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Abstract

Motivated by the observation that executions of a probabilistic system almost
surely are fair, we interpret concepts of fairness for nondeterministic processes as
partial descriptions of probabilistic behavior. We propose computable fairness as a
very strong concept of fairness, attempting to capture all the qualitative properties of
probabilistic behavior that we might reasonably expect to see in the behavior of a non-
deterministic system. It is shown that computable fairness does describe probabilistic
behavior by proving that runs of a probabilistic system almost surely are computable
fair. We then turn to the question of how sharp an approximation of randomness is
obtained by computable fairness by discussing completeness of computable fairness
for certain classes of path properties.

1 Introduction

The concept of fairness was introduced to formulate certain conditions on the behavior of
nondeterministic systems. These conditions amount to more or less strong assumptions
on the actions of the environment, a scheduler, an adversary, or whatever unknown (or
unspecified) component is responsible for the nondeterminism in a system. Depending
on what kind of unspecified component is modeled by nondeterminism, a specific fairness
assumption will be more or less reasonable to make. If, for instance, the nondeterministic
transitions in a system model the moves of a malicious, intelligent adversary, whose aim
it is to generate a run of the system with certain properties, then no fairness assumption
will usually be admissible. If, on the other hand, nondeterminism represents the actions
of a scheduler in a model for concurrent computation, then standard fairness notions
(which, of course, originally were just proposed in this context) amount to legitimate
assumptions on the policy of the scheduler. Finally, take the case where nondeterminism
models the interaction of a system with a chaotic environment (e.g. the interaction of
a cafeteria coffee machine with its customers). Here we often can view nondeterminism
as a qualitative approximation to randomness, i.e. the nondeterministic system really
represents a probabilistic system without any concrete probability values filled in. In this
last case about any kind of fairness assumption is justified, because for a concept of x-
fairness, say, and a probabilistic system obtained from a nondeterministic one by filling in
probability values, we will obtain a theorem of the form

The set of all z-fair executions has probability 1. (1)



Pnueli and Zuck (1993), for instance, have shown such a theorem for their concept of
a-fairness; Baier and Kwiatkowska (1998) for a whole class of fairness notions. Thus seeing
that fairness assumptions are generally adequate for probabilistic systems, we can interpret
fairness itself as a requirement that runs of a nondeterministic system have some of the
properties that runs of a probabilistic system almost surely have, or, loosely speaking,
that the adversary or scheduler in the nondeterministic system be not too malicious, and
behave a little bit like a fair coin tosser. This point of view was already taken by Pnueli and
Zuck, whose notions of extreme fairness (Pnueli 1983) and a-fairness (Pnueli & Zuck 1993)
were proposed explicitly as an approximation to probabilistic behavior.

When we have shown a theorem (1) for two different notions of fairness, say x-fairness
and y-fairness, then the theorem also holds for the new concept xy-fairness, obtained by
requiring a run to be both x-fair and y-fair. Similarly for the conjunction of a countably
infinite set of different fairness notions. This suggests the question: is there a canonical,
strongest concept of fairness, one that subsumes most or all previously proposed notions
of fairness, one that still allows us to derive for it theorem (1), and, finally, that still can be
seen as a natural requirement for a nondeterministic system? In section 3 we are going to
propose computable fairness as an answer to this question. Computable fairness is based
on the concept of unpredictability, i.e. we are going to call a behavior of a nondeterministic
system computable fair, if it is sufficiently unpredictable.

In some cases we also get as a weak converse of (1) a theorem that for some class € of
properties of runs says

For all C € €: if C holds with probability 1 in a prob-
abilistic system, then C holds for all z-fair runs.

(2)

Instances of (2) are much scarcer than instances of (1), being essentially exhausted by the
result of Pnueli and Zuck (1993) that (2) holds for the class of properties expressible in
PLTL, and for a-fairness. Clearly, (2) cannot hold without the relativization to a suitable
class %, since otherwise we would just let C be the set of all runs except one specific run
that is x-fair. Then C will have probability one, and yet the conclusion of (2) will not
hold.

