
In: Proceedings of UAI-94 1A Logic for Default Reasoning About ProbabilitiesManfred JaegerMax-Planck-Institut f�ur Informatik,Im Stadtwald, 66123 Saarbr�uckenAbstractA logic is de�ned that allows to express in-formation about statistical probabilities andabout degrees of belief in speci�c proposi-tions. By interpreting the two types of proba-bilities in one common probability space, thesemantics given are well suited to model thein
uence of statistical information on the for-mation of subjective beliefs. Cross entropyminimization is a key element in these se-mantics, the use of which is justi�ed by show-ing that the resulting logic exhibits some veryreasonable properties.1 INTRODUCTIONIt has often been noted that \probability" is a termwith dual use: it can be applied to the frequency ofoccurrence of a speci�c property in a large sample ofobjects, and to the degree of belief granted to a propo-sition.While some have argued that only one of these two in-terpretations captures the true meaning of probability[Jay78], others have tried to analyze both usages of theterm in their own right, and to clarify the relationshipbetween the two aspects of probability.Carnap was among the �rst to do this ([Car50]). Eventhough his interest lies primarily with probabilities assubjective beliefs (or \degrees of con�rmation"), healso formulates direct (inductive) inference as a prin-ciple to arrive at subjective beliefs on the basis of givenrelative frequencies: when it is known that objectsfrom a class C1 also are members of a class C2 with afrequency p, and a speci�c object a is believed to be-long to C1, then the given statistical information maybe used as a justi�cation for assigning p as a degree ofbelief to a's belonging to C2.When, instead of �rmly believing that a is an elementof C1, one only has several con
icting pieces of evi-dence about the true nature of a, these can be com-bined to form a degree of belief for a being in C2 by

using Je�rey's rule [Jef65], as illustrated in the follow-ing example.Example 1.1 Scanning channels on TV we havetuned in to a mystery �lm. It looks interesting, but weonly want to continue watching it, if a happy endingseems likely.By what we have seen so far, we judge the �lm to be ei-ther American, French, or English, with a likelihood of0.2, 0.6, and 0.2 respectively. From our extensive pastexperience with mystery �lms we know that 8 out of 10American �lms have a happy end, while this �gure is1 and 5 out of 10 for French and English productions,respectively.Je�rey's rule in this situation states, that our degreeof belief in a happy ending of the �lm we are currentlywatching should be given by0:2� 0:8 + 0:6� 0:1 + 0:2� 0:5 = 0:32: (1)Hence, we better switch channels.It must be noted at this place that calling the infer-ence in this example by the name of Je�rey's rule is asomewhat loose terminology: when Je�rey originallystated his rule he was concerned with updating priorsubjective beliefs to posterior subjective beliefs in thelight of newly obtained evidence, not with using statis-tical information to de�ne degrees of belief. Hence, theterms for the conditional probabilities of a happy endgiven the origin of a �lm that appear in (1) would besome prior conditional beliefs in Je�rey's rule, ratherthan statistical expressions. If, however, the funda-mental assumption is made that in the absence of anyspeci�c informationabout an object, the subjective be-liefs held about the object are governed by the statis-tical information available for the domain from whichit is taken, then conditional belief and conditional sta-tistical probability can be equated, and the rule forderiving degrees of belief from statistical informationexempli�ed by (1) be identi�ed with Je�rey's rule.Note, too, that this assumption also underlies the di-rect inference principle, which from this perspectivethen can be seen as a special case of Je�rey's rule| special both in the way prior beliefs are de�ned



