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Abstract

Relational Bayesian networks extend standard
Bayesian networks by integrating some of the
expressive power of first-order logic into the
Bayesian network paradigm. Asinthe case of the
related techni que of knowledge based model con-
struction, so far, decidable semantics only have
been provided for finite stochastic domains. In
this paper we extend the semantics of relational
Bayesian networks, so that they a so define prob-
ability distributionsover countably infinite struc-
tures. Using a technique remeniscent of quan-
tifier elimination methods in model theory, we
show that probabilistic queries about these distri-
butions are decidable.

1 INTRODUCTION

Bayesian networks (Pearl 1988) currently are the most pop-
ular and successful framework for representing and rea-
soning with probabilistic information. In their basic form,
Bayesian networksdefine aprobability distributionover the
set of possible values of a finite set of random variables
X4,...,X,, each variable having afiniterange of possible
values.

Semantically, Bayesian networks describe attributes of in-
dividual random events or random objects, e.g. the symp-
toms and diseases of a random patient, or state variables
describing arobot and its environment. For many applica-
tionstherestrictionto afixed number of finiterange random
variables is a severe limitation. One of the approaches to
go beyond these limitsis the technique of knowledge based
model construction (Wellman, Breese & Goldman 1992,
Breese 1992, Haddawy 1994, Ngo & Haddawy 1995),
where thenumber of variablesis adjusted on a case-by-case
basis. The basic idea hereisto mode the probabilistic do-

main not by aBayesian network directly, but to use aknow!-
edge base containing probabilistic rules that are used as a
blueprint for the construction of Bayesian networkstailored
to each specific inference task.

A simple example of a rule that such a knowledge base
might contain is

fever (v) <2 flu(v), (1)

with the intended meaning: if v suffers from the flu, then
v will have fever with probability 0.8. A knowledge
base containing such rules, and ground atoms flu(thomas),
fever(sylvia), ..., givesriseto astandard Bayesian network
over binary random variabl es representing all ground atoms
relevant for the processing of a specific query.

When all therulesin the knowledgebase only containasin-
glevariable (asin (1)), then thisrule-based approach only
amounts to a notational variant of standard Bayesian net-
works, because information about one object mentioned in
the knowledge base will not influence our inferences for
another. Probabilistic knowledge bases gain their edge in
expressive power over Bayesian networks by the ability to
also definerulesinvolvingtwo or morevariables, and n- ary
relation symbols:

infects(u, v) & sick(u) A contact(u,v).  (2)

A rule like (2) no longer merely describes the attributes
of single random objects or events, but specifies rela-
tions between multiple random objects/events. A knowl-
edge base with rules of this form, and ground atoms in-
fects(thomas,sylvia), sick(thomas),... again can be used to
generate a Bayesian network over ground atoms. Size and
structure of thisnetwork now will depend on the number of
constants appearing in the knowledge base. No single stan-
dard Bayesian network with a fixed number of finite-range
random variables can be defined that supports the same
inferences as can be drawn from a rule base with multi-
variablerules.



In (Jaeger 1997) it was argued that the frameworks for
knowledge based model construction proposed so far suf-
fered from two deficiencies: first, they lack in expressive-
ness, second, the semantic clarity of the Bayesian network
paradigm is lost, because the declarative character of the
rules makes it hard to distill their meaning into a single
probability distribution.

Theissue of expressivenesswas discussed at somelengthin
(Jeeger 1997). Theissue of semantic transparency it may be
worthwhileto here el aborate on somewhat more. Oneof the
main advantages of the Bayesian network paradigmisthat it
providestheuser with afirm framework for how to describe
a probability distribution: he or she is asked to specify the
underlyingdirected acyclic graph, and the conditional prob-
ability tablesfor al nodes. Providing therequired informa-
tion then guarantees the user that one, and only one, prob-
ability distribution is being defined. Moreover, following
this procedure gives the user a fairly well-understood con-
trol over the distribution he or she isdefining. Probabilistic
rules, like(1) or (2), on the other hand, only impose certain
constraints on the probability distribution described. These
constraints, hopefully, have a fairly intuitive meaning for
the user, but will require a substantial overhead of seman-
tic definitions and conventions in order to be given an ex-
act interpretation. Breese (1992), for instance, givesthe se-
mantics of hisknowledge basesindirectly by defining apro-
cedure that, given a knowledge base and a specific query,
constructs a Bayesian network in which the probability of
the query is determined. Ngo and Haddawy (1995) pro-
vide declarative semantics for their representation formal-
ism. However, aknowledge basein their language only de-
fines a unique distribution if certain consistency and com-
pleteness conditions are satisfied. It is not clear that it is
decidable whether these conditions are fulfilled, so that, in
genera, it may beimpossiblefor the user to tell whether a
knowledge base has semantics at all.

Relational Bayesian networks (RBNS) were proposed in
(Jeeger 1997) as an alternative approach for the specifica-
tion of probability distributions on relations between sev-
eral random objects. Apart from providing additional ex-
pressiveness, RBNsrecapturethe semantic transparency af -
forded by the Bayesian network paradigm of probabilistic
model construction (but see section 5 for a qualification).

In the present paper we are going to explore another advan-
tage of RBNs: their semantics can be extended to define
probability distributionsfor infinite domains of random ob-
jects, and queries for these distributionsare till decidable.
The framework of Ngo and Haddawy (1995) a so isdefined
for infinitedomains. Specificaly, their distributionsare de-
fined for Herbrand universes as domains, which are infi-
niteif the underlyingfirst-order vocabul ary containsat | east
one constant and one function symbol. Herbrand universes

have aricher interna structurethan theinfinitedomainsfor
which the central results of the present paper are obtained.
A result given in section 5 indicates why this structure on
the domain might lead to inherent undecidability of Ngo
and Haddawy'’s approach.

2 FINITE DOMAINS

21 THE BASIC FRAMEWORK

In this section we review the basic definitions introduced
in (Jaeger 1997), extending them, where necessary, to dedl
with the case of infinite domains treated in the subsequent
sections.

The purpose of an RBN is to define a probability distribu-
tion that models random attributes and random relationsin
adomain of objects or events. For the time being, assume
that thisdomain D = {dy,...,d,} isfinite. A proba
bilistic model for a set of relations S = {ry,...,r;} ONn
this domain then consists of a probability distribution on
the set of S-structures (ak.a. models) with domain D, de-
noted Modp (5). Relationsin .S can be of any arity. The
arity of »; isdenoted | r; |. For asingle relation r;, the set
Modp (r;) of possibler;-structures comprisesjust the set of
possibleinterpretations I(r;) € D!7+! of r; in D. Hence,
Modp () can be identified with the powerset of DI":!.
Moreover, an S-structure .# € Modp (.S) isgiven by atu-
ple (I(r1),...,I(r)) of interpretations, so that Modp (.5)
can be identified with the Cartesian product

MOdD(S) = MOdD(Tl) X ..o X MOdD(Tk). (3)

Thus, a probability distribution on Modp (S) can be de-
fined in the form of a joint distribution for the individ-
ua Modp (r;). Viewing each Modp (r;) as arandom vari-
able, such a joint distribution can be defined following
the Bayesian network paradigm: specify a directed acyclic
graph with a node for each r;, and at »; define the condi-
tional probability of each possibleinterpretationof r;, given
the instantiation of the parent nodes of ;.

