
Learning Probabilistic Decision Graphs

Manfred Jaeger Jens D. Nielsen
Institut for Datalogi
Aalborg Universitet

Frederik Bajders Vej 7,
9220 Aalborg , Denmark

{jaeger, dalgaard}@cs.auc.dk

Tomi Silander
Complex Systems Computation Group

Helsinki Institute for Information Technology
P.O.Box 9800,

FIN-02015 HUT, Finland
tsilander@hiit.fi

Abstract

Probabilistic decision graphs (PDGs) are a representation language for probability distributions
based on binary decision diagrams. PDGs can encode (context-specific) independence relations
that cannot be captured in a Bayesian network structure, and can sometimes provide computation-
ally more efficient representations than Bayesian networks. In this paper we present an algorithm
for learning PDGs from data. First experiments show that the algorithm is capable of learning
optimal PDG representations in some cases, and that the computational efficiency of PDG mod-
els learned from real-life data is very close to the computational efficiency of Bayesian network
models.

1 Introduction

Probabilistic decision graphs (PDGs) (Bozga &
Maler 1999, Jaeger 2002) are a graphical represen-
tation language for probability distributions that is
based on the representation paradigm of ordered
binary decision diagrams (Bryant 1986). PDGs
were originally conceived for applications in auto-
mated verification of probabilistic systems (Bozga
& Maler 1999). An initial study of their potential
strengths as a representation language also for AI
applications was conducted in (Jaeger 2002). The
main result of that study was that from a computa-
tional complexity point of view, PDGs are always as
efficient as Bayesian networks, and for some types
of probability distributions they are more efficient.

These theoretical results leave the question open,
how efficient PDG representations of a given prob-
abilistic domain can be found in practice; in par-
ticular, whether PDGs can be learned automatically
from data. This question is taken up in the present
paper. We here describe an approach to learning
PDGs from data, and compare the PDG models with
Bayesian networks learned from the same datasets.
The basis for the comparison is the efficiency of
probabilistic inference in the learned models.

In the following section we briefly introduce the

language of PDGs, and review some of their essen-
tial properties. In section 3 we describe a learning
algorithm for PDGs. Section 4 reports the results
of an initial comparative study of Bayesian network
and PDG models learned from data.

2 Probabilistic Decision Graphs

In this section we briefly review definitions and
some results given in (Jaeger 2002, Jaeger 2004).

Figure 1 shows on the right an example PDG
defining a joint probability distribution for binary
random varibles X1, . . . , X6. The graphical struc-
ture of the PDG is defined in two stages: first, one
defines a forest (a set of trees) over a set of nodes
labeled with the given random variables. This for-
est is shown in the left part of Figure 1. Then,
each node Xi in the forest is expanded into a set
Vi of nodes, and a node ν ∈ Vi is connected as
follows: for each successor Xj of Xi in the vari-
able tree containing Xi, and each possible value of
Xi, there exists exactly one outgoing edge of ν lead-
ing to a node ν ′ ∈ Vj . The resulting structure is a
rooted directed acyclic graph (rdag) for every tree in
the original variable-forest. In our example all vari-
ables are {0, 1}-valued, so that each node ν contains
two outgoing edges for each successor variable in
the variable-forest structure. Edges corresponding

PSfrag replacements

ν1

(.3,.7)

ν2

(.8,.2)
ν3

(.9,.1)
ν4

(.5,.5)
ν5

(.4,.6)

ν6

(.1,.9)
ν7

(.2,.8)
ν8

(.5,.5)

ν9

(.1,.9)

ν10

(.4,.6)
ν11

(.8,.2)

V1

V2 V3

V4

V5

V6

X1

X2 X3

X4

X5

X6

Variable-forest PDG

Figure 1: Probabilistic Decision Graph with underlying forest and nodes reached by (1, 0, 1, 1, 0, 0)

to value 0 here are indicated by dotted lines, edges
corresponding to value 1 by solid lines. Finally, a
PDG is obtained by annotating each node ν ∈ Vi

with a probability distribution over the possible val-
ues of Xi.

