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tMotivated by the observation that exe
utions of a probabilisti
 system almostsurely are fair, we interpret 
on
epts of fairness for nondeterministi
 pro
esses aspartial des
riptions of probabilisti
 behavior. We propose 
omputable fairness as avery strong 
on
ept of fairness, attempting to 
apture all the qualitative properties ofprobabilisti
 behavior that we might reasonably expe
t to see in the behavior of a non-deterministi
 system. It is shown that 
omputable fairness does des
ribe probabilisti
behavior by proving that runs of a probabilisti
 system almost surely are 
omputablefair. We then turn to the question of how sharp an approximation of randomness isobtained by 
omputable fairness by dis
ussing 
ompleteness of 
omputable fairnessfor 
ertain 
lasses of path properties.1 Introdu
tionThe 
on
ept of fairness was introdu
ed to formulate 
ertain 
onditions on the behavior ofnondeterministi
 systems. These 
onditions amount to more or less strong assumptionson the a
tions of the environment, a s
heduler, an adversary, or whatever unknown (orunspe
i�ed) 
omponent is responsible for the nondeterminism in a system. Dependingon what kind of unspe
i�ed 
omponent is modeled by nondeterminism, a spe
i�
 fairnessassumption will be more or less reasonable to make. If, for instan
e, the nondeterministi
transitions in a system model the moves of a mali
ious, intelligent adversary, whose aimit is to generate a run of the system with 
ertain properties, then no fairness assumptionwill usually be admissible. If, on the other hand, nondeterminism represents the a
tionsof a s
heduler in a model for 
on
urrent 
omputation, then standard fairness notions(whi
h, of 
ourse, originally were just proposed in this 
ontext) amount to legitimateassumptions on the poli
y of the s
heduler. Finally, take the 
ase where nondeterminismmodels the intera
tion of a system with a 
haoti
 environment (e.g. the intera
tion ofa 
afeteria 
o�ee ma
hine with its 
ustomers). Here we often 
an view nondeterminismas a qualitative approximation to randomness, i.e. the nondeterministi
 system reallyrepresents a probabilisti
 system without any 
on
rete probability values �lled in. In thislast 
ase about any kind of fairness assumption is justi�ed, be
ause for a 
on
ept of x-fairness, say, and a probabilisti
 system obtained from a nondeterministi
 one by �lling inprobability values, we will obtain a theorem of the formThe set of all x-fair exe
utions has probability 1. (1)



