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Abstract

A logical concept of representation indepen-
dence is developed for nonmonotonic log-
ics, including probabilistic inference systems.
The general framework then is applied to sev-
eral nonmonotonic logics, particularly propo-
sitional probabilistic logics. For these logics
our investigation leads us to modified infer-
ence rules with greater representation inde-
pendence.

1 INTRODUCTION

Entropy maximization is a rule for probabilistic in-
ference for whose application to problems in artifi-
cial intelligence there exist several independent and
very strong arguments (Grove, Halpern & Koller
1992),(Paris & Vencovska 1990).  Unfortunately,
though, there is a major drawback for which the max-
imum entropy inference rule has often been criticized:
the result of the inference depends on how given infor-

mation is represented.

The probably best known example used to illustrate
this point is the “Life on Mars” example, a rendition
of which may be given as follows: the belief that the
probability for the existence of life on mars exceeds 0.6
may be expressed by the statement

71 := P(LoM) > 0.6,

using the vocabulary {LoM} of propositional vari-
ables. Entropy maximization, applied to this chosen
language and constraint 7; then yields P(LoM) =
0.6. Alternatively, we might choose the language
{ALoM,PLoM} containing propositional variables for
“Animal Life on Mars” and “Plant Life on Mars”, and
express our belief by

79 := P(ALoM V PLoM) > 0.6.

Entropy maximization here yields
P(ALoM VPLoM) = 0.75. Thus, the result of
the maximum entropy inference rule is dependent
on the choice of language, and seemingly equivalent
statements yield different results.

Even though the charge of representation dependence
against maximum entropy methods has been around
for a long time, until recently there has neither been
any precise explication of what representation inde-
pendence actually is, nor a systematic investigation
into the properties with regard to this property of
other inference rules.

The first rigorous examination of these issues has been
presented by Halpern and Koller (1995). They proceed
from a definition of when two different structures, or
state spaces, each equipped with a set of probability
distributions, are alternative representations (namely,
when on structure can be “faithfully embedded” in the
other), and then call a probabilistic inference proce-
dure representation independent when applied to the
two structures it picks out corresponding preferred

probability measures.

In this paper the question of representation indepen-
dence will be tackled from a somewhat different per-
spective, and in a much wider context: first, rather
than looking at specific structures and their embed-
dings, we here consider the purely logical question and
ask: when do two sets of formulas represent the same
information, and when is an inference relation defined
on formulas of some language representation indepen-
dent? From this syntactic perspective it is natural to
extend the scope of the enquiry: a probabilistic in-
ference rule, like entropy maximization, formally de-
fines a nonmonotonic inference relation r~ that can
be studied with respect to the same formal proper-
ties as have been investigated for nonmonotonic logics
(Kraus, Lehmann & Magidor 1990), (Gabbay 1985).
Conversely, a concept of representation independence,



framed entirely in terms of formulas and entailment
relations, may be applied to a large class of nonmono-
tonic logics, not only probabilistic ones. In this paper
we will develop the necessary tools for the investiga-
tion of representation independence of nonmonotonic
inference relations, and take some steps towards clar-
ifying the degree of representation (in-)dependence of
existing nonmonotonic logics.

2 THE LOGICAL BACKBONE

In a similar spirit as Gabbay (1985), Kraus et al.
(1990) and Makinson (1994) we will take a very gen-
eral and abstract view of nonmonotonic logics. The
definition we here give of what a nonmonotonic logic is
puts into focus two elements that usually are either as-
sumed only implicitly for a nonmonotonic logic, or not
deemed necessary at all: the existence of a monotonic
“background” entailment relation, and the possible de-
pendence of the nonmonotonic entailment relation on
the underlying vocabulary. The first of these elements
will be crucial for our definition of when two knowl-
edge bases are alternative representations; the second
might be regarded as a borderline case of representa-
tion dependence.

The following definition is an adaptation of stan-
dard definitions in generalized model theory (e.g.
(Ebbinghaus 1985)), tailored for the purpose at hand
by the distinction of two entailment relations. Here
and elsewhere we denote the powerset of X by Z(X).

Definition 2.1 A logic .Z consists of

e a class of sets .S, called the class of vocabularies of
%, which is closed under intersections and finite
unions,

e for each vocabulary S a set Lg of expressions of
£, such that S C S’ implies Lg C Lg.

e for each vocabulary S arelation g on #(Lg)xLg
(the classical entailment relation) that is mono-
tonic (ie. ® C ® C Lg and & Fg ¢ implies
®' g ¢), and that has the reduct property (i.e.
®tFg ¢ and S’ C S implies ¢ Fg ¢).

£ is a nonmonotonic logic if in addition there is
e for each vocabulary S a relation I~g on #(Lg) x
Ls (the nonmonotonic entailment relation) with

l—gg "“g.

Note that for the sake of simplicity we have already
built the property of supraclassicality into the defini-

tion of a nonmonotonic logic. The concept of non-
monotonic logics is not restricted in any way by mak-
ing the existence of a classical entailment relation part
of the definition: whenever we have a nonmonotonic
logic that lacks a natural concept of classical entail-
ment, we can extend it to fit definition 2.1 by simply
defining Fg:= ) for all S.

By virtue of the reduct property we can delete the
subscript in the classical entailment relation kg, and
simply write ® F ¢, meaning that ® Fg ¢ for any S
with ® U {¢} C Lg. Generally, we may not expect
the nonmonotonic inference relation of . to possess
the reduct property. One counterexample is supplied
by the probabilistic center of mass inference rule, see
(Paris & Vencovskd 1992) (the maximum entropy prin-
ciple, on the other hand, satisfies the reduct property).
Therefore, for the nonmonotonic entailment relation
I~s we have to retain the subscript S, unless the reduct
property has been established for I~ in the logic under
consideration.

3 REPRESENTATIONAL
VARIANTS

Before the question can be addressed, what it means
for the nonmonotonic inference relation ™~ to be rep-
resentation independent, we have to clarify what it
means for two knowledge bases ®, ¥ to represent the
same information. This will be formalized entirely in
terms of the classical entailment relation F. Through-
out this section we will therefore be concerned only
with the classical part of a logic.

