Link6ping Electronic Articles in

Computer and Information Science
Vol. 6(2002): nr 77?7

Relational Bayesian Networks: a
survey

Manfred Jaeger
Max-Planck-Institut fur Informatik
Stuhlsatzenhausweg 85, 66123 Saarbriicken, Germany

Linkoping University Electronic Press
Linkoping, Sweden

http: /www.ep.liu.se/ea/cis/2002/777/

Published on 227 2002 by
Linképing University Electronic Press

581 83 Linkoping, Sweden

Linkoping Electronic Articles in
Computer and Information Science
ISSN 1401-9841

Series editor: Erik Sandewall

©2002 Manfred Jaeger
Typeset by the author using BTEX
Formatted using étendu style

Recommended citation:
<Author>. <Title>. Linkdping FElectronic Articles in
Computer and Information Science, Vol. 6(2002): nr 972.
http: /www.ep.liu.se/ea/cis/2002/777/. 222, 2002.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)
for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,
to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,
including making copies for classroom use.
This permission can not be revoked by subsequent
transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies
on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,
unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linkoping University
Electronic Press and its procedures for publication and for
assurance of document integrity, please refer to
its WWW home page: http: /www.ep.liu.se/
or by conventional mail to the address stated above.

Abstract

We give an overview of the relational Bayesian network mod-
eling language. First the semantic concept of a random rela-
tional structure model is introduced, and then it is shown how
such models can be represented with relational Bayesian net-
works. We consider a number of inference problems for rela-
tional Bayesian networks that range from elementary probabilis-
tic queries to the computation of limit probabilities and learning
problems. For some of these inference problems fully developed
solution algorithms are available, for others we describe solution
strategies by reduction to well-established logical inference and
numerical optimization problems.

1 Introduction

Numerous proposals have been made for probabilistic models that integrate
elements of first-order logical representation and inference with the tech-
niques for tractable probabilistic inference provided by graphical models.
Many of these proposals are based on the language of logic programming
(Poole 1993, Sato 1995, Ngo & Haddawy 1997, Muggleton 1996, Cussens
1999, Kersting & de Raedt 2001), others on the language of relational
databases (Friedman, Getoor, Koller & Pfeffer 1999, Koller 1999).

Formal semantics for these frameworks can in most cases be given by
probability distributions on Herbrand bases. This can be a single dis-
tribution on one (typically infinite) Herbrand base, or a set of distribu-
tions on a class of (typically finite) Herbrand bases. The first type of
semantics is usually favored by the logic programming based approaches,
whereas the latter underlies the database oriented framework (Friedman et
al. 1999, Koller 1999), as well as the relational Bayesian network modelling
language (Jaeger 1997, Jaeger 2001).

A more accurate and refined description of the second type of semantics
is provided by the definition of a probabilistic relational model as given in
(Jaeger 2001). In order to prevent a possible confusion with Friedman et
al.’s (1999) probabilistic relational models, we here restate this definition
introducing a different name. In this definition and in the remainder of this
paper we use Modp(S) to denote the set of all relational structures D that
interpret the relations from the vocabulary (or signature) S over the finite
domain D = {di,... ,d,}. Also, Mod;,(S) denotes the class of all finite
relational structures for S. In logic programming terminology, Modp(S)
is the set of Herbrand interpretations for S over the Herbrand universe
{d]7... ,dn}

Definition 1.1 Let S, R be two sets of relation symbols. The elements
of S are called the predefined relations; the elements of R are called the
probabilistic relations. A random relational structure model for S and R is
a partial mapping P that assigns to S-structures D with finite domain D
a probability distribution P(D) over Modp(R). In the sequel we write Pp
for P(D), and also call such a single distribution an instance of the random
relational structure model.

In the sequel we use the notational convention that relations in S are
denoted with names in italics, or standard relation symbols like <, <, ...,
whereas relations in R are denoted with names in typewriter font.

Example 1.2 A Markov chain over states sq,. .. , s; defines for everyn € N
a probability distribution on state sequences of length n. This is a ran-
dom relational structure model for a single binary predefined relation <,
and unary probabilistic relations sq,...,s;: the distribution Pp is defined
whenever < is interpreted in D as a linear order. If |D| = n, then state
sequences of length n can be identified with “colorings” of D by the unary
relations sq,...,s;, i.e. interpretations of the s; over D in which for ev-
ery d € D exactly one relation s; is true. For every £ € Modp(R) then
Pp(€) = p if € encodes a state sequence of probability p (p = 0 if £ is not
a coloring).

Example 1.3 A random graph is constructed by inserting edges randomly
between nodes dy,... ,d,. More precisely, a random graph model is given
by defining for each n € N a probability distribution on all graphs with

n nodes. The most prominent such model is the Erdds-Renyi model, in
which for every n is defined an edge probability p(n), and a graph £ with
n nodes and k edges has probability p(n)*¥(1 — p(n))”z’k. Such a random
graph model is a random relational structure model with S = () and a single
binary probabilistic (edge-) relation e.

Markov chains and random graphs are “pure” mathematical examples
for random relational structure models. More “real-world” examples will be
given in section 2. Tt should be noted however, that also dynamic Bayesian
networks (Dagum, Galper & Horvitz 1992), hidden Markov models, and
(in a slightly less obvious way) stochastic context-free grammars can be
formalized as random relational structure models.

In this paper we give a survey of the language of relational Bayesian
networks (Jaeger 1997) for the representation of random relational structure
models. We discuss a number of relevant inference problems that one can
formulate for random relational structure models, and their solutions based
on relational Bayesian network representations. We review results from
(Jaeger 1997, Jaeger 1998a, Jaeger 2001), and indicate solution approaches
to some new inference and learning problems. In this paper we emphasize
the logical nature of relational Bayesian networks, and highlight some of the
connections that exist between the investigation of random relational struc-
ture models with relational Bayesian network representations, and topics in
finite model theory (Ebbinghaus & Flum 1999). A more practice-oriented
account that focuses on algorithmic aspects is given in (Jaeger 2001).

2 Representation

The core instrument for the representation of random relational structure
models with relational Bayesian networks is the probability formula. There
are a number of ways to look at probability formulas. One can see them
as a functional programming language for the computation of entries in the
conditional probability tables of a Bayesian networks representing particular
model instances. Here we shall emphasize their analogy to formulas in
predicate logic. A predicate logic formula ¢(v) containing symbols from the
signatures S and R, and quantifiers from a set I' (containing the basic first-
order quantifiers 3, V, but possibly also a number of generalized quantifiers)
can be evaluated over a S, R-structure F for a tuple d C D to compute
a truth value ¢(d)[F] € {true, false} (or, in more standard notation, to
decide whether F |= ¢(d) or F [~ ¢(d)). A probability formula F(v) for
the vocabularies S, R is evaluated in a similar fashion for a tuple d over F,
but yields a probability value: F(d)[F] € [0, 1].

