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Abstra
t
We give an overview of the relational Bayesian network mod-eling language. First the semanti
 
on
ept of a random rela-tional stru
ture model is introdu
ed, and then it is shown howsu
h models 
an be represented with relational Bayesian net-works. We 
onsider a number of inferen
e problems for rela-tional Bayesian networks that range from elementary probabilis-ti
 queries to the 
omputation of limit probabilities and learningproblems. For some of these inferen
e problems fully developedsolution algorithms are available, for others we des
ribe solutionstrategies by redu
tion to well-established logi
al inferen
e andnumeri
al optimization problems.



11 Introdu
tionNumerous proposals have been made for probabilisti
 models that integrateelements of �rst-order logi
al representation and inferen
e with the te
h-niques for tra
table probabilisti
 inferen
e provided by graphi
al models.Many of these proposals are based on the language of logi
 programming(Poole 1993, Sato 1995, Ngo & Haddawy 1997, Muggleton 1996, Cussens1999, Kersting & de Raedt 2001), others on the language of relationaldatabases (Friedman, Getoor, Koller & Pfe�er 1999, Koller 1999).Formal semanti
s for these frameworks 
an in most 
ases be given byprobability distributions on Herbrand bases. This 
an be a single dis-tribution on one (typi
ally in�nite) Herbrand base, or a set of distribu-tions on a 
lass of (typi
ally �nite) Herbrand bases. The �rst type ofsemanti
s is usually favored by the logi
 programming based approa
hes,whereas the latter underlies the database oriented framework (Friedman etal. 1999, Koller 1999), as well as the relational Bayesian network modellinglanguage (Jaeger 1997, Jaeger 2001).A more a

urate and re�ned des
ription of the se
ond type of semanti
sis provided by the de�nition of a probabilisti
 relational model as given in(Jaeger 2001). In order to prevent a possible 
onfusion with Friedman etal.'s (1999) probabilisti
 relational models, we here restate this de�nitionintrodu
ing a di�erent name. In this de�nition and in the remainder of thispaper we use ModD(S) to denote the set of all relational stru
tures D thatinterpret the relations from the vo
abulary (or signature) S over the �nitedomain D = fd1; : : : ; dng. Also, Mod�n(S) denotes the 
lass of all �niterelational stru
tures for S. In logi
 programming terminology, ModD(S)is the set of Herbrand interpretations for S over the Herbrand universefd1; : : : ; dng.De�nition 1.1 Let S;R be two sets of relation symbols. The elementsof S are 
alled the prede�ned relations ; the elements of R are 
alled theprobabilisti
 relations. A random relational stru
ture model for S and R isa partial mapping P that assigns to S-stru
tures D with �nite domain Da probability distribution P (D) over ModD(R). In the sequel we write PDfor P (D), and also 
all su
h a single distribution an instan
e of the randomrelational stru
ture model.In the sequel we use the notational 
onvention that relations in S aredenoted with names in itali
s, or standard relation symbols like <;�; : : : ,whereas relations in R are denoted with names in typewriter font.Example 1.2 AMarkov 
hain over states s1; : : : ; sl de�nes for every n 2 Na probability distribution on state sequen
es of length n. This is a ran-dom relational stru
ture model for a single binary prede�ned relation <,and unary probabilisti
 relations s1; : : : ; sl: the distribution PD is de�nedwhenever < is interpreted in D as a linear order. If jD j = n, then statesequen
es of length n 
an be identi�ed with \
olorings" of D by the unaryrelations s1; : : : ; sl, i.e. interpretations of the si over D in whi
h for ev-ery d 2 D exa
tly one relation si is true. For every E 2 ModD(R) thenPD(E) = p if E en
odes a state sequen
e of probability p (p = 0 if E is nota 
oloring).Example 1.3 A random graph is 
onstru
ted by inserting edges randomlybetween nodes d1; : : : ; dn. More pre
isely, a random graph model is givenby de�ning for ea
h n 2 N a probability distribution on all graphs with



2n nodes. The most prominent su
h model is the Erd�os-Renyi model, inwhi
h for every n is de�ned an edge probability p(n), and a graph E withn nodes and k edges has probability p(n)k(1 � p(n))n2�k. Su
h a randomgraph model is a random relational stru
ture model with S = ; and a singlebinary probabilisti
 (edge-) relation e.Markov 
hains and random graphs are \pure" mathemati
al examplesfor random relational stru
ture models. More \real-world" examples will begiven in se
tion 2. It should be noted however, that also dynami
 Bayesiannetworks (Dagum, Galper & Horvitz 1992), hidden Markov models, and(in a slightly less obvious way) sto
hasti
 
ontext-free grammars 
an beformalized as random relational stru
ture models.In this paper we give a survey of the language of relational Bayesiannetworks (Jaeger 1997) for the representation of random relational stru
turemodels. We dis
uss a number of relevant inferen
e problems that one 
anformulate for random relational stru
ture models, and their solutions basedon relational Bayesian network representations. We review results from(Jaeger 1997, Jaeger 1998a, Jaeger 2001), and indi
ate solution approa
hesto some new inferen
e and learning problems. In this paper we emphasizethe logi
al nature of relational Bayesian networks, and highlight some of the
onne
tions that exist between the investigation of random relational stru
-ture models with relational Bayesian network representations, and topi
s in�nite model theory (Ebbinghaus & Flum 1999). A more pra
ti
e-orienteda

ount that fo
uses on algorithmi
 aspe
ts is given in (Jaeger 2001).2 RepresentationThe 
ore instrument for the representation of random relational stru
turemodels with relational Bayesian networks is the probability formula. Thereare a number of ways to look at probability formulas. One 
an see themas a fun
tional programming language for the 
omputation of entries in the
onditional probability tables of a Bayesian networks representing parti
ularmodel instan
es. Here we shall emphasize their analogy to formulas inpredi
ate logi
. A predi
ate logi
 formula �(v) 
ontaining symbols from thesignatures S and R, and quanti�ers from a set � (
ontaining the basi
 �rst-order quanti�ers 9;8, but possibly also a number of generalized quanti�ers)
an be evaluated over a S;R-stru
ture F for a tuple d � D to 
omputea truth value �(d)[F ℄ 2 ftrue; falseg (or, in more standard notation, tode
ide whether F j= �(d) or F 6j= �(d)). A probability formula F (v) forthe vo
abularies S;R is evaluated in a similar fashion for a tuple d over F ,but yields a probability value: F (d)[F ℄ 2 [0; 1℄.PSfrag repla
ements d1 d2d3 d4Figure 1: A small relational stru
tureTo introdu
e the general 
avor of probability formulas and their analogy



