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Abstract

A new method is developed to represent prob-
abilistic relations on multiple random events.

Where previously knowledge bases containing
probabilistic rules were used for this purpose,
here a probability distribution over the relations is
directly represented by a Bayesian network. By
using a powerful way of specifying conditional

probability distributions in these networks, the

resulting formalism is more expressive than the
previous ones. Particularly, it provides for con-

straints on equalities of events, and it allows to
define complex, nested combination functions.

INTRODUCTION

In case we indeed have evidence about several ob-
served events, e.gquakef;) = true, alarm(;) = true,
burglary(w-) = false, then, for the purpose of answer-
ing a queryX(w) = « about one of these events, all
evidence about other events can be ignored, and only
P(X(w) = z | F(w)) needs to be computed. For each
of these computations the same Bayesian network can be
used.

Things become much different when we also want to model
relations that may hold between two different random
events. Suppose, for instance, we also want to say some-
thing about the probability that one earthquake was stnonge
than another. For this we use the binary relatstmonger

and would like to relate the probability sfronger(, w2)

to, say, alarm(;) and alarm(.). Evidence may now
contain instantiations atrongerfor many different pairs

of states:{stronger{,ws), ..., strongerf,w,)}, and a
query may bealarm(v;). In evaluating this query, we

In a standard Bayesian network, nodes are labeled with rarhg |onger can ignore information about the other events
dom variables (r.v.sX that take values in some finite set ,, ... w,. This means, however, that if we do not want
{z1,..., 7, }. Anetwork withr.v.s(earth)quake, burglary  to impose an a priori restriction on the number of events
andalarm, each with possible valuegrue, falsg, forin- e can have evidence for, no single fixed Bayesian network
stance, then defines a joint probability distributionfaesl  with finite-range r.v.s will be sufficient to evaluate qusrie
rv.s. for arbitrary evidence sets.

Evidence £, is a set of instantiations of some of the r.v.s. A Nevertheless, the probabilistic information that we would

guery asks for the probability of a specific valu®f some
rv. X, given the instantiations in the evidence. The answepf different events may very well be expressib|e by some fi-
to this query is the conditional probabilif§(X = = | E)
in the distribution” defined by the network.

like to encode about relations between an arbitrary number

nite set of laws, applicable to an arbitrary number of events
One way of expressing such laws, which has been explored

The implicit underlying assumption we here make is that" the past ( (Breese 1992),(Poole 1993),(Haddawy 1994)),

the value assignments in the evidence and the query irfS {0 use probabilistic rules such as
stantiate theattributes of one single random event, or
object, that has been sampled (observed) according to
the distribution of the network. If, for instance; =
{quake = true, alarm = tru¢, then both instantiations are
assumed to refer to one single observed state of the worlghe intended meaning here is: for all states of the world
w, and not the facts that there was an earthquake in 1906, andw,, given thatquakew,) A ... A —alarm(w,) is

and the alarm bell is ringing right now. true, the probability that, is stronger tham, is 0.8. A

" * On leave rule-base containing expressions of this form then can be
used to construct, for each specific evidence and query,

stronger(u, v) 28 quakeéu) A quakewv)

Aalarm(u) A —alarm(v). (1)

* On leave from: Max-Planck-Institut fur Informatik, Im
Stadtwald, D-66123 Saarbriicken, Germany



a Bayesian network over binary r.vstrongefw;,w;),  velop cancer at some time, and the three placed rela-

strongefw, ws),quakéws),. . ., inwhich the answer tothe tion exposetlz, y, z), representing that orgap of per-
guery subsequently is computed using standard Bayesisson » was exposed to radiation at time(by the taking
network inference. of an x-ray, intake of radioactively contaminated food,

. . etc). Suppose, now, that for persorwe have evidence
In all the above mentioned approaches, quite strong syn: . .

) : o ; . E = {expose(r,y;,z;) | i = 1,...kj = 1,...,1},
tactic and/or semantic restrictions are imposed in the for- C

. o . herey; = y; for somei, ¢, andz; = z;; for some
malism that severely limitits expressiveness. Poole (1993) ., o .

