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Abstract

A logic is defined that allows to express in-
formation about statistical probabilities and
about degrees of belief in specific proposi-
tions. By interpreting the two types of proba-
bilities in one common probability space, the
semantics given are well suited to model the
influence of statistical information on the for-
mation of subjective beliefs. Cross entropy
minimization is a key element in these se-
mantics, the use of which is justified by show-
ing that the resulting logic exhibits some very
reasonable properties.

1 INTRODUCTION

It has often been noted that “probability” is a term
with dual use: it can be applied to the frequency of
occurrence of a specific property in a large sample of
objects, and to the degree of belief granted to a propo-
sition.

While some have argued that only one of these two in-
terpretations captures the true meaning of probability
[Jay78], others have tried to analyze both usages of the
term in their own right, and to clarify the relationship
between the two aspects of probability.

Carnap was among the first to do this ([Car50]). Even
though his interest lies primarily with probabilities as
subjective beliefs (or “degrees of confirmation”), he
also formulates direct (inductive) inference as a prin-
ciple to arrive at subjective beliefs on the basis of given
relative frequencies: when it is known that objects
from a class C; also are members of a class Cy, with a
frequency p, and a specific object a is believed to be-
long to Cq, then the given statistical information may
be used as a justification for assigning p as a degree of
belief to a’s belonging to Cs.

When, instead of firmly believing that a is an element
of Ci, one only has several conflicting pieces of evi-
dence about the true nature of a, these can be com-
bined to form a degree of belief for a being in Cy by

using Jeffrey’s rule [Jef65], as illustrated in the follow-
ing example.

Example 1.1 Scanning channels on TV we have
tuned in to a mystery film. It looks interesting, but we
only want to continue watching it, if a happy ending
seems likely.

By what we have seen so far, we judge the film to be ei-
ther American, French, or English, with a likelihood of
0.2, 0.6, and 0.2 respectively. From our extensive past
experience with mystery films we know that 8 out of 10
American films have a happy end, while this figure is
1 and 5 out of 10 for French and English productions,
respectively.

Jeffrey’s rule in this situation states, that our degree
of belief in a happy ending of the film we are currently
watching should be given by

02x08406x01+02x05 =

Hence, we better switch channels.

0.32. (1)

It must be noted at this place that calling the infer-
ence in this example by the name of Jeffrey’s rule is a
somewhat loose terminology: when Jeffrey originally
stated his rule he was concerned with updating prior
subjective beliefs to posterior subjective beliefs in the
light of newly obtained evidence, not with using statis-
tical information to define degrees of belief. Hence, the
terms for the conditional probabilities of a happy end
given the origin of a film that appear in (1) would be
some prior conditional beliefs in Jeffrey’s rule, rather
than statistical expressions. If, however, the funda-
mental assumption is made that in the absence of any
specific information about an object, the subjective be-
liefs held about the object are governed by the statis-
tical information available for the domain from which
it is taken, then conditional belief and conditional sta-
tistical probability can be equated, and the rule for
deriving degrees of belief from statistical information
exemplified by (1) be identified with Jeffrey’s rule.

Note, too, that this assumption also underlies the di-
rect inference principle, which from this perspective
then can be seen as a special case of Jeffrey’s rule
— special both in the way prior beliefs are defined



through relative frequencies and in that the new ev-
idence concerning the nature of an object takes the
form of one certain fact.

The kind of probabilistic inference illustrated in exam-
ple 1.1 might be called default reasoning about prob-
abilities. 'While this should be clearly distinguished
from logical default reasoning (e.g. [McC80], [Rei80]),
it shares the nonmonotinicity of these logics: in the
light of additional (probabilistic or definite) informa-
tion, earlier inferences may be retracted.

Recently, proposals have been made to incorporate the
two kinds of probabilistic statements in an extension
of first-order predicate logic [Hal90], [Bac90]. Here,
statistical information and subjective beliefs are mod-
elled by probability measures on the domains of first-
order structures and sets of possible worlds, respec-
tively. While this is an intuitively appealing interpre-
tation of the formulas, it does not allow for the kind
of reasoning exemplified by Jeffrey’s rule. The proba-
bility measures on the domain and the possible worlds
can be chosen independently in such a way that all
the formulas in the given knowledge base are satisfied,
but no interaction between the two kinds of proba-
bilistic statements takes place. Indeed, Halpern writes
[Hal90]: “Although .Z5(®) [the combined probabilistic
logic in question] allows arbitrary alternation of the
two types of probability, the semantics does support
the intuition that these really are two fundamentally
different types of probability.”