Figure 1: A small relational structure

To introduce the general flavor of probability formulas and their analogy

to logical formulas, we consider an informal example first. Figure 1 shows
a small relational structure D for D = {d;,ds,ds,ds} and a signature S
containing a binary relation edge, and a unary relation blue (indicated by
shaded nodes). Now consider the first-order predicate logic formula

o) : Fw(edge(w,v) A blue(w)). (1)

This is a formula in one free variable v, and therefore defines for every
d; € D a truth value ¢(d;)[D] € {true, false}. We can view the formula as
defining a new relation has-blue-predecessor. Moreover, the formula also can
be read as an operational rule for the computation of truth values ¢(d;)[D]:
“check for every domain element d; whether edge(d;,d;) and blue(d;) are
true. If the answer is yes for at least one d;, then ¢(d;) is true”.

Now suppose we do not want to describe a relation has-blue-predecessor
that is deterministically defined by the relations edge and blue, but a relation
inherits-blueness that is true with a certain probability for each d;. More
specifically, assume that inherits-blueness is true with probability 1 —
0.7" for a domain element that has ! blue predecessors, i.e. we assume a
noisy-or model according to which all blue predecessors independently cause
inherits-blueness to become true with probability 0.3. This probabilistic
relation now is defined with a probability formula

F(v) : noisy-or{0.3 | w; edge(w, v) A blue(w)} (2)

This formula is an expression in the formal syntax of probability formulas
defined below. For every d; (2) provides an (operational) definition of a
probability value F'(d;)[D]: “for each d; for which edge(d;,d;) A blue(d;)
is true, add a value 0.3 to a multiset of probability values. Combine the
resulting collection of probability values with noisy-or”.

Noisy-or, as used in this example, is an a combination function in the
sense of the following definition.

Definition 2.1 A combination function is any function that maps finite
multisets with elements from [0,1] into [0,1].

We use braces },{ to denote multisets: if ¢; € [0,1] for all i from
some index set I, then {g; | i € I} denotes the multiset that contains
|{i € I| g; =r}| copies of r € [0,1]. The two most important combination
functions for practical modelling problems are

noisy-or: n-o{q; |i € I} :=1—][;c;(1 —q)

mean : mean{q; |1 € I} = ﬁ Y icr Qi

The syntax of probability formulas can now be defined. In this definition
we call an S-constraint any boolean combination of atomic formulas s(v)
for symbols s € S, and variables v (no constant symbols are allowed in
S-constraints).

Definition 2.2 Let S, R be sets of relation symbols, I' a set of combination
functions. The class of (S, R,T')-probability formulas is inductively defined
as follows.

(i) (Constants) Each g € [0, 1] is a probability formula.

(ii) (Indicator functions) For each r € R, and every |r|-tuple v of variables,
r(v) is a probability formula.

(iii) (Convex combinations) When F}, Fy, F5 are probability formulas, then
S0 is F1F2 + (1 — Fl)Fq

(iv) (Combination functions) When Fi, ..., F} are probability formulas,
combe T', v, w are tuples of variables, and ¢(v, w) is an S-constraint,
then

comb{Fy, ..., F} | w;c(v,w)}

is a probability formula.

Our first example formula (2) is a ({edge, blue}, 0, {noisy-or})- proba-
bility formula that is constructed in two steps using (i) and (iv). A quite
similar, but semantically rather different probability formula is

F(v): noisy-or{0.3 - blue(w) + 0.7 - 0 | w; edge(w, v)}. (3)

Here S = {edge}, R = {blue}, I' = {noisy-or}, and F is constructed using
(iii) and (iv) from the three basic formulas 0, 0.3 and blue(w).

There is a close correspondence between the construction rules for prob-
ability formulas and the construction rules for predicate logic formulas: Con-
stants are the probabilistic extensions of logical constants true and false. In-
dicator functions are relational atoms. Convex combinations play the role
of Boolean connectives. Finally, a combination function corresponds to a
quantifier (that binds the variables w).

Assuming for the moment that we are given a S, R-probability formula
F(v), a S, R -structure F, and d C D, it is straightforward to define the
value F(d)[F] € [0,1] by induction on the structure of F: for indicator
functions F' = r(v) one defines r(d)[F] = 1 iff F |= r(d), and x(d)[F] =0,
else. For combination functions F' = comb{...}, one applies comb to the
multisets of values F;(d,d')[F] fori =1,... ,k,and all d’ with F |= ¢(d,d").

The computation of F'(d)[F] in this way leads to a number of evaluations
of indicator functions r'(d’) for r' € R and d' C D. For F as defined by (3)
and F as in figure 1, for instance, the computation of F'(d2)[F] requires the
evaluation of blue(d;) and blue(ds); the computation of F'(d4)[F] the eval-
uation of blue(ds). What indicator functions need to be evaluated only de-
pends on the probability formula F and the interpretations of the S-relations
in F, but not the interpretations of the R-relations (these determine the re-
sults of the evaluations). Writing D for the underlying S-structure of F,
we can thus define Pa(F (d)[D]) as the set of ground R- atoms that will be
evaluated in the computation of F(d)[F]. If I(Pa(F(d)[D])), now, is the
interpretation in F of the ground atoms in Pa(F'(d)[D]), then all we need to
know about F for the computation of F(d)[F] is D and I(Pa(F(d)[D])). We
therefore write F(d)[D, I(Pa(F(d)[D]))] for F(d)[F]. The probability value
F(d)[D, I(Pa(F(d)[D]))] now can be used as the conditional probability of
some ground atom r(d') ¢ Pa(F(d)[D]) given D and I(Pa(F(d)[D)])).

Our strategy for defining random relational structure models with prob-
ability formulas now is simply to assign to every m-ary r € R one S, R-
probability formula Fy(vy,... ,v,). We call the resulting set

@Z{Fr(’l)].‘..w’l)‘r‘)‘rGR} (4)
a Relational Bayesian Network. If the dependency relation

r(d) mopr'(d) & r'(d) e Pa(F.(d)[D])

on ground R-atoms is acyclic, then ® defines a probability distribution P
on Modp(R) by letting for £ € Modp(R)

P& =1 I FE@D.1(Pa(F(d)D])]
reR d:£f=r(d)

I[[Q- E@D,1(Pa(F(d),[P]))

d:Effr(d)

(5)

A relational Bayesian network ® thus represents the random relational
structure model D +— Pp (D € Modg,(S) :=¢ p is acyclic).

Flather-in-pedigree(v) = noisy-or{1 | u; father(u,v)}
Fnother-in-pedigree(v) = noisy-or{1 | u; mother(u, v)}
FA_from—father (v) = mean{FA(u),MA(u) | u; father(u,v)}
FA_ from—mother (V)= mean{FA(u),MA(u) | u; mother(u,v)}

FFA(U) = Ffather—in—pedigree(v)) FAffromffather (7))+
(1 - Ffather—in—pedigree(v)) . 1/3

FMA('U) = Fmother—in—pedigree(v) : FAffromfmother ('U)+
(1 - Fmother—in—pedigree(v)) : 1/3

Table 1: Genetic Example

dg
Ala

Figure 2: Pedigree

Example 2.3 Figure 2 shows a (partial) pedigree for seven individuals
dy, ... ,d;. The pedigree is specified using a binary father relation (indicated
by solid arrows), and a binary mother relation (indicated by broken arrows).
In this pedigree, both father and mother are known for individuals d4 and
d7. For all other individuals only one or no parents are known.