. ; ,j'. Assume that for any specific organ multiple ex-
does not allow the general expressiveness of rules like (1 L )
. o . .. . posures ofy to radiation have a cumulative effect on the
but only combines deterministic rules with the specificatio . . : :
. " - risk of developing cancer af, so that noisy-or is not the
of certain unconditional probabilities. Haddawy(1994) al . .
. . . adequate rule to model the combined effect of instances

lows only rules in which the antecedent does not contamex osetlz, y, ;) on the probability of developing cancer
free variables that do not appear in the consequent. AS P Y5 b y Ping

pointed out by Glesner and Koller (1995), this is a severeOf y- On the other hand, developing cancer at any of the

S . various organg can be viewed as independent causes for
limitation. For instance, we can then not express by a rule ; )
. i P o developing cancer at all. Thus, a single rule of the form
like aidg#) <contactz, y) that the probability of person P ) — .
. d . cancefz) <—exposef, v, z) together with a “flat” combi-
x having aids depends on any other pergpwith whomz . . e S
: I nation rule is not sufficient to model the true probabilistic
had sexual contact. When we do permit an additional free | . .
. L : : relationships. Instead, we need to use one rule to first com-
variabley in this manner, it also has to be defined how the

probability of the consequent is affected when there exis ine for every fixed, the mstanc_es given byd|ffe_rentand
o - hen use another rule (here noisy-or) to combine the effect
multiple instantiations of; that make the antecedent true

(this question also arises when several rules with the sam%f the differenty’s.

consequent are permitted in the rule base ). In (Glesner &lo permit constraints on the equality of instantiating ele-
Koller 1995) and (Ngo, Haddawy & Helwig 1995) therefore ments, and to allow for hierarchical definitions of combina-
acombination ruldés added to the rule-base, which definestion functions, in this paper we depart from the method of
how the conditional probabilities arising from differenti  representing our information in a knowledge base contain-
stantiations, or rules, are to be combined. If the differenting different types of rules. Instead, we here use Bayesian
causal relationships described by the rules are understoatetworks with a node for every relation symbobf some

to be independent, then the combination rule typically will vocabularys, which is seen as a r.v. whose values are pos-
be noisy-or. sible interpretations of in some specific domai®. The
state space of theselational Bayesian networkberefore

The speC|f|pat|on .Of a single combmatlon rule ap_phed tocan be identified with the set of atstructures oveP), and
all sets of instantiations of applicable rules, again, does

. . N S oY its semantics is a probability distribution ovgfstructures,
not permit us to describe certain important distinctiors. | . :
. . aswere used by Halpern(1990) to interpret first-order proba
for instance, we have a rule that relasds ) to the re- e .
. . bilistic logic. Halpern and Koller(1996) have used Markov
lation contactz, y), and another rule that relatesdy z) . . :
) . networks labeled with relation symbols for representing
to the relationdonorz, y), standing for the fact that o . o AL
: ; conditional independencies in probability distributionsr
has received a blood transfusion from dongrthen the . o
- . : . . S-structures. This can be seen as a qualitative analog to the
probability computed foaidg a), using a simple combina- o . ) .
: ) : ... __Quantitative relational Bayesian networks described.here
tion rule, will depend only on the number of instantiations

for contacta, y) and fordonona, y). Particularly, we are

not able to make special provisions for the two rules to2 THE BASIC FRAMEWORK

be instantiated by the same eleménteven though the

casecontacta, b) A donoia, b) clearly has to be distin- In medical example domains it is often natural to make the
guished from the caseontacta, b) A donor(a, c), or even  domain closure assumption, i.e. to assume that the domain
contacta, b) A donoK(a, a). under consideration consists just of those objects meation

in the knowledge base. The following example highlights
3 different kind of situation, where a definite domain of
objects is given over which the free variables are to range,
yet there is no evidence about most of these objects.

In this paper a representation formalism is developed th
incorporates constraints on the equality of instantiaglhg
ements, and thereby allows us to define different probabil
ities in situations only distinguished by equalities betwe

instantiating elements. Example 2.1 Robot TBayes0.1 moves in an environment

Furthermore, our representation method will allow us toconsisting ofn distinct locations. TBayes0.1 can make di-
specify hierarchical, or nested, combination rules. ~Asre€ct moves from any locatianto any locatiory unless the
an illustrations of what this means, consider the unanfdirected) path: — y is blocked This happens to be the

predicatecancetz), representing that person will de- ~ case with probability, for all » # y. At each time step
TBayes0.1, as well as a certain number of other robots op-



erating in this domain, make one move along an unblocked(z, y) andb(z’',y') for (z,y) # (2', y'), respectivelyt(z)
pathe — y, x # y. TBayes0.1 just has completed the taskandt(x’) for  # «’, were assumed to be mutually indepen-
it was assigned to do, and is now in search of new instruceent, this defines a probability distribution over the pblesi
tions. It can receive these instructions, either by reaghin interpretationsin) of the two predicates. For example, the
terminatlocation from where a central task assigning com-probability that/ C D x D is the interpretation of is 0
puter can be accessed, or by meeting another robot that wilf (z,x) € I for somex € D, andpl)”(l — po)n(n—l)—III
assign TBayes0.1 a subtask of its own job. Unfortunatelyg|se.