2through relative frequencies and in that the new ev-idence concerning the nature of an object takes theform of one certain fact.The kind of probabilistic inference illustrated in exam-ple 1.1 might be called default reasoning about prob-abilities. While this should be clearly distinguishedfrom logical default reasoning (e.g. [McC80], [Rei80]),it shares the nonmonotinicity of these logics: in thelight of additional (probabilistic or de�nite) informa-tion, earlier inferences may be retracted.Recently, proposals have been made to incorporate thetwo kinds of probabilistic statements in an extensionof �rst-order predicate logic [Hal90], [Bac90]. Here,statistical information and subjective beliefs are mod-elled by probability measures on the domains of �rst-order structures and sets of possible worlds, respec-tively. While this is an intuitively appealing interpre-tation of the formulas, it does not allow for the kindof reasoning exempli�ed by Je�rey's rule. The proba-bility measures on the domain and the possible worldscan be chosen independently in such a way that allthe formulas in the given knowledge base are satis�ed,but no interaction between the two kinds of proba-bilistic statements takes place. Indeed, Halpern writes[Hal90]: \AlthoughL3(�) [the combined probabilisticlogic in question] allows arbitrary alternation of thetwo types of probability, the semantics does supportthe intuition that these really are two fundamentallydi�erent types of probability."An additional strategy to arrive at subjective be-liefs on the basis of statistical information is devel-oped in [Bac91], [GHK92a], [GHK92b], [BGHK92],and [BGHK93]. This strategy, which is based on di-rect inference, has the great disadvantage that it doesnot allow for any given subjective beliefs to be usedfor arriving at new degrees of belief. Hence, even Jef-frey's rule is beyond the scope of reasoning that canbe carried out in this framework. On the other hand,very speci�c degrees of belief are assigned to propo-sitions even in the absence of any information: onthe basis of an empty knowledge base, the proposi-tions American(this film) and American(this film)^Happy end(this film) would be assigned a degree ofbelief of 0.5 and 0.25 respectively.The formalism presented in this paper, though mo-tivated by similar intuitions as the above mentioned,exhibits rather di�erent properties. Among them are:� The expressive power of the language used issmaller than in [Hal90], [Bac90]. Notably, expres-sions about statistical and subjective probabilitiescan only be combined in a restricted way.� Both statistical and subjective probabilities canbe speci�ed in a knowledge base, and new proba-bilities of both types be inferred. While the statis-tical probabilities entailed by the knowledge baseessentially depend on the given statistical infor-mation only, the resulting subjective beliefs de-

pend crucially on both types of probabilistic state-ments.� When only partial statistical information is avail-able (as is usually the case), no default assump-tions about the statistical probabilities are made.As a result, it will usually only be possible to inferprobability intervals rather than unique probabil-ity values from a knowledge baseThe basic idea on which the formalism to be de-�ned in the following sections is based, is to inter-pret both types of probabilistic expressions by prob-ability measures on a common probability space.In the example above it is noticeable that boththe statements about the relative frequency forhappy endings and the subjective assignment oflikelihood to the predicates American, French andEnglish, are basically constraints on a probabil-ity measure on the formulas in the vocabularyS= fAmerican; French; English; Happy endg, where insome cases a constant \this film" enters as a param-eter. When deductions from the knowledge base aremade, it is again probabilities on these formulas thatare to be inferred. Default