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Abstract

Relational Bayesian networks extend standard
Bayesian networks by integrating some of the
expressive power of first-order logic into the
Bayesian network paradigm. As in the case of the
related technique of knowledge based model con-
struction, so far, decidable semantics only have
been provided for finite stochastic domains. In
this paper we extend the semantics of relational
Bayesian networks, so that they also define prob-
ability distributions over countably infinite struc-
tures. Using a technique remeniscent of quan-
tifier elimination methods in model theory, we
show that probabilistic queries about these distri-
butions are decidable.

1 INTRODUCTION

Bayesian networks (Pearl 1988) currently are the most pop-
ular and successful framework for representing and rea-
soning with probabilistic information. In their basic form,
Bayesian networks define a probabilitydistributionover the
set of possible values of a finite set of random variablesX1; : : : ; Xn, each variable having a finite range of possible
values.

Semantically, Bayesian networks describe attributes of in-
dividual random events or random objects, e.g. the symp-
toms and diseases of a random patient, or state variables
describing a robot and its environment. For many applica-
tions the restriction to a fixed number of finite range random
variables is a severe limitation. One of the approaches to
go beyond these limits is the technique of knowledge based
model construction (Wellman, Breese & Goldman 1992,
Breese 1992, Haddawy 1994, Ngo & Haddawy 1995),
where the number of variables is adjusted on a case-by-case
basis. The basic idea here is to model the probabilistic do-

main not by a Bayesian network directly, but to use a knowl-
edge base containing probabilistic rules that are used as a
blueprint for the construction of Bayesian networks tailored
to each specific inference task.

A simple example of a rule that such a knowledge base
might contain is

fever(v) 0:8 � flu(v); (1)

with the intended meaning: if v suffers from the flu, thenv will have fever with probability 0.8. A knowledge
base containing such rules, and ground atoms flu(thomas),
fever(sylvia), ..., gives rise to a standard Bayesian network
over binary random variables representing all ground atoms
relevant for the processing of a specific query.

When all the rules in the knowledge base only contain a sin-
gle variable (as in (1)), then this rule-based approach only
amounts to a notational variant of standard Bayesian net-
works, because information about one object mentioned in
the knowledge base will not influence our inferences for
another. Probabilistic knowledge bases gain their edge in
expressive power over Bayesian networks by the ability to
also define rules involvingtwo or more variables, and n- ary
relation symbols:

infects(u; v) 0:6 � sick(u) ^ contact(u; v): (2)

A rule like (2) no longer merely describes the attributes
of single random objects or events, but specifies rela-
tions between multiple random objects/events. A knowl-
edge base with rules of this form, and ground atoms in-
fects(thomas,sylvia), sick(thomas),... again can be used to
generate a Bayesian network over ground atoms. Size and
structure of this network now will depend on the number of
constants appearing in the knowledge base. No single stan-
dard Bayesian network with a fixed number of finite-range
random variables can be defined that supports the same
inferences as can be drawn from a rule base with multi-
variable rules.



In (Jaeger 1997) it was argued that the frameworks for
knowledge based model construction proposed so far suf-
fered from two deficiencies: first, they lack in expressive-
ness, second, the semantic clarity of the Bayesian network
paradigm is lost, because the declarative character of the
rules makes it hard to distill their meaning into a single
probability distribution.

The issue of expressiveness was discussed at some length in
(Jaeger 1997). The issue of semantic transparency it may be
worthwhile to here elaborate on somewhat more. One of the
main advantages of the Bayesian network paradigm is that it
provides the user with a firm framework for how to describe
a probability distribution: he or she is asked to specify the
underlyingdirected acyclic graph, and the conditional prob-
ability tables for all nodes. Providing the required informa-
tion then guarantees the user that one, and only one, prob-
ability distribution is being defined. Moreover, following
this procedure gives the user a fairly well-understood con-
trol over the distribution he or she is defining. Probabilistic
rules, like (1) or (2), on the other hand, only impose certain
constraints on the probability distribution described. These
constraints, hopefully, have a fairly intuitive meaning for
the user, but will require a substantial overhead of seman-
tic definitions and conventions in order to be given an ex-
act interpretation. Breese (1992), for instance, gives the se-
mantics of his knowledge bases indirectly by defining a pro-
cedure that, given a knowledge base and a specific query,
constructs a Bayesian network in which the probability of
the query is determined. Ngo and Haddawy (1995) pro-
vide declarative semantics for their representation formal-
ism. However, a knowledge base in their language only de-
fines a unique distribution if certain consistency and com-
pleteness conditions are satisfied. It is not clear that it is
decidable whether these conditions are fulfilled, so that, in
general, it may be impossible for the user to tell whether a
knowledge base has semantics at all.

Relational Bayesian networks (RBNs) were proposed in
(Jaeger 1997) as an alternative approach for the specifica-
tion of probability distributions on relations between sev-
eral random objects. Apart from providing additional ex-
pressiveness, RBNs recapture the semantic transparency af-
forded by the Bayesian network paradigm of probabilistic
model construction (but see section 5 for a qualification).

In the present paper we are going to explore another advan-
tage of RBNs: their semantics can be extended to define
probability distributions for infinite domains of random ob-
jects, and queries for these distributions are still decidable.
The framework of Ngo and Haddawy (1995) also is defined
for infinite domains. Specifically, their distributions are de-
fined for Herbrand universes as domains, which are infi-
nite if the underlyingfirst-order vocabulary contains at least
one constant and one function symbol. Herbrand universes

have a richer internal structure than the infinite domains for
which the central results of the present paper are obtained.
A result given in section 5 indicates why this structure on
the domain might lead to inherent undecidability of Ngo
and Haddawy’s approach.

2 FINITE DOMAINS

2.1 THE BASIC FRAMEWORK

In this section we review the basic definitions introduced
in (Jaeger 1997), extending them, where necessary, to deal
with the case of infinite domains treated in the subsequent
sections.