TBayes0.1 only has the vaguest idea of where the terminal i . _ .
locations are, or where the other robots are headed. Thext, we hav_e to deflng the probability of interpretations
best model of its environment that it can come up With,Of 5 (/3|ven _mterpretatlons ob an/dt, the eventss(z)

is that every location: is a terminal location with proba- ands(z') are independent for # +’. Also, example 2.1
bility 1, and that any unblocked path— g is likely to contains a hight level description of how the probability of

be taken by at least one robot at any given time step witrf(#) is to be computed. Our aim now is to formalize this

probabilityp,. In order to plan its next move, TBayes0.1 computation rule in S_UCh a manner, tf_ia(s(x)) can _be _
tries to evaluate for every location the probability that computed by evaluating a single functional expression, in

going tox leads tosuccessdefined as either getting in- the same manner a8(b(z, y)) and P(t(x)) are given by
structions ate directly, or being able to access a terminal (2) and (3).

location in one more move from. Hence, the probability Since P(s(x)) depends on the interpretations fofind ¢,
of s(uccesgy) is 1 if t(erminal)z) is true, or ift(z) and  we begin with functional expressions that access these in-
—b(lockedfz, ») holds for some:. Otherwise, there stillis  terpretations. This is done by using indicator functions
a chance of(z) being true, determined by the number of Lroy(z,y) and 1y (z). Llry(e,y), for example, evalu-
incoming paths: — =, each of which is likely to be taken ates to 1 if(z, ) is in the given interpretatio(b) of b,
by another robot with probability,. Assuming a fairly  and to 0 otherwise. Though the functiof;)(x,y) has
large number of other robots, the event that- « is taken  tg pe distinguished from the logical expressidn, y), for
by some robot can be viewed as independent ftbm- = the benefit of greater readability, in the sequel the simpler
being taken by a robot, so that the overall probability thatnotation will be used for both. Thus(z, y) stands for the
another robot will reach locatianis given byl —(1—p»)*,  function1 ;) (x, y) whenever it appears within a functional
wherek =[ {z | = # =, =b(z, =)} |, i.e. by combining the expression.
individual probabilities via noisy-or. i _ ) _

In order to find a suitable functional expressibp(z) for
The foregoing example gives an informal description of how!”(5(2)), assume first tha{x) is true. Since(x) implies
the probability ofs(x) is evaluated, given the predicates (%), in this case we need to obtal(«) = 1. In the case
andt. Also, the probabilities fob andt are given. Piecing (%), the probability ofs(x) is computed by considering
all this information together (and assuming independencél! locationsz # x for which either—b(z, z) or =b(z, ).
whenever no dependence has been mentioned explicitlyf\Ny Such- that satisfies-b(x, z) A t(z) again makes ()
we obtain for every finite domaii of locations a proba- trué with probability 1. If only—b(z, z) holds, then the

bility distribution P for the {b, ¢, s}-structures oveD. location merely “contributes” a probability, to P(s(x)).
Thus, for anyz, the contribution of: to P(s(x)) is given

Our aim now is to represent this class of probability distri- py max{t(z)(1 — b(z, 2)), p2(1 — b(z, z))}. Combining all
butions in compact form as a Bayesian network with nodeghe relevant via noisy-or, we obtain the formula

b,t, ands. Given the description of the dependencies in
the example, it is clear that this network should have two Fi(x) = n-o{maxt(z)(1 — b(z, z)), po(1 — b(z, x))}
edges: one leading frofmo s, and one leading fromto s. | ;2 # 2} (4)

The more interesting problem is how to specify the condi-]c
tional probability of the possible values of each node (i.e.
the possible interpretations of the symbol at that node)Abbreviating the functional expression on the right-hand
given the values of its parent nodes. For the two parentlesside of (4) byH (z), we can finally put the two caseér)
nodes in our example this is accomplished very easily: foand—t(x) together, defining

a given domainD, and for all locations:, y € D we have

or x with —¢(z).

