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Abstract

A new method is developed to represent prob-
abilistic relations on multiple random events.
Where previously knowledge bases containing
probabilistic rules were used for this purpose,
here a probabilitydistributionover the relations is
directly represented by a Bayesian network. By
using a powerful way of specifying conditional
probability distributions in these networks, the
resulting formalism is more expressive than the
previous ones. Particularly, it provides for con-
straints on equalities of events, and it allows to
define complex, nested combination functions.

1 INTRODUCTION

In a standard Bayesian network, nodes are labeled with ran-
dom variables (r.v.s)X that take values in some finite setfx1; : : : ; xng. A network with r.v.s(earth)quake, burglary,
andalarm, each with possible valuesftrue, falseg, for in-
stance, then defines a joint probability distribution for these
r.v.s.

Evidence,E, is a set of instantiationsof some of the r.v.s. A
query asks for the probability of a specific valuex of some
r.v. X, given the instantiations in the evidence. The answer
to this query is the conditional probabilityP (X = x j E)
in the distributionP defined by the network.

The implicit underlying assumption we here make is that
the value assignments in the evidence and the query in-
stantiate theattributes of one single random event, or
object, that has been sampled (observed) according to
the distribution of the network. If, for instance,E =fquake = true, alarm = trueg, then both instantiations are
assumed to refer to one single observed state of the world!, and not the facts that there was an earthquake in 1906,
and the alarm bell is ringing right now.� On leave from: Max-Planck-Institut für Informatik, Im
Stadtwald, D-66123 Saarbrücken, Germany

In case we indeed have evidence about several ob-
served events, e.g.quake(!1) = true, alarm(!1) = true,
burglary(!2) = false, then, for the purpose of answer-
ing a queryX(!) = x about one of these events, all
evidence about other events can be ignored, and onlyP (X(!) = x j E(!)) needs to be computed. For each
of these computations the same Bayesian network can be
used.

Things become much different when we also want to model
relations that may hold between two different random
events. Suppose, for instance, we also want to say some-
thing about the probability that one earthquake was stronger
than another. For this we use the binary relationstronger,
and would like to relate the probability ofstronger(!1; !2)
to, say, alarm(!1) and alarm(!2). Evidence may now
contain instantiations ofstrongerfor many different pairs
of states:fstronger(!1; !2); : : : ; stronger(!1; !n)g, and a
query may bealarm(!1). In evaluating this query, we
no longer can ignore information about the other events!2; : : : ; !n. This means, however, that if we do not want
to impose an a priori restriction on the number of events
we can have evidence for, no single fixed Bayesian network
with finite-range r.v.s will be sufficient to evaluate queries
for arbitrary evidence sets.

Nevertheless, the probabilistic information that we would
like to encode about relations between an arbitrary number
of different events may very well be expressible by some fi-
nite set of laws, applicable to an arbitrary number of events.
One way of expressing such laws, which has been explored
in the past ( (Breese 1992),(Poole 1993),(Haddawy 1994)),
is to use probabilistic rules such as

stronger(u; v) 0:8 � quake(u) ^ quake(v)^alarm(u) ^ :alarm(v): (1)

The intended meaning here is: for all states of the world!1 and !2, given thatquake(!1) ^ : : : ^ :alarm(!2) is
true, the probability that!1 is stronger than!2 is 0.8. A
rule-base containing expressions of this form then can be
used to construct, for each specific evidence and query,



a Bayesian network over binary r.v.sstronger(!1; !2),
stronger(!1; !3),quake(!3),. . . , in which the answer to the
query subsequently is computed using standard Bayesian
network inference.

In all the above mentioned approaches, quite strong syn-
tactic and/or semantic restrictions are imposed in the for-
malism that severely limit its expressiveness. Poole (1993)
does not allow the general expressiveness of rules like (1),
but only combines deterministic rules with the specification
of certain unconditional probabilities. Haddawy(1994) al-
lows only rules in which the antecedent does not contain
free variables that do not appear in the consequent. As
pointed out by Glesner and Koller (1995), this is a severe
limitation. For instance, we can then not express by a rule
like aids(x) p contact(x; y) that the probability of personx having aids depends on any other persony, with whomx
had sexual contact. When we do permit an additional free
variabley in this manner, it also has to be defined how the
probability of the consequent is affected when there exist
multiple instantiations ofy that make the antecedent true
(this question also arises when several rules with the same
consequent are permitted in the rule base ). In (Glesner &
Koller1995) and (Ngo, Haddawy & Helwig 1995) therefore
a combination ruleis added to the rule-base, which defines
how the conditional probabilities arising from different in-
stantiations, or rules, are to be combined. If the different
causal relationships described by the rules are understood
to be independent, then the combination rule typically will
be noisy-or.