Assume that a directed acyclic graph has been given. For
the node r; denote by Pa(r;) = {r;,,...,r;, } theset of
parent nodes of r; in the graph. Also, denote by .#; =
(I(r;,),...,I(r;,)) some given Pa(r;)-structure, which,
in Bayesian network terminology, isjust an instantiation of
the parent nodes of r;. For nodes without parents we inter-
pret .#; simply asthe given domain D. Followingour pro-
gram for defining adistributionon Modp, (), wethen have
to define the conditional probability

P(I(ri) | 4:) (4)

for every I(r;) € Modp(r;) and .#; € Modp (Pa(r;)).
Given some finite D, both Modp (r;) and Modp (Pa(r;))



are finite, so that, in principle, al probabilities (4) could
be explicitly listed in a huge conditional probability table.
This, of course, isinfeasible due to the size of such ata
ble. More importantly, however, we aim for a generic def-
inition that does not refer to a specific domain. To obtain
such a generic definition, we define a schematic specifica-
tion of conditional probabilities(4) that work “tuple by tu-
ple’, i.e. that determinesfor each d € D!":! the conditional
probability

P(deI(r;) | ). (5)

Subsequently, we put

P(I(r;) | ) .= [ P(del(r)]| )
del(r;)

II a-r(dei@)]|.#4). 6
dgli(ri)

Conditional probabilities (5) we define by probability for-
mulas, which are the key components of RBNs. To moti-
vate the following definitions, consider a very simple ex-
ample. Supposewe havetherelation symbols contact(u, v)
and sick(«), and want to model random structuresin which
the predicate sick depends on contact. Specifically, assume
that for each person «, and for each b # «, contact(a, b)
is understood to be a possible cause for sick(a) — each in-
stance contact(a, b) causing sick(a) with probability 0.1,
independently for different 5. Then the overall probabil-
ity of sick(a), given complete information about contact,
would be computed by combining probability values0.1 by
noisy-or for all instances contact(«, b):

P(sick(a) | I(contact)) = n-o{0.1contact(a, b) | b # a}.

The expression on the right hand side of this eguation is
an (informal) example of a probability formula. Key in-
gredientsof probability formul as are combination functions
(such as noisy-or) that are applied to multisets.

Definition 2.1 A countable multiset over [0, 1] is a map-
ping A : [0,1] — {0,1,2,...} U{w}, where A(g) > 0
for at most countably many ¢ € [0, 1]. For countable mul-
tisets A, B we say that A isasubset of B (A C B), iff
A(q) < B(qg) foral ¢. The supremum of achain (4;);c.
(4; C Ajfor¢ < j) of multisets is the multiset with
Alg) = sup{Ai(q) | i € w}. Themultiset A is called
finite, iff A(q) # w foral ¢, and A(¢) > 0 for only finitely
many q.

For the present section only finite multisets are needed. We
use thefollowing notationsto describe specific multisets: if
g; € [0, 1] for ¢ from some countableindex set I, then {q; |
i € I denotesthe multiset A with A(q) = [{i | ¢ = ¢ }|-
Still more concretely, {¢1 : A1,...,qm : Amn] denotes
the multiset A with A(¢;) = X\, A(¢) = Oforg ¢
{qla ceey qm}

Definition 2.2 A combination functionisany function that
maps finite multiset over [0,1] into [0,1]. A combination
function comb is defined for countable multisets, iff for ev-
ery countable multiset A, and al chains (4;)icw, (A})icw
of finite multisets with 4 = sup{4; | ¢ € w}
sup{A4; | i € w}, we have sup{comb(4;) | i € w}
sup{comb(A4;) | i € w} =: comb(A).

Interesting examples of combination functionsare

noisy-or : n-ofa; |1 €I} :=1—-]lc;(1—a)
maximum:  max{a; | i € I} :=max{a; |i€ I}
mean : meanfa; | i € I} = g Yier ai

It is easy to see that whenever comb is monotonically in-
creasing (decreasing), i.e. A C B impliescomb(4) <
(>)comb(B), then comb is defined for countabl e multi sets.
Thus, noisy-or and max are defined for countable multisets.
The mean, on the other hand, is not.

We need to introduce some notational conventions: logi-
cal variables (as opposed to random variables) are denoted
throughout by letters u, v, w, z. Tuples(vy, ..., v;) of vari-
ables are represented by a single letter » in bold face. The
length of the tuple v is denoted |v|. We also interpret v
loosely astheset of variablesit contains, so that expressions
likeu € v, or w C v make sense. An equality constraint
for v isalogical formulac(v) that isaboolean combination
of equality expressions v; = v;.

Definition 2.3 The class of probability formulas over the
relational vocabulary S isinductively defined as follows.

(i) (Constants) Each rational number ¢ € [0, 1] isa proba-
bility formula

(i1) (Indicator functions) For every n-ary symbol » € 5,
and every n-tuplev of variables, »(v) is aprobability
formula

(iii) (Convex combinations) When £, I, F's are probabil -
ity formulas, thenso is Fy F; + (1 — Fy) Fs.

(iv) (Combination functions) When Fy, ..., Fy are prob-
ability formulas, comb is any combination function,
v,w are tuples of variables, and ¢(v, w) is an equal-
ity constraint, then comb{Fy, ..., F | w;c(v, w)] is
aprobability formula

A probability formula F'(v) over S maps| v |- tuplesd from
thedomain of afinite S-structure.#into[0,1], according to
the following definition.

Definition 2.4 Let F(v) be a probability formula over S,
D afinite domain, .# € Modp(S), andd € DIV, we
inductively define the value F'(d)[.#].



(i) if F = q then F(d)[.#] = q.

(ii) if F = r(v) then F(d)[.#] = 1if .4 E r(d), and
F(d)[.#] = 0 dse.

(i) if F = FFy + (1 — F))Fs then F(d)[.#] =
F(d)[A]F(d)[ 4] + (1 — Fi(d)[4]) F5(d)[-#].

(ivy if F = comb{Fy,..., F | w;c(v,w)]} then
F(d)[.#] = combA, where A is the multiset
that for ¢ € [0,1] has

|{(i,d) | i€ {L,....k},d € D
A= c(d, d’),q = Fi(d, d’)[//l]}| .