An additional strategy to arrive at subjective be-
liefs on the basis of statistical information is devel-
oped in [Bac91], [GHK92a], [GHK92b], [BGHK92],
and [BGHK93]. This strategy, which is based on di-
rect inference, has the great disadvantage that it does
not allow for any given subjective beliefs to be used
for arriving at new degrees of belief. Hence, even Jef-
frey’s rule is beyond the scope of reasoning that can
be carried out in this framework. On the other hand,
very specific degrees of belief are assigned to propo-
sitions even in the absence of any information: on
the basis of an empty knowledge base, the proposi-
tions American(this_film) and American(this_film)A
Happy_end(this_film) would be assigned a degree of
belief of 0.5 and 0.25 respectively.

The formalism presented in this paper, though mo-
tivated by similar intuitions as the above mentioned,
exhibits rather different properties. Among them are:

e The expressive power of the language used is
smaller than in [Hal90], [Bac90]. Notably, expres-
sions about statistical and subjective probabilities
can only be combined in a restricted way.

e Both statistical and subjective probabilities can
be specified in a knowledge base, and new proba-
bilities of both types be inferred. While the statis-
tical probabilities entailed by the knowledge base
essentially depend on the given statistical infor-
mation only, the resulting subjective beliefs de-

pend crucially on both types of probabilistic state-
ments.

e When only partial statistical information is avail-
able (as is usually the case), no default assump-
tions about the statistical probabilities are made.
As a result, it will usually only be possible to infer
probability intervals rather than unique probabil-
ity values from a knowledge base

The basic idea on which the formalism to be de-
fined in the following sections is based, is to inter-
pret both types of probabilistic expressions by prob-
ability measures on a common probability space.
In the example above it is noticeable that both
the statements about the relative frequency for
happy endings and the subjective assignment of
likelihood to the predicates American, French and
English, are basically constraints on a probabil-
ity measure on the formulas in the vocabulary
S= {American, French, English, Happy_end}, where in
some cases a constant “this_film” enters as a param-
eter. When deductions from the knowledge base are
made, it is again probabilities on these formulas that
are to be inferred. Default reasoning about probabil-
ities can now be viewed as the process of selecting a
probability measure on the expressions this_film € ¢
(with ¢ € Lg, i.e. a first-order formula over S) that
most closely resembles the probability measure gener-
ally assigned to Lg on the basis of the given statistical
information.

While it would be desirable, to work with probability
measures on the abstract syntactic structure Lg itself
(as has been done for terminological logics in [Jae94]),
it proves much easier, in the more general framework
of first-order predicate logic, to use probability mea-
sures on the domain of an interpretation to induce a
probability measure on Lg.

2 SYNTAX

As mentioned above, it will not be possible to freely
combine expressions about the two different kinds of
probabilities. Hence, two distinct extensions of the
syntax of first-order logic have to be provided.

The following notational conventions will be used in
the sequel: tuples (vo,...,vn_1), (d@o,...,a5-1) of
variable or constant symbols are abbreviated by v, a.
When it is necessary to explicitly note the length of

. k .
a tuple, the notation v, a may be used. é(v) is used
to denote a formula ¢ whose free variables are among

VOyeoeyUn—1-

Definition 2.1 Let S be a vocabulary containing
relation-, function-, and constant-symbols. A statis-
tical formula in S is any formula that can be con-
structed from S by the syntax rules of first-order pred-
icate logic with equality together with the new rule:



o If ¢(v) and ¢(v) are statistical formulasin S,
{in sy Uik} - {an BRER) Uﬂ—l}a and p € [07 1]7

then
[¢(v) [¢(v)] » >p
(v;)
is a statistical formula in S. The free variables
in this formula are the free variables of ¢ and
without {v;,,...,v;, }-

The set of statistical formulasin S is denoted by Lg. A
statistical formula with no free variables is a statistical
sentence.

Definition 2.2 Let S be as above, and {ag,...,a,_1}
a set of constant symbols not in S. A subjective prob-
ability sentence for a wn S is any sentence of the form

prob(¢[a] | ¢[a]) = p

with ¢(v), ¢ (v) € LZ, and p € [0, 1]. Lg(a) denotes the
set of all these sentences.