3to logi
al formulas, we 
onsider an informal example �rst. Figure 1 showsa small relational stru
ture D for D = fd1; d2; d3; d4g and a signature S
ontaining a binary relation edge, and a unary relation blue (indi
ated byshaded nodes). Now 
onsider the �rst-order predi
ate logi
 formula�(v) : 9w(edge(w; v) ^ blue(w)): (1)This is a formula in one free variable v, and therefore de�nes for everydi 2 D a truth value �(di)[D℄ 2 ftrue; falseg. We 
an view the formula asde�ning a new relation has-blue-prede
essor. Moreover, the formula also 
anbe read as an operational rule for the 
omputation of truth values �(di)[D℄:\
he
k for every domain element dj whether edge(dj ; di) and blue(dj) aretrue. If the answer is yes for at least one dj , then �(di) is true".Now suppose we do not want to des
ribe a relation has-blue-prede
essorthat is deterministi
ally de�ned by the relations edge and blue, but a relationinherits-blueness that is true with a 
ertain probability for ea
h di. Morespe
i�
ally, assume that inherits-blueness is true with probability 1 �0:7l for a domain element that has l blue prede
essors, i.e. we assume anoisy-or model a

ording to whi
h all blue prede
essors independently 
auseinherits-blueness to be
ome true with probability 0.3. This probabilisti
relation now is de�ned with a probability formulaF (v) : noisy-orfj0:3 j w; edge(w; v) ^ blue(w)jg (2)This formula is an expression in the formal syntax of probability formulasde�ned below. For every di (2) provides an (operational) de�nition of aprobability value F (di)[D℄: \for ea
h dj for whi
h edge(dj ; di) ^ blue(dj)is true, add a value 0.3 to a multiset of probability values. Combine theresulting 
olle
tion of probability values with noisy-or".Noisy-or, as used in this example, is an a 
ombination fun
tion in thesense of the following de�nition.De�nition 2.1 A 
ombination fun
tion is any fun
tion that maps �nitemultisets with elements from [0,1℄ into [0,1℄.We use bra
es jg; fj to denote multisets: if qi 2 [0; 1℄ for all i fromsome index set I , then fjqi j i 2 I jg denotes the multiset that 
ontainsjfi 2 I j qi = rgj 
opies of r 2 [0; 1℄. The two most important 
ombinationfun
tions for pra
ti
al modelling problems arenoisy-or : n-ofjqi j i 2 I jg := 1�Qi2I(1� qi)mean : meanfjqi j i 2 I jg := 1jIjPi2I qi:The syntax of probability formulas 
an now be de�ned. In this de�nitionwe 
all an S-
onstraint any boolean 
ombination of atomi
 formulas s(v)for symbols s 2 S, and variables v (no 
onstant symbols are allowed inS-
onstraints).De�nition 2.2 Let S;R be sets of relation symbols, � a set of 
ombinationfun
tions. The 
lass of (S;R;�)-probability formulas is indu
tively de�nedas follows.(i) (Constants) Ea
h q 2 [0; 1℄ is a probability formula.(ii) (Indi
ator fun
tions) For ea
h r 2 R, and every jr j-tuple v of variables,r(v) is a probability formula.



4(iii) (Convex 
ombinations) When F1; F2; F3 are probability formulas, thenso is F1F2 + (1� F1)F3.(iv) (Combination fun
tions) When F1; : : : ; Fk are probability formulas,
omb2 �, v;w are tuples of variables, and 
(v;w) is an S-
onstraint,then 
ombfjF1; : : : ; Fk j w; 
(v;w)jgis a probability formula.Our �rst example formula (2) is a (fedge; blueg; ;; fnoisy-org)- proba-bility formula that is 
onstru
ted in two steps using (i) and (iv). A quitesimilar, but semanti
ally rather di�erent probability formula isF (v) : noisy-orfj0:3 � blue(w) + 0:7 � 0 j w; edge(w; v)jg: (3)Here S = fedgeg, R = fblueg, � = fnoisy-org, and F is 
onstru
ted using(iii) and (iv) from the three basi
 formulas 0, 0.3 and blue(w).There is a 
lose 
orresponden
e between the 
onstru
tion rules for prob-ability formulas and the 
onstru
tion rules for predi
ate logi
 formulas: Con-stants are the probabilisti
 extensions of logi
al 
onstants true and false. In-di
ator fun
tions are relational atoms. Convex 
ombinations play the roleof Boolean 
onne
tives. Finally, a 
ombination fun
tion 
orresponds to aquanti�er (that binds the variables w).Assuming for the moment that we are given a S;R-probability formulaF (v), a S;R -stru
ture F , and d � D, it is straightforward to de�ne thevalue F (d)[F ℄ 2 [0; 1℄ by indu
tion on the stru
ture of F : for indi
atorfun
tions F = r(v) one de�nes r(d)[F ℄ = 1 i� F j= r(d), and r(d)[F ℄ = 0,else. For 
ombination fun
tions F = 
ombfj : : : jg, one applies 
omb to themultisets of values Fi(d;d0)[F ℄ for i = 1; : : : ; k, and all d0 with F j= 
(d;d0).The 
omputation of F (d)[F ℄ in this way leads to a number of evaluationsof indi
ator fun
tions r0(d0) for r0 2 R and d0 � D. For F as de�ned by (3)and F as in �gure 1, for instan
e, the 
omputation of F (d2)[F ℄ requires theevaluation of blue(d1) and blue(d3); the 
omputation of F (d4)[F ℄ the eval-uation of blue(d2). What indi
ator fun
tions need to be evaluated only de-pends on the probability formula F and the interpretations of the S-relationsin F , but not the interpretations of the R-relations (these determine the re-sults of the evaluations). Writing D for the underlying S-stru
ture of F ,we 
an thus de�ne Pa(F (d)[D℄) as the set of ground R- atoms that will beevaluated in the 
omputation of F (d)[F ℄. If I(Pa(F (d)[D℄)), now, is theinterpretation in F of the ground atoms in Pa(F (d)[D℄), then all we need toknow about F for the 
omputation of F (d)[F ℄ is D and I(Pa(F (d)[D℄)). Wetherefore write F (d)[D; I(Pa(F (d)[D℄))℄ for F (d)[F ℄. The probability valueF (d)[D; I(Pa(F (d)[D℄))℄ now 
an be used as the 
onditional probability ofsome ground atom r(d0) 62 Pa(F (d)[D℄) given D and I(Pa(F (d)[D℄)).Our strategy for de�ning random relational stru
ture models with prob-ability formulas now is simply to assign to every n-ary r 2 R one S;R-probability formula Fr(v1; : : : ; vn). We 
all the resulting set� = fFr(v1; : : : ; vjr j) j r 2 Rg (4)a Relational Bayesian Network. If the dependen
y relationr(d) ��;D r0(d0) :, r0(d0) 2 Pa(Fr(d)[D℄)



5on ground R-atoms is a
y
li
, then � de�nes a probability distribution P�Don ModD(R) by letting for E 2 ModD(R)P�D (E) := Yr2R Yd:Ej=r(d)Fr(d)[D; I(Pa(F (d)[D℄))℄Yd:E6j=r(d)(1� Fr(d)[D; I(Pa(F (d); [D℄))℄) (5)A relational Bayesian network � thus represents the random relationalstru
ture model D 7! P�D (D 2 Mod�n(S) :��;D is a
y
li
).Ffather-in-pedigree(v) = noisy-orfj1 j u; father(u; v)jgFmother-in-pedigree(v) = noisy-orfj1 j u;mother(u; v)jgFA�from�father(v) = meanfjFA(u); MA(u) j u; father(u; v)jgFA�from�mother(v)= meanfjFA(u); MA(u) j u;mother(u; v)jgFFA(v) = Ffather-in-pedigree(v) � FA�from�father(v)+(1� Ffather-in-pedigree(v)) � 1=3FMA(v) = Fmother-in-pedigree(v) � FA�from�mother(v)+(1� Fmother-in-pedigree(v)) � 1=3Table 1: Geneti
 Example
PSfrag repla
ementsd1d2d3d4

d1A=a d2a=a d3A=Ad4A=a d5a=Ad6A=a d7A=AFigure 2: PedigreeExample 2.3 Figure 2 shows a (partial) pedigree for seven individualsd1; : : : ; d7. The pedigree is spe
i�ed using a binary father relation (indi
atedby solid arrows), and a binarymother relation (indi
ated by broken arrows).In this pedigree, both father and mother are known for individuals d4 andd7. For all other individuals only one or no parents are known.Also represented in the pedigree is information on a gene that has twoalleles A and a. The notation x=y here represents an ordered genotypeand stands for the fa
t that x was inherited from the father, and y from themother. This geneti
 information 
an be represented by two unary relations