The specification of a single combination rule applied to
all sets of instantiations of applicable rules, again, does
not permit us to describe certain important distinctions. If,
for instance, we have a rule that relatesaids(x) to the re-
lation contact(x; y), and another rule that relatesaids(x)
to the relationdonor(x; y), standing for the fact thatx
has received a blood transfusion from donory, then the
probability computed foraids(a), using a simple combina-
tion rule, will depend only on the number of instantiations
for contact(a; y) and fordonor(a; y). Particularly, we are
not able to make special provisions for the two rules to
be instantiated by the same elementb, even though the
casecontact(a; b) ^ donor(a; b) clearly has to be distin-
guished from the casecontact(a; b) ^ donor(a; c), or even
contact(a; b)^ donor(a; a).
In this paper a representation formalism is developed that
incorporates constraints on the equality of instantiatingel-
ements, and thereby allows us to define different probabil-
ities in situations only distinguished by equalities between
instantiating elements.

Furthermore, our representation method will allow us to
specify hierarchical, or nested, combination rules. As
an illustrations of what this means, consider the unary
predicatecancer(x), representing that personx will de-

velop cancer at some time, and the three placed rela-
tion exposed(x; y; z), representing that organy of per-
sonx was exposed to radiation at timez (by the taking
of an x-ray, intake of radioactively contaminated food,
etc). Suppose, now, that for personx we have evidenceE = fexposed(x; yi; zj) j i = 1; : : : ; k; j = 1; : : : ; lg,
where yi = yi0 for some i; i0, and zj = zj0 for somej; j0. Assume that for any specific organy, multiple ex-
posures ofy to radiation have a cumulative effect on the
risk of developing cancer ofy, so that noisy-or is not the
adequate rule to model the combined effect of instances
exposed(x; y; zj) on the probability of developing cancer
of y. On the other hand, developing cancer at any of the
various organsy can be viewed as independent causes for
developing cancer at all. Thus, a single rule of the form
cancer(x) p exposed(x; y; z) together with a “flat” combi-
nation rule is not sufficient to model the true probabilistic
relationships. Instead, we need to use one rule to first com-
bine for every fixedy the instances given by differentz, and
then use another rule (here noisy-or) to combine the effect
of the differenty’s.

To permit constraints on the equality of instantiating ele-
ments, and to allow for hierarchical definitions of combina-
tion functions, in this paper we depart from the method of
representing our information in a knowledge base contain-
ing different types of rules. Instead, we here use Bayesian
networks with a node for every relation symbolr of some
vocabularyS, which is seen as a r.v. whose values are pos-
sible interpretations ofr in some specific domainD. The
state space of theserelational Bayesian networkstherefore
can be identified with the set of allS-structures overD, and
its semantics is a probability distribution overS-structures,
as wereused by Halpern(1990) to interpret first-orderproba-
bilistic logic. Halpern and Koller(1996) have used Markov
networks labeled with relation symbols for representing
conditional independencies in probabilitydistributionsoverS-structures. This can be seen as a qualitative analog to the
quantitative relational Bayesian networks described here.

2 THE BASIC FRAMEWORK

In medical example domains it is often natural to make the
domain closure assumption, i.e. to assume that the domain
under consideration consists just of those objects mentioned
in the knowledge base. The following example highlights
a different kind of situation, where a definite domain of
objects is given over which the free variables are to range,
yet there is no evidence about most of these objects.

Example 2.1 Robot TBayes0.1 moves in an environment
consisting ofn distinct locations. TBayes0.1 can make di-
rect moves from any locationx to any locationy unless the
(directed) pathx ! y is blocked. This happens to be the
case with probabilityp0 for all x 6= y. At each time step
TBayes0.1, as well as a certain number of other robots op-



erating in this domain, make one move along an unblocked
pathx! y; x 6= y. TBayes0.1 just has completed the task
it was assigned to do, and is now in search of new instruc-
tions. It can receive these instructions, either by reaching a
terminal-location from where a central task assigning com-
puter can be accessed, or by meeting another robot that will
assign TBayes0.1 a subtask of its own job. Unfortunately,
TBayes0.1 only has the vaguest idea of where the terminal
locations are, or where the other robots are headed. The
best model of its environment that it can come up with,
is that every locationx is a terminal location with proba-
bility p1, and that any unblocked pathx ! y is likely to
be taken by at least one robot at any given time step with
probabilityp2. In order to plan its next move, TBayes0.1
tries to evaluate for every locationx the probability that
going tox leads tosuccess, defined as either getting in-
structions atx directly, or being able to access a terminal
location in one more move fromx. Hence, the probability
of s(uccess)(x) is 1 if t(erminal)(x) is true, or if t(z) and:b(locked)(x; z) holds for somez. Otherwise, there still is
a chance ofs(x) being true, determined by the number of
incoming pathsz ! x, each of which is likely to be taken
by another robot with probabilityp2. Assuming a fairly
large number of other robots, the event thatz ! x is taken
by some robot can be viewed as independent fromz0 ! x
being taken by a robot, so that the overall probability that
another robot will reach locationx is given by1�(1�p2)k,
wherek =j fz j z 6= x;:b(z; x)g j, i.e. by combining the
individual probabilities via noisy-or.