Reconsider our introductory example. Intuitively,
both 71 and 75 represent the same information with
respect to the existence of life on mars. It is not im-
mediate, however, how this intuition can be captured
by a formal logical property of 71 and 7. Clearly, we
are looking for something weaker than logical equiv-
alence, because for example with ¢ := P(ALoM) <
0.3 = P(PLoM) > 0.3 we have 1 I 1, but 71 I/ 1.

This, of course, is not surprising: by saying that 7 and
79 provide the same information with respect to the
existence of life on mars, we do not mean to imply that
71 and 7y provide the same information regarding any
other statement that can be formulated in either the
vocabulary of 7y, or the vocabulary of . Only with
regard to statements that can be represented in either
vocabulary will we expect the same inferences from 7
and 7. This “common ground” of the two languages
can be defined by generalizing what is known as an
interpretation in model theory (see (Hodges 1993)).



Definition 3.1 Let .£ be a logic, S, S’ vocabularies
of .Z. An abstract interpretation in £ of Lg into Lg
with admissibility conditions Q(f) C Lg is a mapping

f :Lg = Lg
such for all ® U {¢)} C Lg:

SFsy = [f(@)UAS) ks f(Y), (1)

where f(®) := {f(¢) | ¢ € ®}. The class of abstract
interpretations in .# is denoted Int(.&).

Example 3.2 Let .ZP"P be propositional logic with
languages LY °P. Let S and S’ be two sets of proposi-
tional variables. The extension of any function

fi8 1P

to LY°P via the conditions f(=¢) = =f(¢); f(¢Ve) =
f(®) V f(¢) is an abstract interpretation of LY into
LE°P with Q(f) = 0. We call it a propositional inter-
pretation and denote the class of propositional inter-
pretations by PI(£P™P).

As in this example, throughout this paper we will only
encounter abstract interpretations for which we may
let Q(f) = 0. The admissibility conditions become
relevant, for example, when we move to the standard
concept of interpretations in first-order logic. Here,
an atomic formula h(x) = y € Lg is mapped to a
formula ¢(x,y) € Lg/. The admissibility condition
Q(f) then would have to contain the condition that ¢
is functional, i.e. include the axiom Yz3='y¢(z,y).

With abstract interpretations at our disposal, we can
define what it means for two knowledge bases ®, ¥ of a
logic .Z to represent the same information with respect
to a common ground — which is any language Lg+ that
can be interpreted in both the language of ® and the
language of W.

Definition 3.3 Let Lg-, Lg,, Lg, be languages in
some logic .Z. Let f: Lg- —» Lg, and g: Lg- — Lg,
be abstract interpretations with admissibility condi-
tions Q(f) and Q(g). Let ® C Lg,, ¥ C Lg,. ® and
U are called representational variants with respect to

f and g, written ® LN W, iff for all a € Lg-:

The concept of representational varianthood being
central to our development of representation indepen-
dence, we shall here digress for a short while from the
straightforward presentation of our main topic, and
for the remainder of this section take a closer look at
representational variants.

First, we turn to the question of how given knowledge
bases ® and ¥ can be proved to be representational
variants, and to the even more elementary question of
when a given mapping f : Lg — Lg is an abstract
interpretation.

For this purpose we here narrow down the class of
logics to be considered to such logics in which the con-
cepts introduced in definitions 3.1 and 3.3 as purely
syntactical relations correspond to relations between
semantical structures, so that questions about repre-
sentational varianthood can be answered by construct-
ing and comparing semantical structures.

Still adopting standard notions from generalized model
theory, we consider logics that have a model theo-
retic presentation, and the Boole property. For a
logic to have a model theoretic presentation means
that for every vocabulary S there is defined a class
of S-structures M, and a satisfaction relation [Eg
between S-structures and sets of S-expressions, such
that ® Fg ¢ iff for all S-structures M: M g &
implies M =g . In propositional logic, for exam-
ple, an S-structure is simply a truth assignment to the
propositional variables, in first-order logic we have the
usual model-theoretic S-structures. For & C Lg we
denote by Mod(®, S) the class of S-structures M with
M = ®. Two classes M and N of S-structures are
called elementarily equivalent, written M ~ N, when
forall g € Lg: M = ¢ forall M € M iff N |= ¢ for all
N € N. A logic with a model theoretic presentation
has the Boole-property iff for every ¢,¢ € Lg there
exist expressions ¢, ¢ V ¢ € Lg such that for every
S-structure M: M | —¢ it M £ ¢, and M = ¢V
it M E¢or M =1

Logics with a model-theoretic presentation and the
Boole property permit us to apply the usual rules of
classical logic for the manipulation of boolean connec-
tives with respect to the classical entailment relation.
Particularly, in any such logic the deduction theorem
is valid: @U{o¢} F ¢ if ®F ¢ = ¢ (¢ — 9 being, of
course, and abbreviation for —¢ V ).

We now obtain the following connection between S-
structures and interpretations:

Lemma 3.4 Let .Z be a logic with a model theoretic
presentation, f : Lg — Lg/, Q(f) C Lg:. If for every
S'-structure M with M = Q(f) there exists an S-
structure NV such that for all ¢ € Lg:

M= f(¢) iff N|=¢ (2)

then f is an abstract interpretation with admissibility
conditions Q(f).

When £ has the Boole-property, and f is compat-



ible with boolean connectives, i.e. f(=¢) = —f(¢),
flovy) = f(@)V f(W) (¢, € Lg), then the converse
also holds: if f is an abstract interpretation with ad-
missibility conditions Q(f) then for each M |= Q(f)
there exists an S-structure N with (2).

Proof: For the first part of the lemma let f and Q(f)
be given. Let ® U{¢} C Lg with ® . If M [~ f(P)
for all S’-structures M with M = Q(f) then (1) is
trivially satisfied. Now suppose that M |= f(®)UQ(f),
and let N be an S-structure satisfying (2). Then N |=
dU{¢}, hence M = f(¢), and therefore f(®)UQ(f) F

f(@).