Pnueli and Zu
k (1993), for instan
e, have shown su
h a theorem for their 
on
ept of�-fairness; Baier and Kwiatkowska (1998) for a whole 
lass of fairness notions. Thus seeingthat fairness assumptions are generally adequate for probabilisti
 systems, we 
an interpretfairness itself as a requirement that runs of a nondeterministi
 system have some of theproperties that runs of a probabilisti
 system almost surely have, or, loosely speaking,that the adversary or s
heduler in the nondeterministi
 system be not too mali
ious, andbehave a little bit like a fair 
oin tosser. This point of view was already taken by Pnueli andZu
k, whose notions of extreme fairness (Pnueli 1983) and �-fairness (Pnueli & Zu
k 1993)were proposed expli
itly as an approximation to probabilisti
 behavior.When we have shown a theorem (1) for two di�erent notions of fairness, say x-fairnessand y-fairness, then the theorem also holds for the new 
on
ept xy-fairness, obtained byrequiring a run to be both x-fair and y-fair. Similarly for the 
onjun
tion of a 
ountablyin�nite set of di�erent fairness notions. This suggests the question: is there a 
anoni
al,strongest 
on
ept of fairness, one that subsumes most or all previously proposed notionsof fairness, one that still allows us to derive for it theorem (1), and, �nally, that still 
an beseen as a natural requirement for a nondeterministi
 system? In se
tion 3 we are going topropose 
omputable fairness as an answer to this question. Computable fairness is basedon the 
on
ept of unpredi
tability, i.e. we are going to 
all a behavior of a nondeterministi
system 
omputable fair, if it is suÆ
iently unpredi
table.In some 
ases we also get as a weak 
onverse of (1) a theorem that for some 
lass C ofproperties of runs saysFor all C 2 C: if C holds with probability 1 in a prob-abilisti
 system, then C holds for all x-fair runs. (2)Instan
es of (2) are mu
h s
ar
er than instan
es of (1), being essentially exhausted by theresult of Pnueli and Zu
k (1993) that (2) holds for the 
lass of properties expressible inPLTL, and for �-fairness. Clearly, (2) 
annot hold without the relativization to a suitable
lass C, sin
e otherwise we would just let C be the set of all runs ex
ept one spe
i�
 runthat is x-fair. Then C will have probability one, and yet the 
on
lusion of (2) will nothold.In se
tion 4 we will show that (2) holds for 
omputable fairness and C the 
lass ofproperties de�nable by deterministi
 B�u
hi automata. This is not yet a very strong result,and we expe
t to extend it to more general 
lasses C in future work.2 PreliminariesIn this se
tion we introdu
e the basi
 terminology we shall need. In most works relatedto the issues we are here dealing with, models for systems are introdu
ed that 
ombinenondeterminism with randomness (e.g. 
on
urrent Markov 
hains (Vardi 1985), or similarmodels (Pnueli & Zu
k 1993, Cour
oubetis & Yannakakis 1995, Baier & Kwiatkowska1998)). For the study of our question how 
on
epts of fairness relate to probabilisti
behavior, however, we only need the following two very basi
 models of nondeterministi
,respe
tively probabilisti
, transition systems.Here and in the sequel we useP(S) to denote the powerset of S, andFP(S) to denotethe set of all �nite subsets of S.



De�nition 2.1 A nondeterministi
 transition system is a stru
ture of the formG = (S; s0; t);where S is a 
ountable set of states, s0 2 S is the initial state, and t : S ! P(S) is atransition relation.In the following de�nition we use �S to denote the set of probability distributions onthe set S.De�nition 2.2 A probabilisti
 transition system (a.k.a. Markov 
hain) is a stru
ture ofthe form � = (S; s0; �);where S; s0, are as in de�nition 2.1, and � : S ! �S. � is 
alled bounded if there existsan � > 0 with �(s)(s0) = 0 or �(s)(s0) � � for all s; s0 2 S.In parti
ular, we always have that in a bounded probabilisti
 transition system the setof possible su

essor states of some state is �nite.From a probabilisti
 transition system we 
an obtain a nondeterministi
 transitionsystem by ignoring the probability values. Similarly, a nondeterministi
 system 
an be\re�ned" to a probabilisti
 one by adding probabilities for the transitions.De�nition 2.3 We say that a bounded probabilisti
 transition system (S; s0; �) 
orre-sponds to a nondeterministi
 transition system (S0; s00; t) if S = S0; s00 = s0, and t(s) =fs0 j �(s)(s0) > 0g for all s 2 S.If S is a set of states then S! denotes the set of in�nite sequen
es, or paths, of states.For � 2 S! we denote by �[i℄ the ith element of �, and by �i its pre�x of length i.A nondeterministi
 transition system G de�nes a subset R(G) � S!, the set of possibleruns of G.A probabilisti
 transition system � indu
es a probability measure P (�) on S! in theusual manner: for ea
h i 2 ! we denote by Ai the (�nite) �-algebra on S! generated byall sets of the form sS! with s 2 Si. A probability measure Pi(�) is de�ned on Ai in theobvious manner. Taking A! the �-algebra generated by the Ai, we obtain by standardresults in probability theory a unique measure P (�) on A! that extends all the Pi(�).3 Computable FairnessOur 
on
ept of 
omputable fairness is based on the observation that violations of standard
on
epts of fairness (e.g. extreme fairness (Pnueli 1983)) by the run of a system lead to apartial predi
tability of that run. As an example 
onsider the nondeterministi
 transitionsystem shown in �gure 1. Extreme fairness (and about every other imaginable notion offairness) would require that in a run of the system both the states -1 and 1 o

ur in�nitelyoften. Now 
onsider the run� = 1 -1 -1 1 -1 1 1 1 : : : = 1 -1 -1 1 -1 1 !