In section 4 we will show that (2) holds for computable fairness and % the class of
properties definable by deterministic Buichi automata. This is not yet a very strong result,
and we expect to extend it to more general classes % in future work.

2 Preliminaries

In this section we introduce the basic terminology we shall need. In most works related
to the issues we are here dealing with, models for systems are introduced that combine
nondeterminism with randomness (e.g. concurrent Markov chains (Vardi 1985), or similar
models (Pnueli & Zuck 1993, Courcoubetis & Yannakakis 1995, Baier & Kwiatkowska
1998)). For the study of our question how concepts of fairness relate to probabilistic
behavior, however, we only need the following two very basic models of nondeterministic,
respectively probabilistic, transition systems.

Here and in the sequel we use #(S) to denote the powerset of S, and #Z2(S) to denote
the set of all finite subsets of S.



Definition 2.1 A nondeterministic transition system is a structure of the form
G = (Sa 50, t)a

where S is a countable set of states, sg € S is the initial state, and ¢t : S — Z(S) is a
transition relation.

In the following definition we use AS to denote the set of probability distributions on
the set S.

Definition 2.2 A probabilistic transition system (a.k.a. Markov chain) is a structure of
the form

= (Sa 3077—)’

where S, sg, are as in definition 2.1, and 7: S — AS. T is called bounded if there exists
an € > 0 with 7(s)(s') =0 or 7(s)(s') > e for all s,s' € S.

In particular, we always have that in a bounded probabilistic transition system the set
of possible successor states of some state is finite.

From a probabilistic transition system we can obtain a nondeterministic transition
system by ignoring the probability values. Similarly, a nondeterministic system can be
“refined” to a probabilistic one by adding probabilities for the transitions.

Definition 2.3 We say that a bounded probabilistic transition system (S, sg,7) corre-
sponds to a nondeterministic transition system (S’,sy,t) if S = S’ s = so, and t(s) =
{s'| 7(s)(s') > 0} for all s € S.

If S is a set of states then S“ denotes the set of infinite sequences, or paths, of states.
For o € S¥ we denote by o[i] the ith element of o, and by o; its prefix of length i.

A nondeterministic transition system G defines a subset R(G) C S, the set of possible
runs of G.

A probabilistic transition system I' induces a probability measure P(I') on S“ in the
usual manner: for each i € w we denote by 2; the (finite) o-algebra on S generated by
all sets of the form sS“ with s € S*. A probability measure P;(T) is defined on 2; in the
obvious manner. Taking 2, the o-algebra generated by the 2;, we obtain by standard
results in probability theory a unique measure P(I') on 2, that extends all the P;(T").

3 Computable Fairness

Our concept of computable fairness is based on the observation that violations of standard
concepts of fairness (e.g. extreme fairness (Pnueli 1983)) by the run of a system lead to a
partial predictability of that run. As an example consider the nondeterministic transition
system shown in figure 1. Extreme fairness (and about every other imaginable notion of
fairness) would require that in a run of the system both the states -1 and 1 occur infinitely
often. Now consider the run

c=11-114111...=1141-11¢%



Figure 1: A simple transition system

that is not fair in this sense, because the state -1 never occurs after step 5. An observer of
the system’s behavior who from the 5th transition onwards predicts the next state to be
1 then will always make correct predictions, and, moreover, his predictions will infinitely
often be nontrivial in that the predicted state 1 is only one of several possible successor
states.

Next consider the run

ol=-1-111141 ... =(1-111)“.

Most notions of fairness are satisfied by this run, because every possible transition out of
every state is taken infinitely often. However, ¢’ is not a-fair. To see why, briefly recall
the definition of a-fairness (here somewhat adjusting Pnueli and Zuck’s (1993) original
definition to our simpler system model): For a run o, a past formula x in linear time
temporal logic (using S as the set of propositional variables), and a state s € S, call i € w
a (x, s)-position in o, if [i] = s and 0; = x. A run o then is called a-fair, if for every past
formula x, every s € S, and every s’ € t(s): if o contains infinitely many (, s)-positions,
then o[i + 1] = s’ for infinitely many (x, s)-positions .