The abbreviations [¢ | ¥](..) < p and prob(¢ | ) < p
may be used for [-¢ | ¢](.) > 1 —p and prob(—¢ |
$) > 1 — p respectively.

Similarly, [¢ | ¥](.) = p, [¢ | ¥](.) < pand [¢ |
¥](...) > p are defined. Also, prob(¢ | 1) = p may be
substituted for the pair of sentences prob(¢ | ) > p
and prob(¢ | ¥) < p. Note, however, that prob(¢ |
¥) < p would have to be defined by means of the
negation of prob(¢ | ¥) > p, and such a negation is
not within the syntax given by definition 2.2. Finally,
[#](..) > p and prob(¢) > p are used for [¢ | 7] ) > p

and prob(¢ | 7) > p, where 1 is any tautology.

Definition 2.1 is standard and can be found similarly
in [Kei85], [Hal90], [Bac90]. Definition 2.2 differs from
its counterparts in [Hal90] and [Bac90] in that prob(¢ |
$) > p is seen as a statement about a distinguished
subset of the constant symbols appearing in ¢ and 1,
and ¢, ¢ are not allowed to contain, in turn, a formula
of the form prob(¢’ | ¢') > p/.

A knowledge base KB in the language here defined con-
sists of a finite set &7 of statistical sentences (which
will typically also contain some purely first-order sen-
tences), and a finite set ®7(a) of subjective probability
sentences for a.

Example 2.3 The probabilistic knowledge from our
introductory example can be symbolized by a knowl-
edge base KB = ®F1i ies U ® U where f1 is a con-
stant symbol standing for the unknown film we are
concerned with, and

K/Iovies =
[Happy_endw | Americanv A Mysteryv](,y = 0.8 (2)
[Happy_endw | Englishv A Mysteryv](,) = 0.5 (3)
[Happy_endw | Frenchv A Mysteryv](,) = 0.1 (4)

) —
prob(American f1 A Mystery f1) = 0.2 (5)
prob(English f1 A Mystery f1) = 0.2 (6)
prob(French f1 A Mystery f1) = 0.6 (7)

3 SEMANTICS

3.1 OUTLINE

A semantical structure in which ®? can be interpreted
is defined along the same lines as in [Kei85], [Hal90],
[Bac90]:

Definition 3.1 A statistical S-structureis a structure

(M, 1), where

e M = (M, M, u) is a probability space with do-
main M, supplied with a o-algebra 9 and a prob-
ability measure p on 9.

e | is an interpretation function that maps the
relation-, function-, and constant-symbols in S to
relations, functions and elements of M in such a
way that for every formula ¢(v) € L, the inter-
pretation I(¢) € M™ is measurable with respect
to the product o-algebra ™.

The condition imposed on I in this definition may seem
highly restrictive; in fact, one may wonder whether
statistical structures in the sense of definition 3.1 ac-
tually exist. While it is beyond the scope of this paper
to embark on a thorough measure-theoretic discussion
of the questions here involved, it should be pointed
out, that whenever M is finite or countably infinite,
then M can be taken to be the power set 2M, and
every subset of M” is measurable with respect to IM™.

What about an interpretation for ®(®? As was indi-
cated in the introduction, subjective probability sen-
tences can be seen as making assertions about a prob-
ability measure on the formulas in the vocabulary S,
with a just a name or parameter for this measure. Put
another way, in the context of a fixed structure (M,I),
a in this interpretation may be viewed as a random
variable with values in M”, and ®°(®) is a set of con-
straints on its distribution. Since these constraints
only concern subsets of M” that are definable by for-
mulasin Lg, which, by definition 3.1, all belong to 9",
this leads to the following definition.

Definition 3.2 A probabilistic S-structure for a is a
structure

(Ma Ia Va)a

where (M, T) is a statistical S-structure, and vq is a
probability measure on SN".

Some conditions are immediate for when a probabilis-
tic S-structure shall be called a model of a knowledge
base KB = &7 U ®°(4): for a statistical S-structure



(M, 1), a valuation function v, and a statistical for-
mula 6, the relation

(M, 1), v) =0

is defined by augmenting the standard definition for
first-order logic with the rule

(M, 1), v) = [o(v) [ ¥(v)] » 2p iff

(v;)
uk({(ml,...,mk) e M* |

(M, 1), v[m / v3]) E $(v) A db(v)})
> px p({(m,...,my) € M¥ |

(M, 1), vim / 03]) £ ¥(o)}).

