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Abstract

Inductive probabilistic reasoning is understood as the application of in-
ference patterns that use statistical background information to assign (sub-
jective) probabilities to single events. The simplest such inference pattern is
direct inference: from “70% of As are Bs” and “a is an A” infer that a is a
B with probability 0.7. Direct inference is generalized by Jeffrey’s rule and
the principle of cross-entropy minimization. To adequately formalize induc-
tive probabilistic reasoning is an interesting topic for artificial intelligence, as
an autonomous system acting in a complex environment may have to base
its actions on a probabilistic model of its environment, and the probabilities
needed to form this model can often be obtained by combining statistical
background information with particular observations made, i.e. by inductive
probabilistic reasoning.

In this paper a formal framework for inductive probabilistic reasoning is
developed: syntactically it consists of an extension of the language of first-
order predicate logic that allows to express statements about both statistical
and subjective probabilities. Semantics for this representation language are
developed that give rise to two distinct entailment relations: a relation |=
that models strict, probabilistically valid, inferences, and a relation |≈ that
models inductive probabilistic inferences. The inductive entailment relation
is obtained by implementing cross-entropy minimization in a preferred model
semantics. A main objective of our approach is to ensure that for both en-
tailment relations complete proof systems exist. This is achieved by allowing
probability distributions in our semantic models that use non-standard prob-
ability values. A number of results are presented that show that in several
important aspects the resulting logic behaves just like a logic based on real-
valued probabilities alone.
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1 Introduction

1.1 Inductive Probabilistic Reasoning

Probabilities come in two kinds: as statistical probabilities that describe relative
frequencies, and as subjective probabilities that describe degrees of belief. To both
kinds of probabilities the same rules of probability calculus apply, and notwith-
standing a long and heated philosophical controversy over what constitutes the
proper meaning of probability (de Finetti 1937, von Mises 1951, Savage 1954,
Jaynes 1978), few conceptual difficulties arise when we deal with them one at a
time.

However, in commonsense or inductive reasoning one often wants to use both
subjective and statistical probabilities simultaneously in order to infer new prob-
abilities of interest. The simplest example of such a reasoning pattern is that of
direct inference (Reichenbach 1949, §72),(Carnap 1950, §94), illustrated by the
following example: from

2.7% of drivers whose annual mileage is between 10,000 and 20,000
miles will be involved in an accident within the next year

(1)

and

Jones is a driver whose annual mileage is between 10,000 and
20,000 miles

(2)

infer

The probability that Jones will be involved in an accident within
the next year is 0.027.

(3)

The percentage 2.7 in (1) is a statistical probability: the probability that a driver
randomly selected from the set of all drivers with an annual mileage between
10,000 and 20,000 will be involved in an accident. The probability in (3), on the
other hand, is attached to a proposition that, in fact, is either true or false. It
describes a state of knowledge or belief, for which reason we call it a subjective
probability. 1

Clearly, the direct inference pattern is very pervasive: not only does an insur-
ance company make (implicit) use of it in its computation of the rate it is willing to
offer a customer, it also underlies some of the most casual commonsense reasoning
(“In very few soccer matches did a team that was trailing 0:2 at the end of the
first half still win the game. My team is just trailing 0:2 at halftime. Too bad”.),
as well as the use of probabilistic expert systems. Take a medical diagnosis system
implemented by a Bayesian network (Pearl 1988, Jensen 2001), for instance: the
distribution encoded in the network (whether specified by an expert or learned
from data) is a statistical distribution describing relative frequencies in a large

1Other names for this type of probability are “probability of the single case”(Reichenbach
1949), “probability1”(Carnap 1950), “propositional probability”(Bacchus 1990b).
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number of past cases. When using the system for the diagnosis of patient Jones,
the symptoms that Jones exhibits are entered as evidence, and the (statistical)
probabilities of various diseases conditioned on this evidence are identified with
the probability of Jones having each of these diseases.

Direct inference works when for some reference class C and predicate P we
are given the statistical probability of P in C, and for some singular object e all
we know is that e belongs to C. If we have more information than that, direct
inference may no longer work: assume in addition to (1) and (2) that

3.1% of drivers whose annual mileage is between 15,000 and 25,000
miles will be involved in an accident within the next year

(4)

and

Jones is a driver whose annual mileage is between 15,000 and
25,000 miles

. (5)

Now direct inference can be applied either to (1) and (2), or to (4) and (5), yielding
the two conflicting conclusions that the probability of Jones having an accident
is 0.027 and 0.031. Of course, from (1),(2), (4), and (5) we would infer neither,
and instead ask for the percentage of drivers with an annual mileage between
15,000 and 20,000 that are involved in an accident. This number, however, may
be unavailable, in which case direct inference will not allow us to derive any
probability bounds for Jones getting into an accident. This changes if, at least,
we know that

Between 2.7% and 3.1% of drivers whose annual mileage is between
15,000 and 20,000 miles will be involved in an accident within the
next year.

(6)

From (1),(2), and (4)-(6) we will at least infer that the probability of Jones having
an accident lies between 0.027 and 0.031. This no longer is direct inference proper,
but a slight generalization thereof.

In this paper we will be concerned with inductive probabilistic reasoning as a
very broad generalization of direct inference. By inductive probabilistic reason-
ing, for the purpose of this paper, we mean the type of inference where statis-
tical background information is used to refine already existing, partially defined
subjective probability assessments (we identify a categorical statement like (2)
or (5) with the probability assessment: “with probability 1 is Jones a driver
whose. . . ”). Thus, we here take a fairly narrow view of inductive probabilistic
reasoning, and, for instance, do not consider statistical inferences of the following
kind: from the facts that the individuals jones1, jones2, . . . , jones100 are drivers,
and that jones1, . . . , jones30 drive less and jones31, . . . , jones100 more than 15,000
miles annually, infer that 30% of drivers drive less than 15,000 miles. Generally
speaking, we are aiming at making inferences only in the direction from statis-
tical to subjective probabilities, not from single-case observations to statistical
probabilities.
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Problems of inductive probabilistic reasoning that go beyond the scope of
direct inference are obtained when the subjective input-probabilities do not express
certainties:

With probability 0.6 is Jones a driver whose annual mileage is
between 10,000 and 20,000 miles.

(7)

What are we going to infer from (7) and the statistical probability (1) about the
probability of Jones getting into an accident? There do not seem to be any sound
arguments to derive a unique value for this probability; however, 0.6 · 0.027 =
0.0162 appears to be a sensible lower bound. Now take the subjective input
probabilities

With probability 0.6 is Jones’s annual mileage between 10,000 and
20,000 miles, and with probability 0.8 between 15,000 and 25,000
miles.

(8)

Clearly, it’s getting more and more difficult to find the right formal rules that
extend the direct inference principle to such general inputs.

In the guise of inductive probabilistic reasoning as we understand it, these
generalized problems seem to have received little attention in the literature. How-
ever, the mathematical structure of the task we have set ourselves is essentially
the same as that of probability updating : in probability updating we are given a
prior (usually subjective) probability distribution representing a state of knowl-
edge at some time t, together with new information in the form of categorical
statements or probability values; desired is a new posterior distribution describ-
ing our knowledge at time t + 1, with the new information taken into account.
A formal correspondence between the two problems is established by identifying
the statistical and subjective probability distributions in inductive probabilistic
inference with the prior and posterior probability distribution, respectively, in
probability updating.

The close relation between the two problems extends beyond the formal simi-
larity, however: interpreting the statistical probability distribution as a canonical
prior (subjective) distribution, we can view inductive probabilistic reasoning as a
special case of probability updating. Methods that have been proposed for prob-
ability updating, therefore, also are candidates to solve inductive probabilistic
inference problems.

For updating a unique prior distribution on categorical information, no viable
alternative exists to conditioning : the posterior distribution is the prior condi-
tioned on the stated facts 2. Note that conditioning, seen as a rule for inductive
reasoning, rather than probability updating, is just direct inference again.

As our examples already have shown, this basic updating/inductive reasoning
problem can be generalized in two ways: first, the new information may come

2Lewis (1976) proposes imaging as an alternative to conditioning, but imaging requires a
similarity measure on the states of the probability space, which usually cannot be assumed as
given.
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in the form of probabilistic constraints as in (7), not in the form of categorical
statements; second, the prior (or statistical) information may be incomplete, and
only specify a set of possible distributions as in (6), not a unique distribution. The
problem of updating such partially defined beliefs has received considerable atten-
tion, e.g. (Dempster 1967, Shafer 1976, Walley 1991, Dubois & Prade 1997, Gilboa
& Schmeidler 1993, Moral & Wilson 1995, Grove & Halpern 1998). The simplest
approach is to apply an updating rule for unique priors to each of the distribu-
tions that satisfy the prior constraints, and to infer as partial posterior beliefs
only probability assignments that are valid for all updated possible priors. In-
ferences obtained in this manner can be quite weak, and other principles have
been explored where updating is performed only on a subset of possible priors
that are in some sense maximally consistent with the new information (Gilboa &
Schmeidler 1993, Dubois & Prade 1997). These methods are more appropriate
for belief updating than for inductive probabilistic reasoning in our sense, because
they amount to a combination of prior and new information on a more or less sym-
metric basis. As discussed above, this is not appropriate in our setting, where the
new single case information is not supposed to have any impact on the statistical
background knowledge. Our treatment of incompletely specified priors, therefore,
follows the first approach of taking every possible prior (statistical distribution)
into account. See section 4.1 for additional comments on this issue.

The main problem we address in the present paper is how to deal with new
(single case) information in the form of general probability constraints. For this
various rules with different scope of application have previously been explored. In
the case where the new constraints prescribe the probability values p1, . . . , pk of
pairwise disjoint alternatives A1, . . . , Ak, Jeffrey’s rule (Jeffrey 1965) is a straight-
forward generalization of conditioning: it says that the posterior should be the
sum of the conditional distributions given the Ai, weighted with the prescribed
values pi. Applying Jeffrey’s rule to (1) and (7), for instance, we would obtain
0.6 · 0.027 + 0.4 · r as the probability for Jones getting into an accident, where r is
the (unspecified) statistical probability of getting into an accident among drivers
who do less than 10,000 or more than 20,000 miles.

When the constraints on the posterior are of a more general form than permit-
ted by Jeffrey’s rule, there no longer exist updating rules with a similarly intuitive
appeal. However, a number of results indicate that cross-entropy minimization is
the most appropriate general method for probability updating, or inductive proba-
bilistic inference (Shore & Johnson 1980, Paris & Vencovská 1992, Jaeger 1995b).
Cross-entropy can be interpreted as a measure for the similarity of two prob-
ability distributions (originally in an information theoretic sense (Kullback &
Leibler 1951)). Cross-entropy minimization, therefore, is a rule according to which
the posterior (or the subjective) distribution is chosen so as to make it as sim-
ilar as possible within the given constraints to the prior (resp. the statistical)
distribution.

Inductive probabilistic reasoning as we have explained it so far clearly is a
topic with its roots in epistemology and the philosophy of science rather than in
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computer science. However, it also is a topic of substantial interest in all areas of
artificial intelligence where one is concerned with reasoning and decision making
under uncertainty.

Our introductory example is a first case in point. The inference patterns
described in this example could be part of a probabilistic expert system employed
by an insurance company to determine the rate of a liability insurance for a specific
customer.

As a second example, consider the case of an autonomous agent that has to
decide on its actions based on general rules it has been programmed with, and
observations it makes. To make things graphic, consider an unmanned spacecraft
trying to land on some distant planet. The spacecraft has been instructed to
choose one of two possible landing sites: site A is a region with a fairly smooth
surface, but located in an area subject to occasional severe storms; site B lies
in a more rugged but atmospherically quiet area. According to the statistical
information the spacecraft has been equipped with, the probabilities of making a
safe landing are 0.95 at site A when there is no storm, 0.6 at site A under stormy
conditions, and 0.8 at site B. In order to find the best strategy for making a safe
landing, the spacecraft first orbits the planet once to take some meteorological
measurements over site A. Shortly after passing over A it has to decide whether
to stay on course to orbit the planet once more, and then land at A (20 hours later,
say), or to change its course to initiate landing at B. To estimate the probabilities
of making a safe landing following either strategy, thus the probability of stormy
conditions at A in 20 hours time has to be evaluated. A likely method to obtain
such a probability estimate is to feed the measurements made into a program that
simulates the weather development over 20 hours, to run this simulation, say, one
hundred times, each time adding some random perturbation to the initial data
and/or the simulation, and to take the fraction q of cases in which the simulation
at the end indicated stormy conditions at A as the required probability. Using
Jeffrey’s rule, then 0.6q + 0.95(1 − q) is the estimate for the probability of a safe
landing at A.

This example illustrates why conditioning as the sole instrument of probabilis-
tic inference is not enough: there is no way that the spacecraft could have been
equipped with adequate statistical data that would allow it to compute the prob-
ability of storm at A in 20 hours time simply by conditioning the statistical data
on its evidence, consisting of several megabytes of meteorological measurements.
Thus, even a perfectly rational, automated agent, operating on the basis of a well-
defined finite body of input data cannot always infer subjective probabilities by
conditioning statistical probabilities, but will sometimes have to engage in more
flexible forms of inductive probabilistic reasoning. 3

3Jeffrey (1965) argues the same point for human reasoners with his “observation by
candlelight”-example. That argument, however, is not directly transferable to an autonomous
agent whose evidence – at least in principle – is always expressible by a single, well-defined,
proposition
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1.2 Aims and Scope

To make inductive probabilistic reasoning available for AI applications, two things
have to be accomplished: first, a formal rule for this kind of probabilistic inference
has to be found. Second, a formal representation language has to be developed
that allows us to encode the kind of probabilistic statements we want to reason
with, and on which inference rules for inductive probabilistic reasoning can be
defined.

In this paper we will focus on the second of these problems, basically taking
it for granted that cross-entropy minimization is the appropriate formal rule for
inductive probabilistic reasoning (see section 3.1 for a brief justification). The
representation language that we will develop is first-order predicate logic with
additional constructs for the representation of statistical and subjective probability
statements. To encode both deductive and inductive inferences on this language,
it will be equipped with two different entailment relations: a relation |= that
describes valid probabilistic inferences, and a relation |≈ that describes inductive
probabilistic inferences obtained by cross-entropy minimization. For example, the
representation language will be rich enough to encode all the example statements
(1)-(8) in formal sentences φ1, . . . , φ8.

If, furthermore, ψ0 is a sentence that says that with probability 0.4 Jones
drives less than 10000 or more than 20000 miles annually, then we will obtain in
our logic

φ7 |= ψ0,

because ψ0 follows from φ7 by the laws of probability theory. If, on the other
hand, ψ1 says that with probability at least 0.0162 Jones will be involved in an
accident, then ψ1 does not strictly follow from our premises, i.e.

φ1 ∧ φ7 6|= ψ1.

However, for the inductive entailment relation we will obtain

φ1 ∧ φ7 |≈ψ1.

Our probabilistic first-order logic with the two entailment relations |= and
|≈ will provide a principled formalization of inductive probabilistic reasoning in
an expressive logical framework. The next problem, then, is to define inference
methods for this logic. It is well-known that for probabilistic logics of the kind we
consider here no complete deduction calculi exist when probabilities are required
to be real numbers (Abadi & J.Y.Halpern 1994), but that completeness results
can be obtained when probability values from more general algebraic structures
are permitted (Bacchus 1990a). We will follow the approach of generalized prob-
abilities and permit probabilities to take values in logarithmic real-closed fields
(lrc-fields), which provide a very good approximation to the real numbers. With
the lrc-field based semantics we obtain a completeness result for our logic. It
should be emphasized that with this approach we do not abandon real-valued

7



probabilities: real numbers being an example for an lrc-field, they are, of course,
not excluded by our generalized semantics. Moreover, a completeness result for
lrc-field valued probabilities can also be read as a characterization of the degree
of incompleteness of our deductive system for real-valued probabilities: the only
inferences for real-valued probabilities that we are not able to make are those
that are not valid in all other lrc-fields. By complementing the completeness re-
sult for lrc-field valued probabilities with results showing that core properties of
real-valued probabilities are actually shared by all lrc-field valued probabilities, we
obtain a strong and precise characterization of how powerful our deductive system
is for real-valued probabilities.