Each joint instantiation of the variables induces
a sub-graph in the PDG that is a forest of the same
structure as the underlying variable-forest. In fig-
ure 1 the nodes of the forest corresponding to the
instantiation X1 = 1, X2 = 0, X3 = 1, X4 =
1, X5 = 0, X6 = 0 are shaded. We say that these
nodes are reached by the given instantiation. The
PDG now defines the probability of the instantiation
as the product of all the probability assignments to
the values of the instantiation according to the dis-
tributions at the nodes reached by the instantiation.
In our example:

P ((X1, . . . , X6) = (1, 0, 1, 1, 0, 0)) =

.7 · .8 · .6 · .9 · .1 · .8 = 0.024192.

The structure of a PDG encodes certain (condi-
tional) independence relations: first, the joint dis-
tribution of the variables contained in one tree of
the underlying variable-forest is independent from
the joint distribution of the variables in another tree.
This is a very strong independence property, and
therefore we will mostly encounter PDGs whose
underlying variable-forest consists of a single tree.
The structure of a single rdag encodes conditional
independence relations among the variables con-
tained in the tree for this rdag. These independence
relations are not characterized as for Bayesian net-
works in terms of subsets of variables, but in terms

of partitions of the state space: each node set Vi

defines a partition of the state space (the set of all
complete instantiations) into the sets of instantia-
tions that reach the same node in Vi. In our example,
the nodes V4 partition the state space into the sets of
instantiations {X3 = 1}, {X1 = 0, X3 = 0} and
{X1 = 1, X3 = 0}. The conditional independence
relations encoded by a PDG now are:

P (Xi | nonsucc(Xi)) = P (Xi | Vi) (1)

where nonsucc stands for the set of variables that
are not successors of Xi in the variable-forest.
Such partition-based independence relations can
correspond to context-specific independencies in
the sense of (Boutilier, Friedman, Goldszmidt &
Koller 1996). In our example, for instance, the in-
dependence relation (1) applied to Xi = X4 essen-
tially means that X4 is independent of X1 given
that X3 = 1. However, there is no exact match
between our partition-based independence relations
and context-specific independencies. Furthermore,
it can be shown that the class of independence rela-
tions that can be encoded with PDGs is incompara-
ble to the class of independence relations that can be
encoded with Bayesian networks, i.e. each of these
two representation languages can encode indepen-
dence relations that cannot be encoded by the other
language. For more detailed information on inde-
pendence relations encoded by PDGs the reader is
referred to (Jaeger 2004).

Based on a PDG representation some key prob-
abilistic inference problems are solvable in linear
time. This includes the computation of poste-
rior marginal distributions for all random variables

given an instantiation of some of the variables in the
PDG, and the computation of the most probable ex-
planation, i.e. the most probable full instantiation
given a partial instantiation. Inference in Bayesian
networks, on the other hand, is linear only in the size
of the junction tree constructed from the Bayesian
network. To compare the complexity of probabilis-
tic inference based on Bayesian network and PDG
representations, one thus has to compare the sizes
of a PDG representation with the size of the junc-
tion tree generated from a Bayesian network. More
precisely, this is the pertinent comparison when one
is interested in exact computation of arbitrary pos-
terior marginal distributions. For more specialized
inference tasks (e.g. classification with all attributes
instantiated), or approximate inference procedures,
inference in Bayesian networks can become linear
already in the size of the Bayesian network.

It was shown in (Jaeger 2002) that there is a lin-
ear transformation from junction trees into equiv-
alent PDGs. On the other hand, there exist distri-
butions for which a compact PDG representation,
but no compact junction tree representation exists.
An example for such a distribution is the joint dis-
tribution of n + 1 binary random variables, n of
which are independently and uniformly distributed,
and the (n + 1)st represents a parity bit that is
deterministically defined by the other variables as
Xn+1 =

∑n
i=1 Ximod 2. When the set of variables

is fixed, thus, PDGs are a more efficient represen-
tation language than junction trees. For the parity
distribution one can also construct linear size junc-
tion tree representations by introducing suitable ad-
ditional (hidden) variables. This is true in general:
using suitable augmenting sets of hidden variables,
one can always also define a linear transformation
from PDGs to junction trees (Jaeger 2002).

