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Abstract

We take another look at the general problem of
selecting a preferred probability measure among
those that comply with some given constraints.
The dominant role that entropy maximization has
obtained in this context is questioned by argu-
ing that the minimum information principle on
which it is based could be supplanted by an at
least as plausible “likelihood of evidence” prin-
ciple. We then review amethod for turning given
selection functions into representation indepen-
dent variants, and discuss the tradeoffsinvolved
in this transformation.

1 INTRODUCTION

An ever recurring themein probabilisticinferenceisthe se-
lection of preferred probability measures from some set of
possible choices: we are given a state space A, a subset J
of the set A A of probability measureson A, and are asked
to identify aset I(.J) C J of measures that fulfill certain
desiderata.

One examplethat instantiatesthis abstract schemaisthe se-
lection of aprior probability distributionin Bayesian statis-
tics. Inthis case, J is the set of al probability measures
(usually restricted to a suitable parametric family) consis-
tent with our prior information, and I(.J) isthe element se-
lected as our prior, usually on the basis of some minimum
information principle. Another example is default seman-
ticsfor probabilistic knowledge bases. In thiscase A isthe
set of all models of some propositional language, J C AA
is the set of models of some knowledge base KB in some
probabilistic extension of propositional logic, and I(J) is
a set of default models of KB that reflect certain common-
sense inferences to be drawn from KB.

A number of studies (Shore & Johnson 1980, Paris & Ven-
covska 1990, Paris 1994) have addressed the question of
what general rationality principles should guide our choice

of I(J), and which forma method can be used to imple-
ment these principles. From these considerations, entropy
maximization emerges as the unique selection rule that sat-
isfies our needs in general. Another selection rule, caled
center of mass by Paris (1994), against this background,
does not seem to be a serious competitor of entropy max-
imization.

The purpose of the present paper istwofold. Inthefirst part
it isargued that center of massinference, in spite of its poor
performance with respect to theoretical rationality princi-
ples, is deeply entrenched in commonsense probabilistic
reasoning. Asan explanationfor thisphenomenonweargue
that whereas entropy maximization is derived from a gen-
eral minimum information principle, center of mass infer-
ence might bejustified by ano lessviablelikelihood of evi-
dence principle. In the second part of the paper we discuss
the problem of representation dependence, both of center of
mass and of maximum entropy inference. In (Jaeger 1996)
a method was proposed that transforms selection rules T
into variants I that are representation independent. In the
current paper, results are presented that show what useful
propertiesof I (particularly asexpressed by rationality prin-
ciples) we haveto tradein for representati on independence,
and which of these propertieswill be preservedin I.

2 PRINCIPLESOF MEASURE
SELECTION

In this section the basic definitions for measure selection
functions and rationality principles are provided. We here
present a purely semantic set of definitions. Thisis to say,
weintroducethe selection function I as operating on sets of
probability measures A A, and that we formulate rational-
ity principles as conditions on the geometric form of 1(.J)
given the geometric form of J. The alternative approachiis
syntactic: in that approach one focuses on a specific prob-
abilistic representation language, the class A of its models,
and sets J C A A that are described by knowledge basesin
the language. The selection function I isthen seen as oper-
ating on knowledgebases KB, and rationality principlesim-



pose conditions on the syntactic form of statementsvalidin
I(KB) in terms of the syntactic form of KB. This approach
istaken by Paris (1994).

For a finite state space A of size n, after ordering the ele-
ments of A in an arbitrary way, we can identify A A with

A" :={(z1,...,z,) e R" | z; >0, Ziﬂizl}-

A measure selection function I isany function that for every
n € N maps Z(A") (the powerset of A™) into 2(A"),
such that I(J) C Jforadl J C A" and I(x(J)) =
w(I(J)) foral permutations= of (1,... ,n). Thislast con-
dition makes sure that a measure sel ection function defined
on{A" | n € N} canbeapplied unambiguously to A A for
arbitrary finite A, becauseit then does not matter what par-
ticular order we use on A. Notethat in contrast with Shore
and Johnson (1980) and Paris and Vencovska (1990) we do
not demand I to be point-valued, i.e. I(.J) to be asingle
measurein A",

In this paper we are mostly concerned with two particular
selection functions. The first is entropy maximization, de-
noted I,,., wherefrom J C A™ we select those P € J,
P =(p1,...,pn), forwhichH(P) := = 3" | piIn(p;) is
maximal. I, (J) isasingleton for closed and convex .J; it
isnonempty for closed .J. When J isnot closed, there need
not exist an entropy maximal element in .J, in which case
I(J) = 0.