Alq) =

If F only contains combination functions that are defined
for countable multisets, then definition 2.4 also extends to
countably infinite 1. The following example illustrates
case (iv) in the above definition.

Example2.5 Let
F(v) = comb{0.3r(v),0.7s(v,w) | wsw £ v}.  (7)

Let .# be an {r,s}-structure with doman D =
{dy,...,ds}; let the interpretation of » in .# be
{dl,...,d4}, and let {(dl,d7),(d1,d8)} be that part
of the interpretation of s in .# that has d; in the first
component. To evaluate F'(dy)[.#] we proceed as fol-
lows. First, we generate a list of all elements w of the
domain that satisfy the constraint w # d;. The result is
dy,...,ds. Foreachtuple (dy,d’), d" € {dz,...,ds}, we
compute 0.3r(v)[dy, d'|[.#] and 0.7s(v, w)[dy, d'|[.#].
The notation r(v)[dq,d’], s(v, w)[d1,d’], rather than
r(d1), s(dq,d’), here is used to emphasize that according
to definition 2.4 we count each substitution of a tuple
(d,d') for the variables (v, w) in the F; separately, no
metter whether F; actually contains the variables for
which different values are substituted. The results of these
recursive evaluations are 0.3 for thefirst formula, and O for
the second, when d’ € {da,...,ds}, and 0.3, respectively
0.7, for d’ € {d7,ds}. Here, themultiset A in (iv) thusis
{0.3 : 7,0 : 5,0.7 : 2}}. Applying comb to A then yields
theresult F(dq)[.#].

The following lemma contains a very useful result on the
expressiveness of probability formulas. The simple proof
can be found in (Jaeger 1997).

Lemma2.6 Let ¢(v) be afirst-order formulain the rela
tional vocabulary S. Then thereexistsaprobability formula
Fy4(v) in S, that uses max as the only combinationfunction,
st. for every finite S-structure .#, and every d € DIVl
Fy(d) = 1iff # = ¢(d), and Fy(d) = 0 dse.
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Figurel: A relational Bayesian network and atypical struc-
ture

Definition 2.7 A relational Bayesian network for the (re-
lationa) vocabulary S isgiven by adirected acyclic graph
containingonenodefor every » € S. Thenodefor an n-ary
r € S islabeled with a probability formula F. (v, . . ., vy)
over the symbolsin Pa(r).

Given an RBN N and a finite domain D, we define the
conditional probability P} (I(r;) | -#;) by substituting
F.,(d)[.#;] for P(d € I(r;) | #;) in(6). Thisfinaly
|eads to the definition of the semantics of an RBN.

Definition 2.8 Let N be a relational Bayesian network
over S, D afinitedomain. NV defines a probability measure
PJ onModp (S) by

PR (I(r1),..., I(r)) == [T PE(1(ri) | A6). ()

i=1

We concludethis section with avery small example that we
will refer to later on.

Example2.9 Let S = {r1, 72,73}, where ry and r3 are
unary, ro is binary. An RBN N over S is defined via the
graph in figure 1 (), and the probability formulas

F, (v) =04
Fp, (v, w) = 0.2r1(v)r (w)
F,,(v) = n-0{0.3r3(v, w) | w; w # v}

Figure 1 (b) shows one representative S-strucutre .# over
adomain D of 15 elements. Theinterpretation of 1 in.#
is delimited in the figure by a dashed line, that of 3 by a
dotted line, and that of »; is represented by arrows. The
probability of .# is computed according to (8) by comput-
ing the three factors P5 (I(r;) | ) (i = 1,2,3), where
M5 isthe {rq}-reduct of .#, .# isthe {r, }-reduct, and
Ay isjust D. Foreach d; (i = 1,...,15)in D we have
F,,(d;)[.#1] = 0.4, so that according to (6), P5 (I(r1) |
A1) = 0.45-0.6°. The vaue of F,,(d;,d;)[.#5] is0.2
wheni, j € {10,...,15},andOwhen atleast oneof i or j is
notin{10,...,15}. Thus, PY (I(r2) | .#2) = 0.2%-0.8%C.
Thevaueof F,, (d;)[-#5]is1—0.7%, where k; isthe num-
ber of dlements d; # d; with ro(d;,d;). Thus, we get



Fy(di)[ ) = 0fori = 1,...,9,11,12, F,, (d;)[.45] =
1—0.7% fori = 10, 14, 15,and F,, (d;)[.#5] = 1 —0.73 for
i = 13,0btaining P} (I1(rs) | .#5) = 0.3%-0.71-(1-0.73).
Multiplying the three factors then yields P5 (.#).

2.2 RECURSIVE NETWORKS

In the distributions P5’ defined via (6) and (8) strong inde-
pendence assumptionshold: giventheinterpretation . #; of
the parent relations of r;, the events r;(d) and r;(d’) are
independent for d # d’. As discussed in (Jaeger 1997),
thisis a serious limitation on what kind of probability dis-
tributionswe are ableto define with RBNs. Examples men-
tioned there of interesting types of relations that require a
dependency of r-atomsare symmetric relations (r(d, ¢) de-
pends on (e, d)), functional relations (r(d, ¢) depends on
r(d,e') foral e # e: exactly one of these atoms must be
true), and temporal relations(r(t, d) dependsonr(t—1, d)).

On closer examination it turns out, though, that the assess-
ment given in (Jaeger 1997) of the expressiveness of RBNs
with respect to such dependencies is somewhat too pes-
simistic. Whileit istrue that using an RBN with only one
node r, we cannot define a distribution P on Modp, (r)
with, e.g., Pg(r(d,e)) = 1/2,Pg(r(d,e) o rled) =1
for al d, e, we can define such a distribution by a network
containing a second binary relation symbol s, and the two
probability formulas

Fy(v,w) = ¢
Fo(v,w) = (1—s(v,w))(1—s(w,v))

where ¢ issuch that (1 — ¢)* = 1/2. In asimilar man-
ner, someformsof functional relationscan be model ed with
RBNs. Still, thereare limitsto what can be achieved within
theframework presented so far. Temporal relations, for ex-
ample, remain outsideits scope.