6(or attributes) FA and MA that hold for those individuals that have inheritedallele A from their father, respe
tively mother. Thus, for instan
e, FA(d5)is false and MA(d5) is true.Table 1 now shows a relational Bayesian network that en
odes a prob-abilisti
 model for the relations R = fFA; MAg given the relations S =ffather;motherg. A

ording to the formula FFA the probability that d inher-its A from his/her father is determined as follows: �rst it is determined bythe subformula Ffather-in-pedigree whether the father of d is in the pedigree(using the 
onvention that noisy-or evaluates to 0 when applied to an emptymultiset, one sees that Ffather-in-pedigree(d) evaluates to 0 if father(u; d) doesnot hold for any u, and to 1 otherwise). If d's father is in the pedigree, thenthe probability of FA(d) is determined using the formula FA�from�father(v),whi
h evaluates to meanfj1; 1jg = 1 if both FA and MA are true for d's father,to meanfj1; 0jg = 1=2 if only one of FA and MA is true, and to meanfj0; 0jg = 0if neither is true. If d's father is not in the pedigree, then FA(d) is assigneda base rate probability 1/3. In exa
tly the same way the probability forMA(d) is determined.Note that even though table 1 shows six probability formulas, it reallyrepresents a relational Bayesian networks 
omposed of the two formulasFFA and FMA. The other four formulas are only subformulas of these twoformulas whi
h are displayed separately for better readability, but that donot represent separate probabilisti
 relations father-in-pedigree, et
.The formula Ffather-in-pedigree in the pre
eding example is an indi
atorfun
tion for the �rst-order formulas 9ufather(u; v), i.e. for any S-stru
tureD and d 2 D:Ffather-in-pedigree(d)[D℄ = 1 , D j= 9ufather(u; d)As shown in (Jaeger 1997), one 
an 
onstru
t for any �rst-order formula �(v)over the vo
abulary S[R a S;R; fnoisy-org-probability formula F�(v), su
hthat for every S [ R-stru
ture F and d � D: F�(d)[F ℄ 2 f0; 1g, andF�(d)[F ℄ = 1 , F j= �(d)It is this fa
t that makes the full expressive power of �rst-order logi
 avail-able for probabilisti
 modelling in relational Bayesian networks. In the gen-eral mapping � 7! F� (existential) quanti�ers are translated into noisy-or
ombination fun
tions. This is not very surprising, as (existential) quan-ti�
ation is basi
ally a (deterministi
) or, and noisy-or applied to multisetswith 0,1-elements just redu
es to or. In other words, we have found a
lose 
orresponden
e between �rst-order logi
al formulas, and fnoisy-org-probability formulas. This raises the question whether there are other nat-ural 
orresponden
es between logi
s that use generalized quanti�ers (e.g.se
ond-order or Lindstr�om quanti�ers (Ebbinghaus 1985)), or extend �rst-order logi
 in some other way (e.g. �xpoint logi
s (Ebbinghaus & Flum1999)), and probability formulas using other 
ombination fun
tions in ad-dition to noisy-or. Unfortunately, it seems that other natural 
ombinationfun
tions do not lead to 
orresponden
es to other logi
s: while it is possibleto design spe
ial-purpose 
ombination fun
tions so that translations � 7! F�
an also be obtained for � in extended logi
s, it is not the 
ase that natural
ombination fun
tions like mean or max give rise to su
h translations.We 
lose this se
tion with a se
ond example that has a somewhat di�er-ent 
avor than example 2.3, and illustrates some di�erent modelling te
h-niques.
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A

B

C

1 2 3 4 5

PSfrag repla
ementsd1d2d3d4d1A=ad2a=ad3A=Ad4A=ad5a=Ad6A=ad7A=A Figure 3: Robot environmentExample 2.4 Figure 3 shows a grid map that a robot may use to navigatein an oÆ
e environment. The map distinguishes 12 possible lo
ations, whoserelative positions in a 
oordinate system are de�ned with binary relationsleft-neighbor (solid arrow), and down-neighbor (dotted arrows). In lo
ationsB3 and B5 are pla
ed reading tables. The map, thus, 
an be seen as a rela-tional stru
ture for the vo
abulary S = fleft-neighbor; down-neighbor; tableg.To ea
h reading table belongs one 
hair, whi
h may be pla
ed in any lo
a-tion dire
tly adjoining the table, i.e. in one of A3; B2; B4; C3 for the 
hairbelonging to the table at B3, and in A5 or B4 for the 
hair belonging to thetable at B5. We now want to 
onstru
t a probabilisti
 model for what lo
a-tions are free, and what lo
ations are blo
ked (by either a table or a 
hair) inthis environment. More pre
isely, we want to represent a random relationalstru
ture model that takes a map in form of an S-stru
ture, and returns aprobability distribution over the interpretations of R = fblo
kedg. How-ever, dire
tly representing this as a S;R- random relational stru
ture modelwith a S;R-relational Bayesian network will be impossible. Main reason forthat is that there is a mutual dependen
y between e.g. blo
ked(C3) andblo
ked(A3), and we have no way to turn this symmetri
 dependen
y intoan a
y
li
 dependen
y relation ��;D by a pure S;R - relational Bayesiannetwork �.We 
an avoid this problem by assuming that there is an additionalorder relation < given in S, whi
h de�nes an arbitrary total order on D.From a pra
ti
al modelling point of view, this assumption is 
ompletelyunproblemati
, as we 
an always impose some order on D, and we 
an usethis order to make dependen
y relations a
y
li
 in su
h a way that theresulting distribution on R does not depend on the parti
ular order 
hosen.In addition to the auxiliary relation< added to S, the relational Bayesiannetwork in table 2 also adds an auxiliary binary relation blo
ked-by-tableto R, where blo
ked-by-table(u; v) represents the fa
t that u is the po-sition of a table, and v is the lo
ation adja
ent to u that is blo
ked by the
hair belonging to u. Given the interpretation of blo
ked-by-table the in-terpretation of blo
ked is deterministi
ally de�ned by the formula Fblo
ked,whi
h is of the form F�, where � is a �rst-order formula that says that vis a table, or blo
ked by a 
hair belonging to some table. The distribu-tion of blo
ked-by-table is determined by the formula Fblo
ked-by-table .For better readability, we again have introdu
ed some abbreviations: �rst,