In some sense, then, PDGs and Junction Trees,
and hence Bayesian networks, provide computa-
tionally equally efficient representations of proba-
bility distributions1 . However, the necessary intro-
duction of hidden variables can be a major obsta-
cle for obtaining efficient Bayesian network repre-

1Strictly speaking, to establish the equal efficiency of
Bayesian networks one also has to show that for every distri-
bution there exists a Bayesian network from which a junction
tree can be constructed that has minimal size (up to a linear
factor) among all junction trees for the given distribution.

sentations when the model is to be learned from
data, since so far no reasonably general and effec-
tive ways of automatically learning hidden variables
are known. This also indicates the challenge posed
by learning PDGs: learning optimal PDGs partially
subsumes the problem of learning hidden variables.

3 Learning PDGs

We use a score-based approach to learning PDGs
from data using a generic score function of the form:

Sλ(M) := (1 − λ)L(M,D) − λ|M | (2)

where L(M,D) is the log-likelihood of the data
given the model M , |M | is the size of the model
(measured by its total number of parameters), and
0 ≤ λ ≤ 1 is a parameter that can be set for
the learning problem at hand. Optimizing (2) with
large λ-values will lead to small and not very ac-
curate models, whereas small λ-values give higher
scores for larger and more accurate models. Set-
ting λ to log | D | /(2+ | D |), for exam-
ple, makes this score function equivalent to BIC
score (Friedman & Goldszmidt 1999). One can also
use the generic score function (2) to learn models
for resource-bounded applications by first setting λ
to a large value, and then decrementing until the
learned model exceeds a given size constraint. The
last model learned is then the most accurate model
we can find under the given constraints.

Optimizing Sλ for large λ is easier than optimiz-
ing for small λ, as the strong bias towards smaller
models efficiently reduces the size of the search-
space.

The structure search for PDGs decomposes into
two parts: the search for a variable forest, and the
search for the exact PDG structure based on that
variable forest. One may expect that when we ob-
tain a high scoring PDG for some λ value, then
the variable forest underlying this PDG will also
support high scoring PDGs for other λ-values (be-
cause capturing certain conditional independence
relations among variables in the forest structure will
lead to smaller models and hence higher scores for
all λ values). Together with the observation above
that it is much easier to learn PDGs when scoring
with large λ-values, this leads us to the following
population-based approach to learning (cf. table 1):

first a population of candidate variable forests is
created (line 3). Starting with the largest λ in a
set L of λ-parameters, then each variable forest is
refined into an actual PDG using the LearnPDG
sub-routine, which optimizes Sλ. Forests achiev-
ing a poor score in this optimization are then re-
moved from the population (lines 6-7), and the pro-
cess is repeated with the next smaller λ-value. The
subroutine LearnForest that generates the initial
forests is a constraint-based approach that builds
a forest encoding certain conditional independence
relations we find in the data. It requires a parameter
t that determines the level of conditional indepen-
dence tests inside the routine. The use of different
test-levels promotes diversity in the structures in F
(lines 2-3).

0: Procedure Learn
1: L :=set of decreasing λ-values
2: T :=set of different test-levels
3: F := {LearnForest(t)|t ∈ T}
4: for each λ ∈ L do:
5: G := {LearnPDG(a, λ)|a ∈ F}
6: compute Flow

7: F := F\{a|a ∈ Flow}
8: output highest scoring g ∈ G

Table 1: Main PDG-learning loop

We now describe the two main subroutines in
greater detail. LearnPDG(a, λ) (see table 2) tra-
verses the space of different PDGs over the forest a
in the search for an optimal PDG, w.r.t Sλ. Three
different local operators define the traversal: split,
merge and redirect.

The split-operator takes a node with n > 1 in-
coming edges, and replaces it with n nodes, one for
each incoming edge. The outgoing edges of the new
nodes are directed into the original successors of the
eliminated node. The selection of nodes for split-
ting is randomized, but biased towards those nodes
for which the result of splitting will lead to several
new nodes that are all reached by a significant num-
ber of data items. Splitting nodes with this property
affords the highest potential increase in likelihood
score.