The purpose of an RBN is to define a probability distribu-
tion that models random attributes and random relations in
a domain of objects or events. For the time being, assume
that this domain D = fd1; : : : ; dng is finite. A proba-
bilistic model for a set of relations S = fr1; : : : ; rkg on
this domain then consists of a probability distribution on
the set of S-structures (a.k.a. models) with domain D, de-
noted ModD(S). Relations in S can be of any arity. The
arity of ri is denoted jri j. For a single relation ri, the set
ModD(ri) of possible ri-structures comprises just the set of
possible interpretations I(ri) � Djri j of ri in D. Hence,
ModD(ri) can be identified with the powerset of Djri j.
Moreover, an S-structureM 2 ModD(S) is given by a tu-
ple (I(r1); : : : ; I(rk)) of interpretations, so that ModD(S)
can be identified with the Cartesian product

ModD(S) = ModD(r1)� : : :�ModD(rk): (3)

Thus, a probability distribution on ModD(S) can be de-
fined in the form of a joint distribution for the individ-
ual ModD(ri). Viewing each ModD(ri) as a random vari-
able, such a joint distribution can be defined following
the Bayesian network paradigm: specify a directed acyclic
graph with a node for each ri, and at ri define the condi-
tional probabilityof each possible interpretationof ri, given
the instantiation of the parent nodes of ri.
Assume that a directed acyclic graph has been given. For
the node ri denote by Pa(ri) = frj1 ; : : : ; rjmg the set of
parent nodes of ri in the graph. Also, denote by Mi =(I(rj1 ); : : : ; I(rjm )) some given Pa(ri)-structure, which,
in Bayesian network terminology, is just an instantiation of
the parent nodes of ri. For nodes without parents we inter-
pretMi simply as the given domainD. Following our pro-
gram for defining a distributionon ModD(S), we then have
to define the conditional probabilityP (I(ri) jMi) (4)

for every I(ri) 2 ModD(ri) and Mi 2 ModD(Pa(ri)).
Given some finite D, both ModD(ri) and ModD(Pa(ri))
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are finite, so that, in principle, all probabilities (4) could
be explicitly listed in a huge conditional probability table.
This, of course, is infeasible due to the size of such a ta-
ble. More importantly, however, we aim for a generic def-
inition that does not refer to a specific domain. To obtain
such a generic definition, we define a schematic specifica-
tion of conditional probabilities (4) that work “tuple by tu-
ple”, i.e. that determines for each d 2 Djri j the conditional
probability P (d 2 I(ri) jMi): (5)

Subsequently, we putP (I(ri) jMi) := Yd2I(ri)P (d 2 I(ri) jMi)Yd62I(ri)(1� P (d 2 I(ri) jMi)): (6)

Conditional probabilities (5) we define by probability for-
mulas, which are the key components of RBNs. To moti-
vate the following definitions, consider a very simple ex-
ample. Suppose we have the relation symbols contact(u; v)
and sick(u), and want to model random structures in which
the predicate sick depends on contact. Specifically, assume
that for each person a, and for each b 6= a, contact(a; b)
is understood to be a possible cause for sick(a) – each in-
stance contact(a; b) causing sick(a) with probability 0.1,
independently for different b. Then the overall probabil-
ity of sick(a), given complete information about contact,
would be computed by combining probability values 0.1 by
noisy-or for all instances contact(a; b):P (sick(a) j I(contact)) = n-of0:1contact(a; b) j b 6= ag:
The expression on the right hand side of this equation is
an (informal) example of a probability formula. Key in-
gredients of probability formulas are combination functions
(such as noisy-or) that are applied to multisets.

Definition 2.1 A countable multiset over [0; 1] is a map-
ping A : [0; 1] ! f0; 1; 2; : : :g [ f!g, where A(q) > 0
for at most countably many q 2 [0; 1]. For countable mul-
tisets A;B we say that A is a subset of B (A � B), iffA(q) � B(q) for all q. The supremum of a chain (Ai)i2!
(Ai � Aj for i � j) of multisets is the multiset withA(q) = supfAi(q) j i 2 !g. The multiset A is called
finite, iff A(q) 6= ! for all q, and A(q) > 0 for only finitely
many q.

For the present section only finite multisets are needed. We
use the followingnotations to describe specific multisets: ifqi 2 [0; 1] for i from some countable index set I, then fjqi ji 2 Ijg denotes the multiset A with A(q) = j fi j q = qig j.
Still more concretely, fjq1 : �1; : : : ; qm : �mjg denotes
the multiset A with A(qi) = �i, A(q) = 0 for q 62fq1; : : : ; qmg.

Definition 2.2 A combination function is any function that
maps finite multiset over [0,1] into [0,1]. A combination
function comb is defined for countable multisets, iff for ev-
ery countable multiset A, and all chains (Ai)i2!; (A0i)i2!
of finite multisets with A = supfAi j i 2 !g =
supfA0i j i 2 !g, we have supfcomb(Ai) j i 2 !g =
supfcomb(A0i) j i 2 !g =: comb(A).
Interesting examples of combination functions are

noisy-or : n-ofjai j i 2 Ijg := 1�Qi2I(1� ai)
maximum : maxfjai j i 2 Ijg := maxfai j i 2 Ig
mean : meanfjai j i 2 Ijg := 1jIjPi2I ai

It is easy to see that whenever comb is monotonically in-
creasing (decreasing), i.e. A � B implies comb(A) �(�)comb(B), then comb is defined for countable multisets.
Thus, noisy-or and max are defined for countable multisets.
The mean, on the other hand, is not.

We need to introduce some notational conventions: logi-
cal variables (as opposed to random variables) are denoted
throughout by letters u; v; w; z. Tuples (v1; : : : ; vl) of vari-
ables are represented by a single letter v in bold face. The
length of the tuple v is denoted jvj. We also interpret v
loosely as the set of variables it contains, so that expressions
like u 2 v, or w � v make sense. An equality constraint
for v is a logical formula c(v) that is a boolean combination
of equality expressions vi = vj .

Definition 2.3 The class of probability formulas over the
relational vocabulary S is inductively defined as follows.

(i) (Constants) Each rational number q 2 [0; 1] is a proba-
bility formula.

(ii) (Indicator functions) For every n-ary symbol r 2 S,
and every n-tuple v of variables, r(v) is a probability
formula.

(iii) (Convex combinations) When F1; F2; F3 are probabil-
ity formulas, then so is F1F2 + (1� F1)F3.

(iv) (Combination functions) When F1; : : : ; Fk are prob-
ability formulas, comb is any combination function,v,w are tuples of variables, and c(v;w) is an equal-
ity constraint, then combfjF1; : : : ; Fk j w; c(v;w)jg is
a probability formula.

A probability formulaF (v) over S maps jv j- tuplesd from
the domain of a finiteS-structureM into [0,1], according to
the following definition.

Definition 2.4 Let F (v) be a probability formula over S,D a finite domain, M 2 ModD(S), and d 2 Djvj. We
inductively define the value F (d)[M ].
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(i) if F = q then F (d)[M ] = q.

(ii) if F = r(v) then F (d)[M ] = 1 ifM j= r(d), andF (d)[M ] = 0 else.

(iii) if F = F1F2 + (1 � F1)F3 then F (d)[M ] =F1(d)[M ]F2(d)[M ] + (1� F1(d)[M ])F3(d)[M ].
(iv) if F = combfjF1; : : : ; Fk j w; c(v;w)jg thenF (d)[M ] = combA, where A is the multiset

that for q 2 [0; 1] hasA(q) = j f(i;d0) j i 2 f1; : : : ; kg;d0 2 Djwj;M j= c(d;d0); q = Fi(d;d0)[M ]g j :
If F only contains combination functions that are defined
for countable multisets, then definition 2.4 also extends to
countably infinite D. The following example illustrates
case (iv) in the above definition.