For the second part assume that f is an abstract in-
terpretation with admissibility conditions Q(f) that is
compatible with boolean connectives. Let M |= Q(f)
be given, and define ® := {¢ € Ls | M |= f(¢)}.
Assume that there does not exist an S-structure N
with N = ®. Then ® ¢ A —¢ for arbitrary ¢ € Lg,
and by (1) f(®)UQ(f) F f(é) A =f(h), contradicting
the assumption that M |= f(®) U Q(f). O

When for an abstract interpretation f : Lg — Lg
and any S’-structure M an S-structure N with (2)
exists, then f is said to define associated structures.
The mapping that assigns an associated structure N
to S'-structures M is denoted by f. Generally, this
mapping will not be uniquely determined by condition
(2), and f(M) can be any (usually canonical) selection
of one of the associated S-structures for M.

Example 3.5 Let S = {4y,..., 4}, S =
{B4i,...,B;} be propositional vocabularies, f : Lg —
Ls; f(A;) := ¢a, a propositional interpretation.

Let M : S'" — {true, false} be a truth assignment.
Then the unique truth assignment f(M) : S —
{true, false} for which (2) holds is defined by

M(¢Ai)

F(M)(A;) = (4; € 9).

A criterion for representational varianthood now is
given by the following lemma.

Lemma 3.6 Let .Z be a logic with a model theoretic
presentation. Let f : Lg« — Lg,, g : Lg« — Lg, be
abstract interpretations that define associated struc-

tures f(-),§(-). Let ® C Lg,, ¥ C Lg,. Then & <% ¥
iff
f(Mod(® UQ(f), S1)) ~ g(Mod(¥ U Q(g), S2)).

The proof is immediate from the definitions.

Example 3.7 Let S; be the set of propositional vari-
ables LoM (Life on Mars), LoE (Life on Earth), LiSS
(Life in Solar System), IntL (Intelligent Life), and FalL
(Earth-like Life). Let Sy consist of ALoM (Animal Life
on Mars), PLoM (Plant Life on Mars), LiSS (Life in
Solar System), and HL (Human Life).

Let,

¢ = (LoM — LiSS A —IntL) A (LoE — FEalL)
= (ALoM N PLoM) — (LiSS A —HL)

€ Lg,
€ Lg,

Here we think of the propositional variables rather as
relation symbols, designating the set of all objects that
are “life on mars”, “intelligent life”, and so on, rather
than as propositions “there exists life on mars”, etc.

The only propositional variable that the two vocabu-
laries have in common is LiSS. Still we can extract the
same information about the relation of life on mars,
life in the solar system, and human life from the two
formulas. To make this precise, consider the proposi-
tional interpretations f,g of S* := {A4,B,C} into S
and Sy, respectively defined by

f: Aw LoM, B — (IntL A EalL),
C — LiSS;

g: Aw (ALoMV PLoM), B w~ HL,
C — LiSS.

We may now use lemma 3.6 to show that ¢ EER .
For this example, and for propositional logic in gen-
eral, this is particularly simple, because here for any
classes M, N of structures M ~ N is equivalent to
M = N. In the current example it is readily verified
that both f(Mod(¢,S;)) and g(Mod (¢, S»)) are equal
to the set {(t, £,2), (F, £,0), (. 1:2), (£., £), (F. f. f)} of
truth assignments to the variables (A, B,C), which
corresponds to the set of models of the S*-formula
A— CAN-B.

The two formulas ¢ and v in this example differ in
one aspect that we will later find to be quite essential:
while ¢ actually is the formula g(4A — C A —=B), it is
not the case that ¢ = f(A — C A =B). Moreover, ¢
is not even equivalent to any formula f(a) with a €
Lg~, because ¢ makes a nontrivial statement about the
propositional variable LoE, which does not appear in
the range of f.

The following example is useful to caution us against

expecting more from the relation ® 95 @ than there
actually is in it. For this example and further use be-
low we introduce the notation id(Lg) to denote the
“identity interpretation” of Lg, i.e. the abstract inter-
pretation id: Lg — Lg with id(a) = a for all « € Lg,
and Q(id) = 0.



Example 3.8 Let S* = S; = {4}, S» = {B,C} be
propositional vocabularies, f = id(Lg-), g : L&Y —

L% °; g(A) := BV C be propositional interpretations.

Let ¢ := A and ¥ := BAC. Then ¢ <% ¢ It

is not true, however, that also —¢ LR -1, because
-¢ F f(=A), whereas ) f ~(B V C) = g(—A).

By a similar example it can also be shown that
6 L% and ¢ &% ' does not imply ¢ A ¢ &%
¢A¢'-

Interestingly, however, in any logic with a model-

theoretic preqen‘ra‘rion and the Boole property O AN v
and ¢I % 4’ does imply ¢ V ¢' &2y 4h v 4, because
for a € Lg- we then have ¢V o' f( ) iff ¢ = f(a) and
¢'F fa) iff Y F g(a) and ' F g(a) iff Y V' + g(a).

4 REPRESENTATION
INDEPENDENCE

Having defined what it means that ® and ¥ represent
the same information (with respect to a commonly in-
terpretable language Lg+), we can address our main
issue, and define representation (in)dependence of .

Now that we will be dealing with the nonmonotonic
entailment relation of a logic, somewhat greater care
than in the preceding section has to be taken with re-
spect to specifying what vocabulary is being assumed
as defining the background language in which a knowl-
edge base is to be evaluated. Basically, this just means
that we have to more conscientiously use the properly
indexed entailment operator I~g. In addition, it will
be convenient to also add the specification of a vo-
cabulary S with ® C Lg as an external attribute to
a knowledge base. We therefore define the class of
knowledge bases of £ as the set of pairs
KB(.Z) = {(®,S) | ® C Lg; S vocabulary}.

Whenever the specification of the vocabulary S can be
dispensed with, either because the logic under consid-
eration is known to have the reduct property for r~,
or because the underlying vocabulary is clear or irrel-

evant in the given context, we will continue to simply
write @ for (®,.5).

The general thrust of the definition of representation
independence should be quite obvious: the nonmono-
tonic logic .Z is representation independent (r.i.) if,
whenever (®,.51) and (¥, .S2) represent the same infor-
mation about Lg-, then £ also permits the same non-
monotonic inferences from (®,S5;) and (¥,Sy) about

Lg«, i.e. if ® <= ¥, then for all a € Lg:

dUQ(f) s, fla) if TUQ(g) rs,9(a). ()
This is essentially the definition of r.i. that we will
give below. However, a few complications are in-
evitable: we can not hope to obtain (x) for any inter-
esting nonmonotonic logic for arbitrary &, ¥, f, and
g. Usually, we will have to look a little closer at how
&, ¥, f, and g can interact in a specific logic, and try

to obtain only qualified statements of the form (x).