Also represented in the pedigree is information on a gene that has two
alleles A and a. The notation z/y here represents an ordered genotype
and stands for the fact that z was inherited from the father, and y from the
mother. This genetic information can be represented by two unary relations

(or attributes) FA and MA that hold for those individuals that have inherited
allele A from their father, respectively mother. Thus, for instance, FA(d5)
is false and MA(d5) is true.

Table 1 now shows a relational Bayesian network that encodes a prob-
abilistic model for the relations R = {FA,MA} given the relations S =
{father, mother}. According to the formula Fg, the probability that d inher-
its A from his/her father is determined as follows: first it is determined by
the subformula Fiotper-in-pedigree Whether the father of d is in the pedigree
(using the convention that noisy-or evaluates to 0 when applied to an empty
multiset, one sees that Fygtper-in-pedigree(d) evaluates to 0 if father(u,d) does
not hold for any u, and to 1 otherwise). If d’s father is in the pedigree, then
the probability of FA(d) is determined using the formula Fa_ ¢rom— father(V),
which evaluates to mean{1,1} = 1 if both FA and MA are true for d’s father,
to mean{1,0} = 1/2 if only one of FA and MA is true, and to mean{0,0} =0
if neither is true. If d’s father is not in the pedigree, then FA(d) is assigned
a base rate probability 1/3. In exactly the same way the probability for
MA(d) is determined.

Note that even though table 1 shows six probability formulas, it really
represents a relational Bayesian networks composed of the two formulas
Fry and Fy,. The other four formulas are only subformulas of these two
formulas which are displayed separately for better readability, but that do
not represent separate probabilistic relations father-in-pedigree, etc.

The formula Flsther-in-pedigree in the preceding example is an indicator
function for the first-order formulas Jufather(u,v), i.e. for any S-structure
Dandde D:

Frather-in-pedigree(d)[D] =1 & D = Jufather(u, d)

As shown in (Jaeger 1997), one can construct for any first-order formula ¢(v)
over the vocabulary SUR a S, R, {noisy-or}-probability formula Fy(v), such
that for every S U R-structure F and d C D: Fy(d)[F] € {0,1}, and

B@Fl=1 < Fk=¢d)

It is this fact that makes the full expressive power of first-order logic avail-
able for probabilistic modelling in relational Bayesian networks. In the gen-
eral mapping ¢ — Fy (existential) quantifiers are translated into noisy-or
combination functions. This is not very surprising, as (existential) quan-
tification is basically a (deterministic) or, and noisy-or applied to multisets
with 0,1-elements just reduces to or. In other words, we have found a
close correspondence between first-order logical formulas, and {noisy-or}-
probability formulas. This raises the question whether there are other nat-
ural correspondences between logics that use generalized quantifiers (e.g.
second-order or Lindstrém quantifiers (Ebbinghaus 1985)), or extend first-
order logic in some other way (e.g. fixpoint logics (Ebbinghaus & Flum
1999)), and probability formulas using other combination functions in ad-
dition to noisy-or. Unfortunately, it seems that other natural combination
functions do not lead to correspondences to other logics: while it is possible
to design special-purpose combination functions so that translations ¢ — Fy
can also be obtained for ¢ in extended logics, it is not the case that natural
combination functions like mean or maz give rise to such translations.

We close this section with a second example that has a somewhat differ-
ent flavor than example 2.3, and illustrates some different modelling tech-
niques.

A >
voYv Y
HCHEC -
v Y Yy
cC| - > >
T+ 2 3 4 5

Figure 3: Robot environment

Example 2.4 Figure 3 shows a grid map that a robot may use to navigate
in an office environment. The map distinguishes 12 possible locations, whose
relative positions in a coordinate system are defined with binary relations
left-neighbor (solid arrow), and down-neighbor (dotted arrows). In locations
B3 and B5 are placed reading tables. The map, thus, can be seen as a rela-
tional structure for the vocabulary S = {left-neighbor, down-neighbor, table}.
To each reading table belongs one chair, which may be placed in any loca-
tion directly adjoining the table, i.e. in one of A3, B2, B4, (3 for the chair
belonging to the table at B3, and in A5 or B4 for the chair belonging to the
table at B5. We now want to construct a probabilistic model for what loca-
tions are free, and what locations are blocked (by either a table or a chair) in
this environment. More precisely, we want to represent a random relational
structure model that takes a map in form of an S-structure, and returns a
probability distribution over the interpretations of R = {blocked}. How-
ever, directly representing this as a .S, R- random relational structure model
with a S, R-relational Bayesian network will be impossible. Main reason for
that is that there is a mutual dependency between e.g. blocked(C3) and
blocked(A3), and we have no way to turn this symmetric dependency into
an acyclic dependency relation »¢ p by a pure S, R - relational Bayesian
network ®.

We can avoid this problem by assuming that there is an additional
order relation < given in S, which defines an arbitrary total order on D.
From a practical modelling point of view, this assumption is completely
unproblematic, as we can always impose some order on D, and we can use
this order to make dependency relations acyclic in such a way that the
resulting distribution on R does not depend on the particular order chosen.

In addition to the auxiliary relation < added to S, the relational Bayesian
network in table 2 also adds an auxiliary binary relation blocked-by-table
to R, where blocked-by-table(u,v) represents the fact that u is the po-
sition of a table, and v is the location adjacent to u that is blocked by the
chair belonging to u. Given the interpretation of blocked-by-table the in-
terpretation of blocked is deterministically defined by the formula Fiiockeq,
which is of the form Fj, where ¢ is a first-order formula that says that v
is a table, or blocked by a chair belonging to some table. The distribu-
tion of blocked-by-table is determined by the formula Fy1ocked-by-table-
For better readability, we again have introduced some abbreviations: first,

we define two standard first-order logic formulas is-table-neighbor and pred-
selected that in the subsequent probability formulas are used to define sub-
formulas of the type Fy, and for the definition of an S-constraint. With
the definition of Ecelected-from—remaining and -Fselected—neighbnr we agaln sim-
ply introduce names for subformulas that appear in the definition of the
two probability formulas Fylocked-by-table and Fbiocked that constitute the
relational Bayesian network.

To compute the probability that blocked-by-table(u,v) holds, one
first evaluates the subformula Fis_iapie—neighbor (4, v), which returns 1 if u
is a table location, and v adjacent to u, and 0 else. In the second case, the
probability for blocked-by-table(u,v) is 0. In the first case, this proba-
bility is computed with the subformula Fieected-neighbor(t, v). To evaluate
Fisetected-neighbor(u, v), one first computes Fpred-seiected(u, v), which returns 1
iff there is another location w adjacent to u that precedes v in the order on
D and for which blocked-by-table(u,w) is true. If this is not the case,
then Fyejected-neighbor(U, v) evaluates to 1/k, where k is the number of loca-
tions adjacent to u that do not precede v in the order on D. Intuitively,
Fisetected-neighbor(u, v) randomly chooses one neighbor of u by going through
u’s neighbors in ascending order, and selecting neighbor v with probability
1/k if no neighbor has already been selected. By this process, exactly one
neighbor will be selected, each with equal probability.

is-table-neighbor(u,v) =
table(u) A (left-neighbor(u,v) V left-neighbor(v, u)V
down-neighbor(u,v) V down-neighbor(v, u))
pred-selected(u,v) =
Jw(w < v A blocked — by — table(u,w))

Eselected—from—remammg(ua 'U) =
mean{v = w | w; (v < w Vv = w) A is-table-neighbor(u,w)}

Ficlected-neighbor (1; V) =

Fyred-selected(, v) - 0+

(1 = Fpred-setected(, v)) Fyetected-from-remaining (4, v)
Fblockedfbyftable (U, U) =

Fig table-neighbor(ts V) Fietected-neighbor (U, v)+

(1 — Flis-table-neighbor(t; v)) - 0
Fblocked(v) =

Ftable(’u)\/Elublockedfbyftable (u,v) (U)

Table 2: Robot navigation example

3 Inference Problems

We now look at a number of inference problems for relational Bayesian net-
works. All of these are, in fact, inference problems for random relational
structure models, i.e. they arise for whatever representation language one

uses for these models. As our solution methods are based on relational
Bayesian network representations, we here nevertheless formulate them di-
rectly in terms of relational Bayesian networks.