Fy(z) = t(e) + (1 = t(x)) H(x). (5)
P = {2 @
’ 0 ifz=y We now give a general definition of a representation lan-
P(t(z)) = pi. (3)  guage for forming functional expressions in the style of (5)

We begin by describing the general classcofnbination
Here P(b(z,y)) stands for the probability thdtz, y) be-  functionsinstances of which are the functiomso andmax
longs to the interpretation éf Similarly for P(¢(«)). Since  used above.



Definition 2.2 A combination function is any function that

is defined as containing as many copiespof [0,1] as

maps every finite multiset (i.e. a set possibly containingthere are representatiops= F;(d, d') with differenti or
multiple copies of the same element) with elements fromd’. Note thatF;(d, d’) and F;(d, d") count as different

[0,1] into [0,1].

representations even in the case that the variables folhwhic
d andd” substitute different elements do not actually ap-

Exceptn-o and max examples of combination functions pear inf;. The multiset{r(d) | z;z = z}, for instance,
aremin, the arithmetic mean of the arguments, etc. Eachcontains as many copies of the indicat¢d), as there are
combination function must include a sensible definition forelements in the domain over which it is evaluated.

its result on the empty set. For example, we here use the

conventionsi-of) = maxf) = 0, min@) = 1.

In the following, we use bold type to denote tuples of vari-
ables:® = (x1,...,x,) for somen. The number of ele-
ments in tuplex is denoted by« |. An equality constraint
c(x) for « is a quantifier free formula over the empty vocab-
ulary, i.e., a formula only containing atomic subformulés o
the formz; = x;.

Definition 2.3 The class ofprobability formulasover the
relational vocabulang is inductively defined as follows.

(i) (Constants) Each rational numbge [0, 1] is a proba-
bility formula.

(ii) (Indicator functions) For every-ary symbolr € S,
and everyn-tuplez of variablesy () is a probability
formula.

(iif) (Convex combinations) Whek,, I';, F5 are probabil-

ity formulas, then so ig", F» + (1 — F1) Fs.

(iv) (Combination functions) Wheny, . . ., F, are prob-
ability formulas,combis any combination function,
x,z are tuples of variables, and«, z) is an equal-
ity constraint, themomt{ 7y, ..., I}, | z;¢(, z)} isa
probability formula.

Note that special cases of (iii) are multiplicatiafi(= 0)
and “inversion” ; = 0, F5 = 1). The set of free variables
of a probability formula is defined in the canonical way.
The free variables ofomH. . .} are the union of the free
variables of the’;, minus the variables in.

A probability formula#' over S in the free variables: =
(21,...,z,) defines for evenp-structure over a domain
D a mappingD” — [0, 1]. The valueF'(d) ford € D" is
defined inductively over the structure 61 We here give
the details only for case (iv).

Let F(x) be of the form
comi(Fy(x, z),..., Fr(®, 2z) | z;c(x,2)} (where not
necessarily all the variables w and =z actually appear
in all the F; and in¢). In order to define/'(d), we must
specify the multiset represented by

{F(d, z),...,Fe(d,z) | z;e(d, 2)}. (6)

Let £ C DI*l be the set{d | ¢(d,d)}. For each
d € F and each € {1,...,k}, by induction hypothe-
sis, Fy(d, d') € [0, 1]. The multiset represented by (6) now

For any tautological constraint like= z, in the sequel we
simply write r.

Another borderline case that needs clarification is the case
where z is empty. Here our definition degenerates to: if
¢(d) holds, then the multis€ti; (d), . . ., Fi.(d) | 0; c(d)}
contains as many copies pf [0, 1] as there are represen-
tationsp = F;(d); itis empty if¢(d) does not hold.

By using indicator functions(x), the value ofF'(d) is
being defined in terms of the validity i# of atomic formu-
lasr(d’). A natural generalization of probability formulas
might therefore be considered, in which not only the truth
values of atomic formulas are used, but indicator functions
for arbitrary first-order formulas are allowed. As the fol-
lowing lemma shows, this provides no real generalization.

Lemma 2.4 Let¢(x) be afirst-order formula over the rela-
tional vocabularys. Then there exists a probability formula
F4(x) overS, usingmaxas the only combination function,
s.t. for every finiteS-structure 7, and everyd € DM
Fs(d) = 1iff ¢(d) holdsinZ, andFy(d) = 0 else.