Similarly, it will be required that for a probabilistic
structure for a

(M, 1, va) |= prob(¢la] | ¢[a]) > p

only holds, if
va({(m1,...,mn) € M" | (M, 1) = ¢[m] A ¢[m]})

> px va({(ma,..oma) € M | (M) [ 6[m]}).
However, this mere satisfaction of the constraints in
®7(2) is insufficient for v, as it does not establish any
connection between the measures p” and vg. If the
intuition is to be formalized, that v4 should resemble

#” as much as possible within the limits drawn by
®%(®) | then something more is required.

First of all, the notion of “resemblance” has to be made
precise. To this problem the following section is dedi-
cated.

3.2 CROSS ENTROPY

Cross entropy ([Kulb9]) commonly is interpreted as a
“measure of information dissimilarity” for two proba-
bility measures [Sho86]. Usually, cross entropy is used
in a rule to update a prior estimate for the probability
distribution of some variable to a posterior estimate
when some new information about the variable’s ac-
tual distribution has been obtained. However, both
its information theoretic interpretation and its unique
properties make cross entropy also the most promising
tool for bridging the gap between general statistical
knowledge and subjective beliefs.

For a o-algebra M the set of probability measures on
M is denoted by AIM. Let p, v € AM with v <« p, i.e.
for every A € M: u(A) = 0= v(A) = 0. In this case
there exists a density function f for v with respect to
1, and the cross entropy of v with respect to u can be

defined by
CE(v, pu) = /flnfdu.
If v &« p, define CE(v, p) := oo. For p € AM and

a closed (with regard to the variation distance ') and

'The variation distance of 11 2 € AM is defined as the
integral f | f1 — f2 | dv where v € A9 is such that 11 € v
and vo € v (e.g. v = 1/2(11 + 11)), and f; is a density for
v; with respect to v.

convex subset N C AM, which contains at least one v
with CE(v, i) < oo, there is a unique 19 € N such that
CE(vo, pt) < CE(v, ) for all v € N, v # v [Csi7h].
Denote this vo by mn(p).

In the case that N is defined by a finite set of con-
straints

w(Ai) > pxv(By) |
AiaBi Ema pi € [071]7 i= lavk}
the following theorem reduces the problem of comput-

ing mn(¢) to a CE-minimization on a finite probability
space.

For a subalgebra ' C MM and pu € AM the notation
pl M is used for the restriction of y to M. N| M/
stands for {v| 9’ | v € N}.

Theorem 3.3 Let IM° be a finite subalgebra of M
generated by a partition {Aq,..., A } C 9 of M. Let
p € AM, and N C AM be defined by a set of con-
straints on IO, i.e. for all v € AM:

veN & vMm® e N|mMO.
Then mn(p) is defined iff mygpgpo (1] MO) is defined, and
in this case for every C & M:

™ (1)(C) = ZFNrmD(MWO)(Ai) p(C 1A,

The proof of this theorem is basically an application
of property 9 from [SJ81].

Corollary 3.4 Let {Aq,..., A} C M be a partition
of M, let N be defined by a set of constraints

k
(v(A)=pili=1,....k}, Y pi=1
i=1

Then, for every probability measure p on 9 with
pi > 0= p(A) >0 (=1,...,k), mn(p) is the prob-
ability measure obtained by applying Jeffrey’s rule to
1 and the given constraints.

Corollary 3.4 is a first indication that cross entropy
might be the appropriate tool to model default reason-
ing about probabilities, and may serve as a preliminary
justification for making cross entropy minimization the
(@)

central element of the semantics for Lg U Lg now to

be defined.

3.3 THE FINAL SEMANTICS

Definition 3.5 Let (M, I, vq) be a probabilistic S-
structure for @, KB = ®° U ®°(®) a knowledge base.
(M, 1, vgq) is a model of KB iff

e (M, I) = @7 as defined in section 3.1.

e With Bel(a) the set of probability measures on
IM” that satisfy the constraints in ®°(®):

Vg = TBel(a) (")



Bel(a) always is a closed (in the topology defined by
the variation distance) and convex subset of AM". To
make sure that this will be the case is the reason for
the restrictive syntax of Lg %) If it was allowed to
express —prob(¢ | ¢) > p for instance, then Bel(a)
would need no longer be closed. Permitting disjunc-
tions prob(...) > p V prob(...) > ¢ destroys convex-
ity. Hence, by the remarks in section 3.2, there ex-
ists a measure vq satisfying the condition of definition
3.5 iff Bel(a) contains at least one measure v with
v & p". When this is not the case, then the statisti-
cal S-structure (M, T) can not be extended to a model
of KB. Should this be the case for all (M, 1) E @7,
then KB does not have a model.