Example 2.5 LetF (v) = combfj0:3r(v); 0:7s(v; w) j w;w 6= vjg: (7)

Let M be an fr; sg-structure with domain D =fd1; : : : ; d8g; let the interpretation of r in M befd1; : : : ; d4g, and let f(d1; d7); (d1; d8)g be that part
of the interpretation of s in M that has d1 in the first
component. To evaluate F (d1)[M ] we proceed as fol-
lows. First, we generate a list of all elements w of the
domain that satisfy the constraint w 6= d1. The result isd2; : : : ; d8. For each tuple (d1; d0), d0 2 fd2; : : : ; d8g, we
compute 0:3r(v)[d1; d0][M ] and 0:7s(v; w)[d1; d0][M ].
The notation r(v)[d1; d0]; s(v; w)[d1; d0], rather thanr(d1); s(d1; d0), here is used to emphasize that according
to definition 2.4 we count each substitution of a tuple(d;d0) for the variables (v;w) in the Fi separately, no
matter whether Fi actually contains the variables for
which different values are substituted. The results of these
recursive evaluations are 0.3 for the first formula, and 0 for
the second, when d0 2 fd2; : : : ; d6g, and 0.3, respectively
0.7, for d0 2 fd7; d8g. Here, the multiset A in (iv) thus isfj0:3 : 7; 0 : 5; 0:7 : 2jg. Applying comb to A then yields
the result F (d1)[M ].
The following lemma contains a very useful result on the
expressiveness of probability formulas. The simple proof
can be found in (Jaeger 1997).

Lemma 2.6 Let �(v) be a first-order formula in the rela-
tional vocabularyS. Then there exists a probability formulaF�(v) inS, that uses max as the only combination function,
s.t. for every finite S-structure M, and every d 2 Djv j:F�(d) = 1 iffM j= �(d), and F�(d) = 0 else.
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Figure 1: A relational Bayesian network and a typical struc-
ture

Definition 2.7 A relational Bayesian network for the (re-
lational) vocabulary S is given by a directed acyclic graph
containing one node for every r 2 S. The node for an n-aryr 2 S is labeled with a probability formula Fr(v1; : : : ; vn)
over the symbols in Pa(r).

Given an RBN N and a finite domain D, we define the
conditional probability PND (I(ri) j Mi) by substitutingFri(d)[Mi] for P (d 2 I(ri) j Mi) in (6). This finally
leads to the definition of the semantics of an RBN.

Definition 2.8 Let N be a relational Bayesian network
over S, D a finite domain. N defines a probability measurePND on ModD(S) byPND (I(r1); : : : ; I(rk)) := kYi=1PND (I(ri) jMi): (8)

We conclude this section with a very small example that we
will refer to later on.

Example 2.9 Let S = fr1; r2; r3g, where r1 and r3 are
unary, r2 is binary. An RBN N over S is defined via the
graph in figure 1 (a), and the probability formulasFr1(v) � 0:4Fr2(v; w) � 0:2r1(v)r1(w)Fr3(v) � n-ofj0:3r2(v; w) j w;w 6= vjg
Figure 1 (b) shows one representative S-strucutreM over
a domain D of 15 elements. The interpretation of r1 inM
is delimited in the figure by a dashed line, that of r3 by a
dotted line, and that of r2 is represented by arrows. The
probability ofM is computed according to (8) by comput-
ing the three factors PND (I(ri) j Mi) (i = 1; 2; 3), whereM3 is the fr2g-reduct of M, M2 is the fr1g-reduct, andM1 is just D. For each di (i = 1; : : : ; 15) in D we haveFr1(di)[M1] = 0:4, so that according to (6), PND (I(r1) jM1) = 0:46 � 0:69. The value of Fr2(di; dj)[M2] is 0.2
when i; j 2 f10; : : : ; 15g, and 0 when at least one of i or j is
not in f10; : : : ; 15g. Thus, PND (I(r2) jM2) = 0:26 �0:830.
The value of Fr3(di)[M3] is 1�0:7ki, where ki is the num-
ber of elements dj 6= di with r2(di; dj). Thus, we get

4



Fr3(di)[M3] = 0 for i = 1; : : : ; 9; 11; 12,Fr3 (di)[M3] =1�0:71 for i = 10; 14; 15, and Fr3(di)[M3] = 1�0:73 fori = 13, obtainingPND (I(r3) jM3) = 0:32�0:71�(1�0:73).
Multiplying the three factors then yields PND (M ).
2.2 RECURSIVE NETWORKS

In the distributionsPND defined via (6) and (8) strong inde-
pendence assumptions hold: given the interpretationMi of
the parent relations of ri, the events ri(d) and ri(d0) are
independent for d 6= d0. As discussed in (Jaeger 1997),
this is a serious limitation on what kind of probability dis-
tributionswe are able to define with RBNs. Examples men-
tioned there of interesting types of relations that require a
dependency of r-atoms are symmetric relations (r(d; e) de-
pends on r(e; d)), functional relations (r(d; e) depends onr(d; e0) for all e0 6= e: exactly one of these atoms must be
true), and temporal relations (r(t; d)depends on r(t�1; d)).
On closer examination it turns out, though, that the assess-
ment given in (Jaeger 1997) of the expressiveness of RBNs
with respect to such dependencies is somewhat too pes-
simistic. While it is true that using an RBN with only one
node r, we cannot define a distribution PND on ModD(r)
with, e.g., PND (r(d; e)) = 1=2,PND (r(d; e)$ r(e; d)) = 1
for all d; e, we can define such a distribution by a network
containing a second binary relation symbol s, and the two
probability formulasFs(v; w) :� qFr(v; w) :� (1� s(v; w))(1 � s(w; v))
where q is such that (1 � q)2 = 1=2. In a similar man-
ner, some forms of functional relations can be modeled with
RBNs. Still, there are limits to what can be achieved within
the framework presented so far. Temporal relations, for ex-
ample, remain outside its scope.