The merge-operator takes two nodes all of whose
outgoing edges are directed to the same successor
nodes, and replaces them with a single node, also

having these same successors. If the probability
distributions at the two nodes are sufficiently sim-
ilar, thent the size reduction obtained by the merge
will outweigh the loss in likelihood score, and hence
lead to an overall score improvement. It is possible
to compute the exact change in score from the local
information at the two nodes, so that merges are per-
formed systematically for pairs of nodes for which
the score change is positive.

The redirect-operator is the compuationally most
expensive operator. It tests for every node ν in the
PDG, and each of its outgoing edges leading into
some ν ′ ∈ Vi , whether the likelihood score can be
improved by redirecting this edge into some other
ν ′′ ∈ Vi. This is tested by computing the likeli-
hood score of the dataitems reaching ν under the
two marginal distributions defined by ν ′ and ν ′′ for
the variables contained in the subtree rooted at Xi

in the variable forest.

0: Procedure LearnPDG(a, λ):
1: repeat:
2: split nodes top-down
3: merge nodes bottom-up
4: redirect edges bottom-up
5: until no improvement in Sλ

Table 2: LearnPDG procedure

0: Procedure LearnForest(t)
1: Initialize(F, t)
2: for each a ∈ F do:
3: repeat:
4: grow(a, t)
5: LearnPDG(a, λmax)
6: until a, t is complete

Table 3: LearnForest procedure

The LearnForest procedure is sketched in ta-
ble 3. The procedure constructs the variable for-
est incrementally. At each stage, some of the vari-
ables have been built into a variable forests. Each
of the remaining variables is assigned to some leaf
of an existing tree, which means that they will be
built into a subtree rooted at this leaf. Moreover,
using the LearnPDG procedure, the partially con-
structed variable forest has already been expanded

V6

V2 V4

X1 X7 X3 X5

(a)

V6

V2 V4

X1 X7 X3 X5

(b)

V6

V2 V4

V1 V3

X5 X7

(c)

V6

V2 V4

V1 V3

X5 X7

(d)

Figure 2: Snapshots of the procedure for growing PDGs

into a small PDG. Figure 2(a) shows this situation
with three variables X2, X4, X6 already built into a
tree, all remaining variables assigned to leaf X4 of
this tree, and a small PDG for the first three vari-
ables already constructed. In the grow subroutine
we first perform a χ2 independence test for all pairs
of variables assigned to the same leaf, where the test
is conditional on the partition defined by the leaf.
Variables for which the test indicates dependence
are connected by an edge, figure 2(b). Each con-
nected component of the resulting graph becomes a
separate sub-tree under the original leaf. In the first
stage of the algorithm variables are not yet assigned
to an existing leaf, and the connected components
determine the partitioning of the variables into the
separate trees of the forest. The grow subroutine
finishes by randomly selecting from each connected
component a node as the root for these new subtrees
and assigning the remaining variables from the con-
nected component to this new leaf, figure 2(c). One
iteration of the LearnForest procedure then is
completed by calling LearnPDG with a large pa-
rameter λmax to refine the expanded forest into a
small PDG, figure 2(d).

We have implemented our PDG learning pro-
cedure in Java. For basic data-handling rou-
tines we made use of the WEKA package
(http://www.cs.waikato.ac.nz/∼ml/weka/).

As a first test of our learning algorithm we have
applied it to a dataset sampled from the parity distri-
bution described in section 2 with n = 7. The algo-
rithm was run setting L to a set of eight different λ-
values. Figure 3(a)-(c) shows the PDGs learned for
three decreasing λ-values. For the middle λ-value
the learned PDG is almost the optimal PDG for the
underlying distribution. An optimal PDG would be

obtained by merging the nodes 8 and 9. By avoid-
ing this merge the algorithm here slightly overfits
the data. For the smallest λ value (figure 3(c)) the
overfitting is much stronger. The ability to learn
the structure for the parity distribution demonstrates
the potential of the split, merge and redirect oper-
ations for an effective PDG-structure search. The
construction of the underlying variable forest here
is not such a difficult problem, as any forest consist-
ing of a single, linear tree can be used in an optimal
PDG for the parity distribution.