The foregoing example gives an informal description of how
the probability ofs(x) is evaluated, given the predicatesb
andt. Also, the probabilities forb andt are given. Piecing
all this information together (and assuming independence
whenever no dependence has been mentioned explicitly),
we obtain for every finite domainD of locations a proba-
bility distributionP for thefb; t; sg-structures overD.

Our aim now is to represent this class of probability distri-
butions in compact form as a Bayesian network with nodesb; t, ands. Given the description of the dependencies in
the example, it is clear that this network should have two
edges: one leading fromb to s, and one leading fromt to s.
The more interesting problem is how to specify the condi-
tional probability of the possible values of each node (i.e.
the possible interpretations of the symbol at that node),
given the values of its parent nodes. For the two parentless
nodes in our example this is accomplished very easily: for
a given domainD, and for all locationsx; y 2 D we haveP (b(x; y)) = � p0 if x 6= y0 if x = y (2)P (t(x)) = p1: (3)

HereP (b(x; y)) stands for the probability that(x; y) be-
longs to the interpretation ofb. Similarly forP (t(x)). Since

b(x; y) andb(x0; y0) for (x; y) 6= (x0; y0), respectivelyt(x)
andt(x0) for x 6= x0, were assumed to be mutually indepen-
dent, this defines a probabilitydistributionover the possible
interpretations inD of the two predicates. For example, the
probability thatI � D � D is the interpretation ofb is 0
if (x; x) 2 I for somex 2 D, andpjIj0 (1 � p0)n(n�1)�jIj
else.

Next, we have to define the probability of interpretations
of s. Given interpretations ofb and t, the eventss(x)
ands(x0) are independent forx 6= x0. Also, example 2.1
contains a hight level description of how the probability ofs(x) is to be computed. Our aim now is to formalize this
computation rule in such a manner, thatP (s(x)) can be
computed by evaluating a single functional expression, in
the same manner asP (b(x; y)) andP (t(x)) are given by
(2) and (3).

SinceP (s(x)) depends on the interpretations ofb and t,
we begin with functional expressions that access these in-
terpretations. This is done by using indicator functions1I(b)(x; y) and1I(t)(x). 1I(b)(x; y), for example, evalu-
ates to 1 if(x; y) is in the given interpretationI(b) of b,
and to 0 otherwise. Though the function1I(b)(x; y) has
to be distinguished from the logical expressionb(x; y), for
the benefit of greater readability, in the sequel the simpler
notation will be used for both. Thus,b(x; y) stands for the
function1I(b)(x; y) whenever it appears within a functional
expression.

In order to find a suitable functional expressionFs(x) forP (s(x)), assume first thatt(x) is true. Sincet(x) impliess(x), in this case we need to obtainFs(x) = 1. In the case:t(x), the probability ofs(x) is computed by considering
all locationsz 6= x for which either:b(x; z) or :b(z; x).
Any suchz that satisfies:b(x; z)^ t(z) again makess(x)
true with probability 1. If only:b(z; x) holds, then the
locationz merely “contributes” a probabilityp2 toP (s(x)).
Thus, for anyz, the contribution ofz to P (s(x)) is given
by maxft(z)(1� b(x; z)); p2(1� b(z; x))g. Combining all
the relevantz via noisy-or, we obtain the formulaFs(x) = n-ofmaxft(z)(1� b(x; z)); p2(1� b(z; x))gj z; z 6= xg (4)

for x with :t(x).
Abbreviating the functional expression on the right-hand
side of (4) byH(x), we can finally put the two casest(x)
and:t(x) together, definingFs(x) = t(x) + (1� t(x))H(x): (5)

We now give a general definition of a representation lan-
guage for forming functional expressions in the style of (5).
We begin by describing the general class ofcombination
functions, instances of which are the functionsn-oandmax
used above.



Definition 2.2 A combination function is any function that
maps every finite multiset (i.e. a set possibly containing
multiple copies of the same element) with elements from
[0,1] into [0,1].

Exceptn-o and max, examples of combination functions
aremin, the arithmetic mean of the arguments, etc. Each
combination function must include a sensible definition for
its result on the empty set. For example, we here use the
conventionsn-o; = max; = 0, min; = 1.

In the following, we use bold type to denote tuples of vari-
ables:x = (x1; : : : ; xn) for somen. The number of ele-
ments in tuplex is denoted byjx j. An equality constraintc(x) forx is a quantifier free formula over the empty vocab-
ulary, i.e., a formula only containing atomic subformulas of
the formxi = xj.
Definition 2.3 The class ofprobability formulasover the
relational vocabularyS is inductively defined as follows.