3.1 Elementary Inference

By elementary inference problems we mean inference problems that refer to
one model instance Pp at a time, and therefore can be solved by elemen-
tary data structures and algorithms for handling such distributions, notably
standard Bayesian networks and their inference algorithms. The most im-
portant inference problem of this kind is the single-instance probabilistic
inference problem:

Input: A S, R- relational Bayesian network ®
A S-structure D
A query P(ro(do) = ap | r1(dh) = ay, ... ,1i(d)) = ay) =7
with r; € R, d; C D, «a; € {true, false}.

Output: The probability value
PR (ro(do) = ag | ri(dr) = ;... ,xi(dy) =)
if >4 p is acyclic, and a message “Pg undefined” otherwise.

This inference problem can be solved using the traditional approach
of knowledge based model construction: one tries to construct a standard
Bayesian network with one node for each ground atom r(d) constructible
from the relations r € R and elements d C D. This construction will fail
(because cycles are introduced among the nodes of the network) iff >¢ p is
cyclic. Otherwise one obtains a Bayesian network representation of P. The
query probability can then be computed using standard inference algorithms
for Bayesian networks.

A straightforward implementation of such a construction would simply
first determine for each ground atom r(d) the set Pa(F.(d)[D]), and then
create a conditional probability table for r(d) given Pa(Fy(d)[D]) by com-
puting Fy(d)[D,I(Pa(F.(d)[D]))] for each instantiation I of Pa(Fy(d)[D]).
This, however, will lead to Bayesian networks whose size grows exponen-
tially in the size of the structure D, because the size of Pa(Fy(d)[D]) can
grow polynomially in the size of D. Fortunately, one usually can do better by
using a more sophisticated construction algorithm, in which auxiliary nodes
are introduced that intuitively correspond to intermediate results in the re-
cursive evaluation of the probability formulas. This optimized construction
can be applied to relational Bayesian networks that only use multilinear
combination functions:

Definition 3.1 A combination function is called multilinear if for alln > 1,
and for all iq,...,i, € {0,1} there exists a;, ... i, € R, such that for all

D1, - 7pn€[071]

comb{py, ... ,pnl = > iy DY Dl
(i1 sim) €401}

Theorem 3.2 (Jaeger 2001) Let ® be a S, R, I'-relational Bayesian network
with I' only containing multilinear combination functions. For every D €
Mod i (S) for which PJ is defined there exists a standard Bayesian network
N3 representing Py whose size is polynomial in the size of D.

10

This theorem is not constructive, and does not give rise directly to a
construction algorithm for the Bayesian network. Indeed, such a general
construction algorithm does not exist: consider the combination function
halts defined by halts{p; | i € I} = 1 iff |I| is the Gédel number of a
Turing machine that halts, and halts{p; | ¢ € I} = 0 otherwise. This is
a multilinear combination function, but for relational Bayesian networks &
that use this function the mapping D + N will not be computable. Con-
structive versions of theorem 3.2 therefore have to be obtained for suitable
subsets of multilinear combination functions. In (Jaeger 2001) an effective
construction method is developed for the combination functions noisy-or
and mean.

Figure 4 shows the network constructed for the relational Bayesian net-
work of table 2 and the input structure of figure 3 augmented by an order
< on the locations. The shaded nodes labelled with single locations X K
in this figure are the nodes for the ground atoms blocked(X K); the un-
filled nodes labelled with pairs of locations (X K,Y L) are the nodes for
the ground atoms blocked-by-table(X K,YL), and the small unlabelled
nodes are auxiliary nodes added in the construction (here they all are de-
terministic or nodes). The network shown was generated for an order <
with A3 < B4 < C3 < B2 and B4 < A5. Other orders would gener-
ate slightly different but structurally very similar networks. The network
shown in figure 4 is somewhat simplified from that originally produced by
the algorithm: the original network also contained nodes for all the other
ground atoms blocked(X K) and blocked-by-table(X K, Y L) not shown
in the figure. These, however, all are isolated nodes with probability zero of
being true. The original network also contained further auxiliary nodes that
are not shown here (and that do not significantly change the basic structure
of the network).

B3,A3) A3

)

(B5,B4)

(B5,A5) AS

(B3C3) C3

(B3.B2) B2

Figure 4: Standard Bayesian network constructed for example 2.4

It is not immediately obvious that solving the elementary inference prob-
lem via the construction of a standard Bayesian network is a good approach.
One might expect that based on the high-level representation language of
relational Bayesian networks one can also develop high-level inference tech-
niques, which directly operate on probability formulas, and do not first
compile the low-level Bayesian network model. It turns out, however, that

11

with such more sophisticated algorithms we cannot hope to improve the
worst-case time complexity of inference via standard Bayesian network con-
struction.

Theorem 3.3 (Jaeger 2000) If ETIME# NETIME then there exists a
0, R, {noisy-or}-relational Bayesian network ®, such that elementary infer-
ence for ® is not polynomial in the size of D.

3.2 Non-elementary Inference

By a non-elementary inference problem we mean any inference problem that
refers to a global property of a random relational structure model, not only
one of its instances.

3.2.1 Global semantics

One basic question one may have about a relational Bayesian network & is:
is Pp defined for all intended input structures D? To illustrate this question,
consider example 2.3. The relational Bayesian network in table 1 is meant
to be applied to input structures D that encode pedigrees, i.e. S-structures
in which the father and mother relations are acyclic, every element in the
domain has at most one father- and one mother-predecessor, and perhaps
some further restrictions are satisfied. It is easily verified in this case that
® as given in table 1 does define an acyclic relation >4 p for all such D,
and in fact for a much larger class of structures D. In general, we are faced
with the following global semantics inference problem.:

Input: A S, R-relational Bayesian network ®.
A class D C Modg,(S) of S-structures

Output: “Yes” if P2 is defined for all D € D,

“no” otherwise.