reasoning about probabil-ities can now be viewed as the process of selecting aprobability measure on the expressions this film 2 �(with � 2 LS, i.e. a �rst-order formula over S) thatmost closely resembles the probability measure gener-ally assigned to LS on the basis of the given statisticalinformation.While it would be desirable, to work with probabilitymeasures on the abstract syntactic structure LS itself(as has been done for terminological logics in [Jae94]),it proves much easier, in the more general frameworkof �rst-order predicate logic, to use probability mea-sures on the domain of an interpretation to induce aprobability measure on LS.2 SYNTAXAs mentioned above, it will not be possible to freelycombine expressions about the two di�erent kinds ofprobabilities. Hence, two distinct extensions of thesyntax of �rst-order logic have to be provided.The following notational conventions will be used inthe sequel: tuples (v0; : : : ; vn�1); (a0; : : : ; ak�1) ofvariable or constant symbols are abbreviated by v, a.When it is necessary to explicitly note the length ofa tuple, the notation nv; ka may be used. �(v) is usedto denote a formula � whose free variables are amongv0; : : : ; vn�1.De�nition 2.1 Let S be a vocabulary containingrelation-, function-, and constant-symbols. A statis-tical formula in S is any formula that can be con-structed from S by the syntax rules of �rst-order pred-icate logic with equality together with the new rule:



3� If �(v) and  (v) are statistical formulas in S,fvi1 ; : : : ; vikg � fv0; : : : ; vn�1g, and p 2 [0; 1],then [�(v) j  (v)]( kvi) � pis a statistical formula in S. The free variablesin this formula are the free variables of � and  without fvi1; : : : ; vikg.The set of statistical formulas in S is denoted by L�S . Astatistical formula with no free variables is a statisticalsentence.De�nition 2.2 Let S be as above, and fa0; : : : ; an�1ga set of constant symbols not in S. A subjective prob-ability sentence for a in S is any sentence of the formprob(�[a] j  [a]) � pwith �(v);  (v) 2 L�S , and p 2 [0; 1]. L�(a)S denotes theset of all these sentences.The abbreviations [� j  ](:::) � p and prob(� j  ) � pmay be used for [:� j  ](:::) � 1 � p and prob(:� j ) � 1� p respectively.Similarly, [� j  ](:::) = p; [� j  ](:::) < p and [� j ](:::) > p are de�ned. Also, prob(� j  ) = p may besubstituted for the pair of sentences prob(� j  ) � pand prob(� j  ) � p. Note, however, that prob(� j ) < p would have to be de�ned by means of thenegation of prob(� j  ) � p, and such a negation isnot within the syntax given by de�nition 2.2. Finally,[�](:::) � p and prob(�) � p are used for [� j � ](:::) � pand prob(� j � ) � p, where � is any tautology.De�nition 2.1 is standard and can be found similarlyin [Kei85], [Hal90], [Bac90]. De�nition 2.2 di�ers fromits counterparts in [Hal90] and [Bac90] in that prob(� j ) � p is seen as a statement about a distinguishedsubset of the constant symbols appearing in � and  ,and �;  are not allowed to contain, in turn, a formulaof the form prob(�0 j  0) � p0.A knowledge base KB in the language here de�ned con-sists of a �nite set �� of statistical sentences (whichwill typically also contain some purely �rst-order sen-tences), and a �nite set ��(a) of subjective probabilitysentences for a.Example 2.3 The probabilistic knowledge from ourintroductory example can be symbolized by a knowl-edge base KBf1 = ��Movies [��(f1) where f1 is a con-stant symbol standing for the unknown �lm we areconcerned with, and��Movies =[Happy endv j Americanv ^Mysteryv](v) = 0:8 (2)[Happy endv j Englishv ^Mysteryv](v) = 0:5 (3)[Happy endv j Frenchv ^Mysteryv](v) = 0:1 (4)