(i) (Constants) Each rational numberq 2 [0; 1] is a proba-
bility formula.

(ii) (Indicator functions) For everyn-ary symbolr 2 S,
and everyn-tuplex of variables,r(x) is a probability
formula.

(iii) (Convex combinations) WhenF1; F2; F3 are probabil-
ity formulas, then so isF1F2 + (1� F1)F3.

(iv) (Combination functions) WhenF1; : : : ; Fk are prob-
ability formulas,comb is any combination function,x,z are tuples of variables, andc(x; z) is an equal-
ity constraint, thencombfF1; : : : ; Fk j z; c(x; z)g is a
probability formula.

Note that special cases of (iii) are multiplication (F3 = 0)
and “inversion” (F2 = 0; F3 = 1). The set of free variables
of a probability formula is defined in the canonical way.
The free variables ofcombf: : :g are the union of the free
variables of theFi, minus the variables inz.

A probability formulaF overS in the free variablesx =(x1; : : : ; xn) defines for everyS-structureD over a domainD a mappingDn 7! [0; 1]. The valueF (d) for d 2 Dn is
defined inductively over the structure ofF . We here give
the details only for case (iv).

Let F (x) be of the form
combfF1(x; z); : : : ; Fk(x; z) j z; c(x; z)g (where not
necessarily all the variables inx and z actually appear
in all theFi and inc). In order to defineF (d), we must
specify the multiset represented byfF1(d; z); : : : ; Fk(d; z) j z; c(d; z)g: (6)

Let E � Djzj be the setfd0 j c(d;d0)g. For eachd0 2 E and eachi 2 f1; : : : ; kg, by induction hypothe-
sis,Fi(d;d0) 2 [0; 1]. The multiset represented by (6) now

is defined as containing as many copies ofp 2 [0; 1] as
there are representationsp = Fi(d;d0) with different i ord0. Note thatFi(d;d0) andFi(d;d00) count as different
representations even in the case that the variables for whichd0 andd00 substitute different elements do not actually ap-
pear inFi. The multisetfr(d) j z; z = zg, for instance,
contains as many copies of the indicatorr(d), as there are
elements in the domain over which it is evaluated.

For any tautological constraint likez = z, in the sequel we
simply write� .

Another borderline case that needs clarification is the case
wherez is empty. Here our definition degenerates to: ifc(d) holds, then the multisetfF1(d); : : : ; Fk(d) j ;; c(d)g
contains as many copies ofp 2 [0; 1] as there are represen-
tationsp = Fi(d); it is empty if c(d) does not hold.

By using indicator functionsr(x), the value ofF (d) is
being defined in terms of the validity inD of atomic formu-
lasr(d0). A natural generalization of probability formulas
might therefore be considered, in which not only the truth
values of atomic formulas are used, but indicator functions
for arbitrary first-order formulas are allowed. As the fol-
lowing lemma shows, this provides no real generalization.

Lemma 2.4 Let�(x) be a first-order formula over the rela-
tional vocabularyS. Then there exists a probability formulaF�(x) overS, usingmaxas the only combination function,
s.t. for every finiteS-structureD, and everyd 2 Djxj:F�(d) = 1 iff �(d) holds inD, andF�(d) = 0 else.

Proof: By induction on the structure of�. If � � r(x)
for somer 2 S, thenF�(x) = r(x). For� � x1 = x2,
let F�(x1; x2) = maxf1 j ;;x1 = x2g. Conjunction
and negation are handled by multiplication and in-
version, respectively, of probability formulas. For� � 9y (x; y) the corresponding probability formula isF�(x) = maxfF (x; y) j y; �g. 2
Definition 2.5 A relational Bayesian networkfor the (re-
lational) vocabularyS is given by a directed acyclic graph
containing one node for everyr 2 S. The node for ann-aryr 2 S is labeled with a probability formulaFr(x1; : : : ; xn)
over the symbols in the parent nodes ofr, denoted byPa(r).
The definition for the probability ofb(x; y) in (2) does
not seem to quite match definition 2.5, because it contains
a distinction by cases not accounted for in definition 2.5.
However, this distinction by cases can be incorporated into
a single probability formula. If, for instance,c1(x) andc2(x) are two mutually exclusive and exhaustive equality
constraints, thenF (x) := maxfmaxfF1(x) j ;; c1(x)g;

maxfF2(x) j ;; c2(x)g j ;; �g (7)



evaluates toF1(x) for x with c1(x), and toF2(x) for x
with c2(x).
LetN now bearelational Bayesian network overS. Letr be
(the label of) a node inN with arityn, and letD be aPa(r)-
structure over domainD. For everyd 2 Dn,Fr(d) 2 [0; 1]
then is defined. Thus, for every interpretationI(r) of r inDn we can defineP (I(r)) := Yd2I(r)Fr(d) Yd 62I(r)(1� Fr(d));
which gives a probability distribution over interpretations
of r, given the interpretations ofPa(r). Given a fixed do-
mainD, a relational Bayesian network thus defines a joint
probability distributionP over the interpretations inD of
the symbols inS, or, equivalently, a probability measure
on S-structures overD. Hence, semantically, relational
Bayesian networks are mappings of finite domainsD into
probability measures onS-structures overD.