To increase the expressiveness of RBNs, in (Jaeger 1997)
recursive RBNs were defined. In arecursive RBN, proba-
bility formulas F, (v) are allowed to containindicator func-
tionsof theform »(w) in additionto theindicator functions
s(w) withs € Pa(r). Theset of tuplese for which theeval-
uation of F..(d) requiresthetruthvalueof (e) now must be
restricted in away that makes the definition of F..(d) well-
founded. For thispurpose, we require that thedomain D is
equipped with suitable fixed relations or functions that en-
able usto defineawel I-founded partial order on DI” 1. Typi-
cal examplesof suchfixed relationsand functionsare atotal
order < on D, or asuccessor function s. For the purpose of
the present paper, we can limit ourselves to the case where
D comes equipped with abuilt-in successor function (on fi-
nite domains D we take a successor function s to be unde-
fined on the “last” element of D). The set

r-Pa(d) := {e | F,(d) dependson(e)}

now can be restricted by generdizing the eguality con-
straints in probability formulas to constraints involving s.
Here is an example of a probability formulathat uses this
generadization of the syntax to define atemporal kind of re-
lation:

F.(t,v) :=

SO ol ), et ) | 5(0) = 1. (9)

For (d,e) € D? herer-Pa((d,e)) = {(s7'(d),e)} (= 0
if d isthe“first” element of D). Given the truth value of
r(s~1(d),e), thevaueof F,(d,e)isU2if r(s~1(d),e) is
fase, and 1if r(s='(d),e) istrue. We can think of r as
atemporal property of e that becomes true at time d with
probability 1/2 if not true already, and then remains true
(because we have not introduced any machinery for deal-
ing with multi-sorted domains, herethee ementsof D have
to double as time pointsand as objects to which we ascribe
property r).

As was shown in (Jaeger 1997), given a recursive proba-
bility formula F,. (v) we can effectively compute a formula
r-pa(v, w) over s, suchthat foral d, e € DI*I:

max{

e € r-Pa(d) iff (D,s) = r-pa(d, e). (20)

A recursive RBN now defines a probability distribution on
Modp (S) iff for dl » € S therelation

e<,d :&ecr-Pa(d) (12)

is well-founded. The resulting distribution P} then till
is explicitly defined by (6) and (8); only the terms P(d €
I(r;) | -#;) in (6) haveto be replaced by

P(d € I(ri) | 4, 1(ri-Pa(d)),

where I(r;-Pa(d)) represents an interpretation of r; re-
stricted to r;-Pa(d).

Given arecursive network IV, and afinite domain (D, s)
it can be effectively decided whether the relations <, are
well-founded, and if so, probabilities P} (r(d)) can be
computed. Thus, the difference between recursive and non-
recursive RBNs, for finite domains is of computational
complexity, but not of a fundamental nature. In section 5
it will be shown that on infinite domains this changes dras-
ticaly.

3 INFINITE DOMAINS: SEMANTICS

Even if the actua domains of random objects we encounter
inthered world usually arefinite, infinitedomains areim-
portant for at least two reasons: they can afford conceptual
simplicity, and they can be seen asthelimitingcasefor large
finite domains.



Conceptual simplicity isareason for turning to infinite do-
mainsin caseswheretheactual (finite) domainisvery large,
and does not admit of a manageable description by afinite
model. Asan example, consider amode for aperson’sfam-
ily tree. Even though the whole ancestry of that person, in
fact, isfinite, when we try to construct a forma model we
will most likely end up with certain specifications — such
as that everybody has two parents, and no one is ancestor
of oneself —that only are satisfiable over an infinitedomain
of individuals. Hence, an infinite domain here would be a
natural basisfor, say, a probabilistic mode of the propaga-
tion of genetictraits. Inasimilar vein, probabilisticmodels
of language, for example as defined by stochastic context
free grammars (see eg. (Pynadath & Wellman 1996)), are
defined on an idealized domain of infinitely many possible
words and sentences, even though the collection of al sen-
tences ever uttered isfinite.

A somewhat different usefor infinitedomainsisgivenwhen
the exigting finite domain admits of an adequate, manage-
able model, but the domain is large and difficult to deter-
mine exactly (cf. Bacchus et a. (1997)). An example of
such an “open” domain isthe set of all peoplethat a given
patient had contact with throughout his life. Here we may
very well be able to specify suitable models for every do-
main D of finite size n by some generic description. Not
knowing the appropriate n, however, rather than experi-
menting with arbitrarily chosen numbers, we may regard
the limiting case of an infinite domain as the canonical ap-
proximation to the unknown domain. This, of course, only
makes sense when we can apply the model we have de-
signed for finite domains to an infinitedomain as well, and
when the properties of the model in theinfinite case reflect
the limiting behavior of large finite models.

Thus, there is an essential difference between the use of
infinite models as conceptual idedizations, and as limit-
ing cases: inthefirst useit is not expected that the infinite
model in any way reflects properties of specific finite mod-
els. Inferences we draw in theinfinite model we can accept
without further ado for what they are: statements that are
truein theinfinite structure that we study for its own sake.
In the second use, on the other hand, results inferred from
theinfinite model only are relevant in conjunction with the
knowledge that (approximately) the same results will hold
inall sufficiently large finite models.

In this and the following sections we show how to extend
the semantics and inference techniquesfor RBNstoinfinite
domains. Thismakes RBNsavailable as probabilisticmod-
els for infinite structures in their first use. In a companion
paper (Jaeger 1998) the problemisstudied of whenthesein-
finite models can be seen as thelimiting case of finite mod-
els, and a certain subclass of RBNsisidentified that define
infinite model s suitable for employment in the second type

of application.

Given an RBN NV, and a countably infinite domain D, we
need to define the probability distribution P5" induced by
N onModp (S). Thisdefinitionwill essentialy follow the
same pattern asin the case of finitedomains. The main task
is to substitute suitable continuous concepts where the dis-
crete ones used in the finite case no longer work. In the
following, only an overview of the construction of P} is
given, leaving out severd standard measure theoretic ar-
guments needed to fully justify the construction. 1t should
be pointed out, however, that some of these arguments cru-
cially depend on the countability of D, so that our construc-
tion does not carry over to uncountable D.

For simplicity, it is assumed throughout that D = w =
{1,2,...}, and that Pa(r;) C 5; := {ry,...,r;—1} holds
in N for al . When interpreted over D = w, each node
r; in N hasthe set of possiblevaluesMod,, (r; ), which can
beidentified with the powerset w!”:!, and henceis uncount-
able. Specificaly, the whole space Mod,, (5) is uncount-
able, and therefore needs to be equipped with a o-algebra
of measurable subsets before probability measures on that
space can be defined. For our purpose a suitable o-algebra
2 iscanonicaly defined as follows.

For1 < i< klet ¢ containal subsets £ C Mod,, (r;) of
theform

E = E((dj);, (dy)n) :=
{# e Mod, (r;) | A |= ri(dy), A | —ri(d);
J=1..,Lh=1,...,m},

wherel,m € w, andd;,d, € w!"l. Let 2, betheo-
algebra generated by &;. Define 2l¢ to be the product o-
dgebrafl,, @ ... U,,.

It is no longer possible to define conditional probabilities
P(I(r;) | -#;) “pointwise” foreach I(r;) € Mod, (r;) and
#; € Mod,, (Pa(r;)), because any specific I(r;) or .#; typ-
ically will have probability 0. Instead, we have to replace
the definition of P(I(r;) | .#;) in (6) by a definition of
transition probabilities K; (.#;, A) from .#; to measurable
subsets A € ,,. Functions K (-, -) that represent such tran-
sition probabilitiesare known as stochastic kernels (see e.g.
(Jacobs 1978)).