Note that Bel(a) is defined by constraints on the finite
subalgebra of IM™ generated by the finitely many sub-
sets of M" defined by the formulas appearing in ®°(®),
Hence, theorem 3.3 applies to Tpea)(¢"), and even
though p and vg generally are probability measures on
infinite probability spaces, cross entropy minimization
only has to be performed on finite probability spaces.

The logic defined by definitions 2.1,2.2 and 3.5 is de-
noted .#°7.

For a knowledge base KB and a sentence 6 € L.g ULS(G)
the relation KB|= 6 is defined as usual.

2% is monotonic with respect to ®°, but non-
monotonic with respect to ®7(@): if &° O &° and
®7 U (@ = g, then ®° U %@ | @ for every
e LU Lg(a). If, on the other hand, ®°(@) D ®F(a)
then &7 U ®”(® |= @ does not imply 7 U ®°(@) = 4.

4 WHY CROSS ENTROPY?

Cross entropy minimization, in the past, has received a
considerable amount of attention as a rule for updating
probability measure. Notably, Shore and Johnson have
provided an axiomatic description of minimum cross
entropy updating [SJ80], [SJ83]. They show that, if a
function f is used to define for a closed and convex set
N of continuous or discrete probability measures and
a prior p:

w{(n) = {v €N | f(v,p) = inf{f(, ) | v € N}},
and the mapping (u, N) — 71'1{1(#) satisfies a set of five
axioms, then the function f must in fact be equivalent
to cross entropy.

It is beyond the scope of this paper to also give an
axiomatic justification for putting cross entropy min-
imization at the core of definition 3.5 by formulat-
ing a set of conditions that the consequence relation
= for .27 should satisfy, and then show that only
cross entropy minimization will fulfill these conditions.
Instead, the two theorems contained in this section
demonstrate that using cross entropy leads to very de-
sirable properties for .27, and indicate, when looked
at as axioms rather than theorems, what an axiomatic

justification for the use of cross entropy in the seman-
tics of 277 would look like.

The two theorems are directly derived from the two
central axioms in [SJ80], subsetl independence and sys-
tem independence. The first one rephrases the prop-
erty of subset independence to a statement about log-
ical entailment in Z77.

Theorem 4.1 Let ¢1(v),..
®7 U 7% with

®7 = Vo(g1(v)V...Vor(v))

(here V is the exclusive disjunction). Let

.,d)k(v) € Lg. Let KB=

Phla) — {prob(gbi[a]) > p; | 1=1,.. .,k’}
ue! @y, ual®,

where each @?(a) is of the form

{prob(¢ijlal | ¢ijlal) > pij |7 =1,..., 1k}

for some ¢;; with ®” |= ¢;; — ¢;. Then, for every
i € {1,...,k} and every subjective probability formula
0 of the form prob(¢[a] | ¢;]a]) > p:

Ud g = KBES.

By theorem 4.1, reasoning by cases is possible in .Z7”
under certain circumstances: if ®%(@) contains subjec-
tive beliefs that are each conditioned on one of several
mutually exclusive hypotheses for a, then valid infer-
ences about subjective beliefs conditioned on one of
these hypotheses can be made by ignoring the infor-
mation about the other hypotheses.

Example 4.2 The prospects for a happy ending of
the mystery film we have been watching not being very
bright, we switch to a different channel where another
film is running. This one can be easily identified as an
American production, but it could be either a romance
or a mystery:

prob(Americanf2 A Romancef2) = 0.5, (8)
prob(Americanf2 A Mystery f2) = 0.5. (9)

Also, we are ready to believe that

prob(Happy_end 2 |
Americanf2 A Romancef2) = 0.95  (10)

Suppose we are interested in estimating
prob(Happy_end f2 | Americanf2 A Mystery f2). (%)

Before we are able to apply the statistical rule (2) in
order to obtain this estimate, we make the additional
observation that should f2 be a mystery, then it is not
particularly likely to contain action scenes, contrary to
what we generally expect from mystery films:

prob(Action f2 | Americanf2 A Mystery f2) = 0.5, (11)
[Actionv | Americanv A Mysteryv](,) = 0.7. (12)