This description of our inference problem is not quite complete, as we
also need to say how to encode the class D of input structures. The canon-
ical way to do this is to represent D by some logical sentence ¢(D) so that
D = {D € Modn(S) | D = ¢(D)}. It will not be sufficient to use first-order
sentences ¢ for this purpose, as first-order logic is not expressive enough to
encode acyclicity conditions that will usually be part of the definition of D
(as e.g. the acyclicity of the father and mother relations in example 2.3,
and the acyclicity of the left-neighbor and down-neighbor relations in exam-
ple 2.4). One of the weakest logics that will allow us to encode the required
acyclicity conditions is transitive closure logic. This is an extension of first-
order logic that allows to represent statements of the form “(a,b) is in the
transitive closure of the relation defined by the formula ¢(u,v)” (see e.g.
(Ebbinghaus & Flum 1999)). For example 2.3 we can then express the
acyclicity of the father relation by “there does not exist u such that (u,u)
is in the transitive closure of father(v,w)”. Given ®, the acyclicity of =4 p,
too, can be expressed by a sentence in transitive closure logic, i.e. there is
a sentence ¢ (®), such that for all D € Modg,(S):

=ep isacyclic & DEy(®).

The solution of our inference problem now can be seen to be equivalent to
checking whether the sentence

#(D) = Y(®) (6)

12

is valid in all finite S-structures. It thus becomes clear that this problem
cannot be decidable in general, because even for pure first-order sentences ¢
it is not decidable whether ¢ is satisfiable by a finite model (Trahtenbrot’s
Theorem). From this the undecidability of our problem follows, because for
the ® consisting of the single probability formula Fy(v) = r(v) we get that
(6) is valid iff ¢(D) is not satisfiable.

We can thus only hope to solve the global semantics inference problem
for certain restricted problem classes. One subclass for which one may
conjecture the inference problem to be solvable is given by the case where
S only contains unary relation symbols. Results on the decidability of first-
order and monadic second-order logic for vocabularies of unary relation
symbols indicate that transitive closure logic, too, is decidable in this case.

3.2.2 Limit Probabilities

Suppose we know that P2 is defined for every D € D, and let Dy, Dy, ... ,
with D; € Dy C ... be an infinite sequence of structures from D. One
should think of the D; as a sequence of “similar” structures of increasing
size. If d C D1, then we can evaluate the query P(r(d)) =7 for every input
structure D;, and consider the limiting behavior of

Py, (x(d))

as i — oo. This limiting behavior can be of interest for a number of reasons.
Existence of the limit can be interpreted as a robustness property of the
model ®; the concrete value of the limit (if it exists) can be used as an
approximation of the true query probability P2 (r(d)) if we are unable to
specify the input structure D exactly, and only know that it is some element,
in the sequence D;.

To illustrate these issues, reconsider example 2.3. Given some pedi-
gree Dy and d € D we can compute the probability Pp (FA(d)). Next we
may add some additional ancestors or descendants of d to the pedigree, ob-
taining an extended pedigree D,. In this pedigree we can again compute
PR (FA(d)), which we would regard as a better approximation to the true
probability of FA(d) than the first value. Continuing in this manner, we ob-
tain the sequence P} (FA(d)) of probability values. We would now expect
from our model ® that this sequence converges to a limiting value (other-
wise it would be impossible to justify the values computed for any specific
input D as an approximation to the “true” probabilities). Moreover, we
would like to compute this limit. In this particular example it is easy to see
that here P} (FA(d)) = 1/3 for all input pedigrees D, so that the desired
convergence/robustness properties trivially hold.

The general limit-probability inference problem now can be formulated
as follows:

Input: A S| R relational Bayesian network &

A sequence Dy, Ds, ..., of S-structures with D; C Dy C ...

A query P(ri(dy) = aa,... ,re(d1) = ap) =7 with d; C D,
Output: “undefined” if P} is undefined for some i

“no limit” if all PY are defined, but P (ri(di) = a, ...

., ri(d1) = ay) does not converge
lim; P (r1(d1) = an, ... ,1e(d1) = o) otherwise.
Some comments are required: first, we here have integrated the question

of whether all P‘gi are defined into the formulation of the limit probability

13

inference problem, even though one will usually only attempt to solve the
limit probability inference problem for sequences D; for which all Pgi are
known to exist. Second, we only allow queries for unconditional probabili-
ties. The reason for this is that limits of conditional probabilities P;(A | B)
very often do not exist, even when the unconditional limits P;(A A B) and
P;(B) exist (Fagin 1976, Grove, Halpern & Koller 1992). However, this is
only possible when lim; P;(B) = 0. Our approach to deal with limits of
conditional probabilities, therefore, is to consider them only when the limit
probability of the conditioning event is nonzero, in which case it is given
by the fraction lim; P;(A A B)/lim; P;(B) of unconditional limits. We shall
here not go into the question of how, in general, to encode a sequence D; of
input structures, because we will presently restrict attention to the special
case S = (, in which there is only one canonical input sequence, with D; be-
ing the structure containing i elements. The following example shows that
for nonempty S one very easily constructs examples with non-converging
probabilities.

Example 3.4 Let S = {s} with binary s, R contain the three unary re-
lations blue, green, and even, and let ® be as given in table 3. This is a
completely logical relational Bayesian network, i.e. all formulas are of the
form Fy, for first-order formulas ¢. For better readability they therefore here
are directly written as ¢, rather than in the form Fy. Now let D; be the
S-structure with 4 elements in which s is interpreted as a successor relation.
Then, according to Fyiue, d € D; will be blue if it is the first element in the
order defined by s, or if it has a green predecessor. Similarly, elements are
green if they have a blue predecessor. Thus, the two formulas Fyie, Feven
describe a deterministic alternating coloring of D;, starting with blue. For
any d € D; the formula Fiyen(d) evaluates to 1 iff the last element in the
s-order of D; is green, i.e. if i is even. Thus, for any d: PJ (even(d))
alternates between 1 for even and 0 for odd i.

Forwe(v) = =Fw(s(w,v)) V Jw(s(w,v) A green(v))
Fareen(v) = Jw(s(w,v) A blue(v))
Feven(v) = Yw(—TFu(s(w,u)) — green(w))

Table 3: A model with non-converging probabilities

We now simplify our problem-setting in two ways: first we assume S = ().
Up to renaming of the elements, there then exists only one possible input
structure D; = {dy, ... ,d;} of size i, and we can write P for Pfg’i. Second,
we impose a restriction on @, which ensures that all Pf’ are defined: call ®
R-acyclic if there exists an order on R such that the probability formula F,
only contains indicator functions for relation symbols preceding r in that
order. If ® is R-acyclic, then clearly P is defined for every D (this also
holds when S is not empty). The restriction to R-acyclic ® is not very
material when the restriction to empty S has already been made, because
the ability to condition the probability of one r-atom on other r-atoms only
becomes a powerful modelling tool when there are suitable S-relations with
which we can define these dependencies.

The restrictions S = @) and ® being R-acyclic were actually part of the
original definition of a relational Bayesian network given in (Jaeger 1997);
the general framework there being labelled “recursive relational Bayesian

14

network”. For this restricted class of relational Bayesian networks, we can
now obtain a partial solution to the limit probability inference problem.
In the following theorem we refer to ezponentially convergent combination
functions. The exact definition of this property is rather technical and
can be found in (Jaeger 1998a). Here we only mention that noisy-or is
exponentially convergent, but mean is not.

Theorem 3.5 Let ® be a (), R, I'- relational Bayesian network that is R-
acyclic, and where I' only contains exponentially convergent combination
functions. Then lim; o P2 (r1(d1) = ai,...,r(dy) = ay) exists and is
computable.