-1           1Figure 1: A simple transition systemthat is not fair in this sense, be
ause the state -1 never o

urs after step 5. An observer ofthe system's behavior who from the 5th transition onwards predi
ts the next state to be1 then will always make 
orre
t predi
tions, and, moreover, his predi
tions will in�nitelyoften be nontrivial in that the predi
ted state 1 is only one of several possible su

essorstates.Next 
onsider the run �0 = -1 -1 1 1 -1 -1 : : : = (-1 -1 1 1 )!:Most notions of fairness are satis�ed by this run, be
ause every possible transition out ofevery state is taken in�nitely often. However, �0 is not �-fair. To see why, brie
y re
allthe de�nition of �-fairness (here somewhat adjusting Pnueli and Zu
k's (1993) originalde�nition to our simpler system model): For a run �, a past formula � in linear timetemporal logi
 (using S as the set of propositional variables), and a state s 2 S, 
all i 2 !a (�; s)-position in �, if �[i℄ = s and �i j= �. A run � then is 
alled �-fair, if for every pastformula �, every s 2 S, and every s0 2 t(s): if � 
ontains in�nitely many (�; s)-positions,then �[i+ 1℄ = s0 for in�nitely many (�; s)-positions i.Returning to the run �0, we see that it is not �-fair, be
ause letting � � 	1 (\theprevious state was 1 "), and 
onsidering s = 1 , we �nd that there are in�nitely many(�; s)-positions in �0, but from ea
h of these (�; s)-positions the su

essor state is -1 . Thisproperty of �0, again, would enable an observer to make predi
tions on the next transitionof the system that are always 
orre
t and in�nitely often nontrivial. The following twode�nitions make pre
ise the 
on
ept of predi
ting the behavior of a run, and of a run beingunpredi
table, i.e. 
omputable fair.De�nition 3.1 Let S be a 
ountable set. A predi
tion algorithm for S is a 
omputablefun
tion � : S� ! FP(S):De�nition 3.2 Let G = (S; s0; t) be a nondeterministi
 transition system, � 2 R(G). We
all � 
omputable fair for G i� there does not exist a predi
tion algorithm � for S, with(i) (Corre
tness) 8i 2 ! : �[i+ 1℄ 2 �(�i).(ii) (Non-triviality) For in�nitely many i: �(�i) ( t(�[i℄).We denote by CF (G) the set of 
omputable fair runs of G.To understand the intuition behind this notion of fairness it should be borne in mindthat it is intended not so mu
h to be applied to s
hedulers in 
on
urrent systems in



parti
ular, but to 
apture 
ertain aspe
ts of nondeterministi
 behavior in general. In fa
t,one might imagine that the most perfe
tly fair s
heduler (\fair" in the sense of \impartial")in a 
on
urrent system follows a 
omputable poli
y, and hen
e would not be 
omputablefair in the sense of de�nition 3.2. However, su
h a s
heduler would also, in e�e
t, take thenondeterminism out of the 
on
urrent system model. The intention of 
omputable fairnessis to formalize, in part, what it means for a system to be truly nondeterministi
 by takingto a logi
al 
on
lusion previously proposed 
on
epts of fairness. That 
omputable fairnessindeed is a strengthening of previously 
onsidered fairness notions is demonstrated by thefollowing proposition.Proposition 3.3 Every 
omputable fair run is �-fair.The proof of this proposition is a straightforward generalization of the arguments givenabove for the sequen
es � and �0, observing that it is de
idable whether �j 2 Sj ends witha (�; s)-position, and that thus there is a predi
tion algorithm � that for some s0 2 t(s)and every (�; s)-position o