The main part of this paper (sections 2 and 3) contains the definition of our
logic Lip consisting of a probabilistic representation language Lp, a strict entail-
ment relation |= (both defined in section 2), and an inductive entailment relation
|≈ (defined in section 3). The basic design and many of the properties of the
logic Lip do not rely on our use of probability values from logarithmic real-closed
fields, so that sections 2 and 3 can also be read ignoring the issue of generalized
probability values, and thinking of real-valued probabilities throughout. Only the
key properties of Lip expressed in corollary 2.11 and theorem 2.12 are not valid
for real-valued probabilities.

To analyze in detail the implications of using lrc-fields we derive a number of
results on cross-entropy and cross-entropy minimization in logarithmic real-closed
fields. The basic technical results here have been collected in appendix A. These
results are used in section 3 to show that many important inference patterns for
inductive probabilistic reasoning are supported in Lip. The results of appendix A
also are of some independent mathematical interest, as they constitute an alterna-
tive derivation of basic properties of cross-entropy minimization in (real-valued)
finite probability spaces only from elementary algebraic properties of the loga-
rithmic function. Previous derivations of these properties required more powerful
analytic methods (Kullback 1959, Shore & Johnson 1980).

This paper is largely based on the author’s PhD thesis (Jaeger 1995a). A
very preliminary exposition of the logic Lip was was given in (Jaeger 1994a).
A statistical derivation of cross-entropy minimization as the formal model for
inductive probabilistic reasoning was given in (Jaeger 1995b).

1.3 Previous Work

Clearly, the work here presented is intimately related to a sizable body of previous
work on combining logic and probability, and on the principles of (probabilistic)
inductive inference.

Boole (1854) must probably be credited for being the first to combine logic
and probability. He saw events to which probabilities are attached as formulas in
a (propositional) logic, and devised probabilistic inference techniques that were
based both on logical manipulations of the formulas and algebraic techniques for
solving systems of (linear) equations (see (Hailperin 1976) for a modern exposition
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of Boole’s work).
The work of Carnap (1950, 1952) is of great interest in our context in more

than one respect: Carnap was among the first to acknowledge the existence of
two legitimate concepts of probability, (in Carnap’s terminology) expressing de-
grees of confirmation and relative frequencies, respectively. The main focus in
Carnap’s work is on probability as degree of confirmation, which he considers to
be defined on logical formulas. His main objective is to find a canonical proba-
bility distribution c on the algebra of (first-order) formulas, which would allow to
compute the degree of confirmation c(h/e) of some hypothesis h, given evidence
e in a mechanical way, i.e. from the syntactic structure of h and e alone. Such
a confirmation function c would then be seen as a normative rule for inductive
reasoning. While eventually abandoning the hope to find such a unique confir-
mation function (Carnap 1952), Carnap (1950) proves that for a general class of
candidate functions c a form of the direct inference principle can be derived: if
e is a proposition that says that the relative frequency of some property M in a
population of n objects is r, and h is the proposition that one particular of these
n objects has property M , then c(h/e) = r.

Carnap’s work was very influential, and many subsequent works on proba-
bility and logic (Gaifman 1964, Scott & Krauss 1966, Fenstad 1967, Gaifman &
Snir 1982) were more or less directly spawned by (Carnap 1950). They are, how-
ever, more concerned with purely logical and mathematical questions arising out
of the study of probabilistic interpretations for logical language, than with the
foundations of probabilistic and inductive reasoning.

In none of the works mentioned so far were probabilistic statements integrated
into the logical language under consideration. Only on the semantic level were
probabilities assigned to (non-probabilistic) formulas. This changes with Ky-
burg (1974), who, like Carnap, aims to explain the meaning of probability by for-
malizing it in a logical framework. In doing so, he develops within the framework
of first-order logic special syntactic constructs for statistical statements. These
statistical statements, in conjunction with a body of categorical knowledge, then
are used to define subjective probabilities via direct inference.

Keisler (1985) and Hoover (1978) developed first-order and infinitary logics in
which the standard quantifiers ∀x and ∃x are replaced by a probability quantifier
Px ≥ r, standing for “for x with probability at least r”. The primary motivation
behind this work was to apply new advances in infinitary logics to probability
theory.

In AI, interest in probabilistic logic started with Nilsson’s (1986) paper, which,
in many aspects, was a modern reinvention of (Boole 1854) (see (Hailperin 1996)
for an extensive discussion).

Halpern’s (1990) and Bacchus’s (1990b, 1990a) seminal works introduced prob-
abilistic extensions of first-order logic for the representation of both statistical and
subjective probabilities within the formal language. The larger part of Halpern’s
and Bacchus’s work is concerned with coding strict probabilistic inferences in
their logics. A first approach towards using the underlying probabilistic logics

9



also for inductive probabilistic reasoning is contained in (Bacchus 1990b), where
an axiom schema for direct inference is presented. Much more general patterns
of inductive (or default) inferences are modeled by the random worlds method
by Bacchus, Grove, Halpern, and Koller (Bacchus et al. (1992, 1997), Grove et
al. (1992a, 1992b)). By an approach very similar to Carnap’s definition of the
confirmation function c, in this method a degree of belief Pr(φ|ψ) in φ given the
knowledge ψ is defined. Here φ and ψ now are formulas in the statistical prob-
abilistic languages of Halpern and Bacchus. As ψ, thus, cannot encode prior
constraints on the subjective probabilities (or degrees of belief), the reasoning
patterns supported by this method are quite different from what we have called
inductive probabilistic reasoning in section 1.1, and what forms the subject of the
current paper. A more detailed discussion of the random worlds method and its
relation to our framework is deferred to section 4.1.
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2 The Logic of Strict Inference

2.1 Outline

In this section we introduce the logic Lp = (Lp, |=) consisting of a language Lp

for the representation of statistical and subjective probabilities, and an entailment
relation |= capturing inferences that are validated by probability calculus. Thus,
the nature of the logic Lp will be very similar to that of the logics of Halpern (1990)
and Bacchus (1990b), and we will follow in our presentation of Lp these previously
defined formalisms as far as possible.

The main difference between our logic Lp and the logics of Halpern and Bac-
chus lies in the definition of terms expressing subjective probabilities. Here our
approach is guided by the goal to later extend the logic Lp to a logic Lip =
(Lp, |=, |≈ ) with an additional entailment relation |≈ for inductive probabilistic
inferences. This inductive entailment relation will be obtained by implementing
cross-entropy minimization between the statistical and subjective probability dis-
tribution in the semantic structures for the language. As we can only speak of
the cross-entropy of two probability distributions that are defined on the same
probability space, we cannot follow Bacchus and Halpern in interpreting statisti-
cal and subjective probability terms by probability distributions over the domains
of semantical structures, and distributions over sets of semantic structures, re-
spectively. Instead, we choose to interpret both statistical and subjective prob-
ability terms over the domain of semantic structures. To make this feasible for
subjective probability terms, we have to impose a certain restriction on their for-
mulation: it will be required that subjective probability terms always refer to
some specific objects or events about which there is some uncertainty. In our
introductory example, for instance, all the uncertainty expressed in the subjec-
tive probability statements was attached to the object “Jones” about whose exact
properties we have incomplete information. In a somewhat more complicated ex-
ample, a subjective probability statement may be about the probability that in
an accident “crash010899Madison/5th”, involving drivers “Jones” and “Mitchell”,
driver “Jones” was to be blamed for the accident. This statement, then, would
express uncertainty about the exact relations between the elements of the tuple
(crash010899Madison/5th,Jones,Mitchell) of objects and events.

Considering only subjective probability expressions that fit this pattern allows
us to interpret them by probability distributions over the domain of a semantic
structure: we interpret the concrete objects and events appearing in the sub-
jective probability expression as randomly drawn elements of the domain. This
approach stands in the tradition of frequentist interpretations of subjective prob-
abilities (Reichenbach 1949, Carnap 1950). For the denotation of such random
domain elements we will use a special type of symbols, called event symbols, that
are used syntactically like constants, but are interpreted by probability measures.

Another point where we will deviate from the previous approaches by Halpern
and Bacchus is in the structure of the probability measures appearing as part of
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the semantic structures. In (Halpern 1990) and (Bacchus 1990b) these measures
were assumed to come from the very restricted class of real-discrete measures (cf.
example 2.7 below). Halpern (1990) states that this restriction is not essential
and briefly outlines a more general approach, perhaps somewhat understating the
technical difficulties arising in these approaches (as exemplified by our theorem 2.8
below). In Bacchus (1990a) a more general concept of probability distributions
is used, allowing arbitrary finitely additive field-valued probabilities. We will use
a closely related approach, requiring probabilities to take values in logarithmic
real-closed fields (definition 2.1 below).

2.2 Syntax

The syntax of our logic is that of first-order predicate logic with three extensions:
first, the language of logarithmic, ordered fields is integrated as a fixed compo-
nent into the language; second, a term-forming construction (taken directly from
Bacchus (1990b)) is introduced that allows us to build terms denoting statistical
probabilities; and third, a term-forming construction is introduced for building
terms denoting subjective probabilities.

We use two sets of variables in the language: domain variables ranging over
the elements of the domain of discourse, and field variables ranging over numbers,
especially probability values. The vocabulary

SLOF = {0, 1,+, ·,≤,Log}

of ordered fields with a logarithmic function is considered to belong to the log-
ical symbols of the language. The non-logical symbols consist of a set S =
{R, Q, . . . , f, g, . . . , c, d, . . .} of relation, function, and constant symbols, as in first-
order logic, and a tuple e = (e1, . . . , eN ) of event symbols.

The language Lp(S, e) now is defined by the following rules. Since in part (f)
of the formation rule for field terms a condition on the free variables of a formula
is required, we have to define simultaneously with the construction of terms and
formulas the set of free variables they contain. Except for the nonstandard syn-
tactic constructions we omit these obvious declarations.

A domain-term is constructed from domain-variables v0, v1, . . ., constant and func-
tion symbols from S according to the syntax rules of first-order logic.

Atomic domain formulas are formulas of the form

R t1 . . . tk or t1 = t2,

where R is a k-ary relation symbol from S, and the ti are domain-terms.

Boolean operations: If φ and ψ are formulas, then so are (φ ∧ ψ) and ¬φ.
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Quantification: If φ is a formula and v (x) is a domain-variable (field-variable),
then ∃vφ (∃xφ) is a formula.

Field-terms:

(a) Every field-variable x0, x1, . . . is a field-term.

(b) 0 and 1 are field-terms

(c) If t1 and t2 are field-terms, then so are (t1 · t2) and (t1 + t2).

(d) If t is a field term, then so is Log(t).

(e) If φ is a formula, and w a tuple of domain variables, then

[φ]w

is a field-term. The free variables of [φ]w are the free variables of φ not
appearing in w. A field term of this form is called a statistical probability
term.

(f) If φ(v) is a formula whose free variables are among the domain variables v, φ
does not contain any terms of the form prob(. . .), and if v/e is an assignment
that maps every v ∈ v to some e ∈ e, then

prob(φ[v/e])

is a field-term (without free variables). A field term of this form is called a
subjective probability term.

Atomic field formulas: If t1, t2 are field-terms, then t1 ≤ t2 is an atomic field for-
mula.

Rule (f) for field terms essentially says that event symbols e1, . . . , eN are used
syntactically like constant symbols, but are restricted to only appear within the
scope of a prob()-operator. Moreover, subjective probability terms may not be
nested or contain free variables. These are fairly serious limitation that are not
essential for the definition of Lp, but will be crucially important for the definition
of |≈ in Lip.

We may freely use as definable abbreviations (in)equalities like t1 > t2, t1 = t2,
t1 ≥ t2, and conditional probability expressions like [φ | ψ]w or prob(φ[e] | ψ[e]).
These conditional probability expressions are interpreted by the quotients [φ ∧ ψ]w/[ψ]w,
respectively prob(φ[e] ∧ ψ[e])/prob(ψ[e]), provided the interpretations of [ψ]w,
respectively prob(ψ[e]), are positive. Several conventions may be employed to
interpret conditional probability terms when the conditioning expressions are as-
signed probability zero. We will not explore this issue here and refer the reader
to (Bacchus 1990b), (Halpern 1990), and (Jaeger 1995a) for alternative proposals.
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To illustrate the use of the language Lp, we encode some of the example sen-
tences of section 1.1. We use a vocabulary that contains two unary predicate
symbols D and M that partition the domain into elements of the sorts driver and
mileage, respectively. Another unary predicate symbol IIA stands for “involved
in accident”, and a unary function am maps drivers to their annual mileage. Also
we use constants 10,15,... for specific mileages (in thousands), and a binary
order relation � on mileages (this relation � defined on the domain is to be dis-
tinguished from the relation ≤ defined on probability values). Finally, there is a
single event symbol jones. Statement (1) can now be formalized as

φ1 :≡ [IIA(d) | D(d) ∧ 10 � am(d) � 20]d = 0.027. (9)

Statement (3) becomes

φ3 :≡ prob(IIA(jones)) = 0.027. (10)

2.3 Semantics

Key components of the semantic structures that we will use to interpret Lp are
finitely additive probability measures with values in logarithmic real-closed fields.
We briefly review the concepts we require.

Definition 2.1 An SLOF-structure F=(F, 0, 1,+, ·,≤,Log) over a domain F is a
logarithmic real closed field (lrc-field for short), if it satisfies the axioms LRCF
consisting of

(i) The axioms of ordered fields.

(ii) An axiom for the existence of square roots:

∀x∃y(0 ≤ x→ y2 = x).

(iii) A schema demanding that every polynomial of uneven degree has a root:

∀y0 . . . yn−1∃x(y0 + y1 · x+ . . .+ yn−1 · x
n−1 + xn = 0). n = 1, 3, 5, . . .

(iv) ∀x, y > 0 Log(x · y) = Log(x) + Log(y)

(v) ∀x > 0 x 6= 1 → Log(x) < x− 1

(viii) The approximation schema

∀x ∈ (0, 1] qn(x) ≤ Log(x) ≤ pn(x) (n = 1, 2, . . .)

where

qn(x) :≡ (x− 1) −
(x− 1)2

2
+

(x− 1)3

3
− . . .+ (−1)n−1 (x− 1)n

n
+ (−1)n (x− 1)n+1

x

pn(x) :≡ (x− 1) −
(x− 1)2

2
+

(x− 1)3

3
− . . .+ (−1)n−1 (x− 1)n

n
,
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A structure over the vocabulary SOF := {+, ·,≤, 0, 1} that satisfies the axioms
RCF consisting of (i)-(iii) alone is called a real-closed field. By classic results in
model theory, RCF is a complete axiomatization of the SOF-theory of the real
numbers. In other words, every first-order SOF-sentence φ that is true in R also is
true in every other real-closed field (see (Rabin 1977) for an overview). To what
extent similar results hold for logarithmic real closed fields is a long-standing open
problem in model theory (there studied w.r.t. (real-closed) fields augmented by an
exponential, rather than a logarithmic, function; see e.g. (Dahn & Wolter 1983)).

Definition 2.2 Let M be a set. An algebra over M is a collection A of subsets of
M that contains M , and is closed under complementation and finite unions. If M
is also closed under countable unions, it is called a σ-algebra. If A is an algebra
on M , and A′ an algebra on M ′, then the product algebra A×A′ is the algebra on
M ×M ′ generated by the sets A×A′ (A ∈ A, A′ ∈ A′).

Definition 2.3 Let A be an algebra over M , F an lrc-field. Let
F+ := {x ∈ F | 0 ≤ x}. A function

P : A → F+

is an F-probability measure iff P (∅) = 0, P (M) = 1, and P (A∪B) = P (A)+P (B)
for all A,B ∈ A with A∩B = ∅. The elements of A also are called the measurable
sets. The set of all probability measures with values in F on the algebra A is
denoted by

∆FA.

Thus, even when the underlying algebra is a σ-algebra, we do not require σ-
additivity, because this would usually make no sense in arbitrary lrc-fields, where
infinite sums of non-negative numbers need not be defined. If A is a finite algebra
with n atoms, then ∆FA can be identified with

∆n
F := {(x1, . . . , xn) ∈ Fn | xi ≥ 0,

∑

i

xi = 1}.

If A′ is a subalgebra of A, and P ∈ ∆FA, then P � A′ denotes the restriction of P
to A′, i.e. a member of ∆FA′. By abuse of notation we also use P � A′ to denote
the marginal distribution on A′ when A′ is a factor, rather than a subalgebra, of
A, i.e. A = A′ × A′′ for some A′′.

Semantic structures for the interpretation of Lp(S, e) are based on standard
model theoretic structures for the vocabulary S, augmented by probability mea-
sures for the interpretation of probability terms.