8we de�ne two standard �rst-order logi
 formulas is-table-neighbor and pred-sele
ted that in the subsequent probability formulas are used to de�ne sub-formulas of the type F�, and for the de�nition of an S-
onstraint. Withthe de�nition of Fsele
ted-from-remaining and Fsele
ted-neighbor we again sim-ply introdu
e names for subformulas that appear in the de�nition of thetwo probability formulas Fblo
ked-by-table and Fblo
ked that 
onstitute therelational Bayesian network.To 
ompute the probability that blo
ked-by-table(u; v) holds, one�rst evaluates the subformula Fis�table�neighbor(u; v), whi
h returns 1 if uis a table lo
ation, and v adja
ent to u, and 0 else. In the se
ond 
ase, theprobability for blo
ked-by-table(u; v) is 0. In the �rst 
ase, this proba-bility is 
omputed with the subformula Fsele
ted-neighbor(u; v). To evaluateFsele
ted-neighbor(u; v), one �rst 
omputes Fpred-sele
ted(u; v), whi
h returns 1i� there is another lo
ation w adja
ent to u that pre
edes v in the order onD and for whi
h blo
ked-by-table(u;w) is true. If this is not the 
ase,then Fsele
ted-neighbor(u; v) evaluates to 1=k, where k is the number of lo
a-tions adja
ent to u that do not pre
ede v in the order on D. Intuitively,Fsele
ted-neighbor(u; v) randomly 
hooses one neighbor of u by going throughu's neighbors in as
ending order, and sele
ting neighbor v with probability1=k if no neighbor has already been sele
ted. By this pro
ess, exa
tly oneneighbor will be sele
ted, ea
h with equal probability.is-table-neighbor(u; v) =table(u) ^ (left-neighbor(u; v) _ left-neighbor(v; u)_down-neighbor(u; v) _ down-neighbor(v; u))pred-sele
ted(u; v) =9w(w < v ^ blo
ked� by� table(u;w))Fsele
ted-from-remaining(u; v) =meanfjv = w j w; (v < w _ v = w) ^ is-table-neighbor(u;w)jgFsele
ted-neighbor(u; v) =Fpred-sele
ted(u; v) � 0+(1� Fpred-sele
ted(u; v))Fsele
ted-from-remaining(u; v)Fblo
ked�by�table(u; v) =Fis-table-neighbor(u; v) � Fsele
ted-neighbor(u; v)+(1� Fis-table-neighbor(u; v)) � 0Fblo
ked(v) =Ftable(v)_9ublo
ked�by�table(u;v)(v)Table 2: Robot navigation example3 Inferen
e ProblemsWe now look at a number of inferen
e problems for relational Bayesian net-works. All of these are, in fa
t, inferen
e problems for random relationalstru
ture models, i.e. they arise for whatever representation language one



9uses for these models. As our solution methods are based on relationalBayesian network representations, we here nevertheless formulate them di-re
tly in terms of relational Bayesian networks.3.1 Elementary Inferen
eBy elementary inferen
e problems we mean inferen
e problems that refer toone model instan
e PD at a time, and therefore 
an be solved by elemen-tary data stru
tures and algorithms for handling su
h distributions, notablystandard Bayesian networks and their inferen
e algorithms. The most im-portant inferen
e problem of this kind is the single-instan
e probabilisti
inferen
e problem:Input: A S;R- relational Bayesian network �A S-stru
ture DA query P (r0(d0) = �0 j r1(d1) = �1; : : : ; rl(dl) = �l) =?with ri 2 R, di � D, �i 2 ftrue; falseg.Output: The probability valueP�D (r0(d0) = �0 j r1(d1) = �1; : : : ; rl(dl) = �l)if ��;D is a
y
li
, and a message \P�D unde�ned" otherwise.This inferen
e problem 
an be solved using the traditional approa
hof knowledge based model 
onstru
tion: one tries to 
onstru
t a standardBayesian network with one node for ea
h ground atom r(d) 
onstru
tiblefrom the relations r 2 R and elements d � D. This 
onstru
tion will fail(be
ause 
y
les are introdu
ed among the nodes of the network) i� ��;D is
y
li
. Otherwise one obtains a Bayesian network representation of P�D . Thequery probability 
an then be 
omputed using standard inferen
e algorithmsfor Bayesian networks.A straightforward implementation of su
h a 
onstru
tion would simply�rst determine for ea
h ground atom r(d) the set Pa(Fr(d)[D℄), and then
reate a 
onditional probability table for r(d) given Pa(Fr(d)[D℄) by 
om-puting Fr(d)[D; I(Pa(Fr(d)[D℄))℄ for ea
h instantiation I of Pa(Fr(d)[D℄).This, however, will lead to Bayesian networks whose size grows exponen-tially in the size of the stru
ture D, be
ause the size of Pa(Fr(d)[D℄) 
angrow polynomially in the size ofD. Fortunately, one usually 
an do better byusing a more sophisti
ated 
onstru
tion algorithm, in whi
h auxiliary nodesare introdu
ed that intuitively 
orrespond to intermediate results in the re-
ursive evaluation of the probability formulas. This optimized 
onstru
tion
an be applied to relational Bayesian networks that only use multilinear
ombination fun
tions:De�nition 3.1 A 
ombination fun
tion is 
alledmultilinear if for all n � 1,and for all i1; : : : ; in 2 f0; 1g there exists �i1;::: ;in 2 R, su
h that for allp1; : : : ; pn 2 [0; 1℄
ombfjp1; : : : ; pnjg = X(i1;::: ;in)2f0;1gn �i1;::: ;inpi11 � � � pinn :Theorem 3.2 (Jaeger 2001) Let � be a S;R;�-relational Bayesian networkwith � only 
ontaining multilinear 
ombination fun
tions. For every D 2Mod�n(S) for whi
h P�D is de�ned there exists a standard Bayesian networkN�D representing P�D whose size is polynomial in the size of D.



10This theorem is not 
onstru
tive, and does not give rise dire
tly to a
onstru
tion algorithm for the Bayesian network. Indeed, su
h a general
onstru
tion algorithm does not exist: 
onsider the 
ombination fun
tionhalts de�ned by haltsfpi j i 2 Ig = 1 i� jI j is the G�odel number of aTuring ma
hine that halts, and haltsfpi j i 2 Ig = 0 otherwise. This isa multilinear 
ombination fun
tion, but for relational Bayesian networks �that use this fun
tion the mapping D 7! N�D will not be 
omputable. Con-stru
tive versions of theorem 3.2 therefore have to be obtained for suitablesubsets of multilinear 
ombination fun
tions. In (Jaeger 2001) an e�e
tive
onstru
tion method is developed for the 
ombination fun
tions noisy-orand mean.Figure 4 shows the network 
onstru
ted for the relational Bayesian net-work of table 2 and the input stru
ture of �gure 3 augmented by an order< on the lo
ations. The shaded nodes labelled with single lo
ations XKin this �gure are the nodes for the ground atoms blo
ked(XK); the un-�lled nodes labelled with pairs of lo
ations (XK;Y L) are the nodes forthe ground atoms blo
ked-by-table(XK;YL), and the small unlabellednodes are auxiliary nodes added in the 
onstru
tion (here they all are de-terministi
 or nodes). The network shown was generated for an order <with A3 < B4 < C3 < B2 and B4 < A5. Other orders would gener-ate slightly di�erent but stru
turally very similar networks. The networkshown in �gure 4 is somewhat simpli�ed from that originally produ
ed bythe algorithm: the original network also 
ontained nodes for all the otherground atoms blo
ked(XK) and blo
ked-by-table(XK;YL) not shownin the �gure. These, however, all are isolated nodes with probability zero ofbeing true. The original network also 
ontained further auxiliary nodes thatare not shown here (and that do not signi�
antly 
hange the basi
 stru
tureof the network).
B4

A5(B5,A5)
(B3,C3) C3

(B3,B2) B2

(B3,B4)

(B3,A3) A3

(B5,B4)

PSfrag repla
ementsd1d2d3d4d1A=ad2a=ad3A=Ad4A=ad5a=Ad6A=ad7A=A Figure 4: Standard Bayesian network 
onstru
ted for example 2.4It is not immediately obvious that solving the elementary inferen
e prob-lem via the 
onstru
tion of a standard Bayesian network is a good approa
h.One might expe
t that based on the high-level representation language ofrelational Bayesian networks one 
an also develop high-level inferen
e te
h-niques, whi
h dire
tly operate on probability formulas, and do not �rst
ompile the low-level Bayesian network model. It turns out, however, that



