our approach expressed by the parameter F. Twospeci�c (classes of) logics have here been studied insome detail: rational closure logic, which has beenfound to exhibit a degree of representation indepen-dence more or less typical for qualitative nonmono-tonic logics based on propositional logic, and propo-sitional probabilistic logics, some important instancesof which are notorious for their strong representationdependence. We have also seen that these latter logicscan be modi�ed so as to make them more representa-tion independent, while at the same time retaining atleast some of the desirable properties of the originalinference rules.The speci�c applications of the general theory givenin this paper were rather easy by being restricted to apropositional background and correspondingly simpleclasses of abstract interpretations. When one movesto logics based on �rst-order predicate logic things be-come more complicated, as the concept of an interpre-tation becomes much more powerful. For this reasonone will not be able to obtain results as clean as the-orem 5.2 for circumscription, for example.ReferencesBoutelier, C. (1994), `Conditional logics of normality:a modal approach', Arti�cial Intelligence 68, 87{154.Clark, K. L. (1978), Negation as failure, in H. Gallaire& J. Minker, eds, `Logic and Databases', PlenumPress, New York.Diaconis, P. & Zabell, S. (1982), `Updating subjectiveprobability', Journal of the American StatisticalAssociation 77(380), 822{830.Ebbinghaus, H. D. (1985), Extended logics: The gen-eral framework, in J. Barwise & S. Feferman,eds, `Model-Theoretic Logics', Springer-Verlag,pp. 25{76.Frisch, A. & Haddaway, P. (1994), `Anytime deduc-tion for probabilistic logic', Arti�cial Intelligence69, 93{122.Gabbay, D. (1985), Theoretical foundations fornonmonotonic reasoning in expert systems, inK. Apt, ed., `Logics and Models of CuncurrentSystems', Springer-Verlag, Berlin.Grove, A., Halpern, J. & Koller, D. (1992), Randomworlds and maximum entropy, in `Proc. 7th IEEESymp. on Logic in Computer Science'.
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