The second selection function we here consider is I.m,,
the center of mass selection function. The center of mass
(P1,---,pn) OF J C A™ isdetermined by

. 1
pi = ||me—)07n/ pid\", )
f.](e) dX™ J ()

where J(¢) isthe “e-hull” around J, i.e. the set containing
all points of R™ with a Euclidean distance smaller than ¢
to some element of .J; A" is the n-dimensiona Lebesgue
measure. Taking the limit over the J(e) in (1) is necessary,
because J C A" has Lebesgue measure zero, so that both
integralsin (1) would be zero when taken over J. I..,(J)
is either asingleton (when the limit (1) exists, and the cen-
ter of mass so defined liesinside .J — thisis guaranteed for
convex .J), or else empty.

Next, we briefly formulate the most important formal con-
ditionsfor I that wereintroduced as consistency axioms by
Shore and Johnson (1980), and as (rationality) principles
by Paris and Vencovska (1990). We state these conditions
in aform that is semantic and generalizes the previous ver-
sions(givenfor point-valued selection rules I') to set-valued
I. For intuitive motivations of the principles the reader is
referred to (Shore & Johnson 1980) and (Paris 1994). Us-
ing the terminology of Paris and Vencovska, we here con-
sider the principles of relativization, obstinacy, indepen-
dence, and irrelevant information.

To define the relativization principle we need the follow-
ing notation: if Aisastatespace, B C A,and P € AA,
then P|B € AB denotes the conditional distribution of P
on B. The notation B¢ is used for the complement of B. [
satisfies the relativization principle, if the following holds:
whenever .J is of theform

J={PecAA|PBecJ® PB cJ®} (2
for some J? € AB, JB € AB® with I(JB") # ), then

I(J)B:={P\B | P<cI(J),P(B) >0} =1(JB).

The obstinacy principle says that whenever I(J) C J* C
J,thenI(J*) = I(J).

The independence principle does not generalize as unam-
biguously from point-valued I to set-valued I, as the pre-
vioustwo principles. We therefore here introducetwo vari-
ants, strong independence and weak independence. To de-
finethese principles, let A = B x C beaproduct space; for
P € AAlet P| B, P] C denote the marginal distributions
induced by P on B and C, respectively. Consider J € AA
of theform

J={P|PIBeJB PlCecJ} 3

forsome J? C AB, J¢ C AC. Wesay that I satisfiesthe
strong independence principleif for such .J we have

I(J) =1(JB) & 1(J°) 4)
={P®Q|Pel(JP),QeI(J?),

where ® isthe standard product of measures.

Conditions(4) isvery strong, asit encodesan independence
assumption not expressible by linear constraints, and that,
in general, can be satisfied only by selecting non-convex
I(J),evenforconvex .J. A “linear approximation” to (4) is
weak independence; we say that T satisfies the weak inde-
pendence principleif for .J of theform (3),andal B’ C B,
C' C C wehave

infI(J)(B' x C") =infI(JP)(B') - inf1(J9)(C")

supI(J)(B' x C') = supI(J”)(B') - supI(J)(C")
where, eg. infI(J)(B' x C') :=inf{P(B' x C') | P €
1(J)}.

Closely related to the independence principlesistheirrele-
vant information principle: thisprincipleissatisfied by T if
for .J of the form (3) we get

() B=1I(I"). ©)
To these familiar rationality principles, we add one more

technical property that will be needed below: T iscalled di-
mension independent if 7(J x {0}) = I(J) x {0}.



Strong Weak Irrelevant
Relativization | Obstinacy | Independence Independence Information

Ine + + + + +
Iem + -
I 1 + - + -
preserves I dim.indep.
[me + - + +
‘.(‘m + -

Table 1: Rationality Principlesfor Some Selection Functions

3 CENTER OF MASSVS. MAXIMUM
ENTROPY

Table 1 lists a number of results on which selection func-
tions satisfy the rationality principleslisted in the previous
section. For thetime being, we are only concerned with the
first two linesin thetable, which list (for the most part well
known) results about maximum entropy and center of mass.
I, of course, satisfies all of the listed principles, and the
fact that (under some mild additional assumptions) it isthe
only selection function that will achieve this has been pro-
posed as a reason to prefer entropy maximization over all
other selection rules (Shore & Johnson 1980, Paris & Ven-
covska 1990). Paris (1994) is careful to point out that such
a justification of entropy maximization hinges on what he
calls Watts assumption: the set .J of possible measures en-
codes everything that is known to the expert whose judg-
ments the selection function is supposed to model. Given
that J isall we know, and that nonethelesswe areforced to
choose some smaller (or unique) I(J) C J, it thenis natu-
ral to let this choice be guided by the