Example 2.6 Reconsider the relationscancerandexposed
as described in the introduction. Assume that
 : N ![0; 1] is the probability distribution that for any fixed organy gives the probability thaty develops cancer after thenth
exposure to radiation. Let�(n) :=Pni=0 
(n) be the cor-
responding distribution function. Then� can be used to de-
fine a combination functioncomb� by letting for a multisetA: comb�A := �(n), wheren is the number of nonzero el-
ements inA (counting multiplicities). Usingcomb� we ob-
tain the probability formulacomb�fexposed(x; y; z) j z; �g
for the contribution of organy to the cancer risk ofx. Com-
bining for all y, thenFcancer(x) = n-ofcomb�fexposed(x; y; z) j z; �g j y; �g
is a probability formula defining the risk of cancer forx,
given the relationexposed.

In the preceding example we have tacitly assumed a multi-
sorted domain, so that the variablesx; y; z range over dif-
ferent sets “people”, “organs”, “times”, respectively. We
here do not introduce an extra formalization for dealing
with many sorted domains. It is clear that this can be done
easily, but would introduce an extra load of notation.

3 INFERENCE

The inference problem we would like to solve is: given
a relational Bayesian networkN for S, a finite domainD = fd1; : : : ; dng, an evidence set of ground literalsE = fr1(d1); : : : ; rk(dk);:rk+1(dk+1); : : : ;:rm(dm)g
with ri 2 S (not necessarily distinct),di � D (not neces-
sarily distinct) fori = 1; : : : ;m, and a ground atomr0(d0)
(r0 2 S;d0 � D), what is the probability ofr0(d0) givenr1(d1); : : : ;:rm(dm)? More precisely: in the probabil-
ity measureP defined byN on theS- structures over

D, what is the conditional probabilityP (r0(d0) j E)
of a structure satisfyingr0(d0), given that it satisfiesr1(d1); : : : ;:rm(dm)?
Since for any given finite domain a relational Bayesian
network can be seen as an ordinary Bayesian network for
variables with finitely many possible values, in principle,
any inference algorithmfor standard Bayesian networkscan
be used.

Unfortunately,however, direct applicationof any such algo-
rithm will be inefficient, because they include a summation
over all possible values of a node, and the number of pos-
sible values here is exponential in the size of the domain.
For this reason, it will often be more efficient to follow
the approach used in inference from rule-base encodings
of probabilistic knowledge, and to construct for every spe-
cific inference task an auxiliary Bayesian network whose
nodes are ground atoms in the symbols fromS, each of
which with the two possiblevaluestrueandfalse(cf.(Breese
1992),(Ngo et al. 1995)).

The reason why we here can do the same is that in the
queryr0(d0) we do not ask for the probability of any spe-
cific interpretation ofr0, but only for the probability of all
interpretations containingd0. For the computation of this
probability, in turn, it is irrelevant to know the exact inter-
pretations of parent nodesr0 of r. Instead, we only need to
know which of those tuplesd0 belong tor0, whose indicatorr0(d0) is needed in the computation ofFr0(d0).
In order to construct such an auxiliary network, we have to
compute for some given atomr(d) the list of atomsr0(d0)
on whose truth valueFr(d) depends. One way of doing
this is to just go through a recursive evaluation ofFr(d),
and list all the ground atoms encountered in this evaluation.
However, rather than doing this, it is useful to compute for
every relation symbolr 2 S, and each parent relationr0 ofr, an explicit description of the tuplesy, such thatFr(x)
depends onr0(y). Such an explicit description can be given
in form of a first-order formulaparr0 (x;y) over the empty
vocabulary.

To demonstrate the general method for the computation of
these formulas, we show how to obtainpasb(x; y1; y2) forFs(x) as defined in (5). By induction on the structure ofFs, we compute formulaspaGb(x; y1; y2) that define for
a subformulaG(x) of Fs the set of(y1; y2) s.t. G(x)
depends onb(y1; y2). In the end, then,pasb(x; y1; y2) :�
paFsb(x; y1; y2).
The two subformulast(x) and (1 � t(x)) of Fs do not
depend onb at all; therefore we can letpat(x)b(x; y1; y2)�
pa(1�t(x))b(x; y1; y2)� �, where� is some unsatisfiable for-
mula.