Returning to the run o', we see that it is not a-fair, because letting y = ©1 (“the
previous state was 1”), and considering s = 1, we find that there are infinitely many
(x, 8)-positions in ¢’ but from each of these (x, s)-positions the successor state is 1. This
property of o', again, would enable an observer to make predictions on the next transition
of the system that are always correct and infinitely often nontrivial. The following two
definitions make precise the concept of predicting the behavior of a run, and of a run being
unpredictable, i.e. computable fair.

Definition 3.1 Let S be a countable set. A prediction algorithm for S is a computable
function

w:S* = FP(9).

Definition 3.2 Let G = (5, so,t) be a nondeterministic transition system, o € R(G). We
call ¢ computable fair for G iff there does not exist a prediction algorithm 7 for S, with

(i) (Correctness) Vi € w: ofi + 1] € m(0y).
(ii) (Non-triviality) For infinitely many i: w(o;) C t(o[i]).
We denote by CF(G) the set of computable fair runs of G.

To understand the intuition behind this notion of fairness it should be borne in mind
that it is intended not so much to be applied to schedulers in concurrent systems in



particular, but to capture certain aspects of nondeterministic behavior in general. In fact,
one might imagine that the most perfectly fair scheduler (“fair” in the sense of “impartial”)
in a concurrent system follows a computable policy, and hence would not be computable
fair in the sense of definition 3.2. However, such a scheduler would also, in effect, take the
nondeterminism out of the concurrent system model. The intention of computable fairness
is to formalize, in part, what it means for a system to be truly nondeterministic by taking
to a logical conclusion previously proposed concepts of fairness. That computable fairness
indeed is a strengthening of previously considered fairness notions is demonstrated by the
following proposition.

Proposition 3.3 Every computable fair run is a-fair.

The proof of this proposition is a straightforward generalization of the arguments given
above for the sequences o and o', observing that it is decidable whether o; € S ends with
a (x, s)-position, and that thus there is a prediction algorithm 7 that for some s’ € t(s)
and every (Y, s)-position occurring after some step ¢ predicts the next state to belong to
t(s)\ s

We now show that we get the theorem of type (1) for computable fairness.

Theorem 3.4 Let G be a nondeterministic transition system, and I' a corresponding
bounded probabilistic transition system. Then

P(T)(CF(G)) = 1.

Intuitively, the statement is fairly obvious, because, loosely speaking, a prediction al-
gorithm 7 can be interpreted as a gambling system, and a path o for which 7 is correct and
nontrivial as a sequence of outcomes of gambles for which 7 amounts to a winning strat-
egy. This, of course, will happen with probability 0, and since there are only countably
many prediction algorithms, we also get probability 0 for any of them being correct and
nontrivial. A rigorous proof, nevertheless, requires a little care. We here give a proof that
seems to be the most straightforward one, though it does use some non-elementary con-
cepts from probability theory. It should be noted that it would also be possible to reduce
the proof of theorem 3.4 to an application of theorem 1 in (Baier & Kwiatkowska 1998) by
identifying computable fairness for G with fairness in the sense of Baier and Kwiatkowska
for a suitably defined system G’. We here give our proof only in outline. For the proba-
bility theoretic background we refer the reader e.g. to (Loeve 1963, §38).