��(f1) :=prob(Americanf1 ^Mysteryf1) = 0:2 (5)prob(Englishf1 ^Mysteryf1) = 0:2 (6)prob(Frenchf1 ^Mysteryf1) = 0:6 (7)3 SEMANTICS3.1 OUTLINEA semantical structure in which �� can be interpretedis de�ned along the same lines as in [Kei85], [Hal90],[Bac90]:De�nition 3.1 A statistical S-structure is a structure(M; I), where� M = (M; M; �) is a probability space with do-main M, supplied with a �-algebraM and a prob-ability measure � onM.� I is an interpretation function that maps therelation-, function-, and constant-symbols in S torelations, functions and elements of M in such away that for every formula �(v) 2 L�S , the inter-pretation I(�) � Mn is measurable with respectto the product �-algebraMn.The condition imposed on I in this de�nition may seemhighly restrictive; in fact, one may wonder whetherstatistical structures in the sense of de�nition 3.1 ac-tually exist. While it is beyond the scope of this paperto embark on a thorough measure-theoretic discussionof the questions here involved, it should be pointedout, that whenever M is �nite or countably in�nite,then M can be taken to be the power set 2M, andevery subset of Mn is measurable with respect toMn.What about an interpretation for ��(a)? As was indi-cated in the introduction, subjective probability sen-tences can be seen as making assertions about a prob-ability measure on the formulas in the vocabulary S,with a just a name or parameter for this measure. Putanother way, in the context of a �xed structure (M,I),a in this interpretation may be viewed as a randomvariable with values in Mn, and ��(a) is a set of con-straints on its distribution. Since these constraintsonly concern subsets of Mn that are de�nable by for-mulas in L�S , which, by de�nition 3.1, all belong toMn,this leads to the following de�nition.De�nition 3.2 A probabilistic S-structure for a is astructure (M; I; �a);where (M; I) is a statistical S-structure, and �a is aprobability measure on Mn.Some conditions are immediate for when a probabilis-tic S-structure shall be called a model of a knowledgebase KB = �� [ ��(a): for a statistical S-structure



4(M; I), a valuation function v, and a statistical for-mula �, the relation((M; I); v) j= �is de�ned by augmenting the standard de�nition for�rst-order logic with the rule((M; I); v) j= [�(v) j  (v)]( kvi) � p i��k(f(m1; : : : ;mk) 2 Mk j((M; I); v[ km = kvi]) j= �(v) ^  (v)g)� p� �k(f(m1; : : : ;mk) 2Mk j((M; I); v[ km = kvi]) j=  (v)g):Similarly, it will be required that for a probabilisticstructure for a(M; I; �a) j= prob(�[a] j  [a]) � ponly holds, if�a(f(m1; : : : ;mn) 2Mn j (M; I) j= �[m] ^  [m]g)� p� �a(f(m1; : : : ;mn) 2Mn j (M; I) j=  [m]g):However, this mere satisfaction of the constraints in��(a) is insu�cient for �a, as it does not establish anyconnection between the measures �n and �a. If theintuition is to be formalized, that �a should resemble�n as much as possible within the limits drawn by��(a), then something more is required.First of all, the notion of \resemblance" has to be madeprecise. To this problem the following section is dedi-cated.3.2 CROSS ENTROPYCross entropy ([Kul59]) commonly is interpreted as a\measure of information dissimilarity" for two proba-bility measures [Sho86]. Usually, cross entropy is usedin a rule to update a prior estimate for the probabilitydistribution of some variable to a posterior estimatewhen some new information about the variable's ac-tual distribution has been obtained. However, bothits information theoretic interpretation and its uniqueproperties make cross entropy also the most promisingtool for bridging the gap between general statisticalknowledge and subjective beliefs.For a �-algebra M the set of probability measures onM is denoted by �M. Let �; � 2 �Mwith � � �, i.e.for every A 2 M: �(A) = 0 ) �(A) = 0. In this casethere exists a density function f for � with respect to�, and the cross entropy of � with respect to � can bede�ned by CE(�; �) = Z f lnf d�:If � 6� �, de�ne CE(�; �) := 1. For � 2 �M anda closed (with regard to the variation distance 1) and1The variation distance of �1; �2 2 �M is de�ned as theintegral R j f1� f2 j d� where � 2 �M is such that �1 � �and �2 � � (e.g. � = 1=2(�1 + �2)), and fi is a density for�i with respect to �.