The basic form of a probabilistic structure will be

M = (M, I,F, (An, Pn)n∈N, Qe)

where (M, I) is a standard S-structure consisting of domain M and interpretation
function I for S, F is a logarithmic real closed field, the (An, Pn) are probability
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measure algebras on Mn, and Qe is a probability measure on A|e | (we use |e |,
|v |, etc., to denote the number of elements in a tuple of event symbols e, variables
v, etc.).

Statistical probability terms [φ]w will be interpreted by P|w |(A) where A is

the set defined by φ in M |w |. The measure Pn, thus, is intended to represent
the distribution of a sample of n independent draws from the domain, identically
distributed according to P1 (an “iid sample of size n”). In the case of real-valued
σ-additive measures this would usually be achieved by defining Pn to be the n-
fold product of P1, defined on the product σ-algebra A1 × . . . × A1 (n factors).
A corresponding approach turns out to be infeasible in our context, because the
product algebra A1 × . . . × A1 usually will not be fine-grained enough to give
semantics to all statistical probability terms [φ]w. In order to ensure that the se-
quence (A1, P1), (A2, P2), . . ., nevertheless, behaves in several essential aspects like
a sequence of product algebras and product measures, we explicitly impose three
coherence conditions: homogeneity, the product property, and the Fubini property.
These are essentially the same conditions as can be found in (Hoover 1978), there
summarily called Fubini property. Bacchus (1990a) requires homogeneity and the
product property only.

Homogeneity: For all n, A ∈ An and permutations π of {1, . . . , n}:

π(A) := {πa | a ∈ A} ∈ An, and Pn(π(A)) = Pn(A).

Homogeneity expresses the permutation invariance of iid samples: if we sample
two drivers from our example domain, for instance, then the probability that the
first one drives a Toyota, and the second one a Ford is the same as the probability
that the first one drives a Ford, and the second one a Toyota.

Product property: For all k, l ∈ N: A ∈ Ak and B ∈ Al implies A×B ∈ Ak+l,
and Pk+l(A×B) = Pk(A) · Pl(B).

The product property expresses independence of samples. For an example let
k = l = 1, A comprise the set of Toyota drivers, and B comprise the set of Ford
drivers. Then P1(A) (P1(B)) is the probability of sampling a Toyota (Ford) driver
in a single draw. P2(A × B) is the probability of first drawing a Toyota driver,
then a Ford driver, in a two-element sample. When sampling is iid, P2(A × B)
must be equal to P1(A)P1(B).

For the formulation of the last coherence condition we first introduce some
notation for sections of sets: Let I ⊂ {1, . . . , n} with I 6= ∅ and I ′ := {1, . . . , n}\I.
Let A ⊆ Mn and a ∈ M I . Then the section of A in the coordinates I along a is
defined as

σI
a(A) := {b ∈M I′ | (a, b) ∈ A}.
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Fubini property: For all n ∈ N, I ⊂ {1, . . . , n} with 1 ≤ |I | =: k, A ∈ An, and
a ∈M I :

σI
a(A) ∈ An−k, (11)

for all r ∈ [0, 1]:

AI,≥r := {a ∈M I | Pn−k(σ
I
a(A)) ≥ r} ∈ Ak, (12)

and
Pn(A) ≥ rPk(AI,≥r). (13)

Furthermore, we require (13) to hold with strict inequality for the set AI,>r

defined by replacing ≥ by > in (12).

The Fubini property expresses a fundamental “commensurability” property of
product measures in different dimensions. For standard σ-additive measures it
plays a vital role in the theory of integration. It is best illustrated by a geometric
example: obviously, if a geometric figure A in the plane contains a rectangle with
sides of lengths s and r, then the area of A must be at least r ·s. This is essentially
the defining property of area as the product measure of one-dimensional lengths.
Furthermore, the lower bound r · s also holds when A only contains a “distorted
rectangle” of dimensions r × s, as illustrated in figure 1. The Fubini property
establishes the lower bound of r · s for the measure of A from a condition that
further generalizes the property of containing a “distorted rectangle”.

We are now ready to define our semantic structures.






σI
a(A)

a

A

︸ ︷︷ ︸

AI,≥r

s

r

r

r

P (A) ≥ rs

M I
M I′

Figure 1: The Fubini property
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Definition 2.4 Let S be a vocabulary, e a tuple of event symbols. A probabilistic
structure for (S, e) is a tuple

M = (M, I,F, (An, Pn)n∈N, Qe)

where M is a set (the domain), I is an interpretation function for S over M , F is
a lrc-field, (An, Pn) is a measure algebra on Mn (n ∈ N), such that the sequence
(An, Pn)n∈N satisfies homogeneity, the product property, and the Fubini property,
and Qe is a probability measure on A|e |.

Now let a probabilistic structure M for (S, e) be given, let γ be a variable
assignment that maps domain-variables into M and field-variables into F. The
notation γ[v/a,x/r] is used for the variable assignment that maps v to a, x to
r, and for all other variables is the same as γ.

We now need to define the satisfaction relation between (M, γ) and Lp-formulas.
Due to the possible non-measurability of Lp-definable sets, this relation may only
be partial. In detail, we define a partial interpretation that maps an (S, e)-term t
to its interpretation (M, γ)(t) in M (if it is a domain term), or in F (if it is a field
term). In parallel, a relation |= is defined between (M, γ) and Lp(S, e)-formulas φ.
This relation,too, may be only partial in the sense that it is possible that neither
(M, γ) |= φ, nor (M, γ) |= ¬φ.

Domain-terms: For a domain-term t, the interpretation (M, γ)(t) is defined just
as in first-order logic. Note that t cannot contain any field-terms as subterms.

Atomic domain formulas: If φ is an atomic domain formula then the relation
(M, γ) |= φ is defined as in first-order logic.

Boolean operations: The definition of (M, γ) |= φ for φ = ψ ∨ χ and φ = ¬ψ is
as usual, provided that |= is defined between (M, γ) and the subformulas ψ, χ.
Otherwise |= is undefined between (M, γ) and φ.

Quantification: Let φ(v,x) ≡ ∃wψ(v, w,x). Then

(M, γ) |= φ(v,x) iff ∃a ∈M (M, γ[w/a]) |= ψ(v, w,x).

Similarly for quantification over field variables and universal quantification.

Field-terms: Let t be a field-term.

(a) t ≡ x. Then (M, γ)(t) = γ(x).

(b) t ≡ 0. Then (M, γ)(t) = 0. Similarly for t ≡ 1.

(c) t ≡ t1 + t2. Then (M, γ)(t) = (M, γ)(t1) + (M, γ)(t2) if (M, γ)(t1) and
(M, γ)(t2) are defined. (M, γ)(t) is undefined otherwise. Similarly for
t ≡ t1 · t2.
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(d) t ≡ Log(t′). Then (M, γ)(t) = Log((M, γ)(t′)) if (M, γ)(t′) is defined. (M, γ)(t)
is undefined otherwise.

(e) t ≡ [φ(v,w,x)]w. Then

(M, γ)(t) = P|w |({a | (M, γ[w/a]) |= φ(v,w,x)}),

if {a | (M, γ[w/a]) |= φ(u,w,x)} ∈ A|w |; (M, γ)(t) is undefined otherwise.

(f) t ≡ prob(φ[v/e]). Then

(M, γ)(t) = Qe({a | (M, γ[v/a]) |= φ(v)})

if {a | (M, γ[v/a]) |= φ(v)} ∈ A|e |; (M, γ)(t) is undefined otherwise.

Atomic field formulas: Let φ ≡ t1 ≤ t2. Then (M, γ) |= φ iff (M, γ)(t1) and
(M, γ)(t2) are defined, and (M, γ)(t1) ≤ (M, γ)(t2).

Definition 2.5 A probabilistic structure M is sufficient if the relation (M, γ) |= φ
is defined for all γ and all φ ∈ Lp.

In other words, M is sufficient if all Lp-definable sets are measurable. We
define semantic entailment with respect to sufficient structures only:

Definition 2.6 For Φ ⊆ Lp, ψ ∈ Lp we write Φ |= ψ if for all sufficient proba-
bilistic structures M: (M, γ) |= Φ implies (M, γ) |= ψ .

Because of the importance of definability, we introduce a somewhat more com-
pact notation for sets defined by formulas: if φ is an Lp(S, e)-formula, M a prob-
abilistic structure, γ a variable assignment, and v a tuple of n distinct domain
variables, then we write

(M, γ,v)(φ) := {a ∈Mn | (M, γ[v/a]) |= φ}. (14)

Furthermore, when φ ≡ φ(v,w,x), γ(w) = b, and γ(x) = r, then we also denote
(14) by (M,v)(φ(v, b, r)).

It can be very difficult to verify sufficiency for a given structure M. In fact,
the only class of examples of probabilistic structures for which sufficiency is easily
proved is the following.

Example 2.7 Let S be a vocabulary, e = (e1, . . . , eN ) a tuple of event symbols.
Let (M, I) be a standard S-structure; for i ∈ N let ai ∈ M, bi ∈ MN , pi, qi ∈ R

with
∑
pi =

∑
qi = 1. Let An = 2Mn

for all n ∈ N, and define

Pn(A) =
∑

(ai1
,...,ain )∈A

pi1 · . . . · pin (A ⊆Mn),
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and
Qe(A) =

∑

bi∈A

qi (A ⊆MN ).

It is easy to see that (An, Pn)n∈N satisfies the coherency conditions. Moreover,
sufficiency is trivially satisfied, because every subset of M n is measurable. We
refer to structures of this form as real-discrete structures.

2.4 Probabilistic Reasoning in Lp

The logic Lp supports reasoning with statistical and subjective probabilities as
two separate entities, and thus has much in common with Halpern’s (1990) logic
L3. However, due to the domain distribution semantics of subjective probabilities,
Lp exhibits some distinguishing properties. In this section we will discuss some
of these properties. First, however, we turn to purely statistical reasoning, and
illustrate by an example the role of the coherence conditions.

Let {D, M, . . .} be the vocabulary introduced in section 2.2 for encoding our
introductory example. To provide the basis for some inferences in Lp, we first
axiomatize some aspects of the intended meaning of the given symbols. Notably,
we want � to be an order relation on M, which we can formalize in Lp by a
(standard first-order) sentence φ�. Also, according to the intended meaning of
am, this function takes values in M:

∀vw(am(v) = w → M(w)) ≡: φam.

Now consider the statistical probability term

[am(d) ≺ am(d′)]d,d′

(where ≺, naturally, is shorthand for “� and not =”), which represents the sta-
tistical probability that of two randomly chosen drivers d and d′, d has a lower
annual mileage than d′. We want to derive that 1/2 is an upper bound for this
probability. For this let M be a sufficient probabilistic structure for the given
vocabulary. Then

A := (M, (d, d′))(am(d) ≺ am(d′)) (15)

= {(a, b) ∈M ×M | am(a) ≺ am(b)} ∈ A2.

Also, the permutation of A

A′ := {(a, b) ∈M ×M | am(b) ≺ am(a)} (16)

belongs to A2. If M is a model of φ� ∧ φam, then A and A′ are disjoint, and by
homogeneity P2(A) = P2(A

′). It follows that P2(A) ≤ 1/2. Hence, we can infer in
Lp:

φ� ∧ φam |= [am(d) ≺ am(d′)]d,d′ ≤ 1/2. (17)
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Next, we show that from φ� ∧ φam we can derive

∃d [am(d′) � am(d)]d′ ≥ 1/2, (18)

i.e. there exists a driver whose annual mileage is at least as great as that of 50%
of all drivers (an “at least median mileage”-driver). To derive (18) we have to
appeal to the Fubini property: let M be a model of φ� ∧ φam, and assume that

M |= ∀d [am(d′) � am(d)]d′ < 1/2, i.e. (19)

M |= ∀d [am(d) ≺ am(d′)]d′ > 1/2 (20)

Now consider again the set A defined by (15). Then, according to (20),

A1,>1/2 = {a ∈M | P1({b ∈M | a ≺ b}) > 1/2} = M.

By the Fubini property this leads to

P2(A) > 1/2P1(M) = 1/2,

a contradiction to (17). Hence (20) cannot hold, and (18) follows from φ� ∧ φam.
We now turn to reasoning with subjective probabilities. To simplify notation,

we assume in the following that there is only one event symbol e in our vocabulary,
i.e. |e | = 1.

Even though e is interpreted by a probability distribution over the domain,
the logic does support the intuition that e, in fact, stands for a unique domain
element, because

prob(∃=1w(e = w)) = 1 (21)

is a tautology in Lp (here ∃=1 is an abbreviation for ’there exists exactly one’).
To see that (21) is indeed valid, it only must be realized that the interpretation
of the formula ∃=1w(v = w) is always M , and so must be assigned probability 1
by Qe.

Now let φ(w) be a formula. Then

∀w(φ(w) ∨ ¬φ(w)) (22)

is a tautology. It might now appear as though from (21) and (22) one should be
able to infer

φ(e) ∨ ¬φ(e), (23)

and hence
prob(φ(e)) = 0 ∨ prob(φ(e)) = 1. (24)

This would mean that reasoning with subjective probabilities reduces to trivial
0-1 valued probability assignments that simply mirror truth value assignments.
This is not the case, however, because (23) is an expression that is not allowed
by the syntax of Lp, and hence cannot be used for deriving (24). This changes if

21



we introduce a standard constant symbol e as an alternative name for e via the
axiom

prob(e = e) = 1. (25)

Since ∀w(w = e → (φ(w) ↔ φ(e))) is a tautology, we have

prob(e = e → (φ(e) ↔ φ(e)) = 1, (26)

and (24) becomes an immediate consequence of (25) and (26).
We thus see that Lp in this way supports two views on single case probabilities:

as long as individual events are only represented by event symbols, the probabilities
of their properties can be identified with frequencies obtained by repeated sampling
according to Qe, which means that they are only constrained by the conditions
of a coherent domain distribution. If the single case nature of e is made explicit
by an axiom of the form (25), the logic enforces the view that the probability
for a proposition relating to a single case event can only be 0 or 1, according to
whether the proposition is true or false. Both these views are shades of frequentist
interpretations of single case probabilities: the latter is the strict frequentist view
of von Mises (1957), whereas the former is a less dogmatic frequentist perspective
in which single case probabilities are admitted as meaningful, but are given an
empirical interpretation (Reichenbach 1949, Jaeger 1995b).

Limitations on possible subjective probability assignments can be imposed in
Lp also by restricting the sampling distribution Qe in less obvious ways than the
axiom (25). Consider the sentence

∃=1vPresident(v) ∧ prob(President(e)) = 1

∧ ∀v(President(v) → (Republican(v) ↔ ¬Democrat(v))). (27)

The first two conjuncts of this sentence tie the interpretation of e to the one
element interpretation of the predicate President in very much the same way as
(25) tied it to the one element interpretation of e. As before, we thus obtain that
properties of e can only have 0-1 probabilities, and hence (27) is inconsistent with

prob(Republican(e)) = 1/2 ∧ prob(Democrat(e)) = 1/2. (28)

This may seem counterintuitive at first sight, as (27) and (28) seem to express a
meaningful subjective probability assessment. On the other hand, however, it also
seems natural to demand that for any formula φ(x) the implication

prob(φ(e)) > 0 |= ∃vφ(v) (29)

should be valid, since we should not be able to assign a nonzero probability to e
having the impossible property φ. If, now, (27) and (28) were jointly consistent,
then (29) would be violated in some model with either φ(v) = President(v) ∧
Democrat(v), or φ(v) = President(v) ∧ Republican(v). Thus, the minimal con-
sistency requirement between domain knowledge and subjective probability as-
sessment as expressed by (29) already forces the joint inconsistency of (27) and
(28).
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A somewhat more careful modeling resolves the apparent conflict: by intro-
ducing a time parameter into our representation, we can make the more accurate
statement that there only exists a single president at any given point in time, and
that e refers to the next president:

∀tTime(t) → ∃=1vPresident(v, t) ∧ prob(President(e,next)) = 1. (30)

Here ’next’ must be another event, not a constant symbol. Now (28) is consistent
with our premises since Qe,next can be any distribution that samples presidents at
different points in time.