Minimal information desideratum (MID):
through the selection of I(.J) aslittle as possible
additional information beyond .J should be
assumed.

The rationality principles now simply are rigorous condi-
tions capturing several aspects of the MID.

Even though the MID is rather plausible, and persuasively
leads us to the maximum entropy principle, it isnot hard to
find evidence that center of mass inference has an intuitive
appeal asamodel for commonsense probabilistic inference
that isat least asgreat as that of maximum entropy. Recent
worksinwhich center of massinferenceis applied in some
guise are (Druzdzel & van der Gaag 1995) and (Grove &
Halpern 1997). One source from which more or less ex-
plicit instances of center of mass inference originate is the
fact that this selection rule arises naturally from an analysis
of our selection problem from the point of view of Bayesian
statistics. Let us briefly turn to this connection.

In Bayesian statistics a belief state over a state space A is
maintained by a probability distribution P© on some pa-

rameter space O. Each § € O determinesadistribution Py
on A, so that adistribution P# on A isgiven by

PA(B) = /@P(;(B)dP@. (6)

The distribution defined by (6) is known as the predictive
distribution. The probability distribution P® is updated on
observations of elements of A according to Bayes' rule.

At first sight, this Bayesian procedure seems to have a dif-
ferent field of application than measure selection ruleslike
maximum entropy, because it takes as input an observed
event, rather than a set of admissible probability distribu-
tions. It is well known, however, that by suitable model-
ing, Bayesian conditioning and entropy maximization can
be made to bear on the same problems, and that they then
often yield incompatible results (see (Uffink 1996) for are-
view of results).

One perspective we can adopt in order to process informa-
tion presented as admissible subsets J C A A of distribu-
tionswithin the Bayesian framework isto view .J as an ob-
servedevent J© := {# € © | P, € J}in®. Wecan
then simply condition P© on J©, and obtain viathe poste-
rior distribution P© anew predictive distribution on A.

In general, ® will not parameterize the whole set A A4, i.e.
thereare P € AA with P # P, for dl 6. For the case
of finite A that we are here concerned with, however, we
can choose © sothat {FPy | § € ©} = AA. A canonica
choiceis® = A", for whichwethen get thetrivial identity
Py =6.

Before the constraints .J have been obtained, our distribu-
tion P® on © would be chosen as a non-informative prior,
which hereisthe Lebesgue measureon A™ (normalized, so
asto yield a probability measure). The posterior P®, after
conditioningon .J (or on J(¢e) (e — 0), if J hasmeasure0),
thenissimply the L ebesgue measurerestricted to .J, and the
new predictive distribution on A isgiven by (1). Thus, we
have seen that center of massinferencereally can be under-
stood asaninstance of Bayesian conditioningand marginal -
ization. Since these are inference techniquesthat we would
certainly not consider irrational, and yet center of massfails
therationality principlesemenating fromthe MID, we have
to question the MID as the exclusive notion of rationality,
and look for alternatives. We motivate a proposal for a dif-



ferent principle on which to base our notion of rationality
by two very simple examples.

First, consider the scenario where we are told that a cer-
tain coin is biased, and yields heads with probability in the
interval [0.6,0.9]. What should our assumption be on the
exact value of P(heads)? Maximum entropy prescribes
P(heads) = 0.6. How can we then justify the (arguably
more intuitive) center of mass solution P(heads) = 0.75?
In this case, we might reason as follows. We will first con-
struct a likely scenario for how the original information
P(heads) € [0.6,0.9] was obtained. The most plausible
such scenario hereisto assume that the coinin question has
beentossed anumber of times, that therel ative frequency of
headshasbeen observed, and then hasbeenimbeddedinthe
confidenceinterval [0.6,0.9] chosen wide enough to render
the statement P (heads) € [0.6,0.9] avirtual certainty. Un-
der these assumptions, it would be most reasonable to take
for our inferred value of P(heads) the originally observed
frequency, which would be assumed to have been 0.75.