Proof: By induction on the structure af. If ¢ = r(x)

for somer € S, thenFy(x) = r(z). For¢ = x1 = 4,

let Fy(zi,22) = max{l|d;z; =x,}. Conjunction
and negation are handled by multiplication and in-
version, respectively, of probability formulas. For
¢ = Jyy(=x,y) the corresponding probability formula is

Fy(e) = max Fy(z,y) | y; 7} O

Definition 2.5 A relational Bayesian networfor the (re-
lational) vocabularys' is given by a directed acyclic graph
containing one node for everye S. The node for am-ary
r € S is labeled with a probability formul&, (1, . .., z,)
over the symbols in the parent nodes-pflenoted bya(r).

The definition for the probability ob(x,y) in (2) does

not seem to quite match definition 2.5, because it contains
a distinction by cases not accounted for in definition 2.5.
However, this distinction by cases can be incorporated into
a single probability formula. If, for instance; (#) and
co(@) are two mutually exclusive and exhaustive equality
constraints, then

F(x) := max{maxX Fi(x) | §;ci(x)},

max{ Fa(x) | 0 co(=)} [ 0; 71 (7)



evaluates ta” («) for @ with ¢;(x), and toFy(x) for
with ¢a ().

Let N now be arelational Bayesian network oerLetr be
(the label of) a node iV with arity n, and letZ be aPa()-
structure over domaify. Foreveryd € D", F,(d) € [0, 1]
then is defined. Thus, for every interpretatibfx) of » in
D™ we can define

pP(I(r):= [ #@ ] (- F@),
deT(r) dg1(r)

which gives a probability distribution over interpretai®
of r, given the interpretations d?a(-). Given a fixed do-

D, what is the conditional probability?(ro(dy) | F)
of a structure satisfyingy(dy), given that it satisfies
Tl(dl), ceey —w“m(dm)')

Since for any given finite domain a relational Bayesian
network can be seen as an ordinary Bayesian network for
variables with finitely many possible values, in principle,
any inference algorithmfor standard Bayesian networks can
be used.

Unfortunately, however, direct application of any suchoalg
rithm will be inefficient, because they include a summation
over all possible values of a node, and the number of pos-
sible values here is exponential in the size of the domain.

main D, a relational Bayesian network thus defines a jointror this reason, it will often be more efficient to follow

probability distributionP over the interpretations iy of
the symbols inS, or, equivalently, a probability measure
on S-structures overD. Hence, semantically, relational
Bayesian networks are mappings of finite domaihsto
probability measures ofi-structures ovep).

Example 2.6 Reconsider the relatiorancerandexposed
as described in the introduction. Assume that N —
[0, 1] is the probability distribution that for any fixed organ
y gives the probability thag develops cancer after thah
exposure to radiation. Ldt(n) := " y(n) be the cor-
responding distribution function. Théhcan be used to de-
fine a combination functionomly by letting for a multiset
A: comlrA := T'(n), wheren is the number of nonzero el-
ements ind (counting multiplicities). Usingomb- we ob-
tain the probability formulaomby-{exposefl, y, z) | z; 7}
for the contribution of orga® to the cancer risk of. Com-
bining for all y, then

Fcancefx) = n-o{comiy{exposeti:, y, z) | z;7} | y; 7}

is a probability formula defining the risk of cancer fer
given the relatiorexposed

In the preceding example we have tacitly assumed a multi-

sorted domain, so that the variablegy, ~ range over dif-

ferent sets “people”,

organs”,

times”, respectively. We

the approach used in inference from rule-base encodings
of probabilistic knowledge, and to construct for every spe-
cific inference task an auxiliary Bayesian network whose
nodes are ground atoms in the symbols frémeach of
which with the two possible valudisieandfalse(cf.(Breese
1992),(Ngo et al. 1995)).

The reason why we here can do the same is that in the
queryry(dy) we do not ask for the probability of any spe-
cific interpretation of-y, but only for the probability of all
interpretations containind,. For the computation of this
probability, in turn, it is irrelevant to know the exact inte
pretations of parent nodesof r. Instead, we only need to
know which of those tuple#’ belong to-’, whose indicator
r'(d') is needed in the computation 6§, (d).

In order to construct such an auxiliary network, we have to
compute for some given atongd) the list of atoms'(d')

on whose truth valué’.(d) depends. One way of doing
this is to just go through a recursive evaluation/ofd),
and list all the ground atoms encountered in this evaluation
However, rather than doing this, it is useful to compute for
every relation symbot € S, and each parent relatioh of

r, an explicit description of the tuplag such thatF.(x)
depends on’(y). Such an explicit description can be given
in form of a first-order formulga,, (x, y) over the empty
vocabulary.

here do not introduce an extra formalization for dealingTo demonstrate the general method for the computation of
with many sorted domains. Itis clear that this can be donehese formulas, we show how to obtgia,;(x, y1, y2) for

easily, but would introduce an extra load of notation.