11with su
h more sophisti
ated algorithms we 
annot hope to improve theworst-
ase time 
omplexity of inferen
e via standard Bayesian network 
on-stru
tion.Theorem 3.3 (Jaeger 2000) If ETIME6= NETIME then there exists a;; R; fnoisy-org-relational Bayesian network �, su
h that elementary infer-en
e for � is not polynomial in the size of D.3.2 Non-elementary Inferen
eBy a non-elementary inferen
e problem we mean any inferen
e problem thatrefers to a global property of a random relational stru
ture model, not onlyone of its instan
es.3.2.1 Global semanti
sOne basi
 question one may have about a relational Bayesian network � is:is P�D de�ned for all intended input stru
turesD? To illustrate this question,
onsider example 2.3. The relational Bayesian network in table 1 is meantto be applied to input stru
tures D that en
ode pedigrees, i.e. S-stru
turesin whi
h the father and mother relations are a
y
li
, every element in thedomain has at most one father - and one mother -prede
essor, and perhapssome further restri
tions are satis�ed. It is easily veri�ed in this 
ase that� as given in table 1 does de�ne an a
y
li
 relation ��;D for all su
h D,and in fa
t for a mu
h larger 
lass of stru
tures D. In general, we are fa
edwith the following global semanti
s inferen
e problem:Input: A S;R-relational Bayesian network �.A 
lass D �Mod�n(S) of S-stru
turesOutput: \Yes" if P�D is de�ned for all D 2 D,\no" otherwise.This des
ription of our inferen
e problem is not quite 
omplete, as wealso need to say how to en
ode the 
lass D of input stru
tures. The 
anon-i
al way to do this is to represent D by some logi
al senten
e �(D) so thatD = fD 2 Mod�n(S) j D j= �(D)g. It will not be suÆ
ient to use �rst-ordersenten
es � for this purpose, as �rst-order logi
 is not expressive enough toen
ode a
y
li
ity 
onditions that will usually be part of the de�nition of D(as e.g. the a
y
li
ity of the father and mother relations in example 2.3,and the a
y
li
ity of the left-neighbor and down-neighbor relations in exam-ple 2.4). One of the weakest logi
s that will allow us to en
ode the requireda
y
li
ity 
onditions is transitive 
losure logi
. This is an extension of �rst-order logi
 that allows to represent statements of the form \(a; b) is in thetransitive 
losure of the relation de�ned by the formula �(u; v)" (see e.g.(Ebbinghaus & Flum 1999)). For example 2.3 we 
an then express thea
y
li
ity of the father relation by \there does not exist u su
h that (u; u)is in the transitive 
losure of father(v; w)". Given �, the a
y
li
ity of ��;D,too, 
an be expressed by a senten
e in transitive 
losure logi
, i.e. there isa senten
e  (�), su
h that for all D 2 Mod�n(S):��;D is a
y
li
 , D j=  (�):The solution of our inferen
e problem now 
an be seen to be equivalent to
he
king whether the senten
e�(D)!  (�) (6)



12is valid in all �nite S-stru
tures. It thus be
omes 
lear that this problem
annot be de
idable in general, be
ause even for pure �rst-order senten
es �it is not de
idable whether � is satis�able by a �nite model (Trahtenbrot'sTheorem). From this the unde
idability of our problem follows, be
ause forthe � 
onsisting of the single probability formula Fr(v) = r(v) we get that(6) is valid i� �(D) is not satis�able.We 
an thus only hope to solve the global semanti
s inferen
e problemfor 
ertain restri
ted problem 
lasses. One sub
lass for whi
h one may
onje
ture the inferen
e problem to be solvable is given by the 
ase whereS only 
ontains unary relation symbols. Results on the de
idability of �rst-order and monadi
 se
ond-order logi
 for vo
abularies of unary relationsymbols indi
ate that transitive 
losure logi
, too, is de
idable in this 
ase.3.2.2 Limit ProbabilitiesSuppose we know that P�D is de�ned for every D 2 D, and let D1;D2; : : : ;with D1 � D2 � : : : be an in�nite sequen
e of stru
tures from D. Oneshould think of the Di as a sequen
e of \similar" stru
tures of in
reasingsize. If d � D1, then we 
an evaluate the query P (r(d)) =? for every inputstru
ture Di, and 
onsider the limiting behavior ofP�Di(r(d))as i!1. This limiting behavior 
an be of interest for a number of reasons.Existen
e of the limit 
an be interpreted as a robustness property of themodel �; the 
on
rete value of the limit (if it exists) 
an be used as anapproximation of the true query probability P�D (r(d)) if we are unable tospe
ify the input stru
ture D exa
tly, and only know that it is some elementin the sequen
e Di.To illustrate these issues, re
onsider example 2.3. Given some pedi-gree D1 and d 2 D we 
an 
ompute the probability P�D1(FA(d)). Next wemay add some additional an
estors or des
endants of d to the pedigree, ob-taining an extended pedigree D2. In this pedigree we 
an again 
omputeP�D2(FA(d)), whi
h we would regard as a better approximation to the trueprobability of FA(d) than the �rst value. Continuing in this manner, we ob-tain the sequen
e P�Di(FA(d)) of probability values. We would now expe
tfrom our model � that this sequen
e 
onverges to a limiting value (other-wise it would be impossible to justify the values 
omputed for any spe
i�
input D as an approximation to the \true" probabilities). Moreover, wewould like to 
ompute this limit. In this parti
ular example it is easy to seethat here P�D (FA(d)) = 1=3 for all input pedigrees D, so that the desired
onvergen
e/robustness properties trivially hold.The general limit-probability inferen
e problem now 
an be formulatedas follows:Input: A S;R relational Bayesian network �A sequen
e D1;D2; : : : ; of S-stru
tures with D1 � D2 � : : :A query P (r1(d1) = �1; : : : ; rk(d1) = �k) =? with dj � D1Output: \unde�ned" if P�Di is unde�ned for some i\no limit" if all P�Di are de�ned, but P�Di(r1(d1) = �1; : : :: : : ; rk(d1) = �k) does not 
onvergelimiP�Di(r1(d1) = �1; : : : ; rk(d1) = �k) otherwise.Some 
omments are required: �rst, we here have integrated the questionof whether all P�Di are de�ned into the formulation of the limit probability



13inferen
e problem, even though one will usually only attempt to solve thelimit probability inferen
e problem for sequen
es Di for whi
h all P�Di areknown to exist. Se
ond, we only allow queries for un
onditional probabili-ties. The reason for this is that limits of 
onditional probabilities Pi(A j B)very often do not exist, even when the un
onditional limits Pi(A ^ B) andPi(B) exist (Fagin 1976, Grove, Halpern & Koller 1992). However, this isonly possible when limiPi(B) = 0. Our approa
h to deal with limits of
onditional probabilities, therefore, is to 
onsider them only when the limitprobability of the 
onditioning event is nonzero, in whi
h 
ase it is givenby the fra
tion limiPi(A ^ B)=limiPi(B) of un
onditional limits. We shallhere not go into the question of how, in general, to en
ode a sequen
e Di ofinput stru
tures, be
ause we will presently restri
t attention to the spe
ial
ase S = ;, in whi
h there is only one 
anoni
al input sequen
e, with Di be-ing the stru
ture 
ontaining i elements. The following example shows thatfor nonempty S one very easily 
onstru
ts examples with non-
onvergingprobabilities.Example 3.4 Let S = fsg with binary s, R 
ontain the three unary re-lations blue, green, and even, and let � be as given in table 3. This is a
ompletely logi
al relational Bayesian network, i.e. all formulas are of theform F� for �rst-order formulas �. For better readability they therefore hereare dire
tly written as �, rather than in the form F�. Now let Di be theS-stru
ture with i elements in whi
h s is interpreted as a su