convex subset N � �M, which contains at least one �with CE(�; �) <1, there is a unique �0 2 N such thatCE(�0; �) < CE(�; �) for all � 2 N; � 6= �0 [Csi75].Denote this �0 by �N(�).In the case that N is de�ned by a �nite set of con-straintsf�(Ai) � p� �(Bi) jAi;Bi 2M; pi 2 [0; 1]; i = 1; : : : ; kgthe following theorem reduces the problem of comput-ing �N(�) to a CE-minimization on a �nite probabilityspace.For a subalgebra M0 � M and � 2 �M the notation��M0 is used for the restriction of � to M0. N�M0stands for f��M0 j � 2 Ng.Theorem 3.3 Let M0 be a �nite subalgebra of Mgenerated by a partition fA1; : : : ;Akg � M of M. Let� 2 �M, and N � �M be de�ned by a set of con-straints on M0, i.e. for all � 2 �M:� 2 N , ��M0 2 N�M0:Then �N(�) is de�ned i� �N�M0(��M0) is de�ned, andin this case for every C2M:�N(�)(C) = kXi=1 �N�M0(��M0)(Ai)�(C j Ai):The proof of this theorem is basically an applicationof property 9 from [SJ81].Corollary 3.4 Let fA1; : : : ;Akg � M be a partitionof M, let N be de�ned by a set of constraintsf�(Ai) = pi j i = 1; : : : ; kg; kXi=1 pi = 1:Then, for every probability measure � on M withpi > 0 ) �(Ai) > 0 (i = 1; : : : ; k), �N(�) is the prob-ability measure obtained by applying Je�rey's rule to� and the given constraints.Corollary 3.4 is a �rst indication that cross entropymight be the appropriate tool to model default reason-ing about probabilities, and may serve as a preliminaryjusti�cation for making cross entropy minimization thecentral element of the semantics for L�S [L�(a)S now tobe de�ned.3.3 THE FINAL SEMANTICSDe�nition 3.5 Let (M; I; �a) be a probabilistic S-structure for a, KB = �� [ ��(a) a knowledge base.(M; I; �a) is a model of KB i�� (M; I) j= �� as de�ned in section 3.1.� With Bel(a) the set of probability measures onMn that satisfy the constraints in ��(a):�a = �Bel(a)(�n):



5Bel(a) always is a closed (in the topology de�ned bythe variation distance) and convex subset of �Mn. Tomake sure that this will be the case is the reason forthe restrictive syntax of L�(a)S . If it was allowed toexpress :prob(� j  ) � p for instance, then Bel(a)would need no longer be closed. Permitting disjunc-tions prob(: : :) � p _ prob(: : :) � q destroys convex-ity. Hence, by the remarks in section 3.2, there ex-ists a measure �a satisfying the condition of de�nition3.5 i� Bel(a) contains at least one measure � with� � �n. When this is not the case, then the statisti-cal S-structure (M; I) can not be extended to a modelof KB. Should this be the case for all (M; I) j= ��,then KB does not have a model.Note that Bel(a) is de�ned by constraints on the �nitesubalgebra ofMn generated by the �nitely many sub-sets of Mn de�ned by the formulas appearing in ��(a).Hence, theorem 3.3 applies to �Bel(a)(�n), and eventhough � and �a generally are probability measures onin�nite probability spaces, cross entropy minimizationonly has to be performed on �nite probability spaces.The logic de�ned by de�nitions 2.1,2.2 and 3.5 is de-noted L �� .For a knowledge base KB and a sentence � 2 L�S[L�(a)Sthe relation KBj= � is de�ned as usual.L �� is monotonic with respect to ��, but non-monotonic with respect to ��(a): if ~�� � �� and�� [ ��(a) j= �, then ~�� [ ��(a) j= � for every� 2 L�S [ L�(a)S . If, on the other hand, ~��(a) � ��(a),then �� [��(a) j= � does not imply �� [ ~��(a) j= �.4 WHY CROSS ENTROPY?Cross entropy minimization, in the past, has received aconsiderable amount of attention as a rule for updatingprobabilitymeasure. Notably, Shore and Johnson haveprovided an axiomatic description of minimum crossentropy updating [SJ80], [SJ83]. They show that, if afunction f is used to de�ne for a closed and convex setN of continuous or discrete probability measures anda prior �:�fN(�) := f� 2 N j f(�; �) = infff(� 0; �) j � 0 2 Ngg;and the mapping (�;N) 7! �fN(�) satis�es a set of �veaxioms, then the function f must in fact be equivalentto cross entropy.It is beyond the scope of this paper to also give anaxiomatic justi�cation for putting cross entropy min-imization at the core of de�nition 3.5 by formulat-ing a set of conditions that the consequence relationj= for L �� should satisfy, and then show that onlycross entropy minimization will ful�ll these conditions.Instead, the two theorems contained in this sectiondemonstrate that using cross entropy leads to very de-sirable properties for L ��, and indicate, when lookedat as axioms rather than theorems, what an axiomatic