While from a practical point of view not wholly satisfactory due to
the restriction to empty S, this theorem is already quite interesting from
a theoretical point of view, as it substantially strengthens some previous
convergence laws in finite model theory, especially Fagin’s (1976) original
0-1 law, and a result by Oberschelp (1982) on the convergence of certain
conditional probabilities. A further substantial strengthening of this result
would be obtained if it could be extended to include the mean combination
function.

3.2.3 Maximum Likelihood Input Structure

So far we have always assumed that the input S-structure D is given, and
we want to make inferences about probabilities in randomly created R-
structures. However, one can also consider a converse problem: given a
model ®, and an observed R-structure & € Modp(R), what is the most
likely underlying S-structure D, i.e. for what D is P2(£) maximal? In
example 2.3, for instance, we may be given the genetic model of table 1 and
genetic information on a number of individuals, and want to reconstruct
the most likely pedigree for these individuals. This is almost the problem of
the reconstruction of phylogenetic trees, only that here we have the simpler
scenario that all nodes in the target tree are given, whereas in the case of
phylogenetic trees only the leaves are taken to be observed, and suitable
interior nodes have to be hypothesized (this latter scenario can also be
realized in our framework by encoding a tree structure over a set of leaves
directly by a suitable relation on the leaves). Instead of observing only one
R-structure &£, we may also have observed a sample &1,... ,Exy € Modp(R)
of (independent) realizations of P. In example 2.4, for instance, we could
have observed the blocked-by-table relation at several points in time,
which would allow us to partly reconstruct the underlying map.

This leads us to the following mazimum likelihood input structure infer-
ence problem:

Input: A S, R-relational Bayesian network ®
A sample &,... ,En € Modp(R)

Output: An S-structure D € Modp(S) that maximizes HZ]L P2 (E).

Formally, this is a maximum-likelihood statistical inference problem for
the unknown parameter D. The problem is trivially solvable in time expo-
nential in the size of D by enumerating all S-structures D and computing
Hﬁi] P2 (&) (if P3 is defined). While clearly infeasible, it is instructive
to look at this approach from a particular perspective: any S-structure D
over D is defined by the values of the ground atoms s(d) (s € S,d € D!*)

15

seen as 0,1-valued indicator variables. Now let s1(di),...,sk(dk) be an
enumeration of all ground S-atoms over D, and let s;(d;) be either s;(d;)
or (1 — s;(d;)). Then the product H]K:1 s;(d;) =: 1p is the indicator of
exactly one S-structure D, i.e. it is a function of the indicator variables
si(d;) that evaluates to 1 for the truth values of s;(d;) in D, and to 0 else.
We can now express the likelihood function for S-structures D given the
data £ € Modp(R) as

L& = > PRE)In(D). (7)
D'eModp (S)

In this way, the likelihood function is represented as a polynomial in the
indicator functions s;(d;), and maximizing the likelihood becomes the prob-
lem of maximizing a polynomial in 0,1-valued variables. On the basis of the
polynomial (7) this is nothing but a complicated way to describe the naive
approach of computing P (€) for every D.

These considerations, however, motivate a somewhat different approach:
we can try to represent L(D | £) as a polynomial different from (7), such
that, first, the polynomial is smaller, and second, the structure of the poly-
nomial permits a more directed search in the optimization. The strategy we
can employ, is to transform for a given structure & the definition of P ()
by (5) directly into a polynomial in the s;(d;).

We illustrate this technique with the relational Bayesian network @
shown in table 4. This network satisfies two important restrictions: it only
uses moisy-or as a combination function, and it is R-acyclic. The latter
restriction ensures that P2 is defined for all D, so that the optimization
problem is unconstrained over Modp(S). The first restriction is vital for
our transformation of PJ(£) into a polynomial, which in its present form
only works for combination functions that are insensitive to zeros, i.e. that
do not change their value when zeros are added or removed from its multiset-
argument. Noisy-or is insensitive to zeros, but mean is not.

Fred('v) =0.8
Fotue (v) = noisy-0r{0.6 - red(w) | w; s(v,w)}

Table 4: Maximum likelihood input structure example

In this example R contains the two unary relations red and blue, and
S the one binary s. Suppose we have observed a R-structure £ over the
domain D. Let d € D, and suppose the blue(d) is true in D. Then (5)
contains the factor

Fo1ue(d) = noisy-0r{0.6 - red(w) | w; s(d, w)} (8)
As noisy-or is insensitive to zeros, we can rewrite this as
Fo1ue(d) = noisy-0r{0.6 - red(w) - s(d, w) | w; |}, (9)

i.e. instead of evaluating the subformula 0.6 - red(w) only for those w for
which s(d, w) holds, we evaluate 0.6-red(w) - s(d,w) for all w. This changes
the resulting multiset by adding one zero for each w for which s(d,w) does
not hold. The given £ instantiates all the indicators red(w), so that by
substituting their truth values and expanding the noisy-or, (9) becomes

Fae(d)=1- [(1-06-s(d,d)) (10)
d':Dl=red(d’)

16

All the other factors Fyine(d'), respectively 1 — Fyine(d') in (5) are obtained
in the same way. Taking the product of all these factors (plus the Freq(d)
and 1— Freq(d)-factors, but these only add a constant) gives us a polynomial
representation of L(D | £). This representation now only has polynomial
size in | D |. Moreover, it is easy to optimize this polynomial: each indicator
s(d,d') appears at most once in the product, and the factor that contains
s(d,d') is maximized by setting s(d,d') to 1 if it appears in a factor of the
form Fiiue(d), and to 0 if it appears in a factor of the form 1 — Fyiye(d). One
thus immediately obtains that any structure D optimizes the likelihood in
which s(d,d') is true when blue(d) and red(d') are true in &£, and s(d,d’)
is false when blue(d) is false and red(d') is true in £.

In general (but under the restriction to combination functions insensi-
tive to zeros) one will always obtain a polynomial representation of L(D | £)
that has polynomial size. Of course, it will not always be possible to opti-
mize this polynomial efficiently (using similar arguments as for theorem 3.3
one can show that the maximum likelihood input structure problem is not
polynomial), but if the likelihood function L(D | £) has certain regular-
ity properties that facilitate its optimization, they can be expected to be
reflected in the structure of polynomial obtained from Pg (€).

4 Learning

The learning problem for relational Bayesian networks in its most general
form is the following:

Input: A set I' of admissible combination functions
A sample Fq,... ,Fn of S, R-structures

Output: A S, R, I'-relational Bayesian network ® that maximizes

a score function o(®,&,...,EN).

The data elements F; can also be written as pairs (D;, &;) of S-structures
D; and R-structures &£; over a common domain D;. Then we can define the
likelihood of ® given the data as

N
L(® | Fr,..., Fn) =[] 5. (). (11)

The score function ¢ will usually be composed of the likelihood function
and some penalty term for the model complexity of ®, or a Bayesian prior
probability of ®.

The optimization has to be constrained to relational Bayesian networks
with combination functions from a set I' that posses a parametric represen-
tation, so that one can effectively search over the elements of T'. In fact, we
will typically take I' to be a small finite set, e.g. I' = {noisy-or, mean}. This
not only reduces the complexity of the search space, it also ensures that the
learned ® encodes the probabilistic model by the structure of its probability
formulas, and not by some very specialized combination functions that are
custom-built for the specific data set.