There are basically two ways to impose restrictions on
the statements of this form: we may consider only a
special set of abstract interpretations, not arbitrary
ones, and we may restrict the set of admissible knowl-
edge bases ® and ¥, where these sets may also depend
on the interpretations considered.

The first of these limitations is really inevitable: when-
ever we consider a specific logic ¢, we will be con-
cerned with certain classes of natural interpretations,
e.g. in the context of propositional logic the proposi-
tional interpretations of example 3.2, and not with any
abstract interpretation in the sense of definition 3.1.
Restrictions of the second type, on the other hand,
usually mean a real compromising of the strength of
the results obtained.

Definition 4.1 Let .Z be a nonmonotonic logic. Let
FC Int(¥) x Int(¥) x KB(Z) x KB(Z).

£ is representation independpnf wh‘h respect to F, iff

(f,9,(®,51),(¥,S,)) € Fand ® < ¥ implies
Va € Lg* :
PUQ(f) s fla) it TUQ(g)rs,g(a), (3)

where Lg- is the common domain of f and g¢.

Note that in this definition the condition
(f,9,(®,51),(¥,S55)) € Fin itself does not guarantee
that f and g are defined on the same language Lg-.
However this is implicit in the additional condition

= U.

The following examples show how the general concept
of representation independence of definition 4.1 sub-
sumes special properties previously considered in the
literature.

Example 4.2 The reduct property for the nonmono-
tonic entailment relations ~g may be represented in
the framework of definition 4.1 as follows. Let Fgrp
contain all tuples of the form (f,f,(®,S51),(®,S52))
where f = id(Lg) for some Lg with & C Lg. For



any such tuple ® &1 § then holds, and nonmono-
tonic entailment in .Z has the reduct property iff £
is r.i. with respect to Frp.

Example 4.3 One of the simplest changes of repre-
sentation one can devise is by renaming the nonlogical
symbols in an expression. Since definition 2.1 does
not require that the expressions in Lg will actually be
strings constructed from elements of S, we may not
have a feasible concept of renaming for every logic in
the sense of definition 2.1. Therefore, assume that .Z is
a logic in which each bijection f : S — S’ of vocabular-
ies (respecting such attributes as sort and arity of sym-
bols, if these exist) induces a bijection f : Lg — Lg/ of
the corresponding languages such that f is an abstract
interpretation of Lg in Lg/, and f~! is an abstract in-
terpretation of Lg/ in Lg with Q(f) = Q(f!) = 0
(this just means that the classical part or . has the
renaming property (Ebbinghaus 1985)).

Now let Fgi contain all tuples of the form
(f,9,(®.,5),(9(®),5")) where f = id(Ls),and g : § —
S' is a renaming. By the renaming property of F any

such tuple already satisfies ® LR g(®), and nonmono-
tonic entailment in & is invariant under renaming iff
% is r.i. with respect to Fi.

Example 4.4 Another basic form of changing repre-
sentation is by choosing a logically equivalent knowl-
edge base (in the sense of the classical entailment rela-
tion) in the same language. When such a change does
not affect the set of formulas entailed by I~ a non-
monotonic logic .Z is said to have the property of left
logical equivalence (cf. (Makinson 1994)).

This property, too, can be very easily captured as a
form of representation independence in the sense of
definition 4.1. Let F1g contain all tuples of the form
(f, f,(®,51),(¥,S,)) where f = id(Lg) for some S

with ®, ¥ C Lg. The condition ® <*Ys W then means
that ® and ¥ are logically equivalent, and .& is r.i.
with respect to Fpp iff £ satisfies left logical equiv-
alence.

Note that Frp C Fy, g, so that left logical equivalence
as defined here implies the reduct property.

Definition 4.1, once again, is formulated on a purely
syntactical level. Pursuing our endeavor to supple-
ment these syntactical concepts with corresponding se-
mantical notions, we shall now describe a semantical
approach to representation independence for a certain
class of nonmonotonic logics.

As previously we had to narrow down the class of log-
ics to be considered to those in which classical entail-

ment is defined by a model-theoretic presentation, we
now have to focus on such logics in which nonmono-
tonic entailment, too, has a semantical background. A
large and natural such class is comprised of those logics
in which nonmonotonic entailment has a preferential
model semantics (Shoham 1987). We here generalize
the notion of preferential models in one aspect, for
which we need the following preparatory definition.

Definition 4.5 Let £ be a logic with a model-
theoretic presentation, S a vocabulary, and S the class
of S-structures. We say that S is locally ordered iff on
every subset S’ C S a unique partial order is defined.
S is said to be globally ordered iff S is locally ordered,
and for each 8’ C S the order on &’ is given by the
restriction to S’ of the order on S. We denote by |S’]
the set of elements of S’ that are minimal in the or-
dering of S'.

Definition 4.6 Let -Z be a nonmonotonic logic with
a model-theoretic presentation. .# has a local prefer-
ential model semantics iff for each vocabulary S the
class S is locally ordered, and for each ® U {¢} C Lg:
Sdhgo iff M |= ¢ for all M € [ Mod(®,S)|. &£ has a
global preferential model semantics iff . has a local
preferential model semantics defined by a global order
on each S.

Hence, the usual notion of preferential model seman-
tics corresponds to a global preferential model seman-
tics as defined here. The generalization to local prefer-
ential model semantics is necessary in order to accom-
modate certain probabilistic logics (cf. section 5.3),
and may also deserve some attention in other contexts.
We now obtain the following criterion for representa-
tion independence.

Lemma 4.7 Let .Z be alogic with a local preferential
model semantics, let. F'be as in definition 4.1 such that
all f and g that appear in a tuple of F define associated
structures. Then £ is r.i. with respect to F iff for

every tuple (f, g, (®,S51),(¥,S,)) € F with ® N

F(IMod(® UQ(f), 51)]) ~ g(LMod(¥ UX(g), S>)]).
The proof is immediate from the definitions.