justi�cation for the use of cross entropy in the seman-tics of L �� would look like.The two theorems are directly derived from the twocentral axioms in [SJ80], subset independence and sys-tem independence. The �rst one rephrases the prop-erty of subset independence to a statement about log-ical entailment in L ��.Theorem 4.1 Let �1(v); : : : ; �k(v) 2 LS. Let KB=�� [��(a) with�� j= 8v(�1(v) __ : : : __�k(v))(here __ is the exclusive disjunction). Let��(a) = fprob(�i[a]) � pi j i = 1; : : : ; kg[��(a)1 [ : : :[��(a)k ;where each ��(a)i is of the formfprob( ij[a] j �ij[a]) � pij j j = 1; : : : ; lkgfor some �ij with �� j= �ij ! �i. Then, for everyi 2 f1; : : : ; kg and every subjective probability formula� of the form prob( [a] j �i[a]) � p:�� [��(a)i j= � ) KB j= �:By theorem 4.1, reasoning by cases is possible in L ��under certain circumstances: if ��(a) contains subjec-tive beliefs that are each conditioned on one of severalmutually exclusive hypotheses for a, then valid infer-ences about subjective beliefs conditioned on one ofthese hypotheses can be made by ignoring the infor-mation about the other hypotheses.Example 4.2 The prospects for a happy ending ofthe mystery �lm we have been watching not being verybright, we switch to a di�erent channel where another�lm is running. This one can be easily identi�ed as anAmerican production, but it could be either a romanceor a mystery:prob(Americanf2 ^ Romancef2) = 0:5; (8)prob(Americanf2 ^Mysteryf2) = 0:5: (9)Also, we are ready to believe thatprob(Happy endf2 jAmericanf2 ^ Romancef2) = 0:95 (10)Suppose we are interested in estimatingprob(Happy endf2 j Americanf2 ^Mysteryf2): (�)Before we are able to apply the statistical rule (2) inorder to obtain this estimate, we make the additionalobservation that should f2 be a mystery, then it is notparticularly likely to contain action scenes, contrary towhat we generally expect from mystery �lms:prob(Actionf2 j Americanf2 ^Mysteryf2) = 0:5; (11)[Actionv j Americanv ^Mysteryv](v) = 0:7: (12)



6This information is relevant for our estimate of (�)because the existence of action scenes is correlated toa happy end by[Actionv jAmericanv ^Mysteryv ^ :Happy endv](v) = 0:5: (13)Let KBf2 = ~��Movies [ ��(f2) consist of ��Movies fromexample 2.3 and the new sentences (8)-(13). KBf2 isof the form de�ned in theorem 4.1 with�1(v) = Americanv ^Romancev;�2(v) = Americanv ^Mysteryv; and�3(v) = :(�1(v) _ �2(v)):By theorem 4.1 we know that everything we can inferabout (�) from the smaller knowledge base obtainedby removing (8)-(10) from KBf2, also is valid withrespect to KBf2. By elementary computations it canbe seen that~��Movies j= [Happy endv jAmericanv ^Mysteryv ^Actionv](v) = 67 ; (14)~��Movies j= [Happy endv jAmericanv ^Mysteryv ^:Actionv](v) = 23 : (15)Hence, with theorem 3.3KBf2 j= prob(Happy endf2 j Americanf2 ^Mysteryf2)= 0:5� 67 + 0:5� 23 = 1621 : (16)Also, combining (8)-(10) and (16) we getprob(Happy endf2)= 0:5� 0:95 + 0:5� 1621 � 0:856: (17)The following theorem is derived from the system in-dependence axiom.Theorem 4.3 Let KB= �� [��(a), where��(a) = ��(a0 ;:::;ak�1) [��(ak;:::;an�1);i.e. the set of subjective probability formulas fora consists of two disjoint sets for (a0; : : : ; ak�1) and(ak; : : : ; an�1). Suppose that�� [��(a0;:::;ak�1) j=prob(�1[a0; : : : ; ak�1] j  1[a0; : : : ; ak�1]) � p1; (18)�� [��(ak ;:::;an�1) j=prob(�2[ak; : : : ; an�1] j  2[ak; : : : ; an�1]) � p2: (19)ThenKB j= prob(�1[a0; : : : ; ak�1] ^ �2[ak; : : : ; an�1]j  1[a0; : : : ; ak�1] ^  2[ak; : : : ; an�1]) � p1p2: (20)Theorem 4.3 remains true, when the inequality in (18)-(20) is replaced with equality.