Proof of theorem 3.4: In the following we write P; and P instead of P;(I") and P(T").
We can view a path o as the path of an S-valued stochastic process X = (X[i])ic,, with
distribution P. Let 7w be some prediction algorithm. We define stopping times (7});¢, for

X as follows (writing X; for (X[1],... , X[é]):
Ty = min{i |Vk <i: X[k+1] €n(Xy); n(X;) Ct(X[i])} (3)
Tjp1 = min{i >Tj |Vk <i: X[k+1] € n(Xy); n(X;) < t(X[])} (4)

We use the convention minf) = co. Thus, the random variable T denotes the time of the
jth instance that = makes a nontrivial prediction, provided that 7 has been correct up to
that time. Once an incorrect prediction occurs, all further stopping times T are set to oco.



Formally, all the random variables X[i], T; are defined on some common probability
space 2. Following common practice, we tend to suppress the arguments w € €2, but note
that in more comprehensive notation we would write, for example, X [k+1](w) € 7(X(w)),
rather than X[k + 1] € n(X},).

It is easy to see that for all j,i the event {T; = i} belongs to ?;, so that the T} really
are stopping times for X.

The event N;>1{7; < oo} denotes the set of all paths on which 7 is correct and
nontrivial. We have to show that P(N;>1{T; < oo}) = 0. For this it is sufficient to show
that

P(Tj41 < 00) < (1 - P(T; < o) (5)

for all j > 1, where € is the probability bound of I". If P(T; < co) = 0 we are done. Hence,
we assume in the sequel that P(T; < co) > 0. In that case, (5) is equivalent to

P(Tj411 < o0 |Tj <o00)<1—e (6)
Using that X has the strong Markov property, i.e.
P(X[T+1]=s|%%7)=PX[T+1]=s|X[T]) = 7(X[T))(s)
for every stopping time T for X, we obtain (6) by direct computations:

P(Tj+1 < 00 ‘ Tj < OO)
< P(X[Tj+1] € n(Xq,) | T; < 00)

= > Y PX[Tj+1€An(Xq)=AX[Tj]=s|Tj < )
s€S Ac FH(S)

= > Y  PX[Tj+1€A|n(X)=AX[Tj]=sT; < o)
s€S Ac FHP(S) P(Tl'(.XT7) = A,X[T]] =35 ‘ Tj < OO)

= > > PX[+1eAlX[T)=s)
s€ES AcZP(S) P(n(X71,) = A X[Tj] = s | Tj < 00)

= > Y r()AP((Xr)=AX[T}] =s|T; < o)
s€S Ae FH(S)

< (1-¢). Y P(Xz)=AX[T] =s|Tj < )

S€ES AcFP(S)
= 1—e.

Thus, we have shown that the set of paths for which 7 is a correct and nontrivial
prediction algorithm has probability 0. Since by the condition of computability there only
are countably many prediction algorithms, the result follows.

O

4 Completeness

We now turn our attention to possible type (2) theorems that we can obtain for computable
fairness. As mentioned in the introduction, (2) can be seen as a relativized converse of



(1). Putting (1) and (2) together, we obtain

For all C € €: C holds with probability 1 in a proba-
bilistic transition system iff C holds for all x-fair runs (7)
in the corresponding nondeterministic system.

Thus, theorem (7) says that the two verification problems — testing whether C' has
probability 1, and testing whether C' holds under the assumption of x-fairness — are equiv-
alent. In particular, (2) is the statement that verifying C' under the x-fairness assumption
is a complete method for probabilistic verification. This is why, following Pnueli and
Zuck (1993), we call theorems (2) completeness results (and (1) a correctness result). It
should be noted, however, that this terminology derives from an original intention of reduc-
ing probabilistic verification problems to nondeterministic verification problems. Nothing
prevents us to use theorems (1) and (2) also to try to solve verification problems for non-
deterministic systems (under the stated fairness assumption) using probabilistic methods
— in which case (2) would express correctness, and (1) completeness.

We formalize in a definition:

Definition 4.1 Let S be a set of states, € a class of properties of S-paths, i.e. & €
P(P(S¥)). We say that computable fairness is complete for % if the following holds: for
every pair G,I' of corresponding nondeterministic and probabilistic transition systems,
and for every C € ¢ if P(I')(C) =1 then CF(G) C C N R(G).