2.5 Sufficient Structures

So far, the only type of sufficient probabilistic structures we have encountered
are the real-discrete structures of example 2.7. For many interesting theories one
can find models that belong to this class. For instance, all our example sentences
(1),(3), etc. have real discrete models. This is not always the case, though.
Consider the sentence

φcont :≡ ∀v[v = w]w = 0,

which explicitly states that no single element carries a positive probability mass.
Clearly φcont does not have a real discrete model. Probabilistic structures that
do satisfy φcont we call continuous structures. Do sufficient continuous structures
exist? The answer is yes. An explicit construction of sufficient continuous struc-
tures for the special case that S only contains unary relation symbols is given in
(Jaeger 1995a). For more expressive vocabularies it becomes extremely difficult
to verify sufficiency in an explicit construction. In particular, as the following
theorem shows, we cannot follow the example of real-discrete structures, and try
to obtain sufficiency simply by making every set measurable.

Theorem 2.8 There does not exist a sufficient continuous probability structure
M with An = 2Mn

for all n.

Proof: We show the stronger result that we cannot even construct the first two
elements (2M , P1), (2

M2

, P2) of a sequence (2Mn

, Pn)n∈N such that the coherency
conditions hold for these two measure algebras.

For this let M be a set, P1 a continuous probability measure on 2M , P2 a
permutation invariant probability measure on 2M2

such that P1 and P2 satisfy
the product property. We show that there exists an A ⊆M 2 with P1(σ

1
a(A)) = 0

for all a ∈ M , and P2(A) > 0, thus providing a counterexample to the Fubini
property.

Let λ be the cardinality of M . Let Γ be the set of ordinals κ ≤ λ that
have the following property: there exists a sequence of pairwise disjoint subsets
{Eν ⊂M | ν ordinal, ν < κ} with

∀ν < κ : P1(Eν) = 0 and P1(∪ν<κEν) > 0. (31)
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Γ is nonempty, because λ ∈ Γ.
Let ρ be the minimal element in Γ; let {Eν | ν < ρ} be a sequence for ρ with

(31). For each ordinal ν < ρ let

Ẽν := ∪θ<νEθ.

By the minimality of ρ in Γ, we have P1(Ẽν) = 0 for all ν < ρ. Now define

A0 := ∪ν<ρ(Eν × Ẽν),

A1 := ∪ν<ρ(Eν ×Eν),

B := ∪ν<ρEν .

Let a ∈ M be arbitrary. If a 6∈ B, then σ1
a(A0) = σ1

a(A1) = ∅. For a ∈ B there
exists exactly one ν < ρ with a ∈ Eν , so that σ1

a(A0) = Ẽν and σ1
a(A1) = Eν .

Thus, for all a ∈M , P1(σ
1
a(A0)) = P1(σ

1
a(A1)) = 0.

Now consider any (a, b) ∈ B × B where a ∈ Eν , b ∈ Eν′ . If ν > ν ′ then
(a, b) ∈ A0. For ν = ν ′ we have (a, b) ∈ A1, and if ν < ν ′, then (a, b) belongs to
the permutation πA0 := ∪ν<ρ(Ẽν ×Eν) of A0. Thus,

B ×B = A0 ∪ πA0 ∪A1.

Since r := P1(B) > 0, and therefore P2(B × B) = r2 > 0, by the permutation
invariance of P2, it follows that P2(A0) > 0, or P2(A1) > 0. Hence, at least one of
A0 and A1 violates the Fubini property. 2

2.6 Reduction to First-Order Logic

The previous section has highlighted the difficulties in the model theory of Lp. In
this section we provide results that, on the other hand, provide powerful tools for
the analysis of Lp. These tools are obtained by showing that Lp can be reduced
to standard first-order logic. This reduction is based on the observation that a

statistical probability term [φ(v,w,x)]w maps tuples (a, r) ∈ M |v | × F|x | to
elements s ∈ F, and thus behaves essentially like a standard function term f(v,x)
over a domain M ∪ F. A similar observation applies to subjective probability
terms. To reduce Lp to first-order logic, one can define a translation from Lp

into the language LI(S
∗) of first-order logic over an expanded (infinite) vocabu-

lary S∗ ⊃ S. In this translation, probability terms are inductively replaced by
standard function terms using new function symbols. This syntactic translation is
complemented by a transformation between sufficient probabilistic structures and
standard first-order structures. Finally, the class of standard first-order structures
that correspond to sufficient probabilistic structures under such a transformation
can be axiomatized by a first-order theory AX. We then obtain the following
result.

Theorem 2.9 Let S be a vocabulary. There exist
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• a vocabulary S∗ ⊃ S,

• a recursively enumerable set of axioms AX ⊂ LI(S
∗),

• computable mappings

t : Lp(S) → LI(S
∗)

t−1 : t(Lp(S)) → Lp(S),

such that t−1(t(φ)) = φ,

• transformations

T : M 7→ M∗ (M a sufficient probabilistic S-structure,
M∗ a S∗-structure with M∗ |= AX)

T−1 : N → N−1 (N a S∗-structure with N |= AX,
N−1 a sufficient probabilistic S-structure) ,

such that T−1(T (M)) = M,

so that for all φ ∈ Lp(S), all sufficient probabilistic S-structures M, and all S∗-
structures N |= AX:

M |= φ iff T (M) |= t(φ) and N |= t(φ) iff T−1(N) |= φ. (32)

For the detailed proof of this theorem the reader is referred to (Jaeger 1995a).
We obtain several useful corollaries. The first one reduces semantic implication in
Lp to first-order entailment.

Corollary 2.10 For all Φ ∪ {φ} ⊆ Lp(S):

Φ |= φ iff t(Φ) ∪ AX |= t(φ).

Using this corollary, one can easily transfer compactness of first-order logic to
Lp:

Corollary 2.11 Lp is compact.

As an application of compactness consider the Lp-theory

Φ := {δn | n ∈ N} ∪ ∃x > 0∀v[v = w]w = x,

where δn is a standard first-order sentence that says that the domain contains
at least n elements. A model of Φ thus is an infinite structure in which every
singleton has the same positive probability mass. Since every finite subset of Φ is
satisfiable (by a finite domain real-discrete structure), we know by corollary 2.11
that Φ is satisfiable. However, Φ is clearly not satisfiable by a structure with real-
valued probabilities: the probability of the singletons in a model of Φ must be
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some infinitesimal. Thus, Φ also provides an example of what we lose in terms of
semantic strength by allowing probabilities to be lrc-field-valued, not necessarily
real-valued, and shows that corollary 2.11 cannot hold when we limit ourselves to
real-valued probability structures.

Finally, we obtain as a corollary to theorem 2.9 a completeness result:

Theorem 2.12 There exists a sound and complete proof system for Lp.

Again, this corollary is in marked contrast to what one obtains when proba-
bilities are required to be real-valued, in which case no complete proof system can
exist (Abadi & J.Y.Halpern 1994).
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3 The Logic of Inductive Inference

3.1 Inductive Reasoning by Cross-Entropy Minimization

The statistical knowledge expressed in our example sentences (1),(4) and (6) can
be expressed by the Lp-sentences

φ1 :≡ [IIA(d) | D(d) ∧ 10 � am(d) � 20]d = 0.027 (33)

φ4 :≡ [IIA(d) | D(d) ∧ 15 � am(d) � 25]d = 0.031 (34)

φ6 :≡ [IIA(d) | D(d) ∧ 15 � am(d) � 20]d ∈ [0.027, 0.031]. (35)

The belief about Jones expressed in (2) can be expressed by

φ2 :≡ prob(D(jones) ∧ 10 � am(jones) � 20) = 1. (36)

As discussed in the introduction, it seems reasonable to infer from φ1 ∧ φ2

φ3 :≡ prob(IIA(jones)) = 0.027. (37)

However, this inference is not valid in Lp, i.e.

φ1 ∧ φ2 6|= φ3.

This is because in a probabilistic structure the statistical and subjective probabil-
ity terms are interpreted by the measures P1 and Qjones, respectively, and the con-
straint φ1 on admissible statistical measures does not constrain the possible choices
for Qjones. Moreover, it would clearly not be desirable to have that φ1∧φ2 strictly
implies φ3, because then φ1∧φ2 would be inconsistent with prob(¬IIA(jones)) = 1,
i.e. the knowledge that Jones will, in fact, not be involved in an accident. Hence,
if we wish to infer φ3 from φ1 ∧ φ2, this can only have the character of a non-
monotonic, or defeasible, inference, which may become invalid when additional
information becomes available. Our aim, then, will be to augment the logic Lp

with an additional nonmonotonic entailment relation |≈ for which

φ1 ∧ φ2 |≈φ3, but φ1 ∧ φ2 ∧ prob(¬IIA(jones)) = 1 |6≈φ3.

As a second example for the intended inference relation |≈ consider the formula

φ2,5 :≡ prob(D(jones) ∧ 15 � am(jones) � 20) = 1. (38)

As argued in the introduction, our inductive inference relation then should satisfy

φ6 ∧ φ2,5 |≈prob(IIA(jones)) ∈ [0.027, 0.031].

Adding that these should be the sharpest bounds that |≈ allows us to derive for
prob(IIA(jones)), this example illustrates an important aspect of the intended re-
lation |≈ : it will not be used to make any default assumptions about the statistical
distribution in the sense that, for example, we could derive

φ6 |≈ [IIA(d) | D(d) ∧ 15 � am(d) � 20]d = 0.029
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(i.e. assuming without further information that the correct statistical probabil-
ity is given by the center point of the admissible interval, or else, maybe, by
0.031 as the value closest to 0.5). Only inferring the bounds [0.027, 0.031] for
prob(IIA(jones)) means that we take every admissible statistical distribution into
consideration, and apply the inductive inference relation |≈ to the subjective dis-
tribution alone with respect to each of the statistical possibilities.

As an example where the given information on Jones is not deterministic con-
sider the sentence

φ39 :≡ prob(D(jones) ∧ 10 � am(jones) � 15) = 0.4

∧ prob(D(jones) ∧ 15 � am(jones) � 20) = 0.6. (39)

Here Jeffrey’s rule is applicable, because the two constraints in (39) are on disjoint
subsets. Jeffrey’s rule, now, leads to the inductive inference

φ39 |≈prob(IIA(jones)) =0.4[IIA(d) | D(d) ∧ 10 � am(d) � 15]d+

0.6[IIA(d) | D(d) ∧ 15 � am(d) � 20]d.
(40)

As the statistical information φ1∧φ6 implies the bounds [0, 0.027] and [0.027, 0.031]
for the two conditional probabilities on the right hand side of (40), we obtain

φ1 ∧ φ6 ∧ φ39 |≈prob(IIA(jones)) ∈ [0.6 · 0.027, 0.4 · 0.027 + 0.6 · 0.031]

= [0.0162, 0.0294]. (41)

While the step from direct inference to Jeffrey’s rule is very easy, the step to
the general case where subjective probability constraints can be on arbitrary, non-
disjoint, sets is rather non-trivial. The guiding principle both in direct inference
and Jeffrey’s rule can be seen as the attempt to make the subjective probability
distribution as similar as possible to the statistical distribution. To follow this
principle in general requires to be able to measure the similarity, or distance,
between probability distributions. A very prominent distance measure for proba-
bility distributions is cross-entropy : if P = (p1, . . . , pn) and Q = (q1, . . . , qn) are
two probability measures on an n-element probability space, and pi = 0 implies
qi = 0 for i = 1, . . . , n (i.e. Q is absolutely continuous with respect to Q, written
Q� P ), then the cross-entropy of Q with respect to P is defined by

CE(Q,P ) :=

n∑

i=1
pi>0

qiLog
qi
pi
. (42)

Given a measure P ∈ ∆A with A a finite algebra, and a subset J ⊆ ∆A, we
can define the CE-projection of P onto J :

ΠJ(P ) := {Q ∈ J | Q� P, ∀Q′ ∈ J : CE(Q′, P ) ≥ CE(Q,P )}. (43)
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The set ΠJ(P ) can be empty (either because J does not contain any Q with
Q � P , or because the infimum of {CE(Q′, P ) | Q′ ∈ J} is not attained by any
Q ∈ J), can be a singleton, or contain more than one element.

To use CE in modeling inductive probabilistic reasoning, we identify the dis-
tributions P and Q in (42) with the statistical and subjective probability distri-
butions, respectively. We can then formalize the process of inductive probabilistic
reasoning as follows: if K is the set of statistical measures consistent with our
knowledge, J is the set of subjective measures consistent with our already formed,
partial beliefs, then we will sharpen our partial beliefs by going from J to

ΠJ(K) := ∪{ΠJ(P ) | P ∈ K} ⊆ J,

i.e. by discarding all subjective distributions that are not as close as possible to
at least one feasible statistical distribution.

Is this an adequate formalization of inductive probabilistic reasoning? Clearly,
this question, being non-mathematical in nature, does not admit of an affirmative
answer in the form of a strict correctness proof. However, it is arguable that, short
of such a proof, the justification for using cross-entropy minimization is as strong
as it possibly can be.

A first justification consists in the observation that cross-entropy minimization
does indeed generalize Jeffrey’s rule: if J is defined by prescribing values for
the elements of a partition, then ΠJ(P ) is obtained by applying Jeffrey’s rule
to P and these values. This property, however, is not unique to cross-entropy
minimization (Diaconis & Zabell 1982). Justifications that identify cross-entropy
minimization as the unique method satisfying certain desirable properties can be
brought forward along two distinct lines: the first type of argument consists of
formal conditions on the input/output relation defined by a method, and a proof
that cross-entropy minimization is the only rule that will satisfy these conditions.
This approach underlies the well-known works both by Shore and Johnson (1980,
1983) and of Paris and Vencovská (1990, 1992). A typical condition that will
be postulated in derivations of this type can be phrased in terms of inductive
inference in Lp as follows: if the input consists of separate constraints on two
event variables, e.g.

prob(10 � am(jones) � 15) ≤ 0.7 ∧ prob(IIA(mitchell)) ≤ 0.1, (44)

then the output, i.e. the selected joint subjective distribution for Jones and
Mitchell, should make the two variables independent, and therefore satisfy e.g.

prob(IIA(jones) ∧ 10 � am(mitchell))

= prob(IIA(jones)) · prob(10 � am(mitchell)).
(45)

Abstracting from such particular examples, this independence principle becomes
a general property of the inductive entailment operator |≈ , which can be formally
stated as in theorem 3.8 below (and which corresponds to the system independence
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property of (Shore & Johnson 1980), respectively the principle of independence of
(Paris 1994)). A second condition, or desideratum, for an inductive inference rule
is the conditional reasoning property, expressed in theorem 3.9 below (which is
closely related to the subset independence property of (Shore & Johnson 1980)).
Variants of these two properties form the core of axiomatic derivations of CE-
minimization as the formal rule for inductive probabilistic inference.

A second type of justification for the minimum CE-principle has been devel-
oped in (Jaeger 1995b, Jaeger 1995a). This justification follows the tradition of
frequentist interpretations for single case probabilities as predicted frequencies in
a sequence of trials (Reichenbach 1949, §72),(Carnap 1950, p. 189ff).

Since single case probabilities often cannot be associated with observable fre-
quencies in actual, repeated, physical experiments, such trials may only take an
imaginary form, i.e. be carried out as a thought experiment (Jaeger 1995b). For
example, to assess the probability that the driver of the car, the wreckage of which
we have just seen at the roadside, has survived the crash, we may mentally reenact
the accident several times, and take a mental count of how often the driver comes
away alive. We now make two assumptions about how the thought experiment is
performed. The first assumption is that the sampling in the thought experiment is
according to our statistical knowledge of the domain. If, for example, we happen to
know exact statistics on the average speed of vehicles on this road, the prevalence
of seat-belt use, the frequency of drunk driving, etc., then our mental sampling
will be in accordance with these known statistics. The second assumption is that
already existing constraints on the subjective probability being assessed are used
to condition the statistical distribution over possible samples on frequencies con-
sistent with these constraints. If, for example, we happen to believe that with
probability at least 0.7 the driver in the accident was drunk (this being well above
the statistical probability of drunk driving), then we condition the distribution
over possible samples of repeated accidents on the event of containing at least
70% incidences of drunk driving. More loosely speaking, we perform the mental
sampling according to the underlying statistical distribution, but bias the result
so as to contain at least 70% drunk drivers.

This semi-formal thought experiment model can be translated into a precise
statistical model, and it can then be proven that according to this model the pre-
dicted frequencies must be exactly those that are obtained by CE-minimization (Jaeger
1995b).