Corollary 4.4 For KB as in the preceding theoremand for every subjective belief formula � 2 L�(ka)S :�� [��(a0 ;:::;ak�1) j= � ) KB j= �:Roughly speaking, theorem 4.3 states, that when ��(a)does not contain any information connecting one con-stant ai with another constant aj, then these constantsare interpreted as independent. Especially, ignoringthe information about aj still leads to valid inferencesabout ai.Example 4.5 Ultimately, we want to know which ofthe two �lms f1 and f2 is likely to be the better one.Better is a predicate for which we have the axioms8v0:Betterv0v0 (21)8v0v1(v0 6= v1 ! (Betterv0v1 $ :Betterv1v0)) (22)and a useful statistic:[Betterv0v1 j Happy endv0 ^ :Happy endv1](v0;v1)= 0:95: (23)Let KBf1f2 be the union of KBf1; KBf2 and the sen-tences (21)-(23). From (21)-(23)[Betterv0v1 j v0 6= v1 ^ Happy endv0^Happy endv1](v0;v1) = 0:5 (24)[Betterv0v1 j v0 6= v1 ^ :Happy endv0^:Happy endv1](v0;v1) = 0:5 (25)[Betterv0v1 j :Happy endv0^Happy endv1](v0;v1) = 0:05 (26)can be derived by exploiting the fact that we aredealing with product measures, and therefore, for allp 2 [0; 1]:j= [Betterv0v1 j v0 6= v1 ^ Happy endv0^Happy endv1](v0;v1) � p$ [Betterv1v0 j v0 6= v1 ^ Happy endv0^Happy endv1](v0;v1) � p:By our previous results (1) (formally justi�ed by corol-lary 3.4) and (17), and theorem 4.3, the probabil-ities of the conditioning events in (23)-(26) for f1and f2 are known to be 0:32 � (1 � 0:856) = 0:046,0:32� 0:856 = 0:274, (1 � 0:32)� (1 � 0:856) = 0:098and (1 � 0:32) � 0:856 = 0:582 respectively. One �-nal application of Je�rey's rule, sanctioned by theorem3.3, then yieldsKBf1f2 j= prob(Betterf1f2) =0:95� 0:046 + 0:5� 0:274 +0:5� 0:098 + 0:05� 0:582 = 0:259;which is a suitable result to settle the question aboutwhich �lm we are going to watch.Obviously, this example has been an extremely sim-ple illustration of the given de�nitions and theoremsthroughout: neither will it be possible, in more real-istic examples, to reduce cross entropy minimization



7to an application of Je�rey's rule, nor will the result-ing probabilities usually be unique values rather thanintervals.5 RELATED WORKIn [PV89] and [PV92] Paris and Vencovsk�a considerbasically the same inference problem as is discussedin the present paper. They assume that two typesof probabilistic constraints on expressions in proposi-tional logic are given: one type referring to general pro-portions, the other to subjective beliefs about an indi-vidual. Their approach to dealing with the dichotomyof the probabilistic information is quite di�erent fromthe one here presented: it is proposed to transform theconstraints on the subjective beliefs about an object ato statistical constraints conditioned on a newly intro-duced propositional variable A representing an idealreference class for a, i.e. the set of all elements that are\similar to" a. Then an additional constraint is addedthat the absolute probability of this set is very small.Thus, all the constraints can be viewed as being on onesingle probability distribution. Paris and Vencovsk�athen explore di�erent inference processes that can beapplied to these constraints in order to obtain a singleprobability distribution on the propositional formulas.Most notably, they consider the maximumentropy ap-proach, and show that when it is used the resultingconditional probability distribution on the variable Ais just the distribution on the formulas not containingA that minimizes cross entropy with respect to theglobal distribution on these formulas under the con-straints for a (more precisely, this will be the case forthe limiting distribution when the absolute probabilityof