5 CASE STUDIES

In this section the general framework developed so far
is applied to a selection of specific nonmonotonic log-
ics.



5.1 CLOSED WORLD ASSUMPTION AND
NEGATION AS FAILURE

The closed world assumption is a very general form of
nonmonotonic reasoning that is not restricted to any
specific logical framework. Any classical logic . that
has a model theoretic presentation and the Boole prop-
erty (actually, only any feasible concept of negation
is required) can be extended to a nonmonotonic logic
£ by the definition @ ~¢ iff ® I =¢ (or ® F —¢pA).
It is obvious that " is r.i. in a very strong sense,
namely with respect to F'= Neg x Neg x KB(£ ") x
KB(£°"®), where Neg C Int(.Z"®) is the class of ab-
stract interpretations f with f(-a) = —f(«) for all
.

In logic programming an approximation of the closed
world assumption may be implemented by the nega-
tion as failure rule (Clark 1978). Here we lose com-
pletely the representation independence of the closed
world assumption; in fact, negation as failure does not
even satisfy left logical equivalence: from the two logic
programs

Rf(x) « Rf(x) . Rf(a) « Ra
Qa and P': Qu

the same literals are provable (namely, just Qa), so
that in the sense of logic programming they are logi-
cally equivalent. However, for any literal L = Rf"(a)
(n > 1), an attempted proof of L from P will not
terminate, while it will fail from P’. Hence we get

Pr=Rf™(a), but P'~=Rf"(a) for all n > 1.

P

5.2 RATIONAL CLOSURE

Lehmann’s (1989) rational closure and Pearl’s (1990)
system Z are two systems for evaluating conditional
knowledge bases that for finitary knowledge bases have
been found to be equivalent (Pearl 1990). Pearl (1990)
also has shown that this logic can be defined by a pref-
erential model semantics using k-rankings going back
to Spohn (1990). We here use this last approach for
defining the (finitary) rational closure logic .£".

The class of vocabularies of £ consists of all finite
propositional vocabularies. An S-expression is a con-
ditional ¢ ~~ 1 with ¢, € LY°?. An S-structure is a
ranking function

k:Ws = NU{co}

where Wg = {wy,...,w,} is the set of the n = 2151
truth assignments for S. A ranking function & satisfies
a conditional ¢ ~ 1 iff
min{r(w) |w = o A; we Wg} <
min{s(w) |w = ¢ A —; w e Wg},

using the conventions min = co and oc < oo. The
class S of ranking functions for S is globally ordered
by: & < k' iff Yw € Wg k(w) < k'(w) and
Jw € Ws : k(w) < k'(w). Nonmonotonic entail-
ment in £"¢ then is defined by the preferential model
semantics with respect to this ordering.

The definition of £ in one important aspect is of
a somewhat different nature than those of many other
nonmonotonic logics: in "¢ the nonmonotonic entail-
ment relation of the logic, i.e. the entailment of condi-
tionals ¢ ~» 9 from a set ® of given conditionals, is not
directly an image of the nonmonotonic commonsense
reasoning that the logic wants to describe. Such rea-
soning, rather, is represented by the object-language
operator ~», and a commonsense inference of v from
a given fact ¢ and a set ® of default rules is modeled
in the formal logic by the nonmonotonic entailment of
¢ ~ 1 from P.

£ satisfies the reduct property for nonmonotonic en-
tailment, so that most of the time a reference to the
underlying vocabulary here is unnecessary.

Lehmann & Magidor (1992) have observed that ra-
tional closure is invariant under renaming. We here
extend this result for £ and show that this logic is
r.i. in a more general sense.

rc

We consider abstract interpretations f* : LY — L&

obtained by extending propositional interpretations
f € PILP™P) to LS via

[ (@~ 9) = f(9) ~ f(4). (4)

The following lemma tells us that f* really is an ab-
stract interpretation for .#"°.

Lemma 5.1 Let f € PI(ZLP™P), f: LY — LY.
Then f* : LY — LY as defined by (4) is an abstract
interpretation with Q(f*) = (.

Proof: We use lemma 3.4 and show that f* defines
associated structures. Let x : Wg — N U {oc} be an
arbitrary S’-structure. An S-structure f*(x) is defined
by letting for w € Wg:

f*(5)(w) := min{s(w') |w = f(w'); w' € Wg}.
For every o € LY°” we then have
min{ f*(k)(w) | w | a; w € Ws}
= min{s(w') |w=fw); wkEa v € Ws}
— min{s() | ' = f(a); w' € W)
(note that in the special case that « only is true in

w € Ws for which {w' € Wg | f(w') = w} = 0 we
receive the value co for the terms in this identity).



It now follows immediately that £ = f*(a ~ f) iff
f*(k) E a~ pforall a~ €LY, and hence that
f* is an abstract interpretation. O

The class of abstract interpretations defined by (4) is
denoted PI(£"). For simplicity, in the sequel we will
no longer distinguish in our notation an interpretation
f € PI(£") from its underlying propositional inter-
pretation f € PI(ZP™P). The distinction is implicit
in the argument of the function, which may be either
a propositional formula, or a conditional, and in the
case of f, a truth assignment, or a ranking function.

Letting
Fr:={(f,9,2,9) | f,g € PI(L™);
B CF(LE), W C g(LE)},

we now obtain the following result about representa-
tion independence of .Z"°.

Theorem 5.2 ¥ is r.i. with respect to Fg.

Proof: The theorem is proved using lemma 4.7 by
showing that

f(IMod(®, S1)]) = g(|Mod(¥, S2)]) ()

for (f,g,®,¥) € Fp with & L% .

For this, let k1 € [Mod(®,S;)]. We define a ranking
function k2 on Wg, by

ko (w) = f(1)(g(w))

It now has to be verified that g(x2) = f(#1), and that
Ko € LMOd(\IJ7 Sz)J

Then

(w e Wg,).

Let w € Wg-.

9(k2)(w) = min{ky (w') | w = g(w'); w' € W, }
:min{,}i(m)(g(w')) lw=gw'); w' € Ws,}
=min{f(k1)(w) | w = g(w'); w' € Wg,}.