As an example for a result obtained by CE-minimization in a situation where
Jeffrey’s rule no longer applies, consider the sentence

φ46 :≡ prob(10 � am(jones) � 20) = 0.5
∧prob(15 � am(jones) � 25) = 0.7,

(46)

This sentence imposes probability constraints on the two non-disjoint sets defined
by 10 � am(v) � 20 and 15 � am(v) � 25. As usual, we want to derive a probability
estimate for IIA(jones). It is another distinctive feature of CE-minimization that
this estimate can be derived in two steps as follows: in the first step probability
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estimates for Jones belonging to the elements of the partition generated by the
sets appearing in (46) are computed (by CE-minimization). In the second step
the probability assignments found for the partition are extended to other sets by
Jeffrey’s rule, which now is applicable. For example φ46 the relevant partition
consists of four different sets of possible annual mileages, for which we might have
the following statistical information:

[10 � am(d) ≺ 15]d = 0.4 (47)

[15 � am(d) � 20]d = 0.3 (48)

[20 ≺ am(d) � 25]d = 0.1 (49)

[am(d) ≺ 10 ∨ 25 ≺ am(d)]d = 0.2 (50)

To obtain the probability estimates for Jones’s membership in the elements of the
partition, we have to compute the distribution Q = (q1, q2, q3, q4) that minimizes
CE(·, P ) with respect to P = (0.4, 0.3, 0.1, 0.2) under the constraints q1 + q2 = 0.5
and q2 + q3 = 0.7. This computation is a non-linear optimization problem, and
yields the (approximate) solution

Q = (0.128 . . . , 0.37 . . . , 0.329 . . . , 0.171 . . .), (51)

meaning that in the first step we have made, for example, the inductive inference

prob(10 � am(jones) � 15) ∈ (0.128, 0.129). (52)

Given the probabilities for the four disjoint reference classes we can now apply
Jeffrey’s rule, and obtain bounds for prob(IIA(jones)) in the same way as (41)
was derived from (39) and the relevant statistical information.

3.2 Preferred Models

Having identified cross-entropy minimization as the formal rule we want to employ
for inductive reasoning, we want to use it as the basis for inductive entailment |≈
in Lp.

Our plan is to implement CE-minimization by developing a preferred model
semantics (Shoham 1987) for Lp: for a given Lp-sentence φ we will single out
from the set of all models of φ a subset of preferred models. A model M =
(M, . . . , (An, Pn)n, Qe) is going to be a preferred model if the subjective proba-
bility measure Qe minimizes cross-entropy with respect to the measure P|e | that
describes the statistical distribution of a random sample of |e | domain elements.
An inductive entailment relation φ |≈ψ then holds if ψ is true in all preferred
models of φ.

Several difficulties arise when we put this plan into practice, because, we have
defined cross-entropy by (42) only for real-valued measures on finite algebras. As
we are now dealing with lrc-field valued measures on infinite algebras, the concepts
of cross-entropy and CE-minimization have to be generalized. Furthermore, we
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have to ascertain that this generalization retains those essential properties of cross-
entropy in R on which the justification of the minimum CE-principle is based. For
instance, we will have to check that the generalized minimum CE-principle still
has the independence property, so that the inductive inference of (45) from (44)
remains valid with our lrc-field based semantics.

We tackle this complex of questions in two stages: first we define cross-entropy
for lrc-field valued measures on finite spaces, and prove that here generalized
cross-entropy exhibits the same essential properties as cross-entropy on the reals.
In a second step we show that for our purpose it is already sufficient to define
cross-entropy on finite algebras, because a suitable notion of CE-minimization for
measures on the infinite algebra A|e | can be obtained by “lifting” cross-entropy
minimal measures from finite subalgebras of A|e | to A|e |.

To begin, we have to define cross-entropy and CE-projections for lrc-field val-
ued measures on finite algebras. This, however, is immediate, and is done by (42)
and (43) just as for real-valued measures simply by interpreting the function Log
now as an arbitrary logarithmic function in an lrc-field.

This leads us to the question of what properties of cross-entropy in the reals
carry over to the generalized CE function. We give a fairly comprehensive answer
to this question in appendix A: first we show that CE-projections in lrc-fields
retain the key structural properties of CE-projections in the reals, namely those
properties on which Shore and Johnson (1980) base their derivation of the mini-
mum CE-principle. From these results it follows, for example, that the inductive
inference from (44) to (45) also is warranted on the basis of lrc-field valued proba-
bilities. Second, it is shown in appendix A that generalized CE-minimization also
behaves numerically essentially as CE-minimization in the reals. This means, for
example, that the numerical result (52) also is obtained with lrc-field valued prob-
abilities. In summary, the results developed in appendix A constitute a collection
of far-reaching completeness results that show that for finite algebras we retain
for CE-minimization in lrc-fields most of the salient features of CE-minimization
for real-valued measures. In some of the proofs of theorems in the present section
references are made to results of appendix A. It should be noted that all these
references are to facts that are long established for real-valued probabilities, and
therefore are inessential as long as one follows the main development thinking of
real-valued probabilities alone.

It remains to find a suitable notion of CE-minimization for measures defined
on A|e | by a reduction to CE-minimization on finite algebras. Although the fol-
lowing construction contains some technicalities, the underlying idea is extremely
simple, and consists essentially of the same two-step procedure used in the exam-
ple (46)-(52) of the preceding section. To be able to carry out the first step of that
procedure, it is necessary that the given constraints on the subjective distribution
only refer to finitely many sets, which will generate a finite partition on which we
know how to conduct CE-minimization. In the following we give a precise seman-
tic definition for what it means that constraints only refer to finitely many sets.
Later (lemma 3.6) we will see that constraints expressible in Lp are guaranteed
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to have this semantic property.

Definition 3.1 Let A be an algebra over M . Let J ⊆ ∆FA, and A′ a finite
subalgebra of A. Let J � A′ := {P � A′ | P ∈ J}. We say that J is defined by
constraints on A′, iff

∀P ∈ ∆FA : P ∈ J iff P � A′ ∈ J � A′.

Given a set J ⊆ ∆FA defined by constraints on some finite A′ ⊆ A, we can
apply the two step process of first computing ΠJ�A′(P � A′), and then extend the
result to A by Jeffrey’s rule as formally described in the following definition.

Definition 3.2 Let A be an algebra, P ∈ ∆FA. Let A′ ⊆ A a finite subalgebra
with atoms {A1, . . . , AL}, and Q ∈ ∆FA′ such that Q � P � A′. Let P h be the
conditional distribution of P on Ah (h = 1, . . . , L; P (Ah) > 0). The extension Q∗

of Q to A defined by

Q∗ :=

L∑

h=1

P (Ah)>0

Q(Ah)P h

is called the Jeffrey-extension of Q to A by P , denoted by J(Q,P,A).

The following lemma says that if J is defined by constraints on A′, then Jeffrey
extensions realize cross-entropy minimization on all finite algebras that refine A ′.

Lemma 3.3 Let A be an algebra, P ∈ ∆FA. Let J ⊆ ∆FA be defined by con-
straints on a finite subalgebra A′ ⊆ A. Then for all finite A′′ ⊇ A′:

ΠJ�A′′(P � A′′) = {Q � A′′ | Q = J(Q′, P,A), Q′ ∈ ΠJ�A′(P � A′)}. (53)

Conversely, for Q ∈ ∆FA, if

Q � A′′ ∈ ΠJ�A′′(P � A′′) (54)

for all finite A′′ ⊇ A′, then Q = J(Q � A′, P,A).

Proof: Let {A1, . . . , Ap} be the set of atoms of A′. Let Q′′ ∈ ∆FA′′, Q′′ � P � A′′.
By lemma A.2 then

CE(Q′′, P � A′′) ≥ CE(Q′′ � A′, P � A′)

with equality iff

(Q′′)h = (P � A′′)h (h = 1, . . . , p) (55)

where (·)h is the conditional distribution on Ah. Equivalent to (55) is

Q′′ = J(Q′′ � A′, P � A′′,A′′).
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Since J is defined by constraints on A′, we have for all Q′ ∈ J � A′ that

J(Q′, P � A′′,A′′) ∈ J � A′′,

and therefore

ΠJ�A′′(P � A′′) = {J(Q′, P � A′′,A′′) | Q′ ∈ ΠJ�A′(P � A′)}. (56)

With
J(Q′, P � A′′,A′′) = J(Q′, P,A) � A′′

this proves (53).
Conversely, assume that (54) holds for Q and all finite A′′. Then, in particular,

Q � A′ ∈ ΠJ�A′(P � A′), and, again by lemma A.2,

Q � A′′ = J(Q � A′, P � A′′,A′′)

for all finite A′′ ⊇ A′. Thus, also Q = J(Q � A′, P,A). 2

Lemma 3.3 suggests to define for J ⊆ ∆A that is defined by constraints on the
finite subalgebra A′ ⊆ A:

ΠJ(P ) := {J(Q′, P,A) | Q′ ∈ ΠJ�A′(P � A′)} (57)

However, there is still a slight difficulty to overcome: the algebra A′ is not uniquely
determined, and (57) would be unsatisfactory if it depended on the particular
choice of A′. We therefore show, next, that this is not the case, which is basically
due to the fact that there is a unique smallest algebra A′ by constraints on which
J is defined.

Lemma 3.4 Let A be an algebra, A′ and A′′ finite subalgebras of A. Assume
that J ⊆ ∆A is defined by constraints on A′, and also by constraints on A′′. Then
J also is defined by constraints on

A∩ := A′ ∩ A′′.

Proof: Let A∪ be the subalgebra of A generated by A′ and A′′. Then J also is
defined by constraints on A∪, and it suffices to show that for all Q ∈ ∆A

Q � A∪ ∈ J � A∪ ⇔ Q � A∩ ∈ J � A∩. (58)

To obtain a more economical notation, we may therefore work within a completely
finitary context, and assume that A = A∪ and J ⊆ ∆FA∪.

With {A′
i | i = 1, . . . , p} the atoms of A′, and {A′′

j | j = 1, . . . , q} the atoms of
A′′, atoms of A∪ are the nonempty intersections

Bij := A′
i ∩A

′′
j (i = 1, . . . , p; j = 1, . . . , q).
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Elements of A∩ are just the unions of atoms of A′ that simultaneously can be
represented as a union of atoms of A′′, i.e.

A =
⋃

i∈I

A′
i ∈ A′

with I ⊆ {1, . . . , p} belongs to A∩ iff there exists K ⊆ {1, . . . , q}, such that also

A =
⋃

k∈K

A′′
k.

Now assume that there exist Q,Q′ ∈ ∆A∪ with

Q � A∩ = Q′ � A∩, (59)

and Q ∈ J , but Q′ 6∈ J . Furthermore, assume that Q,Q′ are minimal with these
properties in the sense that the number of atoms of A∪ to which Q and Q′ assign
different probabilities is minimal.

From Q 6= Q′ and (59) it follows that there exists an atom C of A∩, and atoms
Bhk, Bh′k′ ⊂ C of A∪, such that

Q(Bhk) = Q′(Bhk) + r

Q(Bh′k′) = Q′(Bh′k′) − s

for some r, s > 0. Assume that r ≤ s (the argument for the case s < r proceeds
similarly). We show that there exists a sequence

(i0, j0), (i1, j1), . . . , (in, jn) (60)

in {1, . . . , p} × {1, . . . , q} such that

(i0, j0) = (h, k), (in, jn) = (h′, k′), (61)

and for all h = 1, . . . , n:

ih = ih−1 or jh = jh−1, and Bih,jh
6= ∅. (62)

Once we have such a sequence, we derive a contradiction to the minimality as-
sumption for Q,Q′ as follows: we construct a sequence

Q = Q0, Q1, . . . , Qn

by defining for all atoms B of A∪ and for h = 1, . . . , n:

Qh(B) :=







Qh−1(B) B 6∈ {Bih−1jh−1
, Bihjh

}
Qh−1(B) − r B = Bih−1jh−1

Qh−1(B) + r B = Bihjh

35



(i.e. we just “shift” probability mass r from Bhk to Bh′k′ via the Bihjh
). For all

h = 1, . . . , n then Qh ∈ J , because Q0 ∈ J , and Qh � A′ = Qh−1 � A′ (if ih = ih−1),
or Qh � A′′ = Qh−1 � A′′ (if jh = jh−1). Thus, Qn ∈ J , Qn � A∩ = Q′ � A∩, and
Qn agrees with Q′ on one atom more than does Q, a contradiction.

It remains to show the existence of the sequence (60). For this we define a
relation (h, k) → · on {1, . . . , p} × {1, . . . , q} by: (h, k) → (i, j) iff there exists a
sequence (60) with (i0, j0) = (h, k) and (in, jn) = (i, j) so that (62) holds. Now
consider

A :=
⋃

(i,j):(h,k)→(i,j)

Bij .

As (h, k) → (i, j) and Bi′j 6= ∅ implies (h, k) → (i′, j) (respectively Bij′ 6= ∅
implies (h, k) → (i, j ′)), we obtain

A =
⋃

i: ∃j(h,k)→(i,j)

A′
i =

⋃

j:∃i(h,k)→(i,j)

A′′
j ,

which means that A ∈ A∩ (in fact, A = C). From A ∈ A∩, Bhk ⊆ A, and
Bh′k′ belonging to the same atom of A∩ as Bhk, it follows that Bh′k′ ⊆ A, i.e.
(h, k) → (h′k′). 2

From lemmas 3.3 and 3.4 it follows that the set ΠJ(P ) defined in (57) does not
depend on the choice of A′: by lemma 3.4 there exists a unique smallest algebra A∗

by constraints on which J is defined, and by lemma 3.3 we have for every A′ ⊇ A∗:

{J(Q′, P,A) | Q′ ∈ ΠJ�A′(P � A′)} = {J(Q∗, P,A) | Q∗ ∈ ΠJ�A∗(P � A∗)}.

Definition 3.5 Let A be an algebra over M , A′ a finite subalgebra of A. Let
J ⊆ ∆FA be defined by constraints on A′, and P ∈ ∆FA. The set ΠJ�A′(P � A′) is
defined by (43). The cross-entropy projection of P onto J then is defined by (57).

We are now ready to define the preferred model semantics for Lp. Recall that it
is our aim to identify those models M of a Lp-formula φ for which the subjective
probability measure Qe minimizes cross-entropy with respect to the statistical
measure P|e |, and that this minimization is to be effected only by choosing suitable
Qe for every possible given P|e |, not by selecting any preferred P|e |.

For a probabilistic structure M = (M, . . . ,F, . . . , Qe) and Q ∈ ∆FA|e | we
denote by M[Qe/Q] the structure M′ that is obtained by replacing Qe with Q.
For a sufficient probabilistic structure M, and an Lp-sentence φ we define

∆F(φ,M) := {Q ∈ ∆FA|e | | M[Qe/Q] |= φ}. (63)

Thus, ∆F(φ,M) is the set of subjective probability measures that will turn the
non-subjective part (M, I,F, (An, Pn)n∈N) of M into a model of φ (it is not difficult
to show that such a substitution cannot destroy sufficiency).

The following lemma is the main reason for the syntactic restrictions that were
imposed on subjective probability terms.
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Lemma 3.6 For all M and φ: ∆F(φ,M) is defined by constraints on a finite
subalgebra A′ of A|e |.

Proof:φ contains a finite number of subjective probability terms prob(ψ1(e)), . . .
. . . ,prob(ψk(e)). Membership of Q ∈ ∆A|e | in ∆(φ,M) only depends on the val-
ues Q((M,v)(ψi(v)) (i = 1, . . . , k). By the condition that the ψi do not contain
any occurrences of prob(·), the sets (M,v)(ψi(v)) do not depend on the com-
ponent Qe of M. Let A′ be the finite subalgebra of A|e | generated by the sets
(M,v)(ψi(v)). Then A′ is a finite algebra so that for every Q ∈ ∆A|e | the validity
of M[Qe/Q] |= φ is determined by the values of Q on A′. 2

No analogue of lemma 3.6 would hold if we dropped either the prohibition of
nested subjective probability terms, or of free variables in subjective probability
terms. Together, definition 3.5 and lemma 3.6 permit the following final definition
of the inductive entailment relation |≈ for Lip.

Definition 3.7 Let φ ∈ Lp(S, e), M = (M, . . . , Qe) a sufficient probabilistic
structure for (S, e). M is called a preferred model of φ, written M |≈φ, iff

Qe ∈ Π∆F(φ,M)(P|e |). (64)

For φ, ψ ∈ Lp(S, e) we define: φ |≈ψ iff M |= ψ for every preferred model M of φ.

3.3 Inductive Reasoning in Lip

Having formally defined our inductive entailment relation |≈ , we now investigate
some of its logical properties. Our first goal is to verify that the relation |≈ indeed
supports the patterns of inductive inference described in sections 1.1 and 3.1, which
motivated the approach we have taken. This is established in the following using
the structural properties of CE-projections described in theorems A.5 (system
independence) and A.6 (subset independence).