3 INFERENCE

Fy(x) as defined in (5). By induction on the structure of
F,, we compute formulapag:(x, y1,y2) that define for

a subformulaGG(«) of F, the set of(y1,y2) s.t. G(x)
depends om(y1, y2). In the end, thenpa,(xz, y1, y2) =

The inference problem we would like to solve is: given Par(z, Y1, y2)-

a relational Bayesian network for S, a finite domain
D = {dy,..
F = {Tl(dl), ceey Tk(dk), _‘rk+1(dk+1), ceey —mm(dm)}
with »; € S (not necessarily distinctf; C D (not neces-
sarily distinct) fori = 1, ..., m, and a ground atomy (dy)
(ro € S,dy C D), what is the probability of,(dy) given
ri(dy),...,—rm(dn)? More precisely: in the probabil-
ity measureP defined by N on the S- structures over

The two subformulag(z) and (1 — #(x)) of F; do not

.,dn}, an evidence set of ground literals depend orb at all; therefore we can lgta, (. )5(z, y1, y2)=

Pa1—1(e))p(, Y1, y2)= €, Wheree is some unsatisfiable for-
mula.

To obtain pay .y, y1,y2) we begin with the atomic
subformulasé(z, z) and b(z,x) of H(z), which yield
P&y (e, )6 (T, 2, Y1, Ya) () z A Yo z and



P&y(: oyp(T, 2,Y1,42) = y1 = z Ay = x respectively. from r(d) to an instantiated node (these are again given
The remaining atomic subformulag:),1, andp, appear- by the formulaspa’,,). Thus, we can construct directly
ing within themaxcombination function again only yield the minimal network needed to answer the query, without
the unsatisfiable. Skipping one trivial step where the for- first backward chaining from every atom ity and pruning
mulas for the two arguments @f (z, z) := maxX...} are  afterwards.

computed, we next obtain the formula Auxiliary networks as described here still encode finer dis-

tinctions in the instantiations of the nodes &f than is
actually needed to solve our inference problem. Consider,
for example, the case where the domain in example 2.1 con-

(after deleting some meaninglesslisjuncts). H(z) = sists often_ location§ly .._.,110},there isno _eyidence, and
n-o{M(z,z) | z;  # «} depends on ali(y,, y=) for which the query iss(/1). According to (9), the auxiliary network

there exist some # & S.t. Pans(s. - (. 2, 1, y2). Hence, will contain nodesh({y,;), b(l;, 1) forall ¢ = 2,...,10.
’ In applying standard inference techniques on this network,

P&y (T, Y1, Yo) = we distinguish e.g. the case whég,,l>),b(l2, (1) are
(= e Ays = 2) V(g1 = 2 Ays = ), (8) true andb(ly,13), b(l3,1,) are false from the case where

! ? ! ? ’ b(l1,12),b(l2,1;) are false and(ly,l3),b(ls,11) are true,
which is already the same @8, (. (¢, y1,y2). Finally, and all otherb(!1,;),b(!;, 1) have the same truth value.

paM(x,Z)b($aZay1ay2) =
(n=xzNy=2)V(ph =2zNys =)

we can simplify (8), and obtain However, for the given inference problem, this distinction
really is unnecessary, because the identity of locatioms me
pass(x, y1,y2) = tioned neither in evidence nor query is immaterial. Future

(m=aAp o)V £rAyp=12). (9) work will therefore be directed towards finding inference
techniques for relational Bayesian networks that distisigu
instantiations of the relations in the network at a higher
level of abstraction than the current auxiliary networksj a
thereby reduce the complexity of inference in terms of the
%ize of the underlying domain.

In general, the formulapa.. (xz,y) are existentialf-
formulas. It is not always possible to completely elimi-
nate the existential quantifiers as in the preceding exampl
However, itis always possible to transfopa., («, y) into
a formula so that quantifiers only appear in subformulas of
the form32"z2 = x, postulating the existence of at least 4 RECURSIVE NETWORKS
n elements. This means that for every formp&,. (x, y),
and tuplesl, d' C D, itcan be checked in time independent In the distributions defined by relational Bayesian network
of the size ofD whethema,,.(d, d') holds. of definition 2.5, the eventg a) andr(a’) with a # a’ are