essor relation.Then, a

ording to Fblue, d 2 Di will be blue if it is the �rst element in theorder de�ned by s, or if it has a green prede
essor. Similarly, elements aregreen if they have a blue prede
essor. Thus, the two formulas Fblue; Fevendes
ribe a deterministi
 alternating 
oloring of Di, starting with blue. Forany d 2 Di the formula Feven(d) evaluates to 1 i� the last element in thes-order of Di is green, i.e. if i is even. Thus, for any d: P�Di(even(d))alternates between 1 for even and 0 for odd i.Fblue(v) = :9w(s(w; v)) _ 9w(s(w; v) ^ green(v))Fgreen(v) = 9w(s(w; v) ^ blue(v))Feven(v) = 8w(:9u(s(w; u)) ! green(w))Table 3: A model with non-
onverging probabilitiesWe now simplify our problem-setting in two ways: �rst we assume S = ;.Up to renaming of the elements, there then exists only one possible inputstru
ture Di = fd1; : : : ; dig of size i, and we 
an write P�i for P�Di . Se
ond,we impose a restri
tion on �, whi
h ensures that all P�i are de�ned: 
all �R-a
y
li
 if there exists an order on R su
h that the probability formula Fronly 
ontains indi
ator fun
tions for relation symbols pre
eding r in thatorder. If � is R-a
y
li
, then 
learly P�D is de�ned for every D (this alsoholds when S is not empty). The restri
tion to R-a
y
li
 � is not verymaterial when the restri
tion to empty S has already been made, be
ausethe ability to 
ondition the probability of one r-atom on other r-atoms onlybe
omes a powerful modelling tool when there are suitable S-relations withwhi
h we 
an de�ne these dependen
ies.The restri
tions S = ; and � being R-a
y
li
 were a
tually part of theoriginal de�nition of a relational Bayesian network given in (Jaeger 1997);the general framework there being labelled \re
ursive relational Bayesian



14network". For this restri
ted 
lass of relational Bayesian networks, we 
annow obtain a partial solution to the limit probability inferen
e problem.In the following theorem we refer to exponentially 
onvergent 
ombinationfun
tions. The exa
t de�nition of this property is rather te
hni
al and
an be found in (Jaeger 1998a). Here we only mention that noisy-or isexponentially 
onvergent, but mean is not.Theorem 3.5 Let � be a ;; R;�- relational Bayesian network that is R-a
y
li
, and where � only 
ontains exponentially 
onvergent 
ombinationfun
tions. Then limi!1P�i (r1(d1) = �1; : : : ; rk(dk) = �k) exists and is
omputable.While from a pra
ti
al point of view not wholly satisfa
tory due tothe restri
tion to empty S, this theorem is already quite interesting froma theoreti
al point of view, as it substantially strengthens some previous
onvergen
e laws in �nite model theory, espe
ially Fagin's (1976) original0-1 law, and a result by Obers
help (1982) on the 
onvergen
e of 
ertain
onditional probabilities. A further substantial strengthening of this resultwould be obtained if it 
ould be extended to in
lude the mean 
ombinationfun
tion.3.2.3 Maximum Likelihood Input Stru
tureSo far we have always assumed that the input S-stru
ture D is given, andwe want to make inferen
es about probabilities in randomly 
reated R-stru
tures. However, one 
an also 
onsider a 
onverse problem: given amodel �, and an observed R-stru
ture E 2 ModD(R), what is the mostlikely underlying S-stru
ture D, i.e. for what D is P�D (E) maximal? Inexample 2.3, for instan
e, we may be given the geneti
 model of table 1 andgeneti
 information on a number of individuals, and want to re
onstru
tthe most likely pedigree for these individuals. This is almost the problem ofthe re
onstru
tion of phylogeneti
 trees, only that here we have the simplers
enario that all nodes in the target tree are given, whereas in the 
ase ofphylogeneti
 trees only the leaves are taken to be observed, and suitableinterior nodes have to be hypothesized (this latter s
enario 
an also berealized in our framework by en
oding a tree stru
ture over a set of leavesdire
tly by a suitable relation on the leaves). Instead of observing only oneR-stru
ture E , we may also have observed a sample E1; : : : ; EN � ModD(R)of (independent) realizations of P�D . In example 2.4, for instan
e, we 
ouldhave observed the blo
ked-by-table relation at several points in time,whi
h would allow us to partly re
onstru
t the underlying map.This leads us to the following maximum likelihood input stru
ture infer-en
e problem:Input: A S;R-relational Bayesian network �A sample E1; : : : ; EN � ModD(R)Output: An S-stru
ture D 2 ModD(S) that maximizes QNi=1 P�D (Ei).Formally, this is a maximum-likelihood statisti
al inferen
e problem forthe unknown parameter D. The problem is trivially solvable in time expo-nential in the size of D by enumerating all S-stru
tures D and 
omputingQNi=1 P�D (Ei) (if P�D is de�ned). While 
learly infeasible, it is instru
tiveto look at this approa
h from a parti
ular perspe
tive: any S-stru
ture Dover D is de�ned by the values of the ground atoms s(d) (s 2 S;d 2 Djs j)



15seen as 0,1-valued indi
ator variables. Now let s1(d1); : : : ; sK(dK) be anenumeration of all ground S-atoms over D, and let si(di) be either si(di)or (1 � si(di)). Then the produ
t QKj=1 si(di) =: 1D is the indi
ator ofexa
tly one S-stru
ture D, i.e. it is a fun
tion of the indi
ator variablessi(di) that evaluates to 1 for the truth values of si(di) in D, and to 0 else.We 
an now express the likelihood fun
tion for S-stru
tures D given thedata E 2 ModD(R) asL(D j E) = XD02ModD(S)P�D0(E)1D0(D): (7)In this way, the likelihood fun
tion is represented as a polynomial in theindi
ator fun
tions si(di), and maximizing the likelihood be
omes the prob-lem of maximizing a polynomial in 0,1-valued variables. On the basis of thepolynomial (7) this is nothing but a 
ompli
ated way to des
ribe the naiveapproa
h of 
omputing P�D (E) for every D.These 
onsiderations, however, motivate a somewhat di�erent approa
h:we 
an try to represent L(D j E) as a polynomial di�erent from (7), su
hthat, �rst, the polynomial is smaller, and se
ond, the stru
ture of the poly-nomial permits a more dire
ted sear
h in the optimization. The strategy we
an employ, is to transform for a given stru
ture E the de�nition of P�D (E)by (5) dire
tly into a polynomial in the si(di).We illustrate this te
hnique with the relational Bayesian network �shown in table 4. This network satis�es two important restri
tions: it onlyuses noisy-or as a 
ombination fun
tion, and it is R-a
y
li
. The latterrestri
tion ensures that P�D is de�ned for all D, so that the optimizationproblem is un
onstrained over ModD(S). The �rst restri
tion is vital forour transformation of P�D (E) into a polynomial, whi
h in its present formonly works for 
ombination fun
tions that are insensitive to zeros, i.e. thatdo not 
hange their value when zeros are added or removed from its multiset-argument. Noisy-or is insensitive to zeros, but mean is not.Fred(v) = 0:8Fblue(v) = noisy-orfj0:6 � red(w) j w; s(v; w)jgTable 4: Maximum likelihood input stru
ture exampleIn this example R 
ontains the two unary relations red and blue, andS the one binary s. Suppose we have observed a R-stru
ture E over thedomain D. Let d 2 D, and suppose the blue(d) is true in D. Then (5)
ontains the fa
torFblue(d) = noisy-orfj0:6 � red(w) j w; s(d; w)jg (8)As noisy-or is insensitive to zeros, we 
an rewrite this asFblue(d) = noisy-orfj0:6 � red(w) � s(d; w) j w; jg; (9)i.e. instead of evaluating the subformula 0:6 � red(w) only for those w forwhi
h s(d; w) holds, we evaluate 0:6 �red(w) �s(d; w) for all w. This 
hangesthe resulting multiset by adding one zero for ea
h w for whi
h s(d; w) doesnot hold. The given E instantiates all the indi
ators red(w), so that bysubstituting their truth values and expanding the noisy-or, (9) be
omesFblue(d) = 1� Yd0:Dj=red(d0)(1� 0:6 � s(d; d0)) (10)