To increase the expressiveness of RBNs, in (Jaeger 1997)
recursive RBNs were defined. In a recursive RBN, proba-
bility formulas Fr(v) are allowed to contain indicator func-
tions of the form r(w) in addition to the indicator functionss(w) with s 2 Pa(r). The set of tuplese for which the eval-
uation ofFr(d) requires the truth value of r(e) now must be
restricted in a way that makes the definition of Fr(d) well-
founded. For this purpose, we require that the domain D is
equipped with suitable fixed relations or functions that en-
able us to define a well-founded partial order on Djr j. Typi-
cal examples of such fixed relations and functions are a total
order < on D, or a successor function s. For the purpose of
the present paper, we can limit ourselves to the case whereD comes equipped with a built-in successor function (on fi-
nite domains D we take a successor function s to be unde-
fined on the “last” element of D). The setr-Pa(d) := fe j Fr(d) depends on r(e)g

now can be restricted by generalizing the equality con-
straints in probability formulas to constraints involving s.
Here is an example of a probability formula that uses this
generalization of the syntax to define a temporal kind of re-
lation:Fr(t; v) :�

maxfj12(1� r(t0; v)); r(t0; v) j t0; s(t0) = tjg: (9)

For (d; e) 2 D2 here r-Pa((d; e)) = f(s�1(d); e)g (= ;
if d is the “first” element of D). Given the truth value ofr(s�1(d); e), the value of Fr(d; e) is 1/2 if r(s�1(d); e) is
false, and 1 if r(s�1(d); e) is true. We can think of r as
a temporal property of e that becomes true at time d with
probability 1/2 if not true already, and then remains true
(because we have not introduced any machinery for deal-
ing with multi-sorted domains, here the elements of D have
to double as time points and as objects to which we ascribe
property r).

As was shown in (Jaeger 1997), given a recursive proba-
bility formula Fr(v) we can effectively compute a formula
r-pa(v;w) over s, such that for all d; e 2 Djv j:e 2 r-Pa(d) iff (D; s) j= r-pa(d; e): (10)

A recursive RBN now defines a probability distribution on
ModD(S) iff for all r 2 S the relatione �r d :, e 2 r-Pa(d) (11)

is well-founded. The resulting distribution PND then still
is explicitly defined by (6) and (8); only the terms P (d 2I(ri) jMi) in (6) have to be replaced byP (d 2 I(ri) jMi; I(ri-Pa(d)));
where I(ri-Pa(d)) represents an interpretation of ri re-
stricted to ri-Pa(d).

Given a recursive network N , and a finite domain (D; s)
it can be effectively decided whether the relations �r are
well-founded, and if so, probabilities PND (r(d)) can be
computed. Thus, the difference between recursive and non-
recursive RBNs, for finite domains is of computational
complexity, but not of a fundamental nature. In section 5
it will be shown that on infinite domains this changes dras-
tically.

3 INFINITE DOMAINS: SEMANTICS

Even if the actual domains of random objects we encounter
in the real world usually are finite, infinite domains are im-
portant for at least two reasons: they can afford conceptual
simplicity, and they can be seen as the limitingcase for large
finite domains.
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Conceptual simplicity is a reason for turning to infinite do-
mains in cases where the actual (finite) domain is very large,
and does not admit of a manageable description by a finite
model. As an example, consider a model for a person’s fam-
ily tree. Even though the whole ancestry of that person, in
fact, is finite, when we try to construct a formal model we
will most likely end up with certain specifications – such
as that everybody has two parents, and no one is ancestor
of oneself – that only are satisfiable over an infinite domain
of individuals. Hence, an infinite domain here would be a
natural basis for, say, a probabilistic model of the propaga-
tion of genetic traits. In a similar vein, probabilistic models
of language, for example as defined by stochastic context
free grammars (see e.g. (Pynadath & Wellman 1996)), are
defined on an idealized domain of infinitely many possible
words and sentences, even though the collection of all sen-
tences ever uttered is finite.

A somewhat different use for infinite domains is given when
the existing finite domain admits of an adequate, manage-
able model, but the domain is large and difficult to deter-
mine exactly (cf. Bacchus et al. (1997)). An example of
such an “open” domain is the set of all people that a given
patient had contact with throughout his life. Here we may
very well be able to specify suitable models for every do-
main D of finite size n by some generic description. Not
knowing the appropriate n, however, rather than experi-
menting with arbitrarily chosen numbers, we may regard
the limiting case of an infinite domain as the canonical ap-
proximation to the unknown domain. This, of course, only
makes sense when we can apply the model we have de-
signed for finite domains to an infinite domain as well, and
when the properties of the model in the infinite case reflect
the limiting behavior of large finite models.

Thus, there is an essential difference between the use of
infinite models as conceptual idealizations, and as limit-
ing cases: in the first use it is not expected that the infinite
model in any way reflects properties of specific finite mod-
els. Inferences we draw in the infinite model we can accept
without further ado for what they are: statements that are
true in the infinite structure that we study for its own sake.
In the second use, on the other hand, results inferred from
the infinite model only are relevant in conjunction with the
knowledge that (approximately) the same results will hold
in all sufficiently large finite models.

In this and the following sections we show how to extend
the semantics and inference techniques for RBNs to infinite
domains. This makes RBNs available as probabilisticmod-
els for infinite structures in their first use. In a companion
paper (Jaeger 1998) the problem is studied of when these in-
finite models can be seen as the limiting case of finite mod-
els, and a certain subclass of RBNs is identified that define
infinite models suitable for employment in the second type

of application.

Given an RBN N , and a countably infinite domain D, we
need to define the probability distribution PND induced byN on ModD(S). This definition will essentially follow the
same pattern as in the case of finite domains. The main task
is to substitute suitable continuous concepts where the dis-
crete ones used in the finite case no longer work. In the
following, only an overview of the construction of PND is
given, leaving out several standard measure theoretic ar-
guments needed to fully justify the construction. It should
be pointed out, however, that some of these arguments cru-
cially depend on the countability ofD, so that our construc-
tion does not carry over to uncountable D.

For simplicity, it is assumed throughout that D = ! =f1; 2; : : :g, and that Pa(ri) � Si := fr1; : : : ; ri�1g holds
in N for all i. When interpreted over D = !, each noderi in N has the set of possible values Mod!(ri), which can
be identified with the powerset !jri j, and hence is uncount-
able. Specifically, the whole space Mod!(S) is uncount-
able, and therefore needs to be equipped with a �-algebra
of measurable subsets before probability measures on that
space can be defined. For our purpose a suitable �-algebraAS is canonically defined as follows.

For 1 � i � k let Ei contain all subsets E � Mod!(ri) of
the formE = E((dj)j ; (d0h)h) :=fM 2Mod!(ri) jM j= ri(dj);M j= :ri(d0h);j = 1; : : : ; l; h = 1; : : : ;mg;
where l;m 2 !, and dj;d0h 2 !jri j. Let Ari be the �-
algebra generated by Ei. Define AS to be the product �-
algebra Ar1 
 : : :
 Ark .

It is no longer possible to define conditional probabilitiesP (I(ri) jMi) “pointwise” for each I(ri) 2Mod!(ri) andMi 2Mod!(Pa(ri)), because any specific I(ri) orMi typ-
ically will have probability 0. Instead, we have to replace
the definition of P (I(ri) j Mi) in (6) by a definition of
transition probabilitiesKi(Mi; A) fromMi to measurable
subsetsA 2 Ari . FunctionsK(�; �) that represent such tran-
sition probabilities are known as stochastic kernels (see e.g.
(Jacobs 1978)).