Itissufficient to definethevalues K (.#;, A) for A = E €
¢;. Inandogy to (6), for E = E((d;);, (d})n) € €, we
would like to define

K (M, E) =
{ m
[1 7 (d)ta) [0 - Brutdy)laa)). (12)
ji=1 h=1

It can be shown that (12) defines a stochastic kernel from
Mod, (Pa(r;)) to Mod,,(r;), provided that F,, only con-



tai ns combi nati on functionssatisfying acertain measurabil -
ity condition. We do not go into the details here, and only
note that virtually every combination function of practical
interest will satisfy thiscondition. We call aprobahility for-
mula admissible, if it only contains combination functions
satisfying the measurability condition. Similarly, an RBN
iscalled admissible, if it only contains admissi ble probabil -
ity formulas.

Whenvia(12) stochastickernels K, . . ., K havebeen de-
fined, inanalogy to (8), a probability measure P¥ on2s is
defined by

PN (A) =
//---/1,4(11,...,Ik)Kk((Il,...,Ik_l),dlk)...

Ky (I, dI;) Ko (dIL), (13)

where 4 € 24, 1,4 istheindicator function ! of 4, and the
I; are integration variables ranging over Mod,, (7).

4 INFINITE DOMAINS: INFERENCE

In this section the main technical results are derived: itis
shown that queries for the probability distributions PV are
decidable.

We first give an outline of the argument by an informal
derivation of the probability P¥ (r3(d)) for the network N
from example 2.9, and an arbitrary d € w. Wetry to deter-
mine P2 (rs(d)) by reasoning about the form of structures
# € Mod, (S) that are “typicd” according to PY. Firgt,
we consider the expected interpretation of r;: since each
d € w has apositive probability both of belonging to r4,
and of not belonging to r1, and since membership in r; is
determined independently for distinct d, we know by prob-
abilistic 0-1 lawsthat with probability 1 .# will containin-
finitely many e ements both within and outside r; .

Next, we consider the expected interpretation of r;. For
each given element d with r1(d), and each d’ with r1(d’)
there is a positive probability that r3(d, d’) holds. Since
thisisindependent for different d’, and because, according
to our first result, there are infinitely many candidates d’,
by the same 0-1 laws as above, we know that with prob-
ability 1 there will exist infinitely many d' with r3(d, d').
Since there are only countably many different d, this even
means that with probability 1 for every d with r(d) there
will exist infinitely many d’ with r,(d,d’). For d with
—r1(d), on the other hand, with probability 1 thereexist no
d’ with r3(d,d'). Thus, inatypica structure .# we have
F,,(d)[.#] = 0fordwith—ri(d), and F,., (d)[.#] = 1 for
d with r1(d). Hence, for an arbitrary d € w: PY (r3(d)) =
PY(ri(d)) = 0.4.

1In the usual measure-theoretic sense, not as appearing in def-
inition 2.3.

41 ALMOST SURE PROPERTIES

In the above derivation we have reasoned that with proba-
bility 1 structures.# € Mod,, (.S) will possesscertain struc-
tural properties. Our first step in devel oping a general and
rigorous method for computing probabilitiesin P2 will be
to provide a well-defined class of such structura proper-
tiesin terms of syntactic characterizations. Thisisdonein
definition 4.1 We then, in theorem 4.5, show that each of
these structural propertiesis either satisfied by amost ev-
ery structurein Mod,, (S), or by amost none. Theorem 4.5
alows us to ignore for the computation of probabilitiesin
PY dll those structures that do not possess the canonical
structural properties. This, in conjunctionwith the fact that
in canonical structures .# the functions F,., (-)[.#] have a
very regular behavior (lemma4.2), allows usto develop an
effective decision procedurefor P2 in section 4.2.

The following definition introduces (variants of) concepts
that are commonly used in finite model theory: types and
extension axioms. Intuitively, an S- type r(vy,...,vx) IS
aformulathat gives an explicit, compl ete description of an
S-structure of size k.

Definition 4.1 Let S beareational vocabulary. An S-type
inthevariablesv = vy, . .., v, iSamaximal consistent con-
junction r(w») of atomic and negated atomic formulas over
S inthevarigblesv. A type (v) iscalled proper if it con-
tainsal theformulas v; # v; (vi,v; € v,t # j). A type
o(v, w) extendsthetype r(v), written r C o, if every con-
junct of 7 isaconjunctine.

Let 7 C o be proper types. The sentence
Yo(r(v) = ~Jwo(v, w)). (14)

is called a no-extension axiomfor 7, o. The set of all sen-
tences

Yo(r(v) = B2 wo(v,w))  (n €w) (15)

we call an w-extension axiom, and denote it by the (non
first-order) formula Vv (7(v) — I“wo(v, w)) (the quan-
tifier 3 thusisto beread as “there exist infinitely many”).
An extension theory is aconsistent set ®gy; of no-extension
and w-extension axioms, s.t. for every pair of proper types
T(v) C o(v, w), Py contains (14) or (15).

The no-extension axiom (14) isin fact logically equivalent
to the simpler sentence ~Jvwo (v, w). To enable a more
uniform treatment of the two types of axioms, we here use
the syntactically more complicated form (14).

Lemma4.2 Let F(vy,...,v,) bean admissible probabil-
ity formulaover S. Let $gy be an extension theory for 5.
Let .# € Mod, (S) with .# = ®g. Letd,d' € vl s0
that .# |= 7(d) Ar(d') for sometyper. Then F(d)[.#] =
F(d)[.].



The lemma is proved using a standard model-theoretic
back-and-forth argument, which showsthat under thegiven
assumptionsthereis an automorphism of .# that maps d to
d'. Thismeansthat d and d’ satisfy the samefirst-order for-
mulasin .#. Thefirst-order theory of d in.# uniquely de-
terminesthevalue F'(d)[.#].

The following definition and lemma are merely technical
tools that allow us to take somewhat more information
about extensions out of an extension theory, than we explic-
itly putin.

Definition 4.3 Let w = (wy,...,w;). Let 7(v) C
o(v, w) betypes. A generalized extension axiomisafor-
mulaof theform

Yo(r(v) = Quwo(v, w))

where Q € {-3,3=1,3«}. The meaning of 3=! is
to be read as “there exists exactly one tuple’, that of
J¥ as “there exist infinitdly many tuples’.  Specif-
icaly, F¥wjwqo(v,wy,wy) dready is true when
3=twy 3% wao (v, w1, wy) holds.

For the formulation of the lemma, and a so for subsequent
use, we introduce the notation w C » as shorthand for the
formulaAycw Voecw w = v.