At the very outset we stipulated that the relation |≈ should implement direct
inference, where direct inference is applicable. From corollary A.7 one immediately
obtains that the inductive inference

[ψ(v)]v > 0 ∧ [φ(v) | ψ(v)]v = r ∧ prob(ψ[e]) = 1 |≈ prob(φ[e]) = r (65)

is valid in Lip for all formulas φ, ψ. Usually, however, our total knowledge does
not have the form of the premise of (65): one does not only know that ψ[e] is true
for a single property ψ, but rather that ψ1[e], . . . , ψn[e] are true. Assuming the
necessary statistical knowledge as well, our premise then is

∧n
i=1([ψi(v)]v > 0 ∧ [φ(v) | ψi(v)]v = ri ∧ prob(ψi[e]) = 1). (66)

The question of what to inductively infer from this body of knowledge is essentially
the problem of the choice of the best reference class for direct inference (Pollock
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1983, Kyburg 1983). The original prescription by Reichenbach (1949) was to take
the smallest reference class for which reliable statistics exist. We cannot follow
this principle in Lip, because, first, in our framework we do not have the means to
distinguish the reliabilities of two statistical statements [φ(v) | ψi(v)]v = ri and
[φ(v) | ψk(v)]v = rk, and second, from the logical equivalence of (66) and

∧n
i=1([ψi(v)]v > 0 ∧ [φ(v) | ψi(v)]v = ri) ∧ prob(∧n

i=1ψi[e]) = 1, (67)

it follows with (65) that from (66) we will always have to infer

[∧n
i=1ψi(v)]v > 0 → prob(φ[e]) = [φ(v) | ∧n

i=1ψi(v)]v . (68)

Thus, we always base direct inference on the smallest reference class that e belongs
to, whether or not the statistics for this reference class can be deemed reliable – or
even are available. In extreme cases this leads to inferences that may seem overly
conservative: consider

φ1 ≡ [IIA(d) | ¬Drinks(d)]d = 0.01
∧prob(¬Drinks(jones)) = 1,

φ2 ≡ [IIA(d) | Drives(Toyota, d)]d = 0.01
∧prob(Drives(Toyota, jones)) = 1.

Then φ1 |≈prob(IIA(jones)) = 0.01, and φ2 |≈prob(IIA(jones)) = 0.01, but
not

φ1 ∧ φ2 |≈prob(IIA(jones)) = 0.01. (69)

This is because we will infer

φ1 ∧ φ2 |≈prob(IIA(jones)) = [IIA(d) | ¬Drinks(d) ∧ Drives(Toyota, d)]d. (70)

Going from (70) to (69) amounts to an implicit default inference about statistical
probabilities

[IIA(d) | ¬Drinks(d)]d = 0.01 ∧ [IIA(d) | Drives(Toyota, d)]d = 0.01

|≈ [IIA(d) | ¬Drinks(d) ∧ Drives(Toyota, d)]d = 0.01,

which Lip is not designed to do.
Basing direct inference on the narrowest possible reference class can lead to

difficulties when the subject of the direct inference (e in our case) is referenced
in the definition of the reference class (see e.g. (Pollock 1983, Section 6)). In
particular, one then might consider the single point reference class {e}. and argue
that direct inference in Lip must always identify prob(φ(e)) with [φ(v) | v = e]v.
Since this statistical probability can only assume the values 0 or 1 (according to
whether φ(e) holds), it might therefore appear as though

prob(φ(e)) = 0 ∨ prob(φ(e)) = 1. (71)
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is valid in Lip with respect to |≈ -entailment. As in the derivation of (24), however,
this argument is based on incorrectly using e in the expression [φ(v) | v = e]v like
a standard constant symbol. The syntactic condition that e must always appear
within the scope of a prob()-operator prevents the construction of reference classes
involving e.

When our knowledge base is of a form that makes Jeffrey’s rule applicable,
then we derive from corollary A.7 that |≈ coincides with Jeffrey’s rule.

Leaving the elementary cases of direct inference and Jeffrey’s rule behind, we
next consider some logical properties of Lip that in a more general way reflect
the system- and subset-independence properties of CE-projections. First, we use
system-independence to derive the general (logical) independence property of |≈ ,
an instance of which was illustrated by (44) and (45).

Theorem 3.8 Let S be a vocabulary, e and f two disjoint tuples of event symbols.
Let φe, ψe(v) ∈ Lp(S, e), φf , ψf (w) ∈ Lp(S, f), with |v | = |e | and |w | = | f |.
Then

φe ∧ φf |≈prob(ψe[e] ∧ ψf (f)) = prob(ψe[e])prob(ψf (f)). (72)

Proof: Consider a probabilistic structure M for (S, (e, f)). The set ∆(φe∧φf ,M)
is defined by constraints on a finite algebra A× = A×A′ ⊂ A|e, f |, and its restriction
J× to A× has the form

{Q ∈ ∆A× | Q � A ∈ Je, Q � A′ ∈ Jf}

for Je ⊆ ∆A, Jf ⊆ ∆A′. The restriction P× of the statistical distribution P|e, f | to
A× is a product measure, so that every

Q ∈ ΠJ×(P×)

also is a product measure on A×. The theorem now follows from theorem A.5,
and by observing (using lemma 3.3) that the Jeffrey-extension J(Q,P|e, f |,A|e, f |)
preserves the product property for sets of the form A×B with A ∈ A|e |, B ∈ A| f |.

2

The next theorem transforms subset-independence (theorem A.6) into a state-
ment about the coherency of conditional reasoning in Lip.

Theorem 3.9 Let φ|γ , ψ|γ ∈ Lp only contain subjective probability terms of the
form prob(φ[e] | γ[e]) for some fixed γ ∈ Lp. Let φ, ψ be the sentences obtained
from φ|γ , ψ|γ by replacing each term prob(φ[e] | γ[e]) with the corresponding un-
conditional term prob(φ[e]). Then

φ|γ ∧ prob(γ[e]) > 0 |≈ψ|γ (73)

iff
φ ∧ prob(γ[e]) = 1 |≈ψ. (74)
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Note that adding the conjunct prob(γ[e]) > 0 to the premise of (73) means
that there is no ambiguity in the interpretations of the conditional probability
terms in φ|γ and ψ|γ , so that the theorem holds independent from the conventions
adopted for dealing with conditioning events of probability zero. The proof of the
theorem is similar to that of the previous one, by first noting that the structure
of the set ∆(φ|γ ∧ prob(γ[e]) > 0,M) is a special case of the form described in
theorem A.6, then applying that theorem, and finally observing that the structural
property expressed in (106) is preserved under Jeffrey extensions.

In section 1.1 we said that Lip is not intended to model any inductive in-
ferences about statistical probabilities, based on (even numerous) single case ob-
servations. By defining preferred models in terms of the condition (64) on the
subjective distribution Qe for any given statistical distribution P|e | this goal is
essentially realized, but with the following caveat: statistical distributions P |e |

for which Π∆F(φ,M)(P|e |) is empty are ruled out. This means, in particular, that
distributions P|e | are ruled out for which ∆F(φ,M) does not contain any Qe with
Qe � P|e | (cf. (43) and definition 3.7). In consequence, for example the following
is a valid inference pattern in Lip:

prob(φ(e)) > 0 |≈ [φ(v)]v > 0. (75)

While, in principle, this is a default inference about statistical probabilities from
subjective probabilities, (75) may still be considered unproblematic even from our
conservative point of view, because it just amounts to the reasonable constraint
that in preferred models we cannot assign nonzero probabilities to events e having
some statistically impossible property φ. Observe that (75) means that for |≈ we
obtain a strengthening of (29).

The set Π∆F(φ,M)(P|e |) can also be empty because the infimum is not attained
in CE-minimization. Consider, for example, the sentence

φ76 = ([ψ(v)]v = 0.3 ∨ [ψ(v)]v = 0.5) ∧ prob(ψ(e)) > 0.4. (76)

For any model M of φ76 with Pe((M, v)(ψ)) = 0.3 then Π∆F(φ,M)(P|e |) = ∅, be-
cause CE(·, Pe) is not minimized over the open interval ]0.4, 1] defining ∆F(ψ,M).
When Pe((M, v)(ψ)) = 0.5, on the other hand, the infimum is attained for Q ∈
∆F(ψ,M) with Q((M, v)(ψ)) = 0.5. Thus, φ76 only has preferred models in which
the statistical probability of ψ is 0.5, i.e.

φ76 |≈ [ψ(v)]v = 0.5.

Thus, some potentially undesired inferences can occur when constraints on the
subjective distribution define non-closed sets ∆F(φ,M). This is a typical limitation
of methods based on minimizing distance measures, and often circumvented by
prohibiting non-closed constraint sets. In the very general language Lp it is difficult
to enforce closedness of ∆F(φ,M) by a simple syntactic condition on φ. Such a
condition, therefore, has not been imposed in the basic definitions. However, in
practical modeling with Lp some attention should be paid to the question whether
the sets ∆F(φ,M) will be closed (see also section 4.2).
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3.4 Axiomatization

In this section we obtain a completeness result for the inductive entailment relation
|≈ . The result is derived by showing that for a given Lp-sentence φ there exists a
recursively enumerable set MinCE(φ) ⊆ Lp that axiomatizes inductive entailment,
i.e.

φ |≈ψ iff MinCE(φ) |= ψ (ψ ∈ Lp). (77)

By the completeness result for strict inference we then obtain a completeness result
for |≈ . This approach of capturing the preferred models of φ by adjoining to φ a
set of axioms dependent on φ is closely related to the circumscription framework
(McCarthy 1980) in nonmonotonic reasoning.

To establish (77) it is sufficient to find a set MinCE(φ) that axiomatizes
the class of preferred models of φ up to elementary equivalence, i.e. to ob-
tain that a probabilistic structure M is a model of MinCE(φ) iff it is elemen-
tarily equivalent to a structure M′ with M′ |≈φ (recall that two structures are
called elementarily equivalent iff they satisfy the same sentences). For a struc-
ture M = (. . . , (An, Pn)n∈N, Qe) to be a preferred model of φ, by definition, is
equivalent for M to satisfy the condition

Qe ∈ Π∆F(φ,M)(P|e |). (78)

Elementary equivalence to a preferred model, on the other hand, is guaranteed by
the weaker condition

Qe � A∗ ∈ Π∆F(φ,M)�A∗(P|e | � A∗), (79)

where A∗ ⊆ A|e | is the subalgebra consisting of those sets that are definable by
an Lp-formula without parameters, i.e. A ∈ A∗ iff there exists ψ(v) ∈ Lp with
A = (M,v)(ψ). That (79) implies elementary equivalence to a preferred model
follows from the fact that any two structures M and M′ that differ only with
respect to Qe-values for elements A ∈ A|e | \ A∗ are elementarily equivalent, and
that any structure M that satisfies (79) can be modified into a preferred model of
φ by only changing Qe-values on A|e | \ A∗. Thus, it will be sufficient to capture
with MinCE(φ) the class of models that satisfy (79).

Using that we have defined CE-projections on infinite algebras via the two
steps (43) and (57), we can split (79) into two parts: abbreviating ∆F(φ,M) by
J , and letting A′ be a finite subalgebra by constraints on which J is defined, we
obtain out of (43) the condition

Qe � A′ ∈ ΠJ�A′(P|e | � A′). (80)

When (80) is fulfilled, and A1, . . . , AL are the atoms of A′, then the defining
equation (57) can be expressed by

Qe(B) =

L∑

h=1
P|e |(Ah)>0

Qe(Ah)P|e |(B | Ah) (B ∈ A∗). (81)
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We now axiomatize (80) by a single Lp-formula, and (81) by a schema, ranging
over the B. Our first task is to identify a suitable algebra A′, and its atoms
A1, . . . , AL. As in the proof of lemma 3.6 let

prob(ψ1[e]), . . . ,prob(ψn[e])

be the subjective probability terms contained in φ. Then ∆F(φ,M) is defined by
constraints on the algebra A′ generated by the extensions of the ψi. The atoms of
A′ are the nonempty extensions of the formulas

αj(v) := ∧n
i=1ψ̃i(v) (ψ̃i(v) ∈ {ψi(v),¬ψi(v)}, j = 1, . . . , 2n).

As a first building block for the formalization of (80) we can now formulate an
Lp-formula that defines as a subset of F2n

the set of all probability measures on
A′:

δ(x1, . . . , x2n) :≡
2n
∧

j=1

xj ≥ 0 ∧
2n
∑

j=1

xj = 1

∧
2n
∧

j=1

(¬∃vαj(v) → xj = 0).

Now let φ[prob/x] denote the formula that is obtained from φ by substituting for
every term prob(ψi[e]) the term xj1 + . . .+xjk

where k = 2n−1, and {j1, . . . , jk} ⊂
{1, . . . , 2n} is the collection of indices jh for which the atom αjh

is contained in ψi

(i.e. αjh
is a conjunction in which ψi appears un-negated). For the formula

ι(x) := δ(x) ∧ φ[prob/x] (82)

and a probabilistic structure M we then have

(M,x)(ι(x)) = ∆F(φ,M) � A′. (83)

The formula

ζ(x) :≡
2n
∧

j=1

([αj(v)]v = 0 → xj = 0) (84)

encodes the condition of absolute continuity with respect to the statistical distri-
bution on the algebra A′. In particular, the sentence

ζ[prob] :≡
2n
∧

j=1

([αj(v)]v = 0 → prob(αj [e]) = 0) (85)

says that Qe � A′ � P|e | � A′. We now can axiomatize (80) by the Lp-sentence

ζ[prob] ∧ ∀x((ι(x) ∧ ζ(x)) →
∑

j:[αj(v)]v>0

xjLog
xj

[αj(v)]v
≥

∑

j:[αj(v)]v>0

prob(αj[e])Log
prob(αj[e])

[αj(v)]v
) (86)
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(we are here taking some liberties with the syntax of Lp, but one can easily expand
this formula so as to eliminate the sum-expressions, and obtain a proper Lp-
sentence).

To encode (81), let B be defined by the formula β(v). Then (81) can be written
in Lp as

prob(β[e]) =
∑

j:[αj(v)]v>0

prob(αj[e])[β(v) | αj(v)]v. (87)

Taking the union over all Lp-formulas β(v) with |v | = |e | turns (87) into a
recursively enumerable sentence schema.

Finally, let MinCE(φ) consist of φ, of (86), and all instances of (87). Clearly
there exists an algorithm that for any given sentence φ enumerates MinCE(φ) (we
only need a uniform method to generate the atoms αj determined by φ, and then
simply list(86) and all instances of (87)). Also, by our derivation of MinCE(φ),
clearly (77) is satisfied. Thus, the enumeration algorithm for MinCE(φ), together
with a complete inference system for |=, constitutes a complete inference system
for |≈ .

43



4 Related Work and Conclusion

4.1 Related Work

Closely related to our logic of strict inference, Lp, are the probabilistic first-
order logics of Bacchus (1990b, 1990a) and Halpern (1990). Our logic of inductive
inference, Lip, on the other hand, has to be compared with the random worlds
method of Bacchus, Grove, Halpern, and Koller (Bacchus et al. (1992, 1997),
Grove et al. (1992a, 1992b)).