When g~ '(w) # 0 we clearly obtain f(k;)(w) on the
right hand side of this equation. Else, we get min() =
oc. To see that in this case f(k1)(w) = oo also must
hold, let w be a propositional S*-formula that is true
only under the truth assignment w. From g—!(w) = ()
it follows that g(w) is not satisfiable in ZP*°P. Hence,

in £ F g(w) ~ false. From & &% @ it then follows
that ® - f(w) ~ false, meaning that

min{ky(w') |w' = f(w); w' € Wg,}
= min{m (W) |w= fw'); w' € Ws,}

= fr)(w).

o0

From ¥ C g(LY.) it immediately follows that ky = ¥:
for every conditional g(a) ~ g(8) € ¥ (a,3 € LYP)
trivially ¥ F g(a) ~ ¢(8), and hence ® F f(a) ~
£(8). Thus, f(s1) = grs) F a ~ B, and ry =

g(@) ~ g(B).

Now assume that there exists x4 € Mod(¥, S;) with
Ky < k2. From the special form of k5 (namely, the fact
that wy,ws € Wg, with g(w;) = g(ws) have the same
rank in ks) it follows that then g(x}) < g(x2). In
the same manner as k2 was defined we now construct
Ky € Mod(®, S1) with f(k}) = g(k}). By the special
form of k], and from f(x}) < f(k1) it now follows that
k] < K1, contradicting the minimality of k1. Thus,
ko € [Mod(¥,Ss)|, which concludes the proof that
f(LMOd(¢7S])J) g g(LMOd(‘II,SZ)J) By SymmetrY7
the converse inclusion holds as well, which proves (5) O

Results similar to theorem 5.2 also hold for default
logic (Reiter 1980) and Boutelier’s (1994) conditional
logic CT40, among others. In each of these cases
representation independence holds with respect to a
set F' whose definition includes the condition that
(f,9,®,%) € F only when ® C f(Lg+) and ¥ C
g(Ls+). This condition (which we will also encounter
in the following section) so far we have only been able
to dispense with in case of the simple logic .Z"®. Tt
may be possible in some cases to relax this condition
when at the same time the class of interpretations ad-
mitted in F'is further restricted. One natural restric-
tion one may consider for interpretations f is to de-
mand that for f the converse implication also holds
in (1) (this is the syntactic analogue to Halpern and
Koller’s (1995) condition of “faithfulness” for embed-
dings of state spaces).

5.3 PROPOSITIONAL PROBABILISTIC
LOGIC

We now return to our starting point: probabilistic
inference rules, specifically a type of inference rules
that have been studied extensively (e.g. (Diaconis &
Zabell 1982), (Paris & Vencovska 1992), (Halpern &
Koller 1995)), and which might be designated measure
selection inferences.

In order to fit these rules into our framework, we first
have to present them as nonmonotonic logics in the
sense of definition 2.1. The classical parts of each of
these logics will be the same and similar to several
previously defined formalisms (e.g. (Nilsson 1986),
(Frisch & Haddaway 1994)). We denote it by .£PP,
and define it as follows.

The class of vocabularies of £PP is the class of all



finite sets S of propositional variables. To define the
language L%”, we first inductively define an S-term to
be either a constant symbol for a rational number, a
probability expression P(¢), where ¢ € LY™P, or to be
of the form ¢; + ty or t; - to with S-terms #; and t».
An atomic S-formula now is defined as an expression
of the form #; < t5 with S-terms ¢; and 5. Finally,
L%” consists of the closure of atomic S-formulas under
boolean connectives.

An S-structure is a probability measure u on the set
W of truth assignments for S (more precisely: u is a
measure on the algebra &#(Ws)). To define the satis-
faction relation = between p and LY’-formulas, first,
for ¢ € LY let

p(9) = p{w € Ws | w(¢) = trueyp).

For an atomic S-formula t; < #; we then define
u | t1 < to iff by substituting for each probability
expression P(¢) occurring in ¢, or ty the value u(¢)
we obtain a valid numerical inequality. The obvious
conditions for boolean connectives then complete the
definition of the relation u |= ¢ for arbitrary ¢ € LY.

The relation = now provides a model theoretic pre-
sentation for an entailment relation F of Z"P.

Next, what Paris & Vencovskd (1992) and Halpern
& Koller (1995) have called an inference process (or
procedure) is turned into a nonmonotonic entailment
relation with a preferential model semantics for £PP.
We proceed by first giving a formal definition for a
measure selection function.

Definition 5.3 For n > 1 let

A" :={(z1,...,x,) e R" | 2; > 0, Zazz =1}

For each n > 1 let I, : P(A") —» P(A") with
I,(G) C G for all G C A", and I, (7(GQ)) = n(I,(G))
for all permutations 7 of {1,...,n}. We then call
I := U, I,, a measure selection function

While I is here defined to only work on subsets of A™,
it clearly induces a selection rule for measures on any
finite algebra 2: the set of probability measures on 2,
denoted AR, after ordering the atoms ay,...,a, of 2
in an arbitrary way, can be identified with A", and
a measure selection function I can be used to select
a subset I(G) for every G C A. The condition of
I, being compatible with permutations makes I(G)
independent of the chosen ordering of the atoms of 2.

Any measure selection function I now induces a pref-
erential model semantics for .#"P. For & C LY’ we
here denote Mod(®,S) C AP (Ws) by A(®,S), and

define a partial order on A(®,S) simply by u < p' iff
u € I(A(®,S)) and ' ¢ I(A(®,S)). Hence, in this
ordering, I(A(®,S)) = |A(®,.S)]|. The nonmonotonic
logic defined by adding the resulting nonmonotonic en-
tailment relation to ZP? is denoted by ZFP. As al-
ready noted in section 2, ZF” may or may not have
the reduct property for I~ depending on I.

In many cases the measure selection function I is
defined by maximizing some (permutation invariant)
function K : A" — R U {o0}. In that case we ac-
tually have a global preferential model semantics de-
fined by the preference relation on AP(Wg): u < 1/
ift K(u) > K(u'). The most prominent example, of
course, being I, the maximum entropy selection rule.
In some other interesting cases, however, we really
only have a local preferential model semantics. The
nonmonotonic logic .Z°" obtained from the center of
mass selection rule I..,, for example is not defined by
a global preferential model semantics.