bit1

parity

bit7

bit2

bit5

bit6

bit4

bit3

0

1

2

3

4

5

6

7

(a)

parity

bit2

bit1

bit7

bit4

bit3

bit6

bit5

0

12

34

56

978

1110

1213

1415

(b)

parity

bit2

bit1

bit7

bit4

bit3

bit6

bit5

0

1 2

43

7 56

1113 89 1012

15 14161917 18

2120 24 2322

25 26

(c)

Figure 3: Learned PDGs from parity data

4 Learning results: PDG vs. Bayesian
networks

We applied our learning algorithm to several real-
world datasets, and compared the resulting PDGs
with the junction trees constructed from Bayesian

networks learned from the same data. Main ob-
jective of these experiments is to empirically eval-
uate the relative inferential efficiency of PDG and
Bayesian network representations for real-world
distributions. Ideally, we would like to find opti-
mal (i.e. as small as possible) PDG and junction
tree models for the exact distribution that generated
the data. This, of course, is impossible, since the
precise distribution is unknown, and all we have
is a sample drawn from the distribution. Thus, all
models that we learn can only be approximations
of the true underlying distribution. We use the log-
likelihood of a test dataset under a model as a mea-
sure for how accurately the model approximates the
underlying distribution. For this purpose all datasets
have been split into a training set (2/3 of the data)
and a test set (1/3 of the data).

One might avoid some of these problems by
learning from synthetic data sampled from some
model. The known model can then be used to eval-
uate the accuracy of the learned models precisely.
This, however, is problematic in our context, where
we aim to compare different representation frame-
works: the representation used for the generating
model can easily bias the results of the comparison
in favor of that representation framework which is
more closely related to the generating model. If,
for example, we generate data with a Bayesian net-
work, then the data can be expected to contain inde-
pendence structures that are more easily expressible
with Bayesian networks than with PDGs. The con-
verse holds if we sample data from a PDG.

We try to learn models that are as accurate and as
small as possible. The success of this learning task
will be determined by two factors: the existence of
small and accurate models for the given real-world
distributions in the respective representation frame-
works, and our ability to find the best possible mod-
els with our learning methods. Our experiments,
thus, confound two issues that, from a theoretical
point of view, one would like to investigate sepa-
rately. From a practical point of view, however, one
can argue that the mere existence of efficient models
in a given representation language is of little value if
we are unable to learn these models from data. The
’practical efficiency’ of a representation language,
then, would be measured in the size and accuracy
of models we are actually able to learn from data –

which is what we do in our experiments.
In our experiments we do not focus only on learn-

ing a single best approximate model, but we inves-
tigate the size of models over a range of different
accuracies. This is of interest, because it might be
the case that for a resource-bounded application we
are not necessarily interested in the most accurate
model, but in a model that is as accurate as possible
within a given size bound. With our experiments
we aim at obtaining a full picture of the different
size/accuracy tradeoffs that can be realized in the
different representation frameworks. In the case of
PDGs we obtain a spectrum of models representing
different size/accuracy tradeoffs in a single run of
our algorithm which records the best model found
for each λ ∈ L.

For Bayesian network learning we use the B-
course algorithm (Myllymaki, Silander, Tirri &
Uronen 2002). This is a score-based learning al-
gorithm that performs structure search by local arc
insertion, deletion and reversal operations. We use
it with the generic score function (2) and various
λ-values. The search in B-course continues to ex-
plore for better models until a timeout, always mem-
orizing the best model found so far. In our exper-
iments we set the timeout to 1 hour for every λ
value. Bayesian networks were learned for 6-8 dif-
ferent λ-values, giving a total runtime for B-course
of approximately 6-8 hours per dataset. The search
in our PDG learner, on the other hand, terminates
when no score improvement has been found within
a certain number of iterations. The total runtime of
the PDG learner proved to be highly dependent on
the size of the datasets, because the local structure
changing operations require quite frequent parame-
ter re-estimations, and hence expensive data-reads.
To learn models for all the given λ-values our algo-
rithm needed in between 15 minutes for the small-
est datasets, and 12 hours for the Adult dataset. To
reduce overfitting, both learning procedures apply
parameter smoothing methods to the model learned
from optimization of Sλ.