Lemma4.4 Let Py bean S-extensiontheory. Let m(v) C
o(v, w) be 5-types. Then

Pey = Vo(r(v) = Qwo(v, w)), (16)

fordther Q = =3,Q = 3=, or Q = 3*. Thecase ) =
3=! holdsexactly when o (v, w) | w C v.

The proof of the lemmaisfairly straightforward by reduc-
ing the generdlized extension axiomto several no-extension
and w-extension axioms in the sense of definition4.1. The
following isthe main theorem in this section.

Theorem 4.5 Let NV be an admissible relationa Bayesian
network over S. Foreachi = 1, ..., k then there existsan
extension theory ®2,(S;) for S; with P (®2,(S;)) = 1.

Proof: We proceed by inductiononi¢ = 1,...,%k. The
base case ¢ = 1 is a simpler variation of the induc-
tion step, and is here omitted. Thus, let ¢ > 1, and as-
sumethat PV (@8, (Si-1)) = 1 for some extension theory
®Y(S;—1). Inthefollowing, for an S, _;-structure .#, and
an S;-theory ®, we write K (.#, ®) for K(.#, R), where
R:={I(r;) Cwlm | (4, 1(r))) | @}

To prove the theorem for ¢, we show that there exists
an extension theory ®2,(S;), such that for every .#
q)JEth(Si—l)

K(,®8,(5;)) = 1. (17)

To prove (17) it is sufficient to show that for every pair
T(v) C o(v, w) of proper S;-typeswe have

K(#¥v(r(v) = Quo(v,w))) =1 (18)

for @ = —3, or Q = 3*. Since there are only countably
many such pairs r, o, from (18) we obtain (17) by letting
®Y .(S;) bethecollection of all extension axiomsfor which
(18) holds.

To show (18), we first partition 7(v) and o (v, w) into two,
respectively four, conjuncts:

i1 (v) A 77 (v)

i1 (v) A 77 (v)

AgZi=1t (v,w) Ao (v, w)

r(v) =

olv,w) =

where 7%i-1(v) contains al conjuncts of 7(v) that are
S;—1-literals (including the (in-)equality formulas), " (v)
contains al r;-literals of 7(v), o®i-1% (v, w) contains al
S;—1-literals of o(v, w) that contain the variable w, and
"% (v, w) containsall r;-literalsof o (v, w) containing w.

We now consider the dlightly strengthened axiom

x(Q) :== Vo(ri-1 (v) —
Qu(o%i=1" (v, w) A o™ (v, w))) a9

(Q € {—3,3*}), whichisequivaent to thefinite collection
of extension axioms obtained by replacing 7°i- (v) with
79i=1(v) A" (v) in (19) for al possiblechoicesof 77 (v).
Hence, when we show

K(a.x(@Q) =1 (20)

for @ = =3, or Q = 3*, we have shown (18) for the same
Q and al 7(v) D 791 (v).

To show (20), first consider the case that
M= No(7771 (v) = ~FwoT Y (v, w)). (22)

In this case (20) holdswith ¢ = —3, and we are done. If,
in patticular, .# |= —Jvr°i-1 (v), then (20) holds for both
Q = —El and Q = Elw.

If (21) does not hold, then because .# |= ®2,,(5:-1),
M= F o (v) (22)
(by lemma4.4), and
M V(T (v) = 3 (050 (v, w)). (23)
Now consider a fixed tuple d with .# = 7°-1(d). By
(23) there exist €1, €2,... € D st. 4 = o%-1¥(d, ¢;)

fori € w. Intheconjunctiono™ (d, ¢;) let f4, ..., f; be
then-tuplesover (d, e;) st. r;(f;) appearsino”*(d, e;),



and g4, ..., g, bethetuplesfor which —r;(g,) appearsin
o"%(d, e;). Then

II Ll J1O = Frilgn)la)) =:p- (24

By lemma 4.2, p is independent of the actual choice of d
ande;, aslongas.# |= 751 (d) A o®=1 (d, e;).

Again, wenow distinguishtwo cases. Firstassumethatp =

0. Then
K (A, ~Fw(c® =2 (d, w) A o"" (d, w))
1= K(A,0677"(d,e;))

1EW

v

1. (25

Now assume p > 0. Then

K(A,3w(c® =" (d,w) A o™ (d, w)))
K(A,Njz1Uizj o' (de;)) = 1. (26)

The last identity in (26) follows from the Borel-Cantéelli
lemma, using thet for i # j 0" (d, e;) and a"" (d, ;)
are independent in 2., with respect to K (.#, -) (because
o' (d, e;) and o™+ (d, ;) do not share any common 7;-
atom).

By our observation following (24), whether (25) or (26)
holds for d does not depend on the particular choice of d,
aslongas.# |= m%-1(d). Taking the conjunction over the
countably many d, we can finaly say:

K (A, x(-3))
K (A, x(3))

(ifp=0in(24)),or

=1
=1 (ifp>0in(24)).

Thefollowinglemmaisclosaly related tothefact that inthe
preceding proof the question of whether toinclude y (—3) or
x(3¥) into the extension theory for S; was essentially re-
duced to the question of whether p in (24) is positive. We
now make thisreduction somewhat more explicit, by show-
ing that we can “decide’ &2, via computation of certain
probabilities.

Lemma4.6 Let N, ®,(S;) be as in theorem 4.5. Let
T(v) C o(v,w) be S;-types. Let d,e C w be arbitrary
tupleswith | d |=| v |, |e| = |w|, and such that d satis-
fiesthe equality constraintsin 7(v), and (d, e) satisfiesthe
equality constraintsin o (v, w). For

AQ) :=VYo(r(v) = Qwo(v, w)) (Q € {3, 3=t Ely)

we then have

(@ @Y, = 2FYH iff o(v,w) | wC v;
(b) @ | A(=3)iff B} (7(d))
(© PE¢ F AEF)iff PJ(r(d)) =

0or PY(o(d,e)) = 0;
or PY

Proof: Part (a) isalready covered by lemma 4.4. For parts
(b) and (c) first observe that ®X,(S;) = A(=3) A A(3¥)
iff ®8,(S;) E —3Jvr(v). By symmetry, we have that
PY(r(d)) = PY(r(d')) for dl of the countably many tu-
ples d' that satisfy the equality constraintsin r(v). With
PY (3vr(v)) = PY(Ugr(d')) wethusget PY (7(d)) = 0
iff PN (—=Fvr(v)) = 1iff @Y, () E —~Fvr(v).