urring after some step i predi
ts the next state to belong tot(s) n s0.We now show that we get the theorem of type (1) for 
omputable fairness.Theorem 3.4 Let G be a nondeterministi
 transition system, and � a 
orrespondingbounded probabilisti
 transition system. ThenP (�)(CF (G)) = 1:Intuitively, the statement is fairly obvious, be
ause, loosely speaking, a predi
tion al-gorithm � 
an be interpreted as a gambling system, and a path � for whi
h � is 
orre
t andnontrivial as a sequen
e of out
omes of gambles for whi
h � amounts to a winning strat-egy. This, of 
ourse, will happen with probability 0, and sin
e there are only 
ountablymany predi
tion algorithms, we also get probability 0 for any of them being 
orre
t andnontrivial. A rigorous proof, nevertheless, requires a little 
are. We here give a proof thatseems to be the most straightforward one, though it does use some non-elementary 
on-
epts from probability theory. It should be noted that it would also be possible to redu
ethe proof of theorem 3.4 to an appli
ation of theorem 1 in (Baier & Kwiatkowska 1998) byidentifying 
omputable fairness for G with fairness in the sense of Baier and Kwiatkowskafor a suitably de�ned system G0. We here give our proof only in outline. For the proba-bility theoreti
 ba
kground we refer the reader e.g. to (Lo�eve 1963, x38).Proof of theorem 3.4: In the following we write Pi and P instead of Pi(�) and P (�).We 
an view a path � as the path of an S-valued sto
hasti
 pro
ess X = (X[i℄)i2! withdistribution P . Let � be some predi
tion algorithm. We de�ne stopping times (Tj)j2! forX as follows (writing X i for (X[1℄; : : : ;X[i℄):T1 := minfi j 8k < i : X[k + 1℄ 2 �(Xk); �(X i) ( t(X[i℄)g (3)Tj+1 := minfi > Tj j 8k < i : X[k + 1℄ 2 �(Xk); �(Xi) ( t(X[i℄)g (4)We use the 
onvention min; =1. Thus, the random variable Tj denotes the time of thejth instan
e that � makes a nontrivial predi
tion, provided that � has been 
orre
t up tothat time. On
e an in
orre
t predi
tion o

urs, all further stopping times Tj are set to1.



Formally, all the random variables X[i℄; Tj are de�ned on some 
ommon probabilityspa
e 
. Following 
ommon pra
ti
e, we tend to suppress the arguments ! 2 
, but notethat in more 
omprehensive notation we would write, for example,X[k+1℄(!) 2 �(Xk(!)),rather than X[k + 1℄ 2 �(Xk).It is easy to see that for all j; i the event fTj = ig belongs to Ai, so that the Tj reallyare stopping times for X.The event \j�1fTj < 1g denotes the set of all paths on whi
h � is 
orre
t andnontrivial. We have to show that P (\j�1fTj <1g) = 0. For this it is suÆ
ient to showthat P (Tj+1 <1) � (1� �)P (Tj <1) (5)for all j � 1, where � is the probability bound of �. If P (Tj <1) = 0 we are done. Hen
e,we assume in the sequel that P (Tj <1) > 0. In that 
ase, (5) is equivalent toP (Tj+1 <1 j Tj <1) � 1� �: (6)Using that X has the strong Markov property, i.e.P (X[T + 1℄ = s j AT ) = P (X[T + 1℄ = s j X[T ℄) = �(X[T ℄)(s)for every stopping time T for X, we obtain (6) by dire
t 
omputations:P (Tj+1 <1 j Tj <1)� P (X[Tj + 1℄ 2 �(XTj ) j Tj <1)= Xs2S XA2FP(S)P (X[Tj + 1℄ 2 A; �(XTj ) = A;X[Tj ℄ = s j Tj <1)= Xs2S XA2FP(S) P (X[Tj + 1℄ 2 A j �(XTj ) = A;X[Tj ℄ = s; Tj <1)P (�(XTj ) = A;X[Tj ℄ = s j Tj <1)= Xs2S XA2FP(S) P (X[Tj + 1℄ 2 A j X[Tj ℄ = s)P (�(XTj ) = A;X[Tj ℄ = s j Tj <1)= Xs2S XA2FP(S) �(s)(A)P (�(XTj ) = A;X[Tj ℄ = s j Tj <1)� (1� �)Xs2S XA2FP(S)P (�(XTj ) = A;X[Tj ℄ = s j Tj <1)= 1� �:Thus, we have shown that the set of paths for whi
h � is a 
orre
t and nontrivialpredi
tion algorithm has probability 0. Sin
e by the 
ondition of 
omputability there onlyare 
ountably many predi
tion algorithms, the result follows. 24 CompletenessWe now turn our attention to possible type (2) theorems that we 
an obtain for 
omputablefairness. As mentioned in the introdu
tion, (2) 
an be seen as a relativized 
onverse of