This information is relevant for our estimate of (x)
because the existence of action scenes is correlated to
a happy end by

[Actionu |
Americanv A Mysteryv A —~Happy_endv](,) = 0.5. (13)

Let KBjy = i)K/Iovies U ®7(72) consist of DY fovies from

example 2.3 and the new sentences (8)-(13). KBy» is
of the form defined in theorem 4.1 with

$1(v) = Americanv A Romancev,
¢2(v) = Americanv A Mysteryv, and
¢3(v) = 2(61(v) V da(v)).

By theorem 4.1 we know that everything we can infer
about (*) from the smaller knowledge base obtained
by removing (8)-(10) from KBy,, also is valid with
respect to KByy. By elementary computations it can
be seen that

~K/Iovies ': [Happy_endv |

Americanv A Mysteryv A Actionv](,) = g, (14)

~K/Iovies ': [Happy_endv |

Americanv A Mysteryv A —Actionv](,) =

[UCR N ]
—_
—_
[y
~

Hence, with theorem 3.3

KBy, | prob(Happy_end 2 | Americanf2 A Mystery f2)
6 2 16
Also, combining (8)-(10) and (16) we get

prob(Happy_end f2)

(16)

16
= 0.5 % 0.954 0.5 x 7o ~ 0.856.  (17)

The following theorem is derived from the system in-
dependence axiom.

Theorem 4.3 Let KB= &7 U ®7(®) where
(I)ﬁ(a) — (I)ﬁ(au,~~~,ak_1) U @ﬁ(aky“'yan—l)’

i.e. the set of subjective probability formulas for
a consists of two disjoint sets for (ao,...,ar_1) and
(ak,...,an_1). Suppose that

d° U (I)ﬁ(ag,...,ak_l) ':

prob(¢i[aog, .. .,ar-1] | ¥1[ao, ..., ar-1]) > p1, (18)
®7 U Plar )
prob(ézlak, ..., an_1] | ¥2lak, ..., an-1]) > p2. (19)
Then
KB | prob(¢iao, - .., ar—1] A ¢2lak, .- ., an_1]
| Y1lao, ... an—1] Aalag, ..., an_1]) > pip2. (20)

Theorem 4.3 remains true, when the inequality in (18)-
(20) is replaced with equality.

Corollary 4.4 For KB as in the preceding theorem
k
(a)

and for every subjective belief formula 0 € Lg :

@7 U pPleoa-1) = g = KB = 6.

Roughly speaking, theorem 4.3 states, that when ®7(®)
does not contain any information connecting one con-
stant a; with another constant a;, then these constants
are interpreted as independent. Especially, ignoring
the information about a; still leads to valid inferences
about a;.

Example 4.5 Ultimately, we want to know which of
the two films f1 and f2 is likely to be the better one.
Better is a predicate for which we have the axioms

Yvo—Bettervgug (21)
Yoour(vo # v1 — (Bettervgvy & —Bettervivg)) (22)
and a useful statistic:
[Bettervovy | Happy_endvg A =Happy_endvi] (v 0,)
=0.95. (23)
Let KB¢ys2 be the union of KBfy, KBf; and the sen-
tences (21)-(23). From (21)-(23)
[Bettervovy | vo # v1 A Happy_endug

/\Happy_endvl](voyvl) = 05 (24)
[Bettervovy | vo # v1 A “Happy_endvg
A—=Happy_endvi](v,,v,) = 0.5  (25)
[Bettervovy | ="Happy_endwg
AHappy_endvi](y,0,) = 0.05 (26)

can be derived by exploiting the fact that we are
dealing with product measures, and therefore, for all
pe[0,1]:
= [Bettervgvy | vo # v A Happy_endug
AHappy_endvi](yg v,) > P
¢ [Bettervyvg | vo # v1 A Happy_endug
AHappy_endv1](y.0,) > P-
By our previous results (1) (formally justified by corol-
lary 3.4) and (17), and theorem 4.3, the probabil-
ities of the conditioning events in (23)-(26) for f1
and f2 are known to be 0.32 x (1 — 0.856) = 0.046,
0.32 x 0.856 = 0.274, (1 — 0.32) x (1 — 0.856) = 0.098
and (1 — 0.32) x 0.856 = 0.582 respectively. One fi-

nal application of Jeffrey’s rule, sanctioned by theorem

3.3, then yields
KByif2 = prob(Better f1£2) =
0.95 x 0.046 4+ 0.5 x 0.274 +
0.5 x 0.098 + 0.05 x 0.582 = 0.259,

which is a suitable result to settle the question about
which film we are going to watch.