In a second example, suppose that we are told that in the
first democratic parliamentary electionsin the newly inde-
pendent Republic of Transcaucasiathe Progressive Demo-
cratic Party (PDP) has gained at least 5% of the votes, the
National Unity Party (NUP) has gained at least 55% of the
votes, and that these were the only two parties on the ballot.
What should our belief be about the actual result of theelec-
tion, i.e. what is our estimate of the probability P(PDP) of
arandom voter having voted for PDP? Maximum entropy
says P(PDP) = 0.45, but a probably much more sensible
estimateis gained when we assumethat the given constraint
P(PDP) € [0.05,0.45] reflects the intermediate result af-
ter 60% of the votes have been counted, and that the final
result is obtained by extrapolating this partial count to all
votes cast, which would yield approximately 8% for PDP,
i.e. P(PDP) = 0.08. Thisis different from the center of
mass solution P(PDP) = 0.25, but shares with it the im-
portant characteristic of choosing a valuein the interior of
the constraint set, rather than on the boundary, as maximum
entropy will do.

The two examples illustrate a form of probabilistic infer-
ence not accounted for by entropy maximization: when we
are given the information that the “true” distribution P be-
longsto .J, we are not limited to take thisinformation at its
face value only, i.e. asaconstraint on which P € A™ we
may choose, but we can also take advantage of the “meta-
information” that “ P € J” isexactly what we got to know.
In the examples above we have used this meta-information
together with plausible assumptions on how information .J
typicaly is generated to arrive at our results. More for-
mally, J has been interpreted as the value of arandom vari-
able whose distribution is determined by the “true” value
P € A™ wewant to infer. Thus, the selection procedure
J — I(J) essentialy becomes a statistical parameter esti-
mation problem, and the guiding principlefor this selection

can be formulated as the

Maximum likelihood of evidence desideratum
(MLED): the set I(.J) should contain those dis-
tributions that are most likely to produce the in-
formation .J.

One might object that in the discussion of our exampleswe
have blatantly violated Watts assumption, because our ar-
guments made use of the semantic content of the variables
heads and PDP, which is information not contained in J.
Thisis true as far as the two specific results argued for in
the examples are concerned. It does not, however, compro-
mise the MLED as a general principle that we can aim for
even when such semantic background information is miss-
ing. The question now, of course, is how the philosophi-
cal MLED can be sharpened into formal conditionsin the
same way that the rationality principles sharpen the MID,
and what, if any, selection functions satisfy these condi-
tions. A first such condition that one might consider is to
require that for convex J the selected set 1(J) liesin the
(relative) interior of .J. This very weak condition already
eliminates maximum entropy, but retains center of mass as
apossible choice.

4 REPRESENTATION INDEPENDENCE

41 THEISSUE

In the previous section it was argued that the failure of the
rationality principle for center of mass need not be con-
strued as a conclusive argument against this selection rule.
Thereisonerationality principle, however, whoseviolation
by center of massreally is quite disturbing: center of mass
is not languageinvariant (Paris 1994). This meansthat the
result obtained by applying /.., to some knowledge base
KB depends on our assumptions of what additional propo-
sitional variablesthere exist in our probability space except
those actually mentionedin KB. If, for instance, in the coin-
tossing example of section 3 we had assumed that besides
thevariablesheadsthereal soisavariable quarter in our vo-
cabulary (standing for the fact that the coin in questionisa
guarter), then the mere presence of this additional variable
will change our results for P(heads), even though thereis
no information given about quarter, let alone any informa-
tion linking headsto quarter.

Maximum entropy satisfies language independence, but it
fails to satisfy another property that can be seen as a fur-
ther rationality principle: representation independence. As
a very simple illustration of the problem, we may com-
pare the results obtained by applying entropy maximiza-
tion to the two knowledge bases KB := P(A) < 0.9
and KB] = P(A] \Y Az) S 09, where A, A], A2
are propositional variables. In the first case entropy maxi-
mazation yields P(A) = 0.5; in the second case P(A; V