To obtain paH(x)b(x; y1; y2) we begin with the atomic
subformulasb(x; z) and b(z; x) of H(x), which yield
pab(x;z)b(x; z; y1; y2) � y1 = x ^ y2 = z and



pab(z;x)b(x; z; y1; y2) � y1 = z ^ y2 = x respectively.
The remaining atomic subformulast(z),1, andp2 appear-
ing within themaxcombination function again only yield
the unsatisfiable�. Skipping one trivial step where the for-
mulas for the two arguments ofM (x; z) :� maxf: : :g are
computed, we next obtain the formula

paM(x;z)b(x; z; y1; y2) �(y1 = x^ y2 = z) _ (y1 = z ^ y2 = x)
(after deleting some meaningless�-disjuncts). H(x) =
n-ofM (x; z) j z; z 6= xg depends on allb(y1; y2) for which
there exist somez 6= x s.t. paM(x;z)b(x; z; y1; y2). Hence,

paH(x)b(x; y1; y2) �9z((y1 = x ^ y2 = z) _ (y1 = z ^ y2 = x)); (8)

which is already the same aspaFs(x)b(x; y1; y2). Finally,
we can simplify (8), and obtain

pasb(x; y1; y2) �(y1 = x ^ y2 6= x) _ (y1 6= x ^ y2 = x): (9)

In general, the formulasparr0(x;y) are existential;-
formulas. It is not always possible to completely elimi-
nate the existential quantifiers as in the preceding example.
However, it is always possible to transformparr0(x;y) into
a formula so that quantifiers only appear in subformulas of
the form9�nxx = x, postulating the existence of at leastn elements. This means that for every formulaparr0(x;y),
and tuplesd;d0 � D, it can be checked in time independent
of the size ofD whetherparr0(d;d0) holds.

The formulaparr0(x;y) enables us to find for every tupled
the parentsr0(d0) of r(d) in the auxiliary network. More-
over, we can take this one step further: suppose that in the
original networkN there is a path of length two from noder00 via a noder0 to r. Then, in the auxiliary network, there
is a path of length two from a noder00(d00) via a noder0(d0)
to r(d) iff the formula

par00!r0!r(x;y) :� 9z(parr0 (x; z) ^ par0r00 (z;y)):
(10)

is satisfied forx = d, andy = d00. Taking the disjunction
of all formulas of the form (10) for all paths inN leading
from r00 to r then yields a formulapa�rr00(x;y) defining
all predecessorsr00(d00) of a noder(d) in the auxiliary
network.

Using theparr0 andpa�rr00 , we can for given evidence and
query construct the auxiliary network needed to answer the
query: we begin with a noder0(d0) for the query. For all
nodesr(d) added to the network, we add all parentsr0(d0)
of r(d), as defined byparr0 . If r(d) is not instantiated inE,
using the formulaspa�r0r , we check whether the subgraph
rooted atr(d) contains a node instantiated inE. If this is
the case, we add all successors ofr(d) that lie on a path

from r(d) to an instantiated node (these are again given
by the formulaspa�r0r). Thus, we can construct directly
the minimal network needed to answer the query, without
first backward chaining from every atom inE, and pruning
afterwards.

Auxiliary networks as described here still encode finer dis-
tinctions in the instantiations of the nodes ofN than is
actually needed to solve our inference problem. Consider,
for example, the case where the domain in example 2.1 con-
sists of ten locationsfl1; : : : ; l10g, there is no evidence, and
the query iss(l1). According to (9), the auxiliary network
will contain nodesb(l1; li); b(li; l1) for all i = 2; : : : ; 10.
In applying standard inference techniques on this network,
we distinguish e.g. the case whereb(l1; l2); b(l2; l1) are
true andb(l1; l3); b(l3; l1) are false from the case whereb(l1; l2); b(l2; l1) are false andb(l1; l3); b(l3; l1) are true,
and all otherb(l1; li); b(li; l1) have the same truth value.
However, for the given inference problem, this distinction
really is unnecessary, because the identityof locations men-
tioned neither in evidence nor query is immaterial. Future
work will therefore be directed towards finding inference
techniques for relational Bayesian networks that distinguish
instantiations of the relations in the network at a higher
level of abstraction than the current auxiliary networks, and
thereby reduce the complexity of inference in terms of the
size of the underlying domain.

4 RECURSIVE NETWORKS

In the distributionsdefined by relational Bayesian networks
of definition 2.5, the eventsr(a) andr(a0) with a 6= a0 are
conditionally independent, given the interpretation of the
parent relations ofr. This is a rather strong limitation of
the expressiveness of these networks. For instance, using
these networks, we can not model a variation of example 2.1
in which the predicateblockedis symmetric:b(x; y) being
independent fromb(y; x), b(x; y) , b(y; x) can not be
enforced.