_ conditionally independent, given the interpretation of th
Theformulapa,«/r/(az, y) enables usto find forevery tupie  arent relations of. This is a rather strong limitation of
the parents’(d’) of r(d) in the auxiliary network. More- e expressiveness of these networks. For instance, using

over, we can take this one step further: suppose that in thg,ese networks, we can not model a variation of example 2.1
original network¥ there is a path of length two from node i, \which the predicatelockedis symmetric:b(x, y) being

r” viaa node”’ tor. Then, in the auxiliary network, there independent fromb(y, ), b(x,y) < b(y,«) can not be
is a path of length two from a nodé(d”) viaanode’(d')  anforced. ’ ’ ’

to r(d) iff the formula
There are other interesting things that we are not able to

P& i (@, y) = F2(Pay (2, 2) A PBiri (2, Y)). model so far. Among them are random functions (the main
(10)  concern of (Haddawy 1994)), and a recursive temporal de-
is satisfied for: = d, andy = d”. Taking the disjunction pendence of a relation on itself (addressed both in (Ngo
of all formulas of the form (10) for all paths ifv leading et al. 1995) and (Glesner & Koller 1995)). In this sec-
from r” to r then yields a formulga,..(x, y) defining  tionwe define a straightforward generalization of relasion
all predecessors”(d") of a noder(d) in the auxiliary — Bayesian networks that allows us to treat all these issues in
network. a uniform way.

Using thepa,,, andpd,,, we can for given evidence and We canidentify arecursive dependence of arelation orfitsel
guery construct the auxiliary network needed to answer thas the general underlying mechanism we have to model. In
query: we begin with a node,(d,) for the query. For all the case of symmetric relations, this is a dependence of
nodes-(d) added to the network, we add all parentisl’)  r(z,y) onr(y, z). Inthe case of a temporal development,
of r(d), as defined bpa.,.. If r(d) isnotinstantiatedi’,  thisis the dependence of a predicatg =), having a time-
using the formulaga,,., we check whether the subgraph variable as its first argument, e — 1, #). Functions can
rooted atr(d) contains a node instantiatedin If thisis  be seen as special relatiofis:, i), where for everye there

the case, we add all successors-gf) that lie on a path  exists exactly ong, s.t. r(«, y) is true. Thus, for every,



r(x, y) depends on alt(zx, y') in that exactly one of these and thatr(¢,, =) shall hold with probabilityp, for all =,
atoms must be true. whereas(¢;41, ) has probability, if »(¢;, ) holds, and

. . . _probability p» else. In order to define the probability of
It is clear that there is no fundamental problem in model (1, 2) by a probability formula, the case= ¢, must be

ing such recursive dependencies within a Bayesian networgistinguished from the case— . i > 1. For this we
framework, as long as the recursive dependency(ef) use the probability formulay(¢) — m_ax{l 1 s(t, 1)1

on 7“(1/1)1 . .7(y,;) does not produce any cycles. Most ob- \{yhich evaluates to O far=ty, and to 1 fort = ¢4, ..., 1,.
viously, in the case of a temporal dependency, the use

r(t — 1, @) in a definition of the probability of (¢, ) does We can now use the formula

not pose a problem, as long as a non-recursive definitionof g, (t,2)=(1— Fo(t))po +

the probability ofr(0, ) is provided. Fotymax{r(t', @)pr + (1 — r(t', 2))ps

To make the recursive dependencyr¢f, y) onr(y, ) in |t s(t' 1)}

a symmetric relation similarly well-founded, we can use

a total order< on the domain. Then we can generate ato define the probability of(t, ).

random symmetric relation by first defining the probability Finally, for a functional relation(z, y), suppose that we

of r(z,y) with <y, and then the (0,1-valued) probability 4re given a domain, together with the interpretations of
of r(y, x) givenr(x, y). Now consider the case of arandom

/ ; ) constant symbols,, .. ., v,, and a strict total ordet;, s.t.
function r(z, y) with pOSS|b_Ie valuey € {u, ..., “k}_" v; < v < ...< v,. Now considerthe probability formula
Here, too, we can make the interdependence of the different
r(@,y) acyclic by using a total order ofvy, ..., v}, and Fre,y)=(1—maX{r(x,z)|z;2 < y}) -
assigning a truth value te(x, v;) by taking into account maxmaxp; | 0;y = vi1,...,

the already defined truth values ez, v;) for all v; that

precedey; in that order. maxX{pn | 05y = va } | 057}

From these examples we see that what we essentially neetipe first factor in this formula tests whethefa, =) al-
in order to extend our framework to cover a great vari-ready is true for some possible value< y. If this is the
ety of interesting specific forms of probability distribois  case, then the probability of =, y) given by Fy.(x, y) is
over S-structures, are well-founded orderings on tuples ofg, Otherwise, the probability of(z, y) is p; iff y = v;.
domain elements. These well-founded orderings can behe probability that by this procedure the argumetis as-
supplied via rigid relations on the domain, i.e. fixed, prede signed the value; thenis(1—p;)(1—ps) ... (1—pi_1)pi.
termined relations that are not generated probabilisfical By a suitable choice of theg; any probability distribution
Indeed, one such relation we already have used throughouyer they; can be generated.