Implicit in the problem formulation here given is that Pfg’i must be
defined for every D;. One could also generalize the problem setting by
adding as an additional input a class D C Modj,(S) of S-structures, and
demand that for the learned ® all P with D € D are defined. In light of
the discussion of section 3.2.1, however, we see that this will be very difficult

17

for general classes D, as the search space of admissible ® will not always be
decidable.

The nature of the learning problem described here differs from the usual
statistical setting where the data consists of a random sample from a target
distribution P that is to be learned. The random relational structure model
® is not a single distribution P, but a family of distributions {Pp | D € D},
and the data consists of samples from these different distributions. For that
reason the function (11), strictly speaking, is not a likelihood function in
the usual sense. However, we can imagine the input structures D; also be
drawn from some distribution P on Modg,(S), in which case (11) becomes
a proper likelihood up to the factor [[P(D;) that does not depend on @,
and therefore can be neglected.

Clearly, certain models can only be learned if the data contains a suffi-
ciently “rich” selection of different S-structures D. On the other hand, for
other models it makes no difference whether the data consists of a large sam-
ple Fi,...,Fn with many different underlying S-structures D;, or a small
sample of a few large structures F;. In the extreme case, the data consists of
a single structure F. This is a particularly interesting case in practice, as it
corresponds to learning a model from a single relational database (Friedman
et al. 1999). To illustrate these issues, consider the two probability formulas

Flage(v,w) = 1/1000 (12)
Ffdge(v,w) = meanfv = u | u;} (13)

each of which defines a random relational structure model for S = () and R =
{edge}. Ffdge encodes a sparse random graph model, where any two nodes
in a graph with n nodes are connected with probability 1/n. Now suppose
the data consists of a single R-structure £ with 1000 nodes that contains a
total of 1000 edges. Then Fy,, and FZ,, obtain the same likelihood score
given the data. However, a penalty for model complexity included in the
score function will lead to a preference for model Fy,, over F2.. If, on
the other hand, the data consists of a number of graphs D; of different sizes
n;, and each containing approximately n; edges, then Ffdge obtains a much
higher likelihood score than Feldge and can be learned.
Given a score function o and assuming a finite set I', our learning prob-
lem has a structure that is familiar from the learning problem for Bayesian
networks and other graphical models, and more specifically the learning
problems considered e.g. in (Friedman et al. 1999, Muggleton 2000, Sato &
Kameya 2001): it is an optimization over a discrete search space of model
structures (here the probability formula structures), and for each struc-
ture an optimization over a continuous space of model parameters (here the
values of the constants). The following definition makes the concept of a

probability formula structure precise.

Definition 4.1 Let S, R, T be as in definition 2.2. Let 61,6,,... be a set
of parameter variables. The set of S, R, -probability formula structures is
defined inductively by the syntax rule

(i) (Parameters) Each 6; is a probability formula structure,
and the rules (ii)-(iv) from definition 2.2.
Note that we here view the choice of a particular combination function

in construction rule (iv) as part of the discrete structure. We will denote
probability formula structures with F*, and relational Bayesian network

18

structures with ®*. Note that we may use the same parameter variable
more than once in a base case of the construction of a probability formula
structure. This enables us to include equality constraints between parame-
ters in the discrete model structure. As an example, consider the relational
Bayesian network in table 1. Each of the two formulas Fgy and Fy, contains
two constants: the constant 1 inside the noisy-or that defines the subformu-
las Father-in-pedigree, respectively Fiother-in-pedigrees and the constants 1/3.
Legal relational Bayesian network structures can now be obtained both by
substituting for these constants four different parameter variables 61, ... 8y,
or by substituting the same variable 6; for the two occurrences of 1, and 65
for the two occurrences of 1/3. In the latter case we encode in the structure
the prior knowledge that the models for Fgy and Fyy are the same.

In many learning problems, for a given structure and assuming com-
plete data, the optimization over the continuous model parameters is easy
and reduces to some frequency counts in the empirical distribution. This,
unfortunately, is not the case for relational Bayesian networks. However,
under the restriction to multilinear combination functions, it still is a fairly
well-behaved optimization problem.

Theorem 4.2 Let I' be a set of multilinear combination functions, Fi, ...
..., Fn be aset of complete data items. Let ®* be a relational Bayesian net-
work structure with parameter variables @1, ... ,0g. The likelihood function
L(61,...,0k | Fi,...,Fn) for the parameter values given the structure ®*
then is a polynomial in the §;.

The proof is straightforward, and the result actually holds for the wider
class of polynomial combination functions.

An incomplete data item is a structure (D,f) where D is a fully spec-
ified S-structure, and Eisa partially specified R-structure over the same
domain, i.e. £ defines the truth values of some ground atoms r(d), whereas
the truth values of other ground atoms may be missing. The basic structure
of the parameter learning problem for relational Bayesian networks is the
same for incomplete as for complete data: under the restriction to multilin-
ear combination functions it still is the problem of optimizing a polynomial.
In practice, however, the incomplete data case can be substantially harder
than the complete data case, as the polynomial will have exponential size
in the number of missing truth values if constructed naively. Whether this
exponential size can typically be avoided in practice by using more sophis-
ticated constructions is a topic of ongoing work, as is the question whether
a suitable variant of the EM-algorithm can be developed for our parameter
learning problem.

5 Infinite Domains

So far we have presented relational Bayesian networks strictly as a repre-
sentation language for random relational structure models in the sense of
definition 1.1, i.e. restricted to finite domains. However, the language can
also be used to define distributions on the classes of R-structures over in-
finite domains D, especially Herbrand universes arising from function and
constant symbols. In (Jaeger 1998b) this has been investigated for the case
where D is an unstructured countably infinite set (i.e S =), and @ is
R — acyclic. For this case it has been shown that ® defines a unique proba-
bility distribution over Mod p(R), and that probabilistic queries of the form
P(ro(do) = ap | r1(d1) = a1,... ,xi(d;) = ay) =7 can be solved.

19

When S # @ (and, in particular, now allowing that S also may contain
function symbols that are interpreted in the canonical way over a Herbrand
universe), then one can have the case that the dependency relation =g p is
acyclic, but has infinite descending chains: if S = {f} with a single unary
function symbol f, for instance, and D = {a, f(a), f(f(a)),...}, then ®
consisting of the single probability formula

F;(v) = noisy-or{0.2r(w) | w;w = f(v)} (14)

induces the infinite chain r(a) > p r(f(a)) > For infinite D, a
unique distribution is only guaranteed to be defined by @ if >4 p is both
acyclic and well-founded. However, even in that case, elementary inference
problems may be undecidable (Jaeger 1998b).

When >4 p is not acyclic and well-founded (or simply not known to be
acyclic and well-founded), then one can still interpret a probability formula
as a constraint on probability distributions on Modp(R) that is satisfied
by no, exactly one, or several distributions. One easily sees, for example,
that the conditional probabilities defined by (14) can only be satisfied by a
distribution Pp with Pp(r(d)) = 0 for all d € {a, f(a), f(f(a)),...}.