The data used for the experiments are displayed
in table 4. The preprocessing for all datasets con-
sisted of removing cases with missing values and
continuous variables discretized into uniform inter-
vals.

Figure 4 shows the size and log-likelihood values

Data #variables size Description Source
Adult 15 45.222 Census data. UCI
Space 7 3197 Geographical analysis spatial data. StatLib
Hall of fame 17 1320 Major League Baseball hall of fame data. StatLib
Yeast 9 1446 Prediction of Cellular Localization Sites of Proteins. UCI
Supreme 8 4052 Prediction of action taken based on supreme court data from legal cases. StatLib

Table 4: Datasets used. Data sources: http://kdd.ics.uci.edu/ (UCI) and http://lib.stat.cmu.edu/ (StatLib).

-9.8

-9.6

-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

 0 500 1000 1500 2000 2500 3000 3500

 Yeast JT

 Yeast PDG

 Supreme JT

 Supreme PDG

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

-14

-13.5

 0 5000 10000 15000 20000 25000 30000 35000

 Adult JT

 Adult PDG

 Hall of fame JT

 Hall of fame PDG

-24

-23

-22

-21

-20

-19

-18

-17

-16

 0 5000 10000 15000 20000 25000

 Space JT

 Space PDG

Figure 4: Size/accuracy tradeoff-curves for PDGs and BNs learned from yeast and supreme data (leftmost
plot) adult and halloffame data (middle) and space data (rightmost). X-axis is Size and Y-axis is log-
likelihood.

obtained by the BN and PDG learners by optimizing
Sλ for a range of λ-values. For Bayesian networks,
the reported size is that of the generated junction
tree. The likelihood scores are per-instance, i.e.
equal to L(M,D)/ |D |. The results show a surpris-
ingly close correspondence for the two frameworks.
One might have expected that for some datasets one
representation framework would clearly outperform
the other, because of independence structures in the
data that are more easily expressed in one of the two
frameworks. Overall, the results for Bayesian net-
works are slightly better than for PDGs. The abso-
lute differences in likelihood score are rather small,
however2.

5 Related Work

A related approach to making representations of
probability distributions more compact and thereby

2Logarithms here are base 2. To obtain a better intuition for
the magnitude in likelihood differences, consider the follow-
ing: suppose that the test data defines a distribution on binary
variables X1, . . . , Xn+1 such that variable Xn+1 is determin-
istically determined by the values of X1, . . . , Xn. Consider
two models M1, M2 for the data that agree with respect to the
marginal distribution of X1, . . . , Xn, but M1 correctly identi-
fies the functional dependence of Xn+1, whereas M2 models
Xn+1 as independent from the other variables, with probabil-
ity 1/2 for both its values. Then the difference in per-instance
log-likelihood score for these two models will be equal to 1

speeding up probabilistic inference is the work
by Darwiche on arithmetic circuit representa-
tions (Darwiche 2000, Darwiche 2002). The key
difference between arithmetic circuit representa-
tions and PDGs is that the former are not a dedi-
cated representation framework for probability dis-
tributions, i.e. the subclass of circuits that repre-
sent distributions is not characterized by a simple
syntactic criterion. As a consequence, it would ap-
pear very difficult to learn arithmetic circuits di-
rectly from data, as the search space of possible
models is not well circumscribed. Consequently,
Darwiche envisages arithmetic circuits mostly as a
secondary representation that has to be obtained by
compilation from some primary representation (e.g.
a polynomial or a junction tree representation). In
(Darwiche 2002) some empirical results are given
which show that circuit representations can be much
smaller than junction tree representations.