(1). Putting (1) and (2) together, we obtainFor all C 2 C: C holds with probability 1 in a proba-bilisti
 transition system i� C holds for all x-fair runsin the 
orresponding nondeterministi
 system. (7)Thus, theorem (7) says that the two veri�
ation problems { testing whether C hasprobability 1, and testing whether C holds under the assumption of x-fairness { are equiv-alent. In parti
ular, (2) is the statement that verifying C under the x-fairness assumptionis a 
omplete method for probabilisti
 veri�
ation. This is why, following Pnueli andZu
k (1993), we 
all theorems (2) 
ompleteness results (and (1) a 
orre
tness result). Itshould be noted, however, that this terminology derives from an original intention of redu
-ing probabilisti
 veri�
ation problems to nondeterministi
 veri�
ation problems. Nothingprevents us to use theorems (1) and (2) also to try to solve veri�
ation problems for non-deterministi
 systems (under the stated fairness assumption) using probabilisti
 methods{ in whi
h 
ase (2) would express 
orre
tness, and (1) 
ompleteness.We formalize in a de�nition:De�nition 4.1 Let S be a set of states, C a 
lass of properties of S-paths, i.e. C 2P(P(S!)). We say that 
omputable fairness is 
omplete for C if the following holds: forevery pair G;� of 
orresponding nondeterministi
 and probabilisti
 transition systems,and for every C 2 C: if P (�)(C) = 1 then CF (G) � C \R(G).Natural 
lasses C that we may 
onsider are those that are de�ned by automata orlogi
s over the alphabet S, e.g. C 2 C i� C is a

epted by some B�u
hi automaton. (Thereader is referred to (Thomas 1990) for the ba
kground in the theory of !-languages thatwe need in the sequel.) To investigate su
h natural 
lasses, for the remainder of this paperwe limit ourselves to �nite state spa
es S.We show that for �nite S 
omputable fairness is 
omplete for the 
lass of propertiesde�nable by deterministi
 B�u
hi automata. Compared to Pnueli and Zu
k's (1993) resultthat �-fairness is 
omplete for properties expressible in propositional linear time logi
 thisis not a very strong result, as we seem to be using a mu
h stronger fairness notion, and yetprove 
ompleteness only for a 
lass C that is not stri
tly more expressive than propositionallinear time logi
. However, we expe
t the following result only to be a �rst step that 
anbe extended to more general 
lasses, in parti
ular the 
lass of !-regular languages.For a �nite set S we denote by C0 the 
lass of subsets of S! that are de�nable bydeterministi
 B�u
hi automata over S, i.e. C 2 C0 i� there exists a deterministi
 B�u
hiautomaton B for the alphabet S, su
h that C is the language a