By analogous symmetry and countability arguments we

get PN(o(d,e)) > 0 iff PY(=Fvwo(v,w)) = 0
iff PY(A=3) = o0 iff PNXA3EY)) = 1 iff
DE(Si) I A(3). O

4.2 COMPUTING THE PROBABILITIES

We now show how theinsightsgained in the preceding sec-
tion into the structure that, according to PY, an infinite
structure .# will amost certainly have enable us to com-
pute probabilitiesin PY. The central insight is provided
by lemma4.2. According to that lemma, when we evaluate
F,,(d)[.#] for some canonica .#, we only need to know
the S;-type of d. This means that we can in effect replace
F,, by afundamentally smpler formula F} :

Theorem 4.7 Let N be an admissible relationa Bayesian
network over S = {r,...,7x} with Pa(r;) C
{ri,...,ric1) (0 = 1,...,k). There exists a relationd
Bayesian network N* over S with the following properties

(i) Pa(ri) € {r1,..

(i) Every probability formula Y, in N* isof theform

.,7“2'_1} in N*.

q1 7’1(”)
Frw)=1{ (27)
9m Tm (U)

withgp € [0,1] (h = 1,...,m), and the 7, (v) are a
complete list of the Pa(r;)-types of v.

(iiiy PN" = PN,
Given N, the network N* can be computed effectively.

The sdient feature of the probability formulas F;. is that
they areessentialy combinationfunction free (even though,
in proper syntax, the distinction by cases in (27) would by
encoded by some “benign” combination functions). Specif-
ically, theformula 7, (v) doesnot contain any variables w



other than ». Inthat sense, theorem 4.7 can be understood
as akind of quantifier elimination result, that allows usto
get rid of the quantification over w by combination func-
tions comb{- | w;-}. In practical terms, this means that
the probability of a statement ¢(d) can be computed with-
out considering any elements other than d. Thisis spelled
outinthefollowing corollary, whichisof central interest in
itself, and a'so plays an important role in the proof of the
theorem.

Corollary 4.8 Let N bean admissible relational Bayesian
network. Let ¢(d) be aboolean expression over ground S-
atoms. The probability P¥ (¢(d)) then is computable.

Proof: First observethat the computationof PN (¢(d)) can
be reduced to finitely many computations of probabilities
PY (o(d)) for S-typeso(v). The S-types(v) can bewrit-
ten as a conjunction A_, o; (v) of S;-typese;. Ford' C d
let o;(d’) bethe S;-typeof d’ implied by (d). Then

P (o(d)) =
(0i(d) | i-1(d)) =

II

{d'Cdloi(d)l=r:(d)}

II

{d'Cd|o;(d)|=-r:(d")}

Fr (d)]ori-a(d)]
(1 = Fr (d)[ei-1(d)])-

The terms F,, (d')[oi—1(d')], here stand for F, (d')[.#]
for an arbitrary .# | ®&, A o;-1(d'). Using the network
N* we can determine ¢, = F,,(d')[ci—1(d’)] by looking
up the Pa(r;)-type 7, that isimplied by o, _1. O

Proof of theorem 4.7: We show how to effectively con-
struct probability formulas F; over {ri,...,r;_1} such
that for dl .# |= ®L,(S;_1),and al d € w!":| we get

Fy (d).4) = F7,(d)].4]. (28)

With theorem 4.5 it then follows that the network NV* de-
fined by the probability formulas F* defines the same dis-
tribution as the original network V.

For the construction of F)* assume that Fy,..., F;:_ a-
ready have been constructed (the base case Fy, again, isa
simpler variation of theinduction step, and ishere omitted).
We define F;" by induction on the structure of F.,.

The first three cases — F,., being a constant, an indicator
function, or a convex combination are quite straightfor-
ward. We therefore turn directly to the case F;,(v)
comb{ F (v, w) | w; ¢(v, w)]} (to simplify matters slightly,
we here only consider the case of a single probability for-
mulawithin the combination function. The extensiontothe

10

genera case is straightforward). By induction hypothesis,
we can assumethat F (v, w) isintheform (27) with values
p1,-..,p fortypeso; (v, w), ..., o;(v, w) in somevocab-
ulary S* C S;_1. We now define Pa(r;) to bethe smallest
subset of S;_; that contains$*, and for which &2, provides
acomplete set of extension axioms. In concrete terms, this
isS; for j :=max{h | r, € 5*}.

Now, let 7, (v) beaPa(r;) —type. Weneedtofind thevaue
gp, such that

gn = Fr (d)[4] (29)
fordl # = ®gqandd € w!™l with.# = 7,(d). By
lemma4.2 weknow that ¢;, only dependson 73, but noton d
or .# (notethat, while F;., isan S* - probability formula, we
really do need to fix the Pa(r;)[D 5*]-typeof d in order to
insurethisinvariance, because ®2,, usualy will not include
an extension theory for 5*).

The first case to be considered for the computation of gy,
iswhether @&, = —Jvr,(v). Inthat case an arbitrarily
chosen value for ¢, will satisfy (29). By lemma 4.6, we
can determine whether @2, = —Jvr, (v) by computing
PY(r,(d)) for some test tuple d. This probability is de-
termined by the subnetwork N;_; containing al the S;_ -
nodes. By induction hypothesis (for the outer induction on
the network structure), N;_; aready has been constructed,
so that by corollary 4.8, PN (7, (d)) can be computed. If
PY(7,(d)) = 0, we sgt, eg., ¢, := 0, and are done with
Th

If PQJ)V(Th(d)) >
qn = Fy, (d)[#]

A={F(de)|e;c(d e)}

(with d and .# asin (29)). Thus, we need to determine A.
We do this by computing for each Pa(r;)-type p(v, w) the
contribution of those elements e to A that satisfy .# =
p(d,e). Since d was assumed to be of type 7, we only
need to consider types p that extend 7. Also, because of
the restriction to e with ¢(d, e), only types p(v, w) with
p(v, w) | c(v, w) arerelevant (notethat either p(v, w) =
c(v,w), of p(v,w) E —e(v,w)). There isa most one
such type po (v, w) with po(v,w) = w C wv. For that
type, thereexistsexactly oneeg with pg(d, o), and po con-
tributes a single copy of F(d, eo)[.#] to A. The vaue of
F(d, eo)[.#]isgiveninour representation of > by p; cor-
responding to the $*-typec; (v, w) = po(v, w)| S*.

For p £ w C v, by lemma 4.6, we have that .# =
—Jwp(d, w) iff PY(p(d, e)) = 0,and .# = F3*wp(d, w)
iff P2 (p(d,e)) > 0 for any test tuple e. As above, the
probabilities on the right hand sides of these equivalences
can be computed in the already constructed network N;*_;

If PY(p(d,e)) > 0, thetype p contributesto A w copies
of thevalue p; assigned by £ to arguments of type p[ 5*.
If P (p(d,e)) = 0, thetype p does not contributeto A.