Ay) = 0.75. That this is an often undesirable behav-
ior becomes clear when we subgtitute e.g. A= “there ex-
ists life on Mars’, A; =“there exists plant life on Mars’,
A, ="thereexistsanimal lifeon Mars’. Based on examples
like these, we can roughly describe representation depen-
dence of entropy maximization (and other selection func-
tions) as the property of returning results that depend on
non-essential choicesof language and syntax, rather than on
semantic content only. It was not until recently, that infor-
mal, example-based, descriptions of representation depen-
dence received more rigorous underpinnings. Paris (1994)
appears to have been the first to supply a precise concept
of representation independence by introducing his atomic-
ity principle. This principle requiresthat inferred probabil-
ity values do not change when a knowledge base is trans-
lated by replacing a propositional variable by aformulain
anew language, just as A wasreplaced by A; VA, inour ex-
ampleabove. Paristhen showsthat this principle can not be
satisfied by a selection function I that yields unique values
I(J) for closed and convex J. Paris and Vencovska (1997)
later argue that atomicity is not a reasonable principle in
the first place, because the fact whether representations A
or A; V A, are used is relevant information that may very
well influence our inferences.

Halpernand K oller (1995) give asemantic definition of rep-
resentation independence, based on embeddings f : A —
B of state spaces. This definition subsumes the atomicity
principle, but can also be applied to selection problems not
framed within the context of a propositional probabilistic
logic.

In (Jaeger 1996) ageneralization of atomicity along adiffer-
ent line is provided by developing a concept of representa-
tion independence for arbitrary nonmonotoniclogics. That
concept, like atomicitiy, is syntactic, based on interpreta-
tions between formal languages.

In the remainder of this section, a definition of representa-
tion independenceisgiven that combineselementsfromthe
onesfound in (Halpern & Koller 1995) and (Jaeger 1996).
In order to stay in line with the other definitionsused in the
present paper, the definitions we provide are semantic, but
our motivation for these definitionsvery much derivesfrom
syntactic considerations.

A definition of representation independence essentially
hinges on a definition of what constitutes a representation
change. In our first example, a representation change was
given by the syntactic interpretation f : A — A; V Aq,
whichinducesthemapping f : KB — KB;. Heretherepre-
sentation KB; is arefinement of the representation KB, ob-
tained by moving from a simpler to aricher language. In
general, we will also want to deal with alternative represen-
tations of the same information, none of which is a strict
refinement of the other. For instance, let KB, = P(B; A
B,) < 0.9. KB, and KB, now represent the same informa-

tionwith respect tothecorrespondenceA; VA; <> By ABs.
It is convenient to model such a correspondence as medi-
ated by a third “common ground” language, so that both
representations are interpretations from this (poorer) lan-
guage. Herewe can choose {A} asthecommon ground lan-
guage, and obtain KB, = ¢(KB) under the interpretation
g : A — B; ABs. Intheterminology of (Jaeger 1996), KB,
and KB, would be called representational variantswith re-
spectto f and g.

The semantic analogues of syntactic interpretationsare em-
beddings of state spaces (Halpern & Koller 1995).

Definition 4.1 Let A, B befinite state spaces. An embed-
ding of A in B isany function f : A — 2(B) with
a1 # ay = f(a1) N faz) = 0,and B = Usea f(a).

In the case where A and B are the sets of models of propo-
sitional languages L 4 and L, any syntactic interpretation
f: X = ¢x (X ranging over the propositional variables
of L4, ¢x being aformulain Lg) induces an embedding
of Ain B: amode a for L 4 ismapped to the set of models
f(a) C B (possibly empty) in whichtheformulas ¢ x have
the same truth values as the variables X havein a.

Embeddings f : A — B induceamapping f : AA —
P(AB)viaf(P) ={Q € AB |Va € A: Q(f(a)) =
P(a)}. Notethat we get f(P) = () exactly when there ex-
istsa € Awith P(a) > 0and f(a) = 0. For J C AA
we write f(J) for Upcsf(P). For @ € AB we define
f(Q) € AAviaQ(a) := Q(f(a)). Findly, for H C AB,
let f(H) := {f(Q) | Q € H}.

From our informal discussion of when two knowledge
basesare representational variants, and the definition of em-
beddings, we now derive a formal semantic definition of
representational variants.