16All the other fa
tors Fblue(d0), respe
tively 1�Fblue(d0) in (5) are obtainedin the same way. Taking the produ
t of all these fa
tors (plus the Fred(d)and 1�Fred(d)-fa
tors, but these only add a 
onstant) gives us a polynomialrepresentation of L(D j E). This representation now only has polynomialsize in jD j. Moreover, it is easy to optimize this polynomial: ea
h indi
ators(d; d0) appears at most on
e in the produ
t, and the fa
tor that 
ontainss(d; d0) is maximized by setting s(d; d0) to 1 if it appears in a fa
tor of theform Fblue(d), and to 0 if it appears in a fa
tor of the form 1�Fblue(d). Onethus immediately obtains that any stru
ture D optimizes the likelihood inwhi
h s(d; d0) is true when blue(d) and red(d0) are true in E , and s(d; d0)is false when blue(d) is false and red(d0) is true in E .In general (but under the restri
tion to 
ombination fun
tions insensi-tive to zeros) one will always obtain a polynomial representation of L(D j E)that has polynomial size. Of 
ourse, it will not always be possible to opti-mize this polynomial eÆ
iently (using similar arguments as for theorem 3.3one 
an show that the maximum likelihood input stru
ture problem is notpolynomial), but if the likelihood fun
tion L(D j E) has 
ertain regular-ity properties that fa
ilitate its optimization, they 
an be expe
ted to bere
e
ted in the stru
ture of polynomial obtained from P�D (E).4 LearningThe learning problem for relational Bayesian networks in its most generalform is the following:Input: A set � of admissible 
ombination fun
tionsA sample F1; : : : ;FN of S;R-stru
turesOutput: A S;R;�-relational Bayesian network � that maximizesa s
ore fun
tion �(�; E1; : : : ; EN ).The data elements Fi 
an also be written as pairs (Di; Ei) of S-stru
turesDi and R-stru
tures Ei over a 
ommon domain Di. Then we 
an de�ne thelikelihood of � given the data asL(� j F1; : : : ;FN ) := NYi=1P�Di(Ei): (11)The s
ore fun
tion � will usually be 
omposed of the likelihood fun
tionand some penalty term for the model 
omplexity of �, or a Bayesian priorprobability of �.The optimization has to be 
onstrained to relational Bayesian networkswith 
ombination fun
tions from a set � that posses a parametri
 represen-tation, so that one 
an e�e
tively sear
h over the elements of �. In fa
t, wewill typi
ally take � to be a small �nite set, e.g. � = fnoisy-or;meang. Thisnot only redu
es the 
omplexity of the sear
h spa
e, it also ensures that thelearned � en
odes the probabilisti
 model by the stru
ture of its probabilityformulas, and not by some very spe
ialized 
ombination fun
tions that are
ustom-built for the spe
i�
 data set.Impli
it in the problem formulation here given is that P�Di must bede�ned for every Di. One 
ould also generalize the problem setting byadding as an additional input a 
lass D � Mod�n(S) of S-stru
tures, anddemand that for the learned � all P�D with D 2 D are de�ned. In light ofthe dis
ussion of se
tion 3.2.1, however, we see that this will be very diÆ
ult



17for general 
lasses D, as the sear
h spa
e of admissible � will not always bede
idable.The nature of the learning problem des
ribed here di�ers from the usualstatisti
al setting where the data 
onsists of a random sample from a targetdistribution P that is to be learned. The random relational stru
ture model� is not a single distribution P , but a family of distributions fPD j D 2 Dg,and the data 
onsists of samples from these di�erent distributions. For thatreason the fun
tion (11), stri
tly speaking, is not a likelihood fun
tion inthe usual sense. However, we 
an imagine the input stru
tures Di also bedrawn from some distribution P on Mod�n(S), in whi
h 
ase (11) be
omesa proper likelihood up to the fa
tor QP (Di) that does not depend on �,and therefore 
an be negle
ted.Clearly, 
ertain models 
an only be learned if the data 
ontains a suÆ-
iently \ri
h" sele
tion of di�erent S-stru
tures D. On the other hand, forother models it makes no di�eren
e whether the data 
onsists of a large sam-ple F1; : : : ;FN with many di�erent underlying S-stru
tures Di, or a smallsample of a few large stru
tures Fi. In the extreme 
ase, the data 
onsists ofa single stru
ture F . This is a parti
ularly interesting 
ase in pra
ti
e, as it
orresponds to learning a model from a single relational database (Friedmanet al. 1999). To illustrate these issues, 
onsider the two probability formulasF 1edge(v; w) = 1=1000 (12)F 2edge(v; w) = meanfjv = u j u; jg (13)ea
h of whi
h de�nes a random relational stru
ture model for S = ; and R =fedgeg. F 2edge en
odes a sparse random graph model, where any two nodesin a graph with n nodes are 
onne
ted with probability 1=n. Now supposethe data 
onsists of a single R-stru
ture E with 1000 nodes that 
ontains atotal of 1000 edges. Then F 1edge and F 2edge obtain the same likelihood s
oregiven the data. However, a penalty for model 
omplexity in
luded in thes
ore fun
tion will lead to a preferen
e for model F 1edge over F 2edge. If, onthe other hand, the data 
onsists of a number of graphs Di of di�erent sizesni, and ea
h 
ontaining approximately ni edges, then F 2edge obtains a mu
hhigher likelihood s
ore than F 1edge and 
an be learned.Given a s
ore fun
tion � and assuming a �nite set �, our learning prob-lem has a stru
ture that is familiar from the learning problem for Bayesiannetworks and other graphi
al models, and more spe
i�
ally the learningproblems 
onsidered e.g. in (Friedman et al. 1999, Muggleton 2000, Sato &Kameya 2001): it is an optimization over a dis
rete sear
h spa
e of modelstru
tures (here the probability formula stru
tures), and for ea
h stru
-ture an optimization over a 
ontinuous spa
e of model parameters (here thevalues of the 
onstants). The following de�nition makes the 
on
ept of aprobability formula stru
ture pre
ise.De�nition 4.1 Let S;R;� be as in de�nition 2.2. Let �1; �2; : : : be a setof parameter variables. The set of S;R;�-probability formula stru
tures isde�ned indu
tively by the syntax rule(i) (Parameters) Ea
h �i is a probability formula stru
ture,and the rules (ii)-(iv) from de�nition 2.2.Note that we here view the 
hoi
e of a parti
ular 
ombination fun
tionin 
onstru
tion rule (iv) as part of the dis
rete stru
ture. We will denoteprobability formula stru
tures with F �, and relational Bayesian network