It is sufficient to define the values Ki(Mi; A) forA = E 2Ei. In analogy to (6), for E = E((dj)j ; (d0h)h) 2 Ei, we
would like to defineKi(Mi; E) :=lYj=1Fri (dj)[Mi] mYh=1(1� Fri(d0h)[Mi]): (12)

It can be shown that (12) defines a stochastic kernel from
Mod!(Pa(ri)) to Mod!(ri), provided that Fri only con-
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tains combination functions satisfying a certain measurabil-
ity condition. We do not go into the details here, and only
note that virtually every combination function of practical
interest will satisfy this condition. We call a probability for-
mula admissible, if it only contains combination functions
satisfying the measurability condition. Similarly, an RBN
is called admissible, if it only contains admissible probabil-
ity formulas.

When via (12) stochastic kernelsK1; : : : ;Kk have been de-
fined, in analogy to (8), a probability measure PN! onAS is
defined byPN! (A) =Z Z � � �Z 1A(I1; : : : ; Ik)Kk((I1; : : : ; Ik�1); dIk) : : :: : :K2(I1; dI2)K1(dI1); (13)

where A 2 AS , 1A is the indicator function 1 of A, and theIi are integration variables ranging over Mod!(ri).
4 INFINITE DOMAINS: INFERENCE

In this section the main technical results are derived: it is
shown that queries for the probability distributions PN! are
decidable.

We first give an outline of the argument by an informal
derivation of the probabilityPN! (r3(d)) for the network N
from example 2.9, and an arbitrary d 2 !. We try to deter-
mine PN! (r3(d)) by reasoning about the form of structuresM 2 Mod!(S) that are “typical” according to PN! . First,
we consider the expected interpretation of r1: since eachd 2 ! has a positive probability both of belonging to r1,
and of not belonging to r1, and since membership in r1 is
determined independently for distinct d, we know by prob-
abilistic 0-1 laws that with probability 1Mwill contain in-
finitely many elements both within and outside r1.

Next, we consider the expected interpretation of r2. For
each given element d with r1(d), and each d0 with r1(d0)
there is a positive probability that r2(d; d0) holds. Since
this is independent for different d0, and because, according
to our first result, there are infinitely many candidates d0,
by the same 0-1 laws as above, we know that with prob-
ability 1 there will exist infinitely many d0 with r2(d; d0).
Since there are only countably many different d, this even
means that with probability 1 for every d with r1(d) there
will exist infinitely many d0 with r2(d; d0). For d with:r1(d), on the other hand, with probability 1 there exist nod0 with r2(d; d0). Thus, in a typical structureM we haveFr3(d)[M ] = 0 for dwith:r1(d), and Fr3 (d)[M ] = 1 ford with r1(d). Hence, for an arbitrary d 2 !: PN! (r3(d)) =PN! (r1(d)) = 0:4.

1In the usual measure-theoretic sense, not as appearing in def-
inition 2.3.

4.1 ALMOST SURE PROPERTIES

In the above derivation we have reasoned that with proba-
bility1 structuresM 2Mod!(S) will possess certain struc-
tural properties. Our first step in developing a general and
rigorous method for computing probabilities in PN! will be
to provide a well-defined class of such structural proper-
ties in terms of syntactic characterizations. This is done in
definition 4.1 We then, in theorem 4.5, show that each of
these structural properties is either satisfied by almost ev-
ery structure in Mod!(S), or by almost none. Theorem 4.5
allows us to ignore for the computation of probabilities inPN! all those structures that do not possess the canonical
structural properties. This, in conjunction with the fact that
in canonical structuresM the functions Fri (�)[M ] have a
very regular behavior (lemma 4.2), allows us to develop an
effective decision procedure for PN! in section 4.2.

The following definition introduces (variants of) concepts
that are commonly used in finite model theory: types and
extension axioms. Intuitively, an S- type � (v1; : : : ; vk) is
a formula that gives an explicit, complete description of anS-structure of size k.

Definition 4.1 Let S be a relational vocabulary. An S-type
in the variables v = v0; : : : ; vk is a maximal consistent con-
junction � (v) of atomic and negated atomic formulas overS in the variables v. A type � (v) is called proper if it con-
tains all the formulas vi 6= vj (vi; vj 2 v; i 6= j). A type�(v; w) extends the type � (v), written � � �, if every con-
junct of � is a conjunct in �.

Let � � � be proper types. The sentence8v(� (v)! :9w�(v; w)): (14)

is called a no-extension axiom for �; �. The set of all sen-
tences 8v(� (v)! 9�nw�(v; w)) (n 2 !) (15)

we call an !-extension axiom, and denote it by the (non
first-order) formula 8v(� (v) ! 9!w�(v; w)) (the quan-
tifier 9! thus is to be read as “there exist infinitely many”).
An extension theory is a consistent set �Ext of no-extension
and !-extension axioms, s.t. for every pair of proper types� (v) � �(v; w), �Ext contains (14) or (15).

The no-extension axiom (14) is in fact logically equivalent
to the simpler sentence :9vw�(v; w). To enable a more
uniform treatment of the two types of axioms, we here use
the syntactically more complicated form (14).

Lemma 4.2 Let F (v1; : : : ; vn) be an admissible probabil-
ity formula over S. Let �Ext be an extension theory for S.
LetM 2 Mod!(S) withM j= �Ext. Let d;d0 2 !jn j so
thatM j= � (d)^� (d0) for some type � . Then F (d)[M ] =F (d0)[M ].

7



The lemma is proved using a standard model-theoretic
back-and-forth argument, which shows that under the given
assumptions there is an automorphism ofM that maps d tod0. This means thatd and d0 satisfy the same first-order for-
mulas inM. The first-order theory of d inM uniquely de-
termines the value F (d)[M ].
The following definition and lemma are merely technical
tools that allow us to take somewhat more information
about extensions out of an extension theory, than we explic-
itly put in.

Definition 4.3 Let w = (w1; : : : ; wl). Let � (v) ��(v;w) be types. A generalized extension axiom is a for-
mula of the form8v(� (v)! Qw�(v;w))
where Q 2 f:9; 9=1; 9!g. The meaning of 9=1 is
to be read as “there exists exactly one tuple”, that of9! as “there exist infinitely many tuples”. Specif-
ically, 9!w1w2�(v; w1; w2) already is true when9=1w19!w2�(v; w1; w2) holds.

For the formulation of the lemma, and also for subsequent
use, we introduce the notation w v v as shorthand for the
formula ^w2w _v2v w = v.

Lemma 4.4 Let �Ext be an S-extension theory. Let � (v) ��(v;w) be S-types. Then�Ext j= 8v(� (v)! Qw�(v;w)); (16)

for either Q = :9, Q = 9=1, or Q = 9!. The case Q =9=1 holds exactly when �(v;w) j= w v v.