The definitions given so far now provide the for-
mal framework for our introductory example from
section 1: we get T ~P(LoM) = 0.6 and
Ty P(ALoM V PLoM) = 0.75 in .%7". To make
precise the representation dependence of maximum-
entropy inference we first define a suitable subclass of
Int(ZLPP).

Let S,S’ be finite propositional vocabularies, f
LY — LY°P a propositional interpretation. In a
straightforward way f then induces an abstract in-
terpretation f* of L% into LY by inductively defin-
ing: f*(r) := r for rational constants r, f*(P(¢)) :=
P(f(#)) (¢ € LYP), and extending these definitions
to arbitrary S-terms and L%"-formulas via the canon-
ical definitions for +, -, <, -, and V.

Though this will be fairly obvious, we may formally
appeal to lemma 3.4 in order to show that the mapping
f* really is an abstract interpretation with Q(f*) = §:
for p € AP(Wgr) let f*(u) € A(P(Ws)) be defined
by

() w) = p({w' € Wsr | f(w') = w}) (we Ws).

To see that (2) holds for u and f*(u) we may use an
induction on the structure of ¢ € L%", founded on the
following identity for v € LY":

W(FG) = wl{e € Ws | 0! (F(2) = truc))
u(i € We | fw')(y) = true))
() (fw € Ws | w(y) = true})
F ().

PI(ZPP) denotes the class of all abstract interpreta-



tions of .ZPP derived from propositional interpreta-
tions in the manner here described.

In the sequel, once again, we use f both for the un-
derlying propositional interpretation, and the induced
interpretation for #PP. Note that then, whereas the
argument of f may be either ¢ € LY or ¢ € LY", the
argument of the associated operator f can be either a
truth assignment w, or a probability measure u.

To continue the discussion of our example, let S*
{A}, f:A— LoM,g: A~ ALoMVPLoM. Then 7y
and 1y are respectively f(«a) and g(«@) fora = P(4) >

0.6. Furthermore, 7 AN T2, but for 8 := P(A) = 0.6:
1~ f(B), 72 #g(B). Thus, Z7 is not r.i. with respect
to any F with (f,g,71,72) € F.

We now show how 47" and any other nonmonotonic
logic of the type .,iﬂpp can be modified, so as to be r.i.
with respect to

FP = {(fg (¢751)= (‘IISZ)) | fg € PI(XPPL
® C f(LRY), W Cg(LY)},

which clearly contains the tuple (f,g,71,7) from
above.

To this end, we first take a closer look at the set
A(®,S) for ® C LY. By definition, A(®,S) is a
set of probability measures on the algebra P(Ws).
Now consider A(7y,S2): this is a set of probabil-
ity measures on Ws, = {wi,...,ws}, where Sy =
{ALoM,PLoM}. A(12,S2) is defined by a single con-
straint on the subset of truth assignments w; for which
w;(ALoM vV PLoM) = true. Assume that these are
just wy,ws,ws. Then, in order to decide whether
1 € A(rz,S2), we only have to consider the restric-
tion of u to the subalgebra

AA(ro,8) = {0, {w1,wa, w3}, {wa}, Ws, }

of #(Ws,). Generally, for every finite algebra A, G C
A2, and subalgebra A’ C A, we say that G is defined
by constraints on A’ iff
Vu: peG iff pld' e A |veG=GA.

n (Jaeger 1995) it is shown that when G C A% is
defined by constraints on 2" C 2 and by constraints
on A" C A, then G is also defined by constraints on
2A' N A", Thus, there always exists a unique smallest
algebra s C A, such that G is defined by constraints
on 2. For any measure selection function I we may
therefore define a modified measure selection function
I by

I(G) :={v|v|Ag € (G Ag)}. (6)
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Returning to our example, we here obtain

A1, S1)[™Aa(r,s) = AT, 52) [ AA(r,,5,)
= {(ZL‘],ZL‘Q) € A? ‘ T > 06}

(assuming suitable corresponding orderings of the
atoms of ™Ap (-, 5,) and Ax(r,,s,)). The maximum en-
tropy element of this set is (0.6,0.4). Using the modi-
fied maximum entropy selection rule I, we then get

e(A(71,51))
e(A(72, 52))

{(0.6,0.4)}
{(z1, 22,73, 14) € A*|

Ty + T2+ 23 = 06}

g g

and hence in .Z7": 7 ~P(ALoM VPLoM) = 0.6, as
well as 7 P (LoM) = (.6.

A general result on the representation indepen-
dence of logics .#PP with respect to Fp can now
be proven essentially by showing that the iden-
tity A(®,51)[™Aa@,5) = A(Y,S2)[Aa(w,s,) gen-

erally holds when ® L9 @ However in certain
cases it may only be true that A(®,S1)[Ax(s,s,) =
A(\I»', SQ)[Q[A(W7S2) X {0} or A(‘I/, SQ) [ Q[A(III,SQ)
A(®,S1)[™Aa(a,s,) X {0}, i.e. one of the two sets may
consist of measures having an additional component,
not corresponding to a component of measures from
the other set, with constant value 0. In such cases we
also write G[x0] = J to express that either G = J or
G x {0} = J. On account of this possibility we have to
limit our general theorem to measure selection func-
tions I that satisfy the condition: for all n, G C A™:
I(G x {0}) = I(G) x {0}. We call such functions I
dimension independent. Observe that all common se-
lection functions are dimension independent.

Theorem 5.4 Let I be a dimension independent
measure selection function, and I defined by (6). Then
fIPp is r.i. with respect to Fp.