There are other interesting things that we are not able to
model so far. Among them are random functions (the main
concern of (Haddawy 1994)), and a recursive temporal de-
pendence of a relation on itself (addressed both in (Ngo
et al. 1995) and (Glesner & Koller 1995)). In this sec-
tion we define a straightforward generalization of relational
Bayesian networks that allows us to treat all these issues in
a uniform way.

Wecan identify a recursivedependence of a relation on itself
as the general underlying mechanism we have to model. In
the case of symmetric relations, this is a dependence ofr(x; y) on r(y; x). In the case of a temporal development,
this is the dependence of a predicater(t;x), having a time-
variable as its first argument, onr(t� 1;x). Functions can
be seen as special relationsr(x; y), where for everyx there
exists exactly oney, s.t. r(x; y) is true. Thus, for everyx,



r(x; y) depends on allr(x; y0) in that exactly one of these
atoms must be true.

It is clear that there is no fundamental problem in model-
ing such recursive dependencies within a Bayesian network
framework, as long as the recursive dependency ofr(x)
onr(y1); : : : r(yk) does not produce any cycles. Most ob-
viously, in the case of a temporal dependency, the use ofr(t� 1;x) in a definition of the probability ofr(t;x) does
not pose a problem, as long as a non-recursive definition of
the probability ofr(0;x) is provided.

To make the recursive dependency ofr(x; y) on r(y; x) in
a symmetric relation similarly well-founded, we can use
a total order� on the domain. Then we can generate a
random symmetric relation by first defining the probability
of r(x; y) withx � y, and then the (0,1-valued) probability
of r(y; x) givenr(x; y). Now consider the case of a random
function r(x; y) with possible valuesy 2 fv1; : : : ; vkg.
Here, too, we can make the interdependence of the differentr(x; y) acyclic by using a total order onfv1; : : : ; vkg, and
assigning a truth value tor(x; vi) by taking into account
the already defined truth values ofr(x; vj) for all vj that
precedevi in that order.

From these examples we see that what we essentially need,
in order to extend our framework to cover a great vari-
ety of interesting specific forms of probability distributions
overS-structures, are well-founded orderings on tuples of
domain elements. These well-founded orderings can be
supplied via rigid relations on the domain, i.e. fixed, prede-
termined relations that are not generated probabilistically.
Indeed, one such relation we already have used throughout:
the equality relation. It is therefore natural to extend our
framework by allowing additional relations that are to be
used in the same way as the equality predicate has been em-
ployed, namely, in constraints for combination functions.
Also, fixed constants will be needed as the possible values
of random functions.

For the case of a binary symmetric relationr(x; y), assume,
as above, that we are given a total (non-strict) order� on
the domain. A probability formula that defines a proba-
bility distributionconcentrated on symmetric relations,and
makingr(x1; x2) true with probabilityp for all (x1; x2),
then isFr(x1; x2)=maxfmaxfp j ;;x1 � x2g; (11)

maxfr(x2; x1) j ;;:x1 � x2g j ;; �g:
As in (7), here a nestedmaxf: : :g-function is used in order
to model a distinctionby cases. The first innermax-function
evaluates top if x1 � x2, and to 0 else. The secondmax-
function is equal tor(x2; x1) if x1 > x2, and 0 else.

For the temporal example, assume that the domain containsn + 1 time pointst0; : : : ; tn, and a successor relations =f(ti; ti+1) j 0 � i � n�1g on theti’s. Assume thatr(t;x)
is a relation with a time parameter as the first argument,

and thatr(t0;x) shall hold with probabilityp0 for all x,
whereasr(ti+1;x) has probabilityp1 if r(ti;x) holds, and
probability p2 else. In order to define the probability ofr(t;x) by a probability formula, the caset = t0 must be
distinguished from the caset = ti, i � 1. For this we
use the probability formulaF0(t) = maxf1 j t0; s(t0; t)g,
which evaluates to 0 fort = t0, and to 1 fort = t1; : : : ; tn.
We can now use the formulaFr(t;x) = (1� F0(t))p0 +F0(t)maxfr(t0;x)p1 + (1� r(t0;x))p2j t0; s(t0; t)g
to define the probability ofr(t;x).
Finally, for a functional relationr(x; y), suppose that we
are given a domain, together with the interpretations ofn
constant symbolsv1; : : : ; vn, and a strict total order<, s.t.v1 < v2 < : : : < vn. Now consider the probability formulaFr(x; y) = (1�maxfr(x; z) j z; z < yg) �

maxfmaxfp1 j ;; y = v1g; : : : ;
maxfpn j ;; y = vng j ;; �g

The first factor in this formula tests whetherr(x; z) al-
ready is true for some possible valuevi < y. If this is the
case, then the probability ofr(x; y) given byFr(x; y) is
0. Otherwise, the probability ofr(x; y) is pi iff y = vi.
The probability that by this procedure the argumentx is as-
signed the valuevi then is(1�p1)(1�p2) : : : (1�pi�1)pi.
By a suitable choice of thepi any probability distribution
over thevi can be generated.