The proof of the lemma is fairly straightforward by reduc-
ing the generalized extension axiom to several no-extension
and !-extension axioms in the sense of definition 4.1. The
following is the main theorem in this section.

Theorem 4.5 Let N be an admissible relational Bayesian
network over S. For each i = 1; : : : ; k then there exists an
extension theory �N

Ext(Si) for Si with PN! (�N
Ext(Si)) = 1.

Proof: We proceed by induction on i = 1; : : : ; k. The
base case i = 1 is a simpler variation of the induc-
tion step, and is here omitted. Thus, let i > 1, and as-
sume that PN! (�N

Ext(Si�1)) = 1 for some extension theory�N
Ext(Si�1). In the following, for an Si�1-structureM, and

an Si-theory �, we write K(M;�) for K(M; R), whereR := fI(ri) � !jri j j (M; I(ri)) j= �g.
To prove the theorem for i, we show that there exists
an extension theory �N

Ext(Si), such that for every M j=�N
Ext(Si�1) K(M;�N

Ext(Si)) = 1: (17)

To prove (17) it is sufficient to show that for every pair� (v) � �(v; w) of proper Si-types we haveK(M; 8v(� (v)! Qw�(v; w))) = 1 (18)

for Q = :9, or Q = 9!. Since there are only countably
many such pairs �; �, from (18) we obtain (17) by letting�N

Ext(Si) be the collection of all extension axioms for which
(18) holds.

To show (18), we first partition � (v) and �(v; w) into two,
respectively four, conjuncts:� (v) � �Si�1 (v) ^ � ri (v)�(v; w) � �Si�1 (v) ^ � ri (v)^�Si�1 ;w(v; w) ^ �ri;w(v; w)
where �Si�1 (v) contains all conjuncts of � (v) that areSi�1-literals (including the (in-)equality formulas), � ri(v)
contains all ri-literals of � (v), �Si�1 ;w(v; w) contains allSi�1-literals of �(v; w) that contain the variable w, and�ri ;w(v; w) contains all ri-literals of �(v; w) containingw.

We now consider the slightly strengthened axiom�(Q) :� 8v(�Si�1 (v)!Qw(�Si�1 ;w(v; w)^ �ri ;w(v; w))) (19)

(Q 2 f:9; 9!g), which is equivalent to the finite collection
of extension axioms obtained by replacing �Si�1 (v) with�Si�1 (v)^� ri(v) in (19) for all possible choices of � ri (v).
Hence, when we showK(M; �(Q)) = 1 (20)

for Q = :9, or Q = 9!, we have shown (18) for the sameQ and all � (v) � �Si�1 (v).
To show (20), first consider the case thatM j= 8v(�Si�1 (v)! :9w�Si�1 ;w(v; w)): (21)

In this case (20) holds with Q = :9, and we are done. If,
in particular,M j= :9v�Si�1 (v), then (20) holds for bothQ = :9 and Q = 9!.

If (21) does not hold, then becauseM j= �N
Ext(Si�1),M j= 9!v�Si�1 (v) (22)

(by lemma 4.4), andM j= 8v(�Si�1 (v)! 9!(�Si�1 ;w(v; w)): (23)

Now consider a fixed tuple d with M j= �Si�1 (d). By
(23) there exist e1; e2; : : : 2 D s.t. M j= �Si�1 ;w(d; ei)
for i 2 !. In the conjunction �ri;w(d; ei) let f1; : : : ;fk be
the n-tuples over (d; ei) s.t. ri(fj) appears in �ri ;w(d; ei),
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and g1; : : : ; gl be the tuples for which :ri(gh) appears in�ri ;w(d; ei). ThenK(M; �ri;w(d; ei)) =kYj=1Fri (fj)[M ] lYh=1(1� Fri(gh)[M ]) =: p: (24)

By lemma 4.2, p is independent of the actual choice of d
and ei, as long asM j= �Si�1 (d) ^ �Si�1 ;w(d; ei).
Again, we now distinguishtwo cases. First assume that p =0. ThenK(M;:9w(�Si�1;w(d; w)^ �ri ;w(d; w)) �1�Xi2!K(M; �ri ;w(d; ei)) = 1: (25)

Now assume p > 0. ThenK(M; 9!w(�Si�1 ;w(d; w) ^ �ri ;w(d; w))) =K(M;\j�1 [i�j �ri;w(d; ei)) = 1: (26)

The last identity in (26) follows from the Borel-Cantelli
lemma, using that for i 6= j �ri ;w(d; ei) and �ri;w(d; ej)
are independent in Ari with respect to K(M; �) (because�ri ;w(d; ei) and �ri ;w(d; ej) do not share any common ri-
atom).

By our observation following (24), whether (25) or (26)
holds for d does not depend on the particular choice of d,
as long asM j= �Si�1 (d). Taking the conjunction over the
countably many d, we can finally say:K(M; �(:9)) = 1 (if p = 0 in (24)), orK(M; �(9!)) = 1 (if p > 0 in (24)): 2
The following lemma is closely related to the fact that in the
preceding proof the questionof whether to include�(:9) or�(9!) into the extension theory for Si was essentially re-
duced to the question of whether p in (24) is positive. We
now make this reduction somewhat more explicit, by show-
ing that we can “decide” �N

Ext via computation of certain
probabilities.

Lemma 4.6 Let N;�N
Ext(Si) be as in theorem 4.5. Let� (v) � �(v;w) be Si-types. Let d; e � ! be arbitrary

tuples with j d j=j v j, je j = jwj, and such that d satis-
fies the equality constraints in � (v), and (d; e) satisfies the
equality constraints in �(v;w). For�(Q) :� 8v(� (v)! Qw�(v;w)) (Q 2 f:9; 9=1; 9!g)
we then have

(a) �N
Ext j= �(9=1) iff �(v;w) j= w v v;

(b) �N
Ext j= �(:9) iffPN! (� (d)) = 0 orPN! (�(d; e)) = 0;

(c) �N
Ext j= �(9!) iff PN! (� (d)) = 0 or PN! (�(d; e)) > 0.