The most closely related work about learning
PDG-related models is work on learning probability
estimation trees (PETs)(Provost & Domingos 2003)
and decision graphs for CPT representations in a
Bayesian network (CPT-DG)(Chickering, Hecker-
man & Meek 1997, Friedman & Goldszmidt 1999).
Both of these frameworks serve only for the repre-
sentation of a distribution of a single variable, con-

ditional on values of other variables. In case of
PETs this is the distribution of the class variable
given attribute values; in the case of CPT-DGs this is
the distribution of a network variable condtional on
its parents. More fundamental than this difference,
however, is the fact that both PETs and CPT-DGs
follow the multi-terminal binary decision diagram
(MTBDD)(Fujita, McGeer & Yang 1997) paradigm
of function representation: the internal nodes of
the representations only serve to determine the ar-
gument for the function; they do not as in PDGs
already contain numerical information from which
the function value (i.e. a probability) is incremen-
tally constructed while descending through the tree
or graph. As a result, such representations always
require as many leaves as there are different func-
tion values, whereas in the case of PDGs the num-
ber of function values only induces a lower bound
on the number of paths through the graph.

The structure search for good PETs or CPT-DGs
on the one hand, and PDGs on the other hand, has
to focus on somewhat different problems: for the
former types of representations one main question
is which variables to include in the graph or tree, so
as to obtain an informative case-distinction for the
distribution of the target variable at the leaves. For
PDGs, the set of variables is given, and the labelling
of nodes in the PDG with variables follows much
stricter rules than imposed in a PET or CPT-DG.
Nevertheless, (Chickering et al. 1997) use in the
structure search for CPT-DGs split and merge oper-
ations that somewhat resemble our split and merge
operations. However, Chickering et al. apply their
split and merge operations only at leaf nodes. More-
over, their application of split and merge operations
is purely random, and not based on any score im-
provement heuristics as in our algorithm.

6 Conclusion

We have developed and implemented a method for
learning probabilistic decision graphs from data.
Applying the method to the artificial parity dataset
we found that we are able to learn PDG models
which are more efficient than any Bayesian network
model for the same data. Similar advantages, so far,
have not been found for real-life datasets. However,
there is still much potential for improving the PDG

learning method. In combination with a better un-
derstanding for what types of data might be most
appropriate for PDG modelling, this may still lead
to applications where learned PDGs have a clear ad-
vantage over learned Bayesian networks. Further-
more, more specialized applications for PDGs (e.g.
in classification) should be investigated.

References
Boutilier, C., Friedman, N., Goldszmidt, M. & Koller,

D. (1996), Context-specific independence in Bayesian
networks, in ‘Proceedings of UAI–96’, pp. 115–123.

Bozga, M. & Maler, O. (1999), On the representation of
probabilities over structured domains, in ‘Proceedings
of CAV-99’, number 1633 in ‘Lecture Notes in Com-
puter Science’.

Bryant, R. E. (1986), ‘Graph-based algorithms for boolean
function manipulation’, IEEE Transactions on Com-
puters 35(8), 677–691.

Chickering, D. M., Heckerman, D. & Meek, C. (1997),
A Bayesian approach to learning Bayesian networks
with local structure, in ‘Proceedings of UAI–97’.

Darwiche, A. (2000), A differential approach to inference
in Bayesian networks, in ‘Proceedings of UAI–2000’.

Darwiche, A. (2002), A logical approach to factoring be-
lief networks, in ‘Proceedings of KR-2002’.

Friedman, N. & Goldszmidt, M. (1999), Learning
bayesian networks with local structure, in M. I. Jor-
dan, ed., ‘Learning in Graphical Models’, MIT Press.

Fujita, M., McGeer, P. C. & Yang, J.-Y. (1997), ‘Multi-
terminal binary decision diagrams: an efficient data
structure for matrix representation’, Formal Methods
in System Design 10, 149–169.

Jaeger, M. (2002), Probabilistic decision graphs: Com-
bining verification and AI techniques for probabilistic
inference, in ‘Proceedings of the first European Work-
shop on Probabilistic Graphical Models (PGM)’.

Jaeger, M. (2004), ‘Probabilistic decision graphs - com-
bining verification and AI techniques for probabilis-
tic inference’, Int. J. of Uncertainty, Fuzziness and
Knowledge-based Systems 12, 19–42.

Myllymaki, P., Silander, T., Tirri, H. & Uronen, P. (2002),
‘B-course: A web-based tool for Bayesian and causal
data analysis’, International Journal on Artificial In-
telligence Tools 11(3), 369–387.

Provost, F. & Domingos, P. (2003), ‘Tree induction
for probability-based ranking’, Machine Learning
52, 199–215.