Obviously, this example has been an extremely sim-
ple illustration of the given definitions and theorems
throughout: neither will it be possible, in more real-
istic examples, to reduce cross entropy minimization



to an application of Jeffrey’s rule, nor will the result-
ing probabilities usually be unique values rather than
intervals.

5 RELATED WORK

In [PV89] and [PV92] Paris and Vencovskd consider
basically the same inference problem as is discussed
in the present paper. They assume that two types
of probabilistic constraints on expressions in proposi-
tional logic are given: one type referring to general pro-
portions, the other to subjective beliefs about an indi-
vidual. Their approach to dealing with the dichotomy
of the probabilistic information is quite different from
the one here presented: it is proposed to transform the
constraints on the subjective beliefs about an object a
to statistical constraints conditioned on a newly intro-
duced propositional variable A representing an ideal
reference class for a, i.e. the set of all elements that are
“similar to” a. Then an additional constraint is added
that the absolute probability of this set is very small.
Thus, all the constraints can be viewed as being on one
single probability distribution. Paris and Vencovska
then explore different inference processes that can be
applied to these constraints in order to obtain a single
probability distribution on the propositional formulas.
Most notably, they consider the maximum entropy ap-
proach, and show that when it is used the resulting
conditional probability distribution on the variable A
is just the distribution on the formulas not containing
A that minimizes cross entropy with respect to the
global distribution on these formulas under the con-
straints for a (more precisely, this will be the case for
the limiting distribution when the absolute probability
of A tends to zero).

The techniques of probabilistic inference explored by
Paris and Vencovskd are quite different from the one
discussed in this paper in that, as demanded by the
uniform encoding of statistical and subjective prob-
abilities, one process of inference is applied to both
kinds of information simultaneously. This makes Paris
and Vencovska’s paradigm for probabilistic inference a
somewhat less likely framework for default reasoning
about probabilities, where it is the key issue to give an
interpretation of the subjective beliefs as a function of
the interpretation of the statistical information.

However, the mere semantic principle of interpreting
subjective beliefs via conditional probabilities on a new
reference class also allows for a separate processing of
the constraints given for the domain in general and the
constraints given with respect to the reference class.
Thus, the two approaches of interpreting the subjec-
tive beliefs held about an object as either the condi-
tional distribution on a special reference class, or as
an alternative measure on the domain as in .Z%%, ba-
sically allow for the same scope of probabilistic rea-
soning. If it is intended, though, to clearly distinguish
the reasoning about the statistics from the reasoning
about beliefs — a separation pushed to the extreme in

the probabilistic logics of Bacchus et al. and Halpern
— the second approach probably will lead to greater
conceptual clarity.

6 CONCLUSION

Z°7 is a logic that models the forming of subjective
beliefs about objects on the basis of statistical infor-
mation about the domain and already existing beliefs.
The novelty of the approach here presented lies in the
idea of interpreting constant symbols as probability
measures over the domain, which leads to semantics
that seem to be better suited to describe the interac-
tion of statistical and belief probabilities than possible
worlds semantics. In order to make effective use of
cross entropy minimization, a fairly restrictive syntax
with regard to expressing subjective beliefs was intro-

duced.

It should be pointed out, though, that #°° is open
to generalizations in various ways. Disjunctions and
negations of subjective probability sentences might be
allowed, in which case the condition vq = Tpei(a)(1")
in definition 3.5 has to be replaced by the demand that
Vg is one of the measures in the closure of Bel(a) that
minimizes cross entropy with respect to p.

Also, interpreting constant symbols as probability
measures over the domain is a feasible way to inter-
pret formulas in which statements of subjective belief
and statistical relations are arbitrarily nested, thus al-
lowing to express statements like

[prob(Better f1v) > 0.9](,) > 0.2

(“for some (> 0.2) v it is believed that f1 is very
likely (> 0.9) to be better than v). When formulas
like these are allowed, however, it is more difficult to
define what their proper default interpretation should
be, because the interaction of statistical information
and subjective beliefs can no longer be viewed as es-
sentially one-way only.
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