Proof: Part (a) is already covered by lemma 4.4. For parts
(b) and (c) first observe that �N

Ext(Si) j= �(:9) ^ �(9!)
iff �N

Ext(Si) j= :9v� (v). By symmetry, we have thatPN! (� (d)) = PN! (� (d0)) for all of the countably many tu-
ples d0 that satisfy the equality constraints in � (v). WithPN! (9v� (v)) = PN! ([d0� (d0)) we thus getPN! (� (d)) = 0
iff PN! (:9v� (v)) = 1 iff �N

Ext(Si) j= :9v� (v).
By analogous symmetry and countability arguments we
get PN! (�(d; e)) > 0 iff PN! (:9vw�(v;w)) = 0
iff PN! (�(:9)) = 0 iff PN! (�(9!)) = 1 iff�N

Ext(Si) j= �(9!). 2
4.2 COMPUTING THE PROBABILITIES

We now show how the insights gained in the preceding sec-
tion into the structure that, according to PN! , an infinite
structure M will almost certainly have enable us to com-
pute probabilities in PN! . The central insight is provided
by lemma 4.2. According to that lemma, when we evaluateFri(d)[M ] for some canonical M, we only need to know
the Si-type of d. This means that we can in effect replaceFri by a fundamentally simpler formula F �ri :
Theorem 4.7 Let N be an admissible relational Bayesian
network over S = fr1; : : : ; rkg with Pa(ri) �fr1; : : : ; ri�1g (i = 1; : : : ; k). There exists a relational
Bayesian networkN� over S with the following properties

(i) Pa(ri) � fr1; : : : ; ri�1g in N�.

(ii) Every probability formula F �ri in N� is of the formF �ri(v) = 8><>: q1 �1(v)
...qm �m(v) (27)

with qh 2 [0; 1] (h = 1; : : : ;m), and the �h(v) are a
complete list of the Pa(ri)-types of v.

(iii) PN�! = PN! .

Given N , the network N� can be computed effectively.

The salient feature of the probability formulas F �ri is that
they are essentially combination function free (even though,
in proper syntax, the distinction by cases in (27) would by
encoded by some “benign” combination functions). Specif-
ically, the formulaF �ri (v) does not contain any variables w
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other than v. In that sense, theorem 4.7 can be understood
as a kind of quantifier elimination result, that allows us to
get rid of the quantification over w by combination func-
tions combfj� j w; �jg. In practical terms, this means that
the probability of a statement �(d) can be computed with-
out considering any elements other than d. This is spelled
out in the following corollary, which is of central interest in
itself, and also plays an important role in the proof of the
theorem.

Corollary 4.8 Let N be an admissible relational Bayesian
network. Let �(d) be a boolean expression over ground S-
atoms. The probability PN! (�(d)) then is computable.

Proof: First observe that the computation ofPN! (�(d)) can
be reduced to finitely many computations of probabilitiesPN! (�(d)) for S-types �(v). The S-type �(v) can be writ-
ten as a conjunction ^ki=1�i(v) of Si-types �i. For d0 � d
let �i(d0) be the Si-type of d0 implied by �(d). ThenPN! (�(d)) =kYi=1PN! (�i(d) j �i�1(d)) =kYi=1 Yfd0�dj�i(d)j=ri (d0)gFri (d0)[�i�1(d0)] �Yfd0�dj�i(d)j=:ri (d0)g(1� Fri (d0)[�i�1(d0)]):
The terms Fri(d0)[�i�1(d0)], here stand for Fri(d0)[M ]
for an arbitraryM j= �N

Ext ^ �i�1(d0). Using the networkN� we can determine qh = Fri(d0)[�i�1(d0)] by looking
up the Pa(ri)-type �h that is implied by �i�1. 2
Proof of theorem 4.7: We show how to effectively con-
struct probability formulas F �ri over fr1; : : : ; ri�1g such
that for allM j= �N

Ext(Si�1), and all d 2 !jri j we getFri (d)[M ] = F �ri (d)[M ]: (28)

With theorem 4.5 it then follows that the network N� de-
fined by the probability formulas F �ri defines the same dis-
tribution as the original network N .

For the construction of F �ri assume that F �1 ; : : : ; F �ri�1 al-
ready have been constructed (the base case F �1 , again, is a
simpler variation of the induction step, and is here omitted).
We define F �ri by induction on the structure of Fri .
The first three cases – Fri being a constant, an indicator
function, or a convex combination are quite straightfor-
ward. We therefore turn directly to the case Fri (v) �
combfjF (v;w) j w; c(v;w)jg (to simplify matters slightly,
we here only consider the case of a single probability for-
mula within the combination function. The extension to the

general case is straightforward). By induction hypothesis,
we can assume that F (v;w) is in the form (27) with valuesp1; : : : ; pl for types �1(v;w); : : : ; �l(v;w) in some vocab-
ulary S� � Si�1. We now define Pa(ri) to be the smallest
subset ofSi�1 that containsS�, and for which�N

Ext provides
a complete set of extension axioms. In concrete terms, this
is Sj for j := maxfh j rh 2 S�g.
Now, let �h(v) be a Pa(ri)�type. We need to find the valueqh such that qh = Fri (d)[M ] (29)

for all M j= �Ext and d 2 !jri j withM j= �h(d). By
lemma 4.2 we know that qh only depends on �h, but not ond
orM (note that, whileFri is an S�- probability formula, we
really do need to fix the Pa(ri)[� S�]-type of d in order to
insure this invariance, because �N

Ext usually will not include
an extension theory for S�).

The first case to be considered for the computation of qh
is whether �N

Ext j= :9v�h(v). In that case an arbitrarily
chosen value for qh will satisfy (29). By lemma 4.6, we
can determine whether �N

Ext j= :9v�h(v) by computingPN! (�h(d)) for some test tuple d. This probability is de-
termined by the subnetwork Ni�1 containing all the Si�1-
nodes. By induction hypothesis (for the outer induction on
the network structure), N�i�1 already has been constructed,
so that by corollary 4.8, PN! (�h(d)) can be computed. IfPN! (�h(d)) = 0, we set, e.g., qh := 0, and are done with�h.

If PN! (�h(d)) > 0 we continue as follows. By definition,qh = Fri (d)[M ] = combA forA = fjF (d; e) j e; c(d; e)jg
(with d andM as in (29)). Thus, we need to determine A.
We do this by computing for each Pa(ri)-type �(v;w) the
contribution of those elements e to A that satisfy M j=�(d; e). Since d was assumed to be of type �h, we only
need to consider types � that extend �h. Also, because of
the restriction to e with c(d; e), only types �(v;w) with�(v;w) j= c(v;w) are relevant (note that either �(v;w) j=c(v;w), or �(v;w) j= :c(v;w)). There is at most one
such type �0(v;w) with �0(v;w) j= w v v. For that
type, there exists exactly one e0 with�0(d; e0), and �0 con-
tributes a single copy of F (d; e0)[M ] to A. The value ofF (d; e0)[M ] is given in our representation of F � by pj cor-
responding to the S�-type �j(v;w) = �0(v;w)� S�.