Independent from the properties of >4 p, one can use similar techniques
as used by Pfeffer and Koller (2000) to make approximate inferences about
probabilities entailed by the relational Bayesian network, i.e. to compute
for a query P(r(d)) =7 a sequence of intervals Iy D I, D I3 D ... such that
for all j: Pp(r(d)) € I; for all distributions Pp that satisfy the constraints
imposed by ®.

6 Related Work

The work most closely related to relational Bayesian networks are the Prob-
abilistic Relational Models (PRMs) of Friedman et al. (1999). PRMs are a
special class of random relational structure models in the sense of defini-
tion 1.1, where the underlying S-structure D (called a “skeleton structure”
in (Friedman et al. 1999)) represents the objects in a relational database,
and the reference structure between them, whereas R contains a number of
probabilistic attributes.

This limitation to a fairly restrictive class of probabilistic models is prob-
ably explained by the fact that the development of PRMs was driven by a
somewhat different motivation than the development of relational Bayesian
networks: the latter were designed to provide a framework for the repre-
sentation of, and reasoning with, a rich and natural class of probabilistic
models that can be understood as a predicate logic extension of Bayesian
networks. PRMs, on the other hand, were developed directly with a view
towards learning, particularly learning from data provided by relational
databases. The original restriction to the modelling of probabilistic at-
tributes (i.e. unary relations) permitted to approach the learning problem
with the standard techniques of Bayesian network learning (Friedman et
al. 1999).

In subsequent work (Getoor, Friedman, Koller & Taskar 2001) also some
special forms of probabilistic binary relations (“reference uncertainty”, “ex-
istence uncertainty”) were incorporated into the PRM framework. This
classification of probabilistic binary relations on a phenomenological basis
supports special purpose learning algorithms for probabilistic binary rela-
tions in many practically relevant applications. Relational Bayesian net-
works, on the other hand, provide a unified treatment of all types (and

20

arities) of random relations, but the generality and expressiveness of the
language makes the learning problem harder.

7 Conclusion

We have given an overview of probabilistic modelling and inference with
relational Bayesian networks. The language of relational Bayesian networks
is defined by a rigorous syntax with only four construction rules that resem-
ble the syntax elements of predicate logic. This elementary syntax and its
close connection to logical formulas on the one hand, and (for multilinear
combination functions) polynomials on the other hand, enables us to reduce
many non-trivial inference problems to more standard inference problems
in logic or optimization. While many of these inference problems are in-
herently intractable in general, their formulation as standard optimization
or satisfiability problems allows us to directly utilize the vast amount of
knowledge on solution heuristics and tractable sub-classes available for such
problems.

References

Cussens, J. (1999), ‘Integrating probabilistic and causal reasoning’,
Linképing FElectronic Articles in Computer and Information Science.
http://www.ep.liu.se/ea/cis/1999/036/.

Dagum, P., Galper, A. & Horvitz, E. (1992), Dynamic network models for
forecasting, in ‘Proceedings of the Eighth Annual Conference on Un-
certainty in Artificial Intelligence (UAI-92)’, Morgan Kaufmann Pub-

lishers, San Francisco, CA, pp. 41-48.

Ebbinghaus, H. D. (1985), Extended logics: The general framework, in
J. Barwise & S. Feferman, eds, ‘Model-Theoretic Logics’, Springer-
Verlag, pp. 25-76.

Ebbinghaus, H.-D. & Flum, J. (1999), Finite Model Theory, Perspectives in
Mathematical Logic, second edition edn, Springer Verlag.

Fagin, R. (1976), ‘Probabilities on finite models’, Journal of Symbolic Logic
41(1), 50-58.

Friedman, N., Getoor, L., Koller, D. & Pfeffer, A. (1999), Learning prob-

abilistic relational models, in ‘Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI-99)’.

Getoor, L., Friedman, N., Koller, D. & Taskar, B. (2001), Learning prob-
abilistic models of relational structure, in ‘Proceedings of the 18th
International Conference on Machine Learning’, pp. 170-177.

Grove, A., Halpern, J. & Koller, D. (1992), Asymptotic conditional prob-
abilities for first-order logic, in ‘Proc. 24th ACM Symp. on Theory of
Computing’.

Jaeger, M. (1997), Relational bayesian networks, in D. Geiger & P. P.
Shenoy, eds, ‘Proceedings of the 13th Conference of Uncertainty in Ar-
tificial Intelligence (UAI-13)’, Morgan Kaufmann, Providence, USA,
pp. 266 273.

21

Jaeger, M. (1998a), Convergence results for relational Bayesian networks,
in V. Pratt, ed., ‘Proceedings of the 13th Annual IEEE Symposium
on Logic in Computer Science (LICS-98)’, IEEE Technical Committee
on Mathematical Foundations of Computing, IEEE Computer Society
Press, Indianapolis, USA, pp. 44-55.

Jaeger, M. (1998b), Reasoning about infinite random structures with rela-
tional bayesian networks, in A. G. Cohn, L. Schubert & S. C. Shapiro,
eds, ‘Proceedings of the 6th International Conference on Principles
of Knowledge Representation and Reasoning (KR-98)’, Morgan Kauf-
mann, Trento, Italy, pp. 570-581.

Jaeger, M. (2000), ‘On the complexity of inference about probabilistic rela-
tional models’, Artificial Intelligence 117, 297 308.

Jaeger, M. (2001), ‘Complex probabilistic modeling with recursive relational
Bayesian networks’, Annals of Mathematics and Artificial Intelligence
32, 179-220.

Kersting, K. & de Raedt, L. (2001), Towards combining inductive logic pro-
gramming and bayesian networks, in ‘Proceedings of the Eleventh In-
ternational Conference on Inductive Logic Programming (ILP-2001)’,
Springer Lecture Notes in AT 2157.

Koller, D. (1999), Probabilistic relational models, in ‘Proceedings of ILP-
99’, LNAI 1634, pp. 3 13.

Muggleton, S. (1996), Stochastic logic programs, in L. de Raedt, ed., ‘Ad-

3

vances in Inductive Logic Programming’, IOS Press, pp. 254—264.

Muggleton, S. (2000), ‘Learning stochastic logic programs’, Flectronic
Transactions on Artificial Intelligence 4, Section B, 141 153.

Ngo, L. & Haddawy, P. (1997), ‘Answering queries from context-
sensitive probabilistic knowledge bases’, Theoretical Computer Science
171, 147-177.

Oberschelp, W. (1982), Asymptotic 0-1 laws in combinatorics, in D. Jung-
nickel, ed., ‘Combinatorial Theory’, Vol. 969 of Lecture Notes in Math-
ematics, Springer Verlag.

Pfeffer, A. & Koller, D. (2000), Semantics and inference for recursive prob-
ability models, in ‘Proceedings of AAAI-2000.

Poole, D. (1993), ‘Probabilistic horn abduction and Bayesian networks’,
Artificial Intelligence 64, 81 129.

Sato, T. (1995), A statistical learning method for logic programs with distri-
bution semantics, in ‘Proceedings of the 12th International Conference
on Logic Programming (ICLP’95)’, pp. 715-729.

Sato, T. & Kameya, Y. (2001), ‘Parameter learning of logic programs for
symbolic-statistical modeling’, Journal of Artificial Intelligence Re-
search 15, 391-454.