The given examples motivate a generalization of relational
Bayesian networks. For this, letR be a vocabulary contain-
ing relation and constant symbols,S a relational vocabulary
withR\S = ;. AnR-constraintc(x) forx is a quantifier-
freeR-formula. Define the class ofR-probability formulas
over S precisely as in definition 2.3, with “equality con-
straint” replaced by “R-constraint”.

Definition 4.1 LetR;S be as above. Arecursive relational
Bayesian network forS with R-constraintsis given by a
directed acyclic graph containing one node for everyr 2S. The node for ann-ary r 2 S is labeled with anR-
probability formulaFr(x1; : : : ; xn) overPa(r)[ frg.
The semantics of a recursive relational Bayesian network
is a bit more complicated than that of relational Bayesian
networks. The latter defined a mapping of domainsD
into probability measures onS-structures overD. Re-
cursive relational Bayesian networks essentially define a
mapping ofR-structuresD into probability measures onS-expansions ofD. This mapping, however, is only defined
for R-structures whose interpretations of the symbols inR
lead to well-founded recursive definitions of the probabil-
ities for ther-atoms (r 2 S). If, for instance,R = f�g,



andD is anR-structure in which there exist two elementsd1; d2, s.t. neitherd1 � d2, nord2 � d1, then (11) does
not define a probability measure onfrg-expansions ofD,
because the probability ofr(d1; d2) gets defined in terms
of r(d2; d1), and vice versa.

As in section 3, for everyr0 2 Pa(r) [ frg a formula
parr0(x;y) can be computed that defines for anR-structureD andd � D the tuplesd0 � D, s.t. Fr(d) depends onr0(d0). While in section 3 existential formulas over the
empty vocabulary were obtained, for recursive relational
networks theparr0 are existential formulas overR.

The definitions of the probabilitiesFr(d) are well-founded
for d � D iff the relation D(parr) := f(d;d0) j
parr(d;d0) holds inDg is acyclic. A recursive relational
Bayesian networkN thus defines a probability measure onS-expansions of thoseR-structuresD, for which the rela-
tionD(parr) is acyclic for allr 2 S.

The discussion of inference procedures for relational
Bayesian networks in section 3 applies with few modifi-
cations to recursive networks as well. Again, we can con-
struct an auxiliary network with nodes for ground atoms,
using formulasparr0 and pa�rr0 . The complexity of this
construction, however, increases on two accounts: first, the
existential quantifications in theparr0 , pa�rr0 can no longer
be reduced to mere cardinality constraints. Therefore, the
complexity of deciding whetherpa(�)rr0(d;d0) holds for givend;d0 � D is no longer guaranteed to be independent of the
size of the domainD. Second, to obtain the formulaspa�rr0
we may have to build much larger disjunctions: it is no
longer sufficient to take the disjunction over all possible
paths fromr0 to r in the network structure ofN . In ad-
dition, for every relation�r on these paths, the disjunction
over all possible paths withinD(pa�r�r) has to be taken. This
amounts to determining the lengthl of the longest path inD(pa�r�r), and then taking the disjunction over all formulas
pai�r�r(x;y) :� 9z1; : : : ; zi(pa�r�r(x; z1)^ : : :^pa�r�r(zi;y))
with i < l. As a consequence, the formulaspa�rr0 are no
longer independent of the structureD under consideration.

5 CONCLUSION

In this paper we have presented a new approach to deal
with rule-like probability statements for nondeterministic
relations on the elements of some domain of discourse. De-
viating from previous proposals for formalizing such rules
with a logic programming style framework, we here have
associated with every relation symbolr a single probabil-
ity formula that directly defines the probability distribution
over interpretations ofrwithin a Bayesian network. The re-
sulting framework is both more expressive and semantically
more transparent than previous ones. It is more expressive,
because it introduces the tools to restrict the instantiations
of certain rules to tuples satisfying certain equality con-

straints, and to specify complex combinations and nestings
of combination functions. It is semantically more transpar-
ent, because a relational Bayesian network directly defines
a unique probabilitydistributionoverS-structures, whereas
the semantics of a probabilistic rule base usually are only
implicitly defined through a transformation into an auxiliary
Bayesian network.

Inference from relational Bayesian networks by auxiliary
network construction is as efficient as inference (by essen-
tially the same method) in rule based formalisms. It may
be hoped that in the case where this inference procedure
seems unsatisfactory, namely, for large domains most of
whose elements are not mentioned in the evidence, our new
representation paradigm will lead to more efficient infer-
ence techniques.
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