A tends to zero).The techniques of probabilistic inference explored byParis and Vencovsk�a are quite di�erent from the onediscussed in this paper in that, as demanded by theuniform encoding of statistical and subjective prob-abilities, one process of inference is applied to bothkinds of information simultaneously. This makes Parisand Vencovsk�a's paradigm for probabilistic inference asomewhat less likely framework for default reasoningabout probabilities, where it is the key issue to give aninterpretation of the subjective beliefs as a function ofthe interpretation of the statistical information.However, the mere semantic principle of interpretingsubjective beliefs via conditional probabilities on a newreference class also allows for a separate processing ofthe constraints given for the domain in general and theconstraints given with respect to the reference class.Thus, the two approaches of interpreting the subjec-tive beliefs held about an object as either the condi-tional distribution on a special reference class, or asan alternative measure on the domain as in L ��, ba-sically allow for the same scope of probabilistic rea-soning. If it is intended, though, to clearly distinguishthe reasoning about the statistics from the reasoningabout beliefs | a separation pushed to the extreme in

the probabilistic logics of Bacchus et al. and Halpern| the second approach probably will lead to greaterconceptual clarity.6 CONCLUSIONL �� is a logic that models the forming of subjectivebeliefs about objects on the basis of statistical infor-mation about the domain and already existing beliefs.The novelty of the approach here presented lies in theidea of interpreting constant symbols as probabilitymeasures over the domain, which leads to semanticsthat seem to be better suited to describe the interac-tion of statistical and belief probabilities than possibleworlds semantics. In order to make e�ective use ofcross entropy minimization, a fairly restrictive syntaxwith regard to expressing subjective beliefs was intro-duced.It should be pointed out, though, that L �� is opento generalizations in various ways. Disjunctions andnegations of subjective probability sentences might beallowed, in which case the condition �a = �Bel(a)(�n)in de�nition 3.5 has to be replaced by the demand that�a is one of the measures in the closure of Bel(a) thatminimizes cross entropy with respect to �.Also, interpreting constant symbols as probabilitymeasures over the domain is a feasible way to inter-pret formulas in which statements of subjective beliefand statistical relations are arbitrarily nested, thus al-lowing to express statements like[prob(Betterf1v) � 0:9](v) � 0:2(\for some (� 0:2) v it is believed that f1 is verylikely (� 0:9) to be better than v). When formulaslike these are allowed, however, it is more di�cult tode�ne what their proper default interpretation shouldbe, because the interaction of statistical informationand subjective beliefs can no longer be viewed as es-sentially one-way only.AcknowledgementThe author is greatful for some helpful remarks andsuggestions received from an anonymous referee. Par-ticularly, they contained a valuable clari�cation re-garding the interrelation of direct inference and Jef-frey's rule.References[Bac90] F. Bacchus. Representing and ReasoningWith Probabilistic Knowledge. MIT Press,1990.[Bac91] F. Bacchus. Default reasoning from statis-tics. In Proc. National Conference on Ar-ti�cial Intelligence (AAAI-91), pages 392{398, 1991.[BGHK92] F. Bacchus, A. Grove, J.Y. Halpern, andD. Koller. From statistics to beliefs. In
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