For � 6j= w v v, by lemma 4.6, we have that M j=:9w�(d;w) iffPN! (�(d; e)) = 0, andM j= 9!w�(d;w)
iff PN! (�(d; e)) > 0 for any test tuple e. As above, the
probabilities on the right hand sides of these equivalences
can be computed in the already constructed network N�i�1.
If PN! (�(d; e)) > 0, the type � contributes to A ! copies
of the value pj assigned by F � to arguments of type �� S�.
If PN! (�(d; e)) = 0, the type � does not contribute to A.
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After performing these computations for all rele-
vant types �, we obtain a representation of A of the
form A = fjph1 : �1; : : : ; phm : �mjg. where thephj 2 fp1; : : : ; plg, and �j 2 f1; !g with �j = 1 for at
most one j. Finally, we compute qh := combA 2
If we apply the transformation here described to our net-
work from example 2.9, the probability formulas of r1 andr2 remain essentially unchanged. In the construction ofF �r3(v) we will first obtain the new parent-set Pa(r3) =fr1; r2g. The values qj in the representation (27) are com-
puted as qj = 1 for fr1; r2g-types �j(v) with �j(v) j=r1(v), and qj = 0 for �j(v) j= :r1(v). This means that
in an additional step we can simplify F �r3 toF �r3(v) = � 1 r1(v)0 :r1(v):
This illustrates that the transformation N 7! N� not
only replaces probability formulas, but in the process also
changes the underlying network structure.

5 Infinite Domains: Recursive Networks

We now turn to the question of what part of the results of
sections 3 and 4 carry over to recursive RBNs. As might
be expected, in the case D = ! introduction of recursion
causes much more fundamental problems than was the case
for finite domains.

The first problem we are faced with is the existence of se-
mantics for a recursive RBN. Recall that we identified as
one main advantage of (non-recursive) RBNs their seman-
tic clarity, particularly the fact that simply adhering to the
syntactic rules for the construction of an RBN guarantees
the user that exactly one distribution PND will be defined.
This is true both for finite and infinite D. Turning to recur-
sive RBNs, in section 2.2 we found that for finite domains
the existence of semantics no longer is guaranteed, but that
a decision procedure for the well-definedness of PND ex-
ists in checking the well-foundedness of the relations �r
defined by formulas r-pa(v;w). One can show that in the
case D = (!; s) well-foundedness of �r on !jr j still en-
ables us to definePN! (though the construction is more com-
plicated than the one in section 3). It is unclear, however,
that it is possible, in general, to decide whether a given for-
mula r-pa(v;w) defines a well-founded relation�r on!jr j.
While the problem of decidability of well-foundedness of�r is still open, the following theorem tells us that even
in the (unlikely) event of a positive solution, not too much
would be gained, because the problem of ultimate interest,
computation of probabilities, will still be unsolvable.

Theorem 5.1 There does not exist an algorithm that, given
a recursive RBN N over S with defined semantics PN! as

input, enumerates all probabilities PN! (r(d)) for r 2 S,d 2 !jr j.
The theorem can be paraphrased as: there does not exist a
sound and complete proof system for recursive RBNs with
well-defined semantics over infinite domains.

Proof: We reduce the validity problem of first-order sen-
tences in arithmetic to the computation of probabilitiesPN! (r(d)). In order to fit into our relational framework,
we here code sentences in arithmetic by using a relational
vocabulary with unary relation symbols r0; r1 (rather than
constant symbols 0,1), and ternary relation symbols r+; r�
(rather than binary function symbols +; �). The standard
model N for the vocabulary Sar := fr0; r1; r+; r�g then is! with I(r0) = f0g, I(r1) = f1g, I(r+) = f(d; e; f) jd+ e = fg, and I(r�) = f(d; e; f) j d � e = fg.
Given an Sar-sentence �, we construct a network N� con-
taining a unary relation r�, so that PN! is defined, andPN! (r�(1)) = 1 iffN j= �. The non-enumerability of PN!
then follows from the non-enumerabilityof the theory ofN.N� is constructed as follows. We first define a network Nar

over Sar that assigns probability1 toN. This is achieved by
the probability formulasFr0 (v) � 1�maxfj1 j w; s(w) = vjgFr+ (v; w; z) � 8<: 1 (r0(w) ^ v = z)_r+(v; s�1(w); s�1(z))0 else

and similar formulas for Fr1 and Fr� . Here a somewhat
loose syntax has been used for Fr+ . It is quite straight-
forward, though, to transform it into a probability formula
proper. The dependency relations �r+ and �r� are well-
founded, and PNar! (N ) = 1, as desired.

Given the Sar-sentence �, according to lemma 2.6, we can
define a (non-recursive) probability formula F�(v), so that
for all d 2 !: F�(d)[N ] = 1 iffN j= �; F�(d)[N ] = 0
else. Adding a node r� labeled with F� to the network Nar

yields a network N� that, if N j= �, places probability 1
on the r�-extensionN� of N withN� j= 8vr�(v), and ifN j= :�, places probability 1 on the r�-extension N:�
ofN withN:� j= 8v:r�(v). Hence, PN�! (r�(1)) = 1 iffN j= �. 2
While theorem 5.1 is formulated as a result for recursive
RBNs, arguments similar to the one used in its proof clearly
could be applied to other probabilistic representation sys-
tems for distributions over infinite, structured domains.
Particularly systems like that of Ngo and Haddawy (1995)
that use Herbrand universes as underlying domains (which
in the special case of a single constant and a single unary
function symbol is essentially the same as (!; s)), provide
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a potential basis for carrying out the same argument. Ex-
act results along these lines, however, first require a more
detailed analysis of the first-order reasoning capabilities
within these systems, particularly of the question whether
they give rise to analogues of our lemma 2.6.

6 RELATED WORK AND CONCLUSION

Apart from the work by Ngo and Haddawy (1995) already
mentioned, examples of previously proposed probabilis-
tic representation and inference systems over infinite do-
mains include work on probabilistic context free gram-
mars (Pynadath & Wellman 1996) and stochastic programs
(Koller, McAllester & Pfeffer 1997). In both these frame-
works, distributions are defined over richly structured do-
mains (labeled trees, essentially). These works differ in
their semantic intent somewhat from the one of Ngo and
Haddawy, and the one presented here: they, like standard
Bayesian networks, are models of attributes of randomly
sampled individuals, only that individuals now come from
an infinite domain of distinguishable objects. This is to be
contrasted with our objective of modeling random relations
between multiple objects (taken from a uniform domain).
On a sufficiently high level of abstraction, of course, this
distinction is not very strict, since in our approach we can
also view a relation between elements of the domain as an
attribute of a randomly sampled complete structure.

For none of the frameworks mentioned here, decision pro-
cedures for general, complex queries have been given (in
the particular rich system of Koller et al. (1997) it is more-
over clear that none can exist). Main objective of the
present paper has been to show that in the case of RBNs
such a decision procedure exists. This was achieved by
showing that infinite random structures, as generated by
an RBN, with probability one will possess certain struc-
tural properties, and that therefore every distribution de-
fined over ! by a network N can also be defined by a net-
work N� of a particularly simple form. The main, non-
trivial, component of inference from N for domain ! is the
transformation of N toN�. OnceN� has been determined,
computation of PN�! (�(d)) for some query �(d) proceeds
without any reference to the underlying domain.
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