0 we continue as follows. By definition,
= comb A for



After peforming these computations for al rele-
vant types p, we obtain a representation of A of the
form A {pn, AlsevsPhy, Am}. where the
Ph; € {p1,...omb,and Ay € {1,w}with); = 1forat
most one ;. Finally, we compute ¢;, := comb A i

If we apply the transformation here described to our net-
work from example 2.9, the probability formulas of », and
ro remain essentially unchanged. In the construction of
F} (v) we will first obtain the new parent-set Pa(rs) =
{r1,72}. Thevaluesg; in the representation (27) are com-
puted as ¢; = 1 for {ry,r2}-types 7;(v) with 7;(v) =
r1(v), and ¢; = 0 for 7;(v) = —ri(v). This means that
in an additiona step we can simplify F. to

rw={

This illustrates that the transformation N — N* not
only replaces probability formulas, but in the process also
changes the underlying network structure.

r1(v)
—ry(v).

5 Infinite Domains. Recursive Networks

We now turn to the question of what part of the results of
sections 3 and 4 carry over to recursive RBNs. As might
be expected, in the case D = w introduction of recursion
causes much more fundamental problemsthan wasthe case
for finite domains.

The first problem we are faced with is the existence of se-
mantics for arecursive RBN. Recall that we identified as
one main advantage of (non-recursive) RBNs their seman-
tic clarity, particularly the fact that simply adhering to the
syntactic rules for the construction of an RBN guarantees
the user that exactly one distribution P’ will be defined.
Thisistrueboth for finite and infinite D. Turning to recur-
sive RBNs, in section 2.2 we found that for finite domains
the existence of semantics no longer is guaranteed, but that
a decision procedure for the well-definedness of P2 ex-
ists in checking the well-foundedness of the relations <.,
defined by formulas r-pa(v, w). One can show that in the
case D = (w, s) well-foundedness of <, onw!”! ill en-
ablesustodefine P2 (thoughthe constructionismore com-
plicated than the onein section 3). It is unclear, however,
that itispossible, in general, to decide whether a given for-
mular-pa(v, w) definesawell-foundedrelation <, onw! "1
While the problem of decidability of well-foundedness of
=<, is gtill open, the following theorem tells us that even
in the (unlikely) event of a positive solution, not too much
would be gained, because the problem of ultimate interest,
computation of probabilities, will still be unsolvable.

Theorem 5.1 There does not exist an algorithmthat, given
arecursve RBN NV over S with defined semantics P as

1

input, enumerates al probabilities PY (r(d)) for r € S,
deuwlrl

The theorem can be paraphrased as. there does not exist a
sound and complete proof system for recursive RBNswith
well-defined semantics over infinite domains.

Proof: We reduce the validity problem of first-order sen-
tences in arithmetic to the computation of probabilities
PY(r(d)). In order to fit into our relational framework,
we here code sentences in arithmetic by using arelationa
vocabulary with unary relation symbols g, 71 (rather than
constant symbols 0,1), and ternary relation symbols r, r.
(rather than binary function symbols +,-). The standard
model .4 for the vocabulary Sy := {ro, 71,7+, 7.} thenis
wwith I(ro) = {0}, 1(r1) = {1}, I(r4) = {(d.c. f) |
d+e=fhadI(r)={(de f)|de=f}.

Given an Sy-sentence ¢, we construct a network N, con-
taining a unary relation r4, so that P is defined, and
PY(ry(1)) = 1iff 4= ¢. The non-enumerability of PY
then followsfrom the non-enumerability of thetheory of 4.
N, isconstructed asfollows. Wefirst define anetwork Ny

over Sy that assigns probability 1 to .47 Thisisachieved by
the probability formulas

Fro(v) =1 —max{l | w;s(w) = v}
1 (ro(w)Av=2z)Vv

F. (v,w,z) = ro(v,s7Hw), s71(2))
0 edse

and similar formulas for F,., and F, . Here a somewhat
loose syntax has been used for F,_ . Itis quite straight-
forward, though, to transform it into a probability formula
proper. The dependency relations <., and <, are well-
founded, and PYa (_4") = 1, as desired.

Given the S,-sentence ¢, according to lemma 2.6, we can
define a (non-recursive) probability formula Fy(v), so that
foral d € w: Fy(d)[A] = 1iff /= ¢, Fy(d)[A4] =0
else. Addinganoder, labeled with F4 to the network Ny
yields a network Ny thet, if .4 |= ¢, places probability 1
on the r4-extension .43 of _4'with 45 = Yorg(v), and if
A = —¢, places probability 1 on the r-extension .42,
of A With A4 = Yoy (v). Hence, P (ry(1)) = 1 iff
N . O

While theorem 5.1 is formulated as a result for recursive
RBNSs, arguments similar to the oneused in itsproof clearly
could be applied to other probabilistic representation sys-
tems for distributions over infinite, structured domains.
Particularly systems like that of Ngo and Haddawy (1995)
that use Herbrand universes as underlying domains (which
in the specia case of a single constant and a single unary
function symbol is essentialy the same as (w, s)), provide



a potentia basis for carrying out the same argument. Ex-
act results dong these lines, however, first require a more
detailed analysis of the first-order reasoning capabilities
within these systems, particularly of the question whether
they giveriseto analogues of our lemma 2.6.

6 RELATED WORK AND CONCLUSION

Apart from the work by Ngo and Haddawy (1995) already
mentioned, examples of previoudly proposed probabilis-
tic representation and inference systems over infinite do-
mains include work on probabilistic context free gram-
mars (Pynadath & Wellman 1996) and stochastic programs
(Koller, McAllester & Pfeffer 1997). In both these frame-
works, distributions are defined over richly structured do-
mains (labeled trees, essentialy). These works differ in
their semantic intent somewhat from the one of Ngo and
Haddawy, and the one presented here: they, like standard
Bayesian networks, are models of attributes of randomly
sampled individuas, only that individualsnow come from
an infinite domain of distinguishable objects. Thisisto be
contrasted with our objective of modeling random rel ations
between multiple objects (taken from a uniform domain).
On a sufficiently high level of abstraction, of course, this
distinctionis not very strict, since in our approach we can
also view a relation between elements of the domain as an
attribute of arandomly sampled compl ete structure.

For none of the frameworks mentioned here, decision pro-
cedures for general, complex queries have been given (in
the particular rich system of Koller et al. (1997) it is more-
over clear that none can exist). Main objective of the
present paper has been to show that in the case of RBNs
such a decision procedure exists. This was achieved by
showing that infinite random structures, as generated by
an RBN, with probability one will possess certain struc-
tural properties, and that therefore every distribution de-
fined over w by anetwork N can aso be defined by a net-
work N* of a particularly simple form. The main, non-
trivial, component of inference from N for domain w isthe
transformation of NV to NV*. Once NV* has been determined,
computation of P (¢(d)) for some query ¢(d) proceeds
without any reference to the underlying domain.
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