There are two main differences between our logic Lp and the combined subjec-
tive and statistical probability logic L3 of Halpern (1990). The first difference lies
in basing the semantics of Lp on arbitrary lrc-field valued measures, whereas the
semantics of L3 is based on real-discrete measures alone. As a result, a complete-
ness result corresponding to our theorem 2.12 cannot be obtained for L3 (Abadi
& J.Y.Halpern 1994). However, measures in more general algebraic structures
were also already used by Bacchus (1990a) to obtain a completeness result for his
statistical probability logic, and the same approach could clearly also be directly
applied to Halpern’s L3. The second difference between Lp and L3, therefore, is
the much more significant one: in L3 statistical and subjective probabilities are
interpreted by probability measures on the domains of first-order structures, and
probability measures on sets of such structures (or possible worlds), respectively
(leading to type-3 probability structures). As a result, the logic does not enforce
any connections between statistical and subjective probabilities, or, more gener-
ally, domain knowledge and subjective probabilities. For example, the sentence

¬∃vφ(v) ∧ prob(φ(e)) = 0.5 (88)

is satisfiable in L3 by a type-3 structure containing a possible world that does
not have any elements with property φ, and also containing possible worlds in
which φ(e) is true (when interpreting (88) as a sentence in L3, the symbol e is
considered as a standard constant). Halpern (1990) also shows that some depen-
dencies between statistical and subjective probabilities are obtained in L3 when
the semantics is restricted to type-3 structures in which all relation and function
symbols are rigid, i.e. have the same interpretation in all possible worlds, and
only the interpretations of some constant symbols are allowed to vary over the
possible worlds. These dependencies are very weak, however, and do “not begin
to settle the issue of how to connect statistical information with degrees of be-
lief” (Halpern 1990). Our probabilistic structures are closely related to these rigid
type-3 structures. In fact, we can view a probabilistic structure in our sense as
a superimposition of the possible worlds in a rigid type-3 structure, where non-
rigid constant symbols now become our event symbols, and the distribution Qe

represents their distribution in the different possible worlds. This collapsing of
the possible worlds into a single structure gives us the crucial technical advantage
that subjective and statistical probabilities are defined on the same space, and
their discrepancy can be measured by cross-entropy.
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The statistical probability logics of Bacchus and Halpern serve as the foun-
dation for the random-worlds method of Bacchus, Grove, Halpern, and Koller
(Bacchus et al. (1992, 1997), Grove et al. (1992a, 1992b)). Aim of this ap-
proach is to assign to pairs φ, ψ of formulas in the statistical representation lan-
guage a degree of belief Pr(φ|ψ) in the proposition φ, given the knowledge ψ.
The definition of Pr(φ|ψ) proceeds by considering for fixed n ∈ N the fraction
Prn(φ|ψ) of models of ψ over domain {1, . . . , n} that also satisfy φ, and to define
Pr(φ|ψ) := limn→∞Prn(φ|ψ), provided that limit exists.

Like our logic Lip, the random worlds method derives much of its motivation
from direct inference. A typical example to which the method would be applied is

ψ ≡ [IIA(d)|¬Drinks(d)]d = 0.01 ∧ ¬Drinks(jones) (89)

φ ≡ IIA(jones), (90)

for which the random-worlds method yields the direct inference Pr(φ|ψ) = 0.01.
The similarity of motivation, and a connection of the random-worlds method with
entropy maximization (Grove, Halpern & Koller 1992b), at first sight suggests a
fairly close relationship between that method and Lip. On closer examination it
turns out, however, that the two frameworks differ substantially with respect to
fundamental mathematical properties. The first major difference between the two
approaches is that the random-worlds method does not permit to include in the
input information ψ any prior constraints on degrees of belief. A second difference
lies in the fact that the random-worlds method leads to inferences that go very
much beyond the type of inductive probabilistic inferences supported by Lip.
In particular, the random-worlds method also leads to default inferences about
the statistical distribution, and give, e.g., the degree of belief Pr([Drinks(d)]d =
0.5|[Drinks(d)]d ≥ 0.3) = 1. One sees that, thus, the random-worlds method
does not model inductive probabilistic reasoning as we understand it – as an
inference pattern that is strictly directed from general (statistical) knowledge to
beliefs about a particular case – but leads to a much stronger form of probabilistic
default inferences.

Another vital difference arises out of the random-worlds method’s commitment
to finite domains: if φ is a sentence that is not satisfiable on finite domains, and ψ
is any sentence, then we obtain Pr(φ|ψ) = 0; no corresponding phenomenon occurs
in Lip. Finally, the random-worlds method differs from Lip greatly with respect to
computational properties. As shown in (Grove, Halpern & Koller 1992a), the set
of pairs (φ, ψ) for which Pr(φ|ψ) is defined, i.e. the limit limn→∞Prn(φ|ψ) exists,
is not recursively enumerable. Thus, there exists no complete proof system for
the random-worlds method (a solution to this problem by a move to generalized
probabilities here is infeasible, as the very definition of the degrees of belief as
limits of sequences of rational numbers is tied to the real number system).

In section 1.1 we argued that for our inductive inference problem a conservative
approach is appropriate for combining partial prior information with new infor-
mation: we simply combine each possible exact prior (i.e. statistical distribution)
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with the new information (i.e. subjective probability constraints). It is instructive,
though, to compare this to some more adventurous rules that have been consid-
ered in the literature. A very natural possibility is to perform CE-minimization
over both the statistical and the subjective probability distribution, i.e. preferred
models will be those in which CE(Qe, P|e |) is minimal for all feasible choices of
Qe and P|e | (given the non-probabilistic part of the model). This is an instance of
revising based on similarity relationships (Moral & Wilson 1995). This approach
is also closely related to the classical (maximum likelihood) update rule of Gilboa
and Schmeidler (1993): according to that rule a set C of priors is updated based on
the observation of an event A by selecting from C those distributions that assign
maximal likelihood to A. If we again identify the categorical observation A with
a probability constraint prob(A) = 1, then this means that we select all distri-
butions q ∈ C with minp:p(A)=1 CE(p, q) = minq′:q′∈C minp:p(A)=1 CE(p, q). Thus,
the rule by Gilboa and Schmeidler can also be understood as CE-minimization in
two arguments (though originally restricted to categorical observations); however,
here the result of the updating consists of distributions selected from the set of
priors, not from the set defined by the new constraints.

To compare such stronger update rules with our conservative rule, consider
the following example:

[ψ(v)]v ≥ [φ(v)]v ∧ prob(φ(e)) = 1. (91)

According to our conservative inference rule, we apply direct inference to every
statistical distribution satisfying the statistical constraint in (91). These include
for every q ∈ [0, 1] distributions with [ψ(v) | φ(v)]v = q. Consequently, we will
not derive any non-trivial bounds on prob(ψ(e)). If we perform CE-minimization
in both arguments, then we will effectively only consider statistical distributions
with [ψ(v)]v = [φ(v)]v = 1, and derive prob(ψ(e)) = 1. This may not seem
unreasonable based on the abstract formulation (91), but consider e.g. the case
where ψ(v) = Drives(Toyota, v) and φ(v) = Drives(RollsRoyce, v).

4.2 Conclusion

To formalize the process of inductive probabilistic reasoning within an expres-
sive logical framework we have defined the logic Lip with its inductive entail-
ment relation |≈ . Three design principles have largely guided the definition of
Lip: expressiveness, completeness, and epistemic justifiability. Expressiveness:
the logic provides a rich first-order representation language that enables the en-
coding of complex probabilistic information. Completeness: the expressiveness
of the language should be complemented with a powerful deductive system. We
have obtained a complete deductive system for lrc-field valued probabilities, and
have furthermore established a strong agreement between the behaviors of real-
valued and lrc-field valued probabilities (especially with regard to cross-entropy
minimization). Combined these results entail a strong characterization of the de-
ductive power of our inference system also with respect to real-valued probabilities.
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Epistemic justifiability: it was our aim to model with the inductive entailment re-
lation |≈ only a well-justified pattern of defeasible probabilistic reasoning – how
statistical information enables us to refine an already partially formed subjec-
tive probability assignment. For this particular inference pattern we argue that
cross-entropy minimization relative to every possible statistical distribution is the
adequate formal model (more fully than in the present paper this argument is
given in (Jaeger 1995b) and (Jaeger 1995a)). The resulting relation |≈ is nec-
essarily weak when only little statistical information is available. However, in
typical applications one can expect the statistical background information to be
much more specific than the partial subjective probability assignments made in
the observation of a single event, in which case |≈ will lead to strong conclusions.

The full logic Lip should be regarded as a rich reference logic for the theoretical
analysis of the formal rules of inductive probabilistic reasoning. For practical
applications and implementations one should consider suitable fragments of this
logic, e.g. the probabilistic description logics described in (Jaeger 1994b). Such
fragments can reduce the complexities of reasoning in Lip in several ways: they can
enforce the closure of the sets ∆F(φ,M), so that some of the difficulties described
in section 3.3 are avoided; they can further reduce the discrepancy between real-
valued and lrc-field valued probabilities, and thereby become complete also for
real-valued probabilities; finally, and most importantly, fragments will give rise to
specialized inference techniques that can make automated reasoning more effective.
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A Cross Entropy in Logarithmic Real-Closed Fields

In this appendix we prove that the most important properties of CE and CE-
minimization in the reals carry over to the general case of CE in arbitrary lrc-fields.
We partition these results into two groups: the first group describes qualitative
properties that can be derived on the basis of the axioms LRCF without the ap-
proximation schema (viii). The second group deals with the numerical agreement
between CE in the reals and in other lrc-fields, and is essentially based on the
schema LRCF(viii).

A.1 Qualitative Properties

Lemma A.1 The following sentences are derivable from LRCF.

Log(1) = 0 (92)

∀x > 0 Log(1/x) = −Log(x) (93)

∀x ∈ (0, 1) Log(x) < 0 (94)

∀x > 1 Log(x) > 0 (95)

∀x, y > 0 x < y → Log(x) < Log(y) (96)

0 · Log(0) = 0 (97)

The proofs for (92)-(96) are straightforward from the axioms LRCF. For (97)
note that in every model F for SLOF a value Log(0) ∈ F has to be defined, and
that by the field axioms 0 · Log(0) = 0 must hold. 4

The following property of the logarithm is the basis for all the subsequent
results in this section.

Lemma A.2 In every lrc-field the following holds:

∀x1, y1, x2, y2 > 0 : x1Log

(
x1

y1

)

+x2Log

(
x2

y2

)

≥ (x1+x2)Log

(
x1 + x2

y1 + y2

)

, (98)

where equality holds iff
x1

x1 + x2
=

y1

y1 + y2
. (99)

Proof: Let F be an lrc-field, and x1, y1, x2, y2 ∈ F be positive. Defining

x := x1 + x2, λx := x1

x1+x2

y := y1 + y2, λy := y1

y1+y2
,

we can write

x1 = λxx, x2 = (1 − λx)x, y1 = λyy, y2 = (1 − λy)y,

4For R to be a formal model of LRCF one would have to define (arbitrary) values Log(x) ∈ R

for x ≤ 0. Note that in R the otherwise somewhat artificial identity (97) is given real meaning
by the fact that limx→0xLog(x) = 0.
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and the left hand side of (98) may be rewritten as

λxxLog

(
λxx

λyy

)

+ (1 − λx)xLog

(
(1 − λx)x

(1 − λy)y

)

= xLog

(
x

y

)

+ x

(

λxLog

(
λx

λy

)

+ (1 − λx)Log

(
1 − λx

1 − λy

))

. (100)

If (99) holds, i.e. λx = λy, then the second term of (100) vanishes by (92), so
that (98) holds with equality.

Now suppose that λx 6= λy. Then
λy

λx
6= 1 and

1−λy

1−λx
6= 1. By LRCF(v),

−Log(x) > 1 − x for x 6= 1, so that

λxLog

(
λx

λy

)

+ (1 − λx)Log

(
1 − λx

1 − λy

)

=

λx

(

−Log

(
λy

λx

))

+ (1 − λx)

(

−Log

(
1 − λy

1 − λx

))

>

λx

(

1 −
λy

λx

)

+ (1 − λx)

(

1 −
1 − λy

1 − λx

)

= 0.

Since x > 0, this means that the second term of (100) is strictly greater than 0.
This proves the lemma.

2

Lemma A.3 (Positivity) Let F be an lrc-field, n ≥ 2, Q,P ∈ ∆n
F with Q � P .

Then CE(Q,P ) ≥ 0, with equality iff Q = P .

Proof: By induction on n. Let n = 2, Q = (Q1, Q2), P = (P1, P2) ∈ ∆2
F, Q� P .

If one of the Pi equals 0, then so does the corresponding Qi, in which case Q = P
and CE(Q,P ) = 1Log(1) = 0. Suppose, then, that Pi > 0 (i = 1, 2). If Qi = 0 for

one i, say i = 1, then Q 6= P and CE(Q,P ) = Log
(

1
P2

)

> 0 by (95).

For the case that Qi, Pi > 0 (i = 1, 2), we have

CE(Q,P ) = Q1Log(
Q1

P1
) +Q2Log(

Q2

P2
)

≥ (Q1 +Q2)Log(
Q1 +Q2

P1 + P2
)

= 1Log(1) = 0

by lemma A.2, with equality iff Q1/(Q1 +Q2) = P1/(P1 + P2), i.e. Q = P .
Now let n > 2, and assume that the lemma has been shown for n − 1. For

Q = P we again obtain CE(Q,P ) = 1Log(1) = 0. Suppose, then, that Q 6= P .
Without loss of generality, Q1 6= P1. Define Q̄, P̄ ∈ ∆n−1

F by

Q̄i := Qi P̄i := Pi i = 1, . . . , n− 2,
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and
Q̄n−1 := Qn−1 +Qn P̄n−1 := Pn−1 + Pn.

Then Q̄ � P̄ , Q̄ 6= P̄ , so that by induction hypothesis CE(Q̄, P̄ ) > 0. By
lemma A.2 we have CE(Q,P ) ≥ CE(Q̄, P̄ ), which proves the lemma.

2

Lemma A.4 (Convexity) Let F be an lrc-field, n ≥ 2, Q,Q′, P ∈ ∆n
F, Q 6= Q′

with Q,Q′ � P . Let 0 < λ < 1. Then

CE(λQ+ (1 − λ)Q′, P ) < λCE(Q,P ) + (1 − λ)CE(Q′, P ).

Proof: For the proof of the lemma it is sufficient to show that for fixed y ∈ F,
y > 0, the function

cy : x 7→ xLog

(
x

y

)

defined for x ≥ 0 is strictly convex, because then

CE(λQ+ (1 − λ)Q′, P ) =
∑

Pi>0

cPi
(λQi + (1 − λ)Q′

i)

<
∑

Pi>0

λcPi
(Qi) + (1 − λ)cPi

(Q′
i)

= λCE(Q,P ) + (1 − λ)CE(Q′, P ),

where the strict inequality holds because Qi 6= Q′
i for at least one i ∈ {1, . . . , n}

with Pi > 0.
For the proof of the convexity of cy, let y > 0, x1, x2 ≥ 0, x1 6= x2, 0 < λ < 1.

Abbreviate λx1 + (1 − λ)x2 by x̄.
We distinguish two cases: first assume that one of the xi is equal to 0, e.g.

x1 = 0. Then

cy(x̄) = (1 − λ)x2Log

(
(1 − λ)x2

y

)

< (1 − λ)x2Log

(
x2

y

)

= λcy(x1) + (1 − λ)cy(x2),

where the inequality is due to (96), and the final equality holds because cy(0) = 0
by (97).

Now suppose that x1, x2 > 0. By lemma A.2 we obtain

cy(x̄) ≤ λx1Log

(
λx1

y/2

)

+ (1 − λ)x2Log

(
(1 − λ)x2

y/2

)

(101)
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with equality iff λx1/x̄ = 1/2, i.e.

λx1 = (1 − λ)x2. (102)

The right side of (101) may be rewritten as

λx1Log

(
x1

y

)

+ λx1Log(2λ) + (1 − λ)x2Log

(
x2

y

)

+ (1 − λ)x2Log(2(1 − λ)).

Without loss of generality, assume that λx1 ≥ (1 − λ)x2, so that we obtain

cy(x̄) ≤ λcy(x1) + (1 − λ)cy(x2) + λx1Log(4λ(1 − λ)), (103)

still with equality iff (102) holds.
First consider the case that (102) in fact is true. Then, because x1 6= x2, we

have that λ 6= 1/2. By the completeness of RCF, and the fact that

R |= ∀λ ∈ (0, 1) λ 6=
1

2
→ λ · (1 − λ) <

1

4
,

we infer that 4λ(1−λ) < 1, which (with (94)) entails that λx1Log(4λ(1−λ)) < 0,
thus proving that

cy(x̄) < λcy(x1) + (1 − λ)cy(x2). (104)

In almost the same manner (104) is derived for the case that (102) does not hold:
the last term in (103) then is found to be ≤ 0, which suffices to prove (104) because
we have strict inequality in (103).

2

So far we have established properties of CE as a function. Next we turn to the
process of CE-minimization. The following two theorems state two key structural
properties of cross-entropy minimization. These properties are the cornerstones
of Shore’s and Johnson’s (1980) axiomatic justification of cross-entropy minimiza-
tion, and, in a somewhat different guise, also of Paris’s and Vencovská’s (1990)
derivation of the maximum entropy principle.

Theorem A.5 (System Independence) Let A,A′ be finite algebras. Let F be an
lrc-field, J ∪ {P} ⊆ ∆FA, J ′ ∪ {P ′} ⊆ ∆FA′. Define

A× := A × A′, P× := P ⊗ P ′,

and let J× ⊆ A× be defined as the set of measures with marginal distribution on
A in J and marginal distribution on A′ in J ′, i.e.