epted by B.Theorem 4.2 Computable fairness is 
omplete for C0.Proof: Let B be a deterministi
 B�u
hi automaton that a

epts C. Let � be a probabilisti
transition system with P (�)(C) = 1, and G the 
orresponding nondeterministi
 transitionsystem. Let � 2 R(G) n C. We have to show that � 62 CF (G).The basi
 idea is very simple: we de�ne a predi
tion algorithm that tra
ks the movesde�ned by � in B, and eventually predi
ts moves of G that will keep the path in B awayfrom a

epting states. This algorithm will be 
orre
t and nontrivial for �. The details areas follows.



Let fq1; : : : ; qng be the set of states of B, and S = fs1; : : : ; smg the state set of G. We
onstru
t a deterministi
 B�u
hi automaton B �G for the alphabet S as usual: the statesof B � G are the pairs (qi; sj) (i = 1; : : : ; n; j = 1; : : : ;m). The transition labeled withs 2 S leads from a state (q0; s0) to the state (q00; s), if s 2 t(s0) and q00 is the s-su

essor ofq0 in B. If s 62 t(s0) then the s-su

essor of (q0; s0) is unde�ned in B �G. The a

eptingstates of B � G are all pairs (q; s) for whi
h q is an a

epting state of B. The languagea

epted by B �G then is just C \R(G).For ea
h state (q; s) let d(q; s) denote the length of the shortest S-path that leads from(q; s) to an a

epting state (d(q; s) = 0 if (q; s) is an a

epting state; d(q; s) = 1 if from(q; s) no a

epting state is rea
hable). For the given path � de�ne D(�) to be the smallestnumber i su
h that the path � through B�G passes in�nitely often through a state (q; s)with d(q; s) = i.Sin
e � 62 C 
learly D(�) � 1. We also have D(�) < 1: otherwise there wouldexist a �nite pre�x �k su
h that no extension of �k belongs to C \ R(G), meaning thatP (C) = P (C \ R(G)) � 1� Pk(�k). Sin
e � 2 R(G), however, we have that Pk(�k) > 0,yielding a 
ontradi
tion to P (C) = 1.Now let k 2 ! be su
h that d(q; s) � D(�) for all states (q; s) rea
hed by pre�xes �iwith i � k. We de�ne a predi
tion algorithm � on S� by letting for s 2 S� of length l,and with last element s:�(s) = � t(s) if l < kt(s) n fs0 j d(q(ss0); s0) < D(�)g if l � kwhere q(ss0) is the state of B rea
hed by the sequen
e ss0. Sin
e � 2 R(G) we havethat � is 
orre
t for �, and sin
e d(q(�i); �[i℄) = D(�) <1 in�nitely often, we have thatt(s) n fs0 j d(q(ss0); s0) < D(�)g 6= t(s) in�nitely often, hen
e � is nontrivial. 2Theorem 4.2 gives one example of a 
lass C of path properties for whi
h 
omputablefairness is an adequate approximation of randomness, in the sense that (7) holds for C.Clearly, the 
lass C0 is not maximal with this property, i.e. there exist C 2 P(S!) n C0su
h that P (�)(C) = 1 implies CF (G) � C \ R(G) for all 
orresponding pairs �; G ofsystems. What, then, 
an we say about the maximal setC � := fC 2P(S!) j 8 
orresponding�; G : P (�)(C) = 1) CF (G) � Cgfor whi
h 
omputable fairness is 
omplete? Finding meaningful 
hara
terizations or ap-proximations of C � is an interesting topi
 for future work. We 
lose this se
tion bydis
ussing two examples of properties that do not belong to C �.Taking S = f � 1; 1g we de�neC0 := f� 2 f�1; 1g! j for in�nitely many k : kXi=1 �[i℄ = 0g:To see that C0 62 C � 
onsider two di�erent probabilisti
 transition systems �1 and�2, obtained by labeling the transitions of the system G in �gure 1 with probabili-ties as follows: for �1 every transition is assigned probability 0.5; for �2 transitionsleading to -1 are assigned probability 0.3, and transitions leading to 1 probability 0.7.Then, by well known results on the one-dimensional random walk, P (�1)(C0) = 1, but