18stru
tures with ��. Note that we may use the same parameter variablemore than on
e in a base 
ase of the 
onstru
tion of a probability formulastru
ture. This enables us to in
lude equality 
onstraints between parame-ters in the dis
rete model stru
ture. As an example, 
onsider the relationalBayesian network in table 1. Ea
h of the two formulas FFA and FMA 
ontainstwo 
onstants: the 
onstant 1 inside the noisy-or that de�nes the subformu-las Ffather-in-pedigree, respe
tively Fmother-in-pedigree, and the 
onstants 1/3.Legal relational Bayesian network stru
tures 
an now be obtained both bysubstituting for these 
onstants four di�erent parameter variables �1; : : : ; �4,or by substituting the same variable �1 for the two o

urren
es of 1, and �2for the two o

urren
es of 1/3. In the latter 
ase we en
ode in the stru
turethe prior knowledge that the models for FFA and FMA are the same.In many learning problems, for a given stru
ture and assuming 
om-plete data, the optimization over the 
ontinuous model parameters is easyand redu
es to some frequen
y 
ounts in the empiri
al distribution. This,unfortunately, is not the 
ase for relational Bayesian networks. However,under the restri
tion to multilinear 
ombination fun
tions, it still is a fairlywell-behaved optimization problem.Theorem 4.2 Let � be a set of multilinear 
ombination fun
tions, F1; : : :: : : ;FN be a set of 
omplete data items. Let �� be a relational Bayesian net-work stru
ture with parameter variables �1; : : : ; �K . The likelihood fun
tionL(�1; : : : ; �K j F1; : : : ;FN ) for the parameter values given the stru
ture ��then is a polynomial in the �j .The proof is straightforward, and the result a
tually holds for the wider
lass of polynomial 
ombination fun
tions.An in
omplete data item is a stru
ture (D; Ê) where D is a fully spe
-i�ed S-stru
ture, and Ê is a partially spe
i�ed R-stru
ture over the samedomain, i.e. Ê de�nes the truth values of some ground atoms r(d), whereasthe truth values of other ground atoms may be missing. The basi
 stru
tureof the parameter learning problem for relational Bayesian networks is thesame for in
omplete as for 
omplete data: under the restri
tion to multilin-ear 
ombination fun
tions it still is the problem of optimizing a polynomial.In pra
ti
e, however, the in
omplete data 
ase 
an be substantially harderthan the 
omplete data 
ase, as the polynomial will have exponential sizein the number of missing truth values if 
onstru
ted naively. Whether thisexponential size 
an typi
ally be avoided in pra
ti
e by using more sophis-ti
ated 
onstru
tions is a topi
 of ongoing work, as is the question whethera suitable variant of the EM-algorithm 
an be developed for our parameterlearning problem.5 In�nite DomainsSo far we have presented relational Bayesian networks stri
tly as a repre-sentation language for random relational stru
ture models in the sense ofde�nition 1.1, i.e. restri
ted to �nite domains. However, the language 
analso be used to de�ne distributions on the 
lasses of R-stru
tures over in-�nite domains D, espe
ially Herbrand universes arising from fun
tion and
onstant symbols. In (Jaeger 1998b) this has been investigated for the 
asewhere D is an unstru
tured 
ountably in�nite set (i.e S = ;), and � isR� a
y
li
. For this 
ase it has been shown that � de�nes a unique proba-bility distribution over ModD(R), and that probabilisti
 queries of the formP (r0(d0) = �0 j r1(d1) = �1; : : : ; rl(dl) = �l) =? 
an be solved.



19When S 6= ; (and, in parti
ular, now allowing that S also may 
ontainfun
tion symbols that are interpreted in the 
anoni
al way over a Herbranduniverse), then one 
an have the 
ase that the dependen
y relation ��;D isa
y
li
, but has in�nite des
ending 
hains: if S = ffg with a single unaryfun
tion symbol f , for instan
e, and D = fa; f(a); f(f(a)); : : : g, then �
onsisting of the single probability formulaFr(v) = noisy-orfj0:2r(w) j w;w = f(v)jg (14)indu
es the in�nite 
hain r(a) ��;D r(f(a)) ��;D : : : . For in�nite D, aunique distribution is only guaranteed to be de�ned by � if ��;D is botha
y
li
 and well-founded. However, even in that 
ase, elementary inferen
eproblems may be unde
idable (Jaeger 1998b).When ��;D is not a
y
li
 and well-founded (or simply not known to bea
y
li
 and well-founded), then one 
an still interpret a probability formulaas a 
onstraint on probability distributions on ModD(R) that is satis�edby no, exa
tly one, or several distributions. One easily sees, for example,that the 
onditional probabilities de�ned by (14) 
an only be satis�ed by adistribution PD with PD(r(d)) = 0 for all d 2 fa; f(a); f(f(a)); : : : g.Independent from the properties of ��;D, one 
an use similar te
hniquesas used by Pfe�er and Koller (2000) to make approximate inferen
es aboutprobabilities entailed by the relational Bayesian network, i.e. to 
omputefor a query P (r(d)) =? a sequen
e of intervals I1 � I2 � I3 � : : : su
h thatfor all j: PD(r(d)) 2 Ij for all distributions PD that satisfy the 
onstraintsimposed by �.6 Related WorkThe work most 
losely related to relational Bayesian networks are the Prob-abilisti
 Relational Models (PRMs) of Friedman et al. (1999). PRMs are aspe
ial 
lass of random relational stru
ture models in the sense of de�ni-tion 1.1, where the underlying S-stru
ture D (
alled a \skeleton stru
ture"in (Friedman et al. 1999)) represents the obje
ts in a relational database,and the referen
e stru
ture between them, whereas R 
ontains a number ofprobabilisti
 attributes.This limitation to a fairly restri
tive 
lass of probabilisti
 models is prob-ably explained by the fa
t that the development of PRMs was driven by asomewhat di�erent motivation than the development of relational Bayesiannetworks: the latter were designed to provide a framework for the repre-sentation of, and reasoning with, a ri
h and natural 
lass of probabilisti
models that 
an be understood as a predi
ate logi
 extension of Bayesiannetworks. PRMs, on the other hand, were developed dire
tly with a viewtowards learning, parti
ularly learning from data provided by relationaldatabases. The original restri
tion to the modelling of probabilisti
 at-tributes (i.e. unary relations) permitted to approa
h the learning problemwith the standard te
hniques of Bayesian network learning (Friedman etal. 1999).In subsequent work (Getoor, Friedman, Koller & Taskar 2001) also somespe
ial forms of probabilisti
 binary relations (\referen
e un
ertainty", \ex-isten
e un
ertainty") were in
orporated into the PRM framework. This
lassi�
ation of probabilisti
 binary relations on a phenomenologi
al basissupports spe
ial purpose learning algorithms for probabilisti
 binary rela-tions in many pra
ti
ally relevant appli
ations. Relational Bayesian net-works, on the other hand, provide a uni�ed treatment of all types (and



20arities) of random relations, but the generality and expressiveness of thelanguage makes the learning problem harder.7 Con
lusionWe have given an overview of probabilisti
 modelling and inferen
e withrelational Bayesian networks. The language of relational Bayesian networksis de�ned by a rigorous syntax with only four 
onstru
tion rules that resem-ble the syntax elements of predi
ate logi
. This elementary syntax and its
lose 
onne
tion to logi
al formulas on the one hand, and (for multilinear
ombination fun
tions) polynomials on the other hand, enables us to redu
emany non-trivial inferen
e problems to more standard inferen
e problemsin logi
 or optimization. While many of these inferen
e problems are in-herently intra
table in general, their formulation as standard optimizationor satis�ability problems allows us to dire
tly utilize the vast amount ofknowledge on solution heuristi
s and tra
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