J× = {Q× ∈ ∆FA× | Q× � A ∈ J, Q× � A′ ∈ J ′}.

Then

ΠJ×(P×) = ΠJ(P ) ⊗ ΠJ ′(P ′) := {Q⊗Q′ | Q ∈ ΠJ(P ), Q′ ∈ ΠJ ′(P ′)}. (105)
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Having established lemmas A.1-A.4, the proof of this theorem and the fol-
lowing can be carried out for lrc-field valued probabilities just as for real-valued
probabilities. We will therefore omit the proofs here, and refer the reader to (Shore
& Johnson 1980) and (Jaeger 1995a).

Theorem A.6 (Subset Independence) Let A be a finite algebra on M ,
A = {A1, . . . , AL} ⊆ A a partition of M , and F an lrc-field. Let P ∈ ∆FA.

Denote by Ā the subalgebra of A generated by A, and by Ah the relative
algebra of A with respect to Ah (h = 1, . . . , L). For Q ∈ ∆FA let Q̄ denote the
restriction Q � Ā, and Qh the conditional of Q on Ah (h = 1, . . . , L; Q(Ah) > 0).

Let J ⊆ ∆FA be of the form

J = J̄ ∩ J1 ∩ . . . ∩ JL

with J̄ a set of constraints on Q̄, and Jh a set of constraints on Qh (h = 1, . . . , L).
Precisely:

J̄ = {Q ∈ ∆FA | Q̄ ∈ J̄∗} for some J̄∗ ⊆ ∆FĀ,

Jh = {Q ∈ ∆FA | Q(Ah) = 0 ∨Qh ∈ J∗
h} for some J∗

h ⊆ ∆FAh.

Let Q ∈ ΠJ(P ). For all h ∈ {1, . . . , L} with Q(Ah) > 0 then

Qh ∈ ΠJ∗
h
(P h). (106)

An important consequence of theorem A.6 is that in the special case where J
is defined by prescribing fixed probability values for the elements of a partition of
M , then cross-entropy minimization reduces to Jeffrey’s rule (Jeffrey 1965):

Corollary A.7 (Jeffrey’s Rule) Let A be a finite algebra on M , P ∈ ∆FA,
{A1, . . . , AL} ⊂ A a partition ofM , and (r1, . . . , rL) ∈ ∆L

F with rh > 0 ⇒ P (Ah) >
0 for h = 1, . . . , L. For

J := {Q ∈ ∆FA | Q(Ah) = rh; h = 1, . . . , L}

then ΠJ (P ) = {Q} for

Q =
L∑

h = 1
rh > 0

rhP
h, (107)

where P h is the conditional of P on Ah.

A.2 Numerical Approximations

To motivate the results in this section, reconsider the example of section 3.1 given
by (46)-(50). Here (47)-(50) defined a unique statistical probability measure P =
(0.4, 0.3, 0.1, 0.2) on a four-element algebra. The components of P being rational,
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P can be interpreted as an element P (F) of ∆4
F for any lrc-field F. Similarly, the

constraint (46) defines a subset

J(F) := {(x1, . . . , x4) ∈ ∆4
F | x1 + x2 = 0.5, x2 + x3 = 0.7}

of ∆4
F for every F. For the inductive inference relation of Lip we now have to

consider the CE-projections ΠJ(F)(P (F)) for arbitrary F. For F = R we know
that ΠJ(F)(P (F)) contains a unique element Q, and, using an iterative nonlinear
optimization algorithm, we can determine the value of Q approximately, as stated
in (51). More precisely, the meaning of (51) is

ΠJ(R)(P (R)) ⊆ {(q1, . . . , q4) ∈ ∆4
R | q1 ∈ (0.128, 0.129), . . . , q4 ∈ (0.171, 0.172)}.

(108)
In order to use this numerical result obtained for the reals for showing that certain
inductive entailment relations hold in Lip – e.g. that (52) follows from (46)-(50)
– we have to ascertain that (108) implies

ΠJ(F)(P (F)) ⊆ {(q1, . . . , q4) ∈ ∆4
F | q1 ∈ (0.128, 0.129), . . . , q4 ∈ (0.171, 0.172)}

(109)
for every F. Theorem A.10 will show that this is indeed the case. We obtain
this result by showing successively that the bounds given for Log by LRCF(viii)
are sufficient to determine uniform bounds (i.e. valid in every F) for the function
xLog(x/q) (q ∈ Q fixed), for CE(Q,P ) (P ∈ ∆n

Q fixed), and finally for ΠJ(F)(P (F)).
The first lemma gives a piecewise approximation of xLog(x/q).

Lemma A.8 Let ε > 0 and P ∈ (0, 1] be rational numbers 5, let pn and qn be
as defined in LRCF(viii). There exists a rational number r(ε) > 0 and an m ∈ N

such that the following SLOF-sentences hold in all lrc-fields:

∀x ∈ (0, r(ε)] xLog(
x

P
) ∈ (−ε, 0) (110)

∀x ∈ [r(ε), P ] xLog(
x

P
) ∈ [xqm(

x

P
), xpm(

x

P
)] (111)

∀x ∈ [r(ε), P ] xpm(
x

P
) − xqm(

x

P
) ∈ [0, ε) (112)

∀x ∈ [P, 1] xLog(
x

P
) ∈ [−xpm(

P

x
),−xqm(

P

x
)] (113)

∀x ∈ [P, 1] − xqm(
P

x
) + xpm(

P

x
) ∈ [0, ε). (114)

Proof: We first determine a number r(ε) such that the approximation (110) holds.
We then choose a sufficiently large n such that the bounds (112) and (114) hold.
Properties (111) and (113) directly follow from LRCF(viii).

By elementary calculus we find that in R limx→0xLog( x
P ) = 0, and that

xLog( x
P ) attains its absolute minimum at x = P

e > 0.

5All the results in this section remain valid when we substitute “algebraic numbers” for “ra-
tional numbers” throughout.
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We choose an arbitrary rational r(ε) ∈ (0, P
e ) that satisfies

r(ε)Log(
r(ε)

P
) > max{−ε,

P

e
Log(

P

e
)}

Also, choose a rational r′ ∈ (r(ε), P
e ). By the strict convexity of x 7→ xLog(x/P )

then r′Log( r′

P ) < r(ε)Log( r(ε)
P ). For sufficiently large n ∈ N

r(ε)qm(
r(ε)

P
) > r′pm(

r′

P
) and r(ε)qm(

r(ε)

P
) > −ε

now holds in R, and hence in every lrc-field. It follows that in every lrc-field we
have

r(ε)Log(
r(ε)

P
) > r′Log(

r′

P
) and r(ε)Log(

r(ε)

P
) > −ε.

By the strict convexity of the function x 7→ xLog( x
P ) (lemma A.4) we can now

infer

∀x ∈ (0, r(ε)] xLog(
x

P
) > r(ε)Log(

r(ε)

P
),

and thus
∀x ∈ (0, r(ε)] xLog(

x

P
) > −ε.

Also, because r(ε) < P , by (93) and (95) we get

∀x ∈ (0, r(ε)] xLog(
x

P
) < 0,

proving (110).
For the approximation of xLog( x

P ) on [r(ε), 1] choose an m ∈ N such that

max{
(r(ε) − 1)m+1

r(ε)
,
(P − 1)m+1

P
} < ε.

For such m then (112) and (114) are satisfied.
2

The next lemma combines bounds forQiLog(Qi/Pi) to find bounds for CE(Q,P ).
In the formulation of the lemma we employ the notations introduced in section 2.3
for the interpretations of terms in a structure, and for the sets defined in a struc-
ture by a formula.

Lemma A.9 Let n ≥ 1, P ∈ ∆n
Q, and ε ∈ Q, ε > 0. There exist LI(SOF)-

formulas α1(x), . . . , αk(x) and LI(SOF)-terms l1(x), u1(x), . . . , lk(x), uk(x) with
x = (x1, . . . , xn), such that the following holds in all lrc-fields F:

(i) ∆n
F ∩ {Q | Q� P} = ∪k

i=1(F,x)(αi)

(ii) ∀i ∈ {1, . . . , k}∀Q ∈ (F,x)(αi) : F(li(Q)) ≤ CE(Q,P ) ≤ F(ui(Q)), and
F(ui(Q)) − F(li(Q)) < ε.
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Proof: Let P ∈ ∆n
Q. Assume, first, that Pi > 0 for all i = 1, . . . , n, so that

Q � P for all Q ∈ ∆n
F. Applying lemma A.8 to the Pi and ε/n, we find

rational constants r1(ε/n), . . . , rn(ε/n), such that QiLogQi

Pi
can be bounded for

Qi ∈ (0, ri(ε/n)] by the constants −ε/n and 0, and for Qi ∈ [ri(ε/n), 1] by
the terms Qiqm(Qi/Pi), Qiqm(Pi/Qi), Qipm(Qi/Pi), Qipm(Pi/Qi) as described in
lemma A.8.

We now let the formulas αj run over all conjunctions of the form

∧n
i=1(xi ∈ Ii),

where Ii is either (0, ri(ε/n)], [ri(ε/n), Pi], or [Pi, 1]. The lower bound lj(x) on
CE(Q,P ) for elements Q of αj(x) then is given by the sum of the lower bounds
−ε/n, Qiqm(Qi/Pi), respectively −Qipm(Pi/Qi), obtained for each component
QiLogQi

Pi
of CE(Q,P ). Similarly for the upper bounds uj(x).

If Pi = 0 for some i ∈ {1, . . . , n} we proceed in the same way, simply using a
conjunct xi = 0 instead of a conjunct xi ∈ Ii in the definition of the αj .

2

Now the desired theorem can be formulated. Roughly speaking, it says that
approximations of the CE-projection ΠJ(P ) that are expressible by a SOF-formula,
and that are valid in R, also are valid in arbitrary F.

Theorem A.10 Let φ(x1, . . . , xn) and ψ(x1, . . . , xn) be LI(SOF)-formulas. Let
P ∈ ∆n

Q. Define

χ(φ, ψ) :≡ ∃x > 0∃z(φ(z) ∧ ∀y(φ(y) ∧ ¬ψ(y) → CE(z, P ) < CE(y, P ) − x)).

If R |= χ(φ, ψ), then LRCF |= χ(φ, ψ).

To connect this theorem with our introductory example, think of φ as the
formula defining the set J(F) and of ψ as the formula defining the right-hand side
of (109). Then χ(φ, ψ) essentially is the general statement whose interpretation
over R is (108), and whose interpretation over F is (109). The theorem now says
that (108) implies (109).
Proof: Assume that R |= χ(φ, ψ), and let 0 < ε ∈ Q be such that R is a model of

∃z(φ(z) ∧ ∀y(φ(y) ∧ ¬ψ(y) → CE(z, P ) < CE(y, P ) − ε)). (115)

Let α1(x), . . . , αk(x) and l1(x), u1(x), . . . , lk(x), uk(x) be as given by lemma A.9
for P and ε/3. Then, for some j ∈ {1, . . . , k}, R also is a model of

∃z(φ(z) ∧ αj(z)∧∀y � P∃i ∈ {1, . . . , k}

(αi(y) ∧ (φ(y) ∧ ¬ψ(y) → uj(z) < li(y) − ε/3))),
(116)

which, some abuse of first-order syntax notwithstanding, is a pure LI(SOF)-sentence.
Thus, (116) holds in every lrc-field F.
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Furthermore, by lemma A.9, we have for arbitrary F:

F |= ∀y∀i ∈ {1, . . . , k}(αi(y) →CE(y, P ) − li(y) ∈ [0, ε/3]∧

ui(y) − CE(y, P ) ∈ [0, ε/3]). (117)

Combining the bounds li(y) − uj(z) > ε/3, CE(y, P ) − li(y) ≤ ε/3, and uj(z) −
CE(z, P ) ≤ ε/3, one obtains CE(y, P ) − CE(z, P ) > ε/3, so that (115) with ε
replaced by ε/3 holds in arbitrary F, and hence also F |= χ(φ, ψ).

2

The following corollary mediates between the rather abstract formulation of
theorem A.10 and our introductory example.

Corollary A.11 Let J ⊆ ∆n
R be closed and defined by an LI(SOF)-formula

φ(x1, . . . , xn). LetH ⊆ ∆n
R be open and defined by an LI(SOF)-formula ψ(x1, . . . , xn).

Let P ∈ ∆n
Q, and assume that ΠJ (P ) ⊂ H. For an arbitrary lrc-field F, and the

sets J̄ , H̄ defined in F by φ and ψ, respectively, then ΠJ̄(P ) ⊂ H̄.

Proof: According to the assumptions the set H c ∩ J is closed. Let Q ∈ ΠJ(P ).
From ΠJ(P ) ⊂ H and the compactness of Hc∩J it follows that there exists ε ∈ R+

such that CE(Q,P ) < CE(Q′, P ) − ε for every Q′ ∈ Hc ∩ J . Thus R |= χ(φ, ψ).
By theorem A.10 then F |= χ(φ, ψ), which entails ΠJ̄(P ) ⊂ H̄.

2
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Annales de l’Institut Henri Poincaré. English Translation in (Kyburg &
Smokler 1964).

Dempster, A. P. (1967), ‘Upper and lower probabilities induced by a multivalued
mapping’, Annals of Mathematical Statistics 38, 325–339.

Diaconis, P. & Zabell, S. (1982), ‘Updating subjective probability’, Journal of the
American Statistical Association 77(380), 822–830.

Dubois, D. & Prade, H. (1997), Focusing vs. belief revision: A fundamental dis-
tinction when dealing with generic knowledge, in ‘Proceedings of the First In-
ternational Joint Conference on Qualitative and Quantitative Practical Rea-
soning’, Springer-Verlag, pp. 96–107.

Fenstad, J. E. (1967), Representations of probabilities defined on first order lan-
guages, in J. N. Crossley, ed., ‘Sets, Models and Recursion Theory’, North
Holland, Amsterdam, pp. 156–172.

Gaifman, H. (1964), ‘Concerning measures in first order calculi’, Israel Journal of
Mathematics.

57



Gaifman, H. & Snir, M. (1982), ‘Probabilities over rich languages, testing and
randomness’, Journal of Symbolic Logic 47(3), 495–548.

Gilboa, I. & Schmeidler, D. (1993), ‘Updatin ambiguous beliefs’, Journal of Eco-
nomic Theory 59, 33–49.

Grove, A. & Halpern, J. (1998), Updating sets of probabilities, in ‘Proceedings of
the Fourteenth Conference on Uncertainty in AI’, pp. 173–182.

Grove, A., Halpern, J. & Koller, D. (1992a), Asymptotic conditional probabilities
for first-order logic, in ‘Proc. 24th ACM Symp. on Theory of Computing’.

Grove, A., Halpern, J. & Koller, D. (1992b), Random worlds and maximum en-
tropy, in ‘Proc. 7th IEEE Symp. on Logic in Computer Science’.

Hailperin, T. (1976), Boole’s Logic and Probability, Vol. 85 of Studies in Logic and
the Foundations of Mathematics, North-Holland.

Hailperin, T. (1996), Sentential Probability Logic, Lehigh University Press, Beth-
lehem.

Halpern, J. (1990), ‘An analysis of first-order logics of probability’, Artificial In-
telligence 46, 311–350.

Hoover, D. N. (1978), ‘Probability logic’, Annals of Mathematical Logic 14, 287–
313.

Jaeger, M. (1994a), A logic for default reasoning about probabilities, in
R. Lopez de Mantaraz & D. Poole, eds, ‘Proceedings of the 10th Confer-
ence on Uncertainty in Artificial Intelligence (UAI’94)’, Morgan Kaufmann,
Seattle, USA, pp. 352–359.

Jaeger, M. (1994b), Probabilistic reasoning in terminological logics, in J. Doyle,
E. Sandewall & P. Torasso, eds, ‘Principles of Knowledge Representation an
Reasoning: Proceedings of the 4th International Conference (KR94)’, Morgan
Kaufmann, Bonn, Germany, pp. 305–316.

Jaeger, M. (1995a), Default Reasoning about Probabilities, PhD thesis, Univer-
sität des Saarlandes.

Jaeger, M. (1995b), Minimum cross-entropy reasoning: A statistical justification,
in C. S. Mellish, ed., ‘Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-95)’, Morgan Kaufmann, Montréal,
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