Natural classes ¥ that we may consider are those that are defined by automata or
logics over the alphabet S, e.g. C € € iff C is accepted by some Biichi automaton. (The
reader is referred to (Thomas 1990) for the background in the theory of w-languages that
we need in the sequel.) To investigate such natural classes, for the remainder of this paper
we limit ourselves to finite state spaces S.

We show that for finite S computable fairness is complete for the class of properties
definable by deterministic Biichi automata. Compared to Pnueli and Zuck’s (1993) result
that a-fairness is complete for properties expressible in propositional linear time logic this
is not a very strong result, as we seem to be using a much stronger fairness notion, and yet
prove completeness only for a class € that is not strictly more expressive than propositional
linear time logic. However, we expect the following result only to be a first step that can
be extended to more general classes, in particular the class of w-regular languages.

For a finite set S we denote by %p the class of subsets of S“ that are definable by
deterministic Buichi automata over S, i.e. C € %, iff there exists a deterministic Biichi
automaton B for the alphabet S, such that C is the language accepted by B.

Theorem 4.2 Computable fairness is complete for %j.

Proof: Let B be a deterministic Biichi automaton that accepts C. Let I" be a probabilistic
transition system with P(I')(C') = 1, and G the corresponding nondeterministic transition
system. Let 0 € R(G) \ C. We have to show that o ¢ CF(G).

The basic idea is very simple: we define a prediction algorithm that tracks the moves
defined by o in B, and eventually predicts moves of G that will keep the path in B away
from accepting states. This algorithm will be correct and nontrivial for 0. The details are
as follows.



Let {q1,... ,qn} be the set of states of B, and S = {s1,..., 8} the state set of G. We
construct a deterministic Buichi automaton B x G for the alphabet S as usual: the states
of B x G are the pairs (g;,s;) (i =1,...,n; j =1,...,m). The transition labeled with
s € S leads from a state (q',s’) to the state (¢”, s), if s € t(s') and ¢” is the s-successor of
¢ in B. If s ¢ t(s') then the s-successor of (¢, s') is undefined in B x G. The accepting
states of B x G are all pairs (g, s) for which ¢ is an accepting state of B. The language
accepted by B x G then is just C' N R(G).

For each state (g, s) let d(q, s) denote the length of the shortest S-path that leads from
(g, 8) to an accepting state (d(q,s) = 0 if (g, s) is an accepting state; d(q,s) = oo if from
(g, 8) no accepting state is reachable). For the given path o define D(o) to be the smallest
number i such that the path o through B x G passes infinitely often through a state (q, s)
with d(q, s) = 1.

Since 0 & C clearly D(o) > 1. We also have D(0) < oo: otherwise there would
exist a finite prefix o, such that no extension of o3 belongs to C' N R(G), meaning that
P(C)=P(CNR(G)) <1— Py(or). Since o € R(G), however, we have that Py(ox) > 0,
yielding a contradiction to P(C) = 1.

Now let k € w be such that d(q,s) > D(o) for all states (g, s) reached by prefixes o;
with ¢ > k. We define a prediction algorithm = on S* by letting for s € S* of length [,
and with last element s:

ﬂ'(s)—{ t(s) ifl <k
| t(s)\ {s' | d(q(ss'),s') < D(o)} ifl>k

where ¢(ss') is the state of B reached by the sequence ss’. Since 0 € R(G) we have
that 7 is correct for o, and since d(q(0;),0[i]) = D(0) < oo infinitely often, we have that
t(s) \ {s' | d(q(ss),s') < D(o)} # t(s) infinitely often, hence = is nontrivial. O

Theorem 4.2 gives one example of a class % of path properties for which computable
fairness is an adequate approximation of randomness, in the sense that (7) holds for %.
Clearly, the class %) is not maximal with this property, i.e. there exist C € Z£(5¥) \ %
such that P(I')(C) = 1 implies CF(G) C C N R(G) for all corresponding pairs I', G of
systems. What, then, can we say about the maximal set

¢* = {C € P(S¥) | VcorrespondingI', G : P(I')(C) =1= CF(G) C C}

for which computable fairness is complete? Finding meaningful characterizations or ap-
proximations of %* is an interesting topic for future work. We close this section by
discussing two examples of properties that do not belong to €.