P (�2)(C0) = 0. From C0 2 C � we 
ould infer CF (G) � C0, whi
h with theorem 3.4would yield P (�2)(C0) = 1, a 
ontradi
tion. More generally, we 
an say that C 62 C �whenever P (�1)(C) = 1 6= P (�2)(C) for two probabilisti
 systems �1;�2 with the same
orresponding nondeterministi
 system G.This gives us a ne
essary, but not a suÆ
ient 
ondition for membership in C �: 
onsiderC1 := f� 2 f�1; 1g! j 1k kXi=1 �[i℄ 
onverges for k !1g:Here we get P (�)(C1) = 1 for all probabilisti
 transition systems � over f�1; 1g. How-ever, there are paths � 62 C1 that are 
omputable fair for the nondeterministi
 systemof �gure 1. To \
onstru
t" an example for su
h a �, take two di�erent probabilisti
 sys-tems 
orresponding to G: the system �2 de�ned above, and the system �3 de�ned byassigning probability 0.3 to transitions leading to 1, and 0.7 to transitions leading to -1.Now generate � as follows: use system �2 to randomly generate �[1℄; �[2℄; : : : ; �[k1℄ until1=k1Pk1i=1 �[i℄ � 0:4. Then use system �3 to sample subsequent states �[k1+1℄; : : : ; �[k2℄,until 1=k2Pk2i=1 �[i℄ � �0:4, 
hange again to system �2, and 
ontinue in this manner.With probability 1 then we will swit
h in�nitely often between using systems �2 and �3,i.e. a sequen
e � 62 C1 will be generated. By similar arguments as used in the proof oftheorem 3.4, it furthermore follows that with probability 1 � will be 
omputable fair.5 Con
lusionIn this paper we have presented some initial steps towards a study of fairness as a 
hara
-terization of true nondeterminism, whi
h, in turn, 
an be seen as a qualitative approxima-tion of randomness. This work is mu
h indebted to two sour
es of inspiration: Pnueli andZu
k's (1993) treatment of �-fairness, and the 
lassi
al 
hara
terizations of randomnessby Martin-L�of(1966) and S
hnorr (1971) (and others).The equivalen
e proved by Pnueli and Zu
k between probabilisti
 validity and validityfor �-fair 
omputations (in 
onjun
tion with similar results obtained for other fairnessnotions) suggests to interpret 
on
epts of fairness as partial des
riptions of probabilisti
behavior. This point of view, then, views fairness in a similar light as 
on
epts of invarian
eunder sele
tion rules, or of passing 
ertain tests of randomness, whi
h have been devisedto de�ne randomness, e.g. (Martin-L�of 1966, S
hnorr 1971). Just as in these 
lassi
approa
hes to de�ning randomness one has to identify via 
onditions of 
omputability anadequate sub
lass of sele
tion rules, tests of randomness, et
., we here have aimed to de�nethrough the 
on
ept of 
omputable fairness a 
lass of fairness 
onditions that provides anadequate approximation of randomness for nondeterministi
 systems.That said, it should be emphasized, however, that the basi
 aim of the 
lassi
 
har-a
terizations of randomness is di�erent from ours, in that they want to 
apture manyproperties of randomness (e.g. 
onvergen
e to limiting frequen
ies) that we do not wantto enfor
e by fairness 
onstraints. Moreover, they treat randomness as an intrinsi
 prop-erty of a sequen
e �, whereas we have to de�ne fairness of � always with respe
t to a giventransition system G.
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