the equality relation. It is therefore natural to extend our ) ) o _
framework by allowing additional relations that are to be "€ given examples motivate a generalization of relational
used in the same way as the equality predicate has been efd@yesian networks. For this, I&tbe a vocabulary contain-
ployed, namely, in constraints for combination functions.iNd relationand constant symbotsa relational vocabulary

Also, fixed constants will be needed as the possible value®ith RN.S = 0. An k-constraint(x) for « is a quantifier-
of random functions. free R-formula. Define the class dt-probability formulas

) ) ) over S precisely as in definition 2.3, with “equality con-
For the case of a binary symmetric relatie(, y), assume,  straint” replaced by ®-constraint”.

as above, that we are given a total (non-strict) ordesn

the domain. A probability formula that defines a proba-Definition 4.1 Let R, S be as above. fecursive relational
bility distribution concentrated on symmetric relatioand  Bayesian network fof' with E-constraintsis given by a
making r(xz1, 22) true with probabilityp for all (z1,22),  directed acyclic graph containing one node for everg
thenis S. The node for am-ary r € S is labeled with ank-

Py, ) =max{max(p | 0: 21 < 2}, (11) probability formulaF, (z1, ..., z,) overPa() U {r}.

maxr(zz, z1) | 0; -z < za} | 057} The semantics of a recursive relational Bayesian network
is a bit more complicated than that of relational Bayesian
networks. The latter defined a mapping of domains
into probability measures of-structures overD. Re-
cursive relational Bayesian networks essentially define a
mapping of R-structuresZ into probability measures on
For the temporal example, assume that the domain contairts-expansions of. This mapping, however, is only defined

n + 1 time pointsty, .. ., t,, and a successor relatien= for R-structures whose interpretations of the symbol&in
{(tiyti+1) | 0 < i < n—1} onthet,’s. Assume that(z, =) lead to well-founded recursive definitions of the probabil-
is a relation with a time parameter as the first argumentities for ther-atoms ¢ € 5). If, for instance,R = {<},

As in (7), here a nestettaX . . . }-function is used in order
tomodel a distinctionby cases. The firstinmaxfunction
evaluates t if 1 < z-, and to 0 else. The secomthax
function is equal to(z2, z1) if 1 > »2, and O else.



and & is an R-structure in which there exist two elements straints, and to specify complex combinations and nestings
di,ds, s.t. neitherd; < dy, nord, < dy, then (11) does of combination functions. It is semantically more transpar
not define a probability measure ¢n}-expansions o, ent, because a relational Bayesian network directly defines
because the probability of(d;, d2) gets defined in terms aunique probability distribution ovef-structures, whereas

of r(dz, d1), and vice versa. the semantics of a probabilistic rule base usually are only
implicitly defined through a transformation into an auxijia

. : ,
As in section 3, for every’ € Pa() U {r} a formula Bayesian network.

pa-- (@, y) can be computed that defines forisstructure
% andd C D the tuplesd’ C D, s.t. F,.(d) depends on Inference from relational Bayesian networks by auxiliary
'(d"). While in section 3 existential formulas over the network construction is as efficient as inference (by essen-
empty vocabulary were obtained, for recursive relationattially the same method) in rule based formalisms. It may
networks thepa,,.. are existential formulas ovet. be hoped that in the case where this inference procedure

The definitions of the probabilities. (d) are well-founded jﬁ\eon;Z ;gﬁqa;ﬁzigizrﬁ’o,?;?ﬁm;g; ilr:irt?\Z g\(/)ir(;];rs:se rgﬁftng\];v
for d C D iff the relation Z(pa.,) = {(d,d) | '

pa..(d, &) holds inZ} is acyclic. A recursive relational representation paradigm will lead to more efficient infer-

Bayesian networky thus defines a probability measure on ence techniques.
S-expansions of thos&-structures?, for which the rela-
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