Proof: Let (f,g,(®,51),(¥,S:)) € Fp, ® LN}
The theorem is proved using lemma 4.7 by showing
that f(I(A(®,S1))) = g(I(A(¥,Sy))), which is ac-
complished by proving the identities

F(A(®,81) = I(F(A(®, 81)))

(and the corresponding statement for g, ¥) and

f(A =g(A

(7)

Let Wg- {wi,...,wp}. The (possibly empty)
sets fH(w;) € Ws, (i = 1,...,n) form a parti-
tion of Ws, and therefore are the atoms of a subal-
gebra 2y of P(Ws,). A subalgebra 25 of P(Ws-)



is defined by joining all the w; € Wg« for which
fHw;) =0, ie. the atoms of Af are the sets {w;}
with f~'(w;) # 0 and Aj = {w; | [ (w;) = 0} (if
this set is nonempty). We can view f : f~'(w;)
{w;} as an embedding of %Ay into ™Af, which is an
isomorphism iff Ay = (). Furthermore, taking mea-
sures on 27 and A to be tuples in AR defined
by the (‘orreqpondlng orderings (wj, , w,k Aj) and

(f 1(w21)7"'7f (wzk)) (wz]‘ € Ws-, (wZ]) 7é @)

we obtain

f

A(®,51) 1 A5 [x0] = fF(A(D,51)) 1A (9)
From the condition that ® C f(L%?) it follows that
A(®,S;) is defined by constraints on 2y, because
the evaluation of any probability term P(f(a)) (a €
L%2P) that may occur in some ¢ € @ only depends on
the measure of the set U{f ' (w;) | w; € Was, w;(a) =
true} € A;. Also, f(A(®,S)) is defined by con-
straints on %Az, because f(u)(w;) = 0 for all p €
A(®,S;) and w; € Ap. Therefore, from (9) we ob-
tain

A(®,51) [ Aa(a,5,)[X0]
= f(A(®

where corresponding atoms of g
Q(A(q, s;) now are of the form {w;,
{f (wzl)....,f’](wil)} (w;; € Wg+). In case that
u(f " (w;;)) = 0 for some w;; € Ws- with f~'(w;,) #
¢ and all p € A(P,S;) there also is a pair of
corresponding atoms of the form {w;,,...,w;, Az}
and {f~"(wi,), ..., f " (wy)}, so that Az a(e,s,)) and
2AA(@,s5,) are actually isomorphic.

SO Afa,s.)), (10)

(q:, ‘;1)) and
,w;, } and

By the dimension independence of [ it follows from (9)

and (10) that
[(A(®, S)[A5)[x0] = I(f(A(®,S)12;) (1)
m which (7) now follows by f(I(A(®,S;))) =

A, S1)1y)), I(f(A(®,51)))
(A(®,51))Af), and the fact that for u € ARy,

€ Ay with ulx0] = i we have f(1) = .

To prove (8) let v € A(¥,S,). For each w; € Wgx
let w; be a propositional S*-formula that is true ex-
actly under the truth assignment w;. For w; € Af
we now have + P(f( )) = 0, because f(w;) is un-

satisfiable. From ® <= U it then follows that ¥ F
P(g(w;)) = 0, and hence g(v)({w;}) = 0. It follows
that p(f~'(w;)) = g(v)({w;}) defines a probability
measure on 2. Taking any extension of yu to 2(Ws, )
we receive an S;-structure p with f(u) = g(v).
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To see that u € A(®,51) let ¢ € @, ¢ = f(«) for some
a € L. Then p | ¢ iff f(u) E o iff g(v) E « iff

v=g(a). By @ L% and v = U this last condition
clearly is satisfied, and the inclusion from left to right
of (8) is proven. The other inclusion follows from the
symmetrical argument. (]

The theorem is no longer true when the condition ® C
F(LS), ® C g(LYY) is dropped from the definition of
Fp: for 73 := P(ALoM VPLoM) > 0.6 A P(ALoM) <

0.4 we still have 7 Lo, 73. But now A(rs,S2)
is defined by constraints on no smaller algebra than
‘@(WSE) itself: and Ime(A(T37 SZ)) = Ime(A(T37 SZ)) =

(. Thus, we get 75 rfalse, yet 7 *false in XIPD )

Fp clearly contains the sets Fgrp, Fr and Fr1 g of ex-
amples 4.2-4.4. Thus, for any dimension independent
measure selection function I, I possesses the reduct-,
renaming— and left logical equivalence property. For
example, I., now has the reduct property that I.p, is
lacking.

The modified maximum entropy selection rule, Ie can
be shown to retain the property of I, that Halpern
and Koller (1995) have called “enforcing minimal irrel-
evance”: when ®U{¢} C LY, ¥ C LY with SNS’' =0,
then ® ¢ iff ® U ¥ k¢ in fpp. Clearly, fpp also
is not trivial in the sense of belng eﬁqentlally “entail-
ment” (Halpern & Koller 1995). Finally, the repre-
sentation independence of fIPp with respect to Fp

implies that the measure selection rule fme is repre-
sentation independent (for state spaces consisting of
propositional truth assignments and knowledge bases
in KB(-#"P)) in Halpern and Koller’s sense. This re-
sult puts Theorem 3.10 in (Halpern & Koller 1995)
somewhat into perspective: it shows that this theo-
rem must actually rely on Halpern and Koller’s condi-
tion that a measure selection function I to qualify as
an inference procedure must preserve consistency, i.e.
I(Q) # B for every G # (. This rather severe condition
is not satisfied by Iye, fme, or most other natural selec-
tion rules. Therefore, these rules are outside the scope
of theorem 3.10 as stated in (Halpern & Koller 1995).
The selection function fme shows that this theorem can
not be extended to selection rules that may violate the
preservation of consistency condition.

6 CONCLUSION

We have developed a very general and purely logical
framework for analyzing representation independence
of nonmonotonic logics. Representation independence
does not emerge as a property as clear cut and un-



equivocal as, say, compactness. Rather, it comes (or
fails to come) in many different forms and strengths,
in our approach expressed by the parameter F. Two
specific (classes of) logics have here been studied in
some detail: rational closure logic, which has been
found to exhibit a degree of representation indepen-
dence more or less typical for qualitative nonmono-
tonic logics based on propositional logic, and propo-
sitional probabilistic logics, some important instances
of which are notorious for their strong representation
dependence. We have also seen that these latter logics
can be modified so as to make them more representa-
tion independent, while at the same time retaining at
least some of the desirable properties of the original
inference rules.

The specific applications of the general theory given
in this paper were rather easy by being restricted to a
propositional background and correspondingly simple
classes of abstract interpretations. When one moves
to logics based on first-order predicate logic things be-
come more complicated, as the concept of an interpre-
tation becomes much more powerful. For this reason
one will not be able to obtain results as clean as the-
orem 5.2 for circumscription, for example.
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