Taking S = { — 1,1} we define

k
Cy := {o € {—1,1}* | for infinitely many £ : ZUM = 0}.
i=1

To see that Cy ¢ ¥* consider two different probabilistic transition systems I'y and
'y, obtained by labeling the transitions of the system G in figure 1 with probabili-
ties as follows: for I'y every transition is assigned probability 0.5; for I'y transitions
leading to -1 are assigned probability 0.3, and transitions leading to 1 probability 0.7.
Then, by well known results on the one-dimensional random walk, P(T';)(Cp) = 1, but



P(I'2)(Cy) = 0. From Cy € €* we could infer CF(G) C Cp, which with theorem 3.4
would yield P(I'2)(Cy) = 1, a contradiction. More generally, we can say that C ¢ €™
whenever P(I';)(C) = 1 # P(I'2)(C) for two probabilistic systems I';, 'y with the same
corresponding nondeterministic system G.

This gives us a necessary, but not a sufficient condition for membership in ¥*: consider

k
1
Ci:={oce{-1,1}] z ZU[Z’] converges fork — oo}.
i=1

Here we get P(I')(Cy) = 1 for all probabilistic transition systems I' over {—1,1}. How-
ever, there are paths ¢ ¢ C; that are computable fair for the nondeterministic system
of figure 1. To “construct” an example for such a o, take two different probabilistic sys-
tems corresponding to G: the system I'y defined above, and the system I's defined by
assigning probability 0.3 to transitions leading to 1, and 0.7 to transitions leading to -1.
Now generate o as follows: use system I'; to randomly generate o[1],0[2],... ,o[k1] until
1/kq Zf;l oli] > 0.4. Then use system I's to sample subsequent states o[k1 +1],... , o[ks],
until 1/k9 Zfil oli] < —0.4, change again to system I'y, and continue in this manner.
With probability 1 then we will switch infinitely often between using systems I'y and I's,
i.e. a sequence o ¢ C7 will be generated. By similar arguments as used in the proof of

theorem 3.4, it furthermore follows that with probability 1 ¢ will be computable fair.

5 Conclusion

In this paper we have presented some initial steps towards a study of fairness as a charac-
terization of true nondeterminism, which, in turn, can be seen as a qualitative approxima-
tion of randomness. This work is much indebted to two sources of inspiration: Pnueli and
Zuck’s (1993) treatment of a-fairness, and the classical characterizations of randomness
by Martin-L6f(1966) and Schnorr (1971) (and others).

The equivalence proved by Pnueli and Zuck between probabilistic validity and validity
for a-fair computations (in conjunction with similar results obtained for other fairness
notions) suggests to interpret concepts of fairness as partial descriptions of probabilistic
behavior. This point of view, then, views fairness in a similar light as concepts of invariance
under selection rules, or of passing certain tests of randomness, which have been devised
to define randomness, e.g. (Martin-Lof 1966, Schnorr 1971). Just as in these classic
approaches to defining randomness one has to identify via conditions of computability an
adequate subclass of selection rules, tests of randomness, etc., we here have aimed to define
through the concept of computable fairness a class of fairness conditions that provides an
adequate approximation of randomness for nondeterministic systems.

That said, it should be emphasized, however, that the basic aim of the classic char-
acterizations of randomness is different from ours, in that they want to capture many
properties of randomness (e.g. convergence to limiting frequencies) that we do not want
to enforce by fairness constraints. Moreover, they treat randomness as an intrinsic prop-
erty of a sequence o, whereas we have to define fairness of o always with respect to a given
transition system G.
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