Definition 4.2 Let A, B,C be state spaces, f : C — A,
g : C — B beembeddings. Let J C AA, H C AB. We
say that .J and H are representational variants with respect

to f and g, written J <% H, iff

f(J) =g(H). (7)

and

J=f(F(T), H =yg(g(H)) )
Condition (7) saysthat .J and H contain the same informa-
tion about the common ground state space C'. Condition
(8) essentially meansthat J and H do not contain any addi-
tional information about A and B, respectively, that is not
given asatransated constraint on C'. Condition (8) is quite
restrictive, and in (Jaeger 1996) was not part of the defini-
tion of representational variants. We include it here solely
for convenience, because our subsequent results only apply
to this restricted notion.



Definition 4.3 A measure selection function I is caled
representation independent, iff for any A,B.C,f,g9,J H

asin definition 4.2, we have that .J <= H implies
= g(I(H)). )

Definition 4.3 is very similar to the one given by Halpern
and Koller (1995), only that their unidirectional notion of
representation shiftsis replaced by the symmetrical notion
of representational variants. The definition of Halpern and
Koller is here covered by the special case B = C, g the
identity function, and f afaithful embedding(i.e. f(c) # 0
foral ¢ € C). Also, it is easy to see that representation
independencein the sense of definition4.3implieslanguage
independence.

4.2 REPRESENTATION INDEPENDENT
SELECTION FUNCTIONS

In this section we study representation independent selec-
tion functions. First, we review aconstruction presented in
(Jaeger 1996) that allows us to transform a given selection
function I into a representation independent variant 7. To
motivate this construction, first assume that we are given
the situation of definition 4.2, i.e. we have the three state
spaces A, B, C, theembeddings f, g, and the sets J, H with

J <% H. Wewant to select subsets I(.J), I(H) such that

(9) holds. Here thereis an obvious way of doing this. we
simply use any selection function I to choose I(f(.J)) =

I(g(H)), and then let I(J) = f(I(f()),1(H) :=
9(I(g(H))). Because of (8) wehave I(J) C J,I(H) C
H.

The problem, of course is that in general we are not given

a special scenario J <~ H for which (9) has to be satis-
fied, butonly some J C A A fromwhich we haveto choose
I(J) such that (9) holds for every possible instantiation of

theschema.J <=2 H. Thekey todefining I isthe observa-
tion that thereisasimplest state space C' and an embedding
f: C — Asuchtha J = f(f(J)). For any selection
function I we can therefore define I(J) := f(I(f(J))),
which then defines a representation independent selection
function I. Thefollowing definitionsand resultstaken from
(Jaeger 1996) (here somewhat reformulated to fit into our
semantic framework) describe the construction.

Theorem 4.4 Let J C AA. There exists a smallest state
space Sy and an embedding f; : S; — A, such that
J = f1(fs(J)). Sy and f; are unique up to renaming the
elementsof S;.

The embedding f,; inducesapartition {f;(s) | s € S;} on
A. Infact, we can choose this partition itself asa canonical
representation of S ;. The embedding f; then simply isthe
identity. The function f; : AA — AS; becomes the re-
dtriction f;(P) = P[ Sy, and the mapping f; : AS; —

A A induced by f; isthe extension operator:
Ext(Q) := f4(Q) ={P € AA| P]S, = Q}.

Thus, theorem 4.4 can be restated as follows; for J C AA
there exists a unique coarsest partition Sy of A, st.

J =Ext(J] Sy). (10)

In the following, we will understand S ; to refer to this par-
tition.

Definition 4.5 Let I be ameasure selection function. The
measure selection function 7 is defined by

I(J) := BX(I(J] 8,))- (11)

Theorem 4.6 When I is a dimension independent selec-
tion function, then I is representation independent.

The following short example illustrates the definitions and
theorems formulated so far.

Examp|e47 Let A = {(117(12,(13,(14},B =
{b1,b2},C = {c1,co,c3}. Letf: C - A, g: C —- B
be embeddingsthat map ¢1, co, ¢3 t0 {a1, a2}, {as}, {as},
and {1}, {b2}, 0, respectively. Let J C AA be defined
by the constraints P({a1,a2}) > 0.6 and P({as}) = 0
Let H C AB bedefined by the constraint P({b,}) > 0.6.
Then

f(1) =g(H

and J = f(f(J)), H = g(g(H

Thepartition Syis{{a1,a>}, {as}, {as}}; thepartition Sy
is {{b1}, {b2}}.

Next, we compute e (J) and Ie (H). For Ie(.J) wefirst
determine J| Sz, whichis {P € AS; | P({a1,a2}) >
0.6, P({as}) = 0} (unlike here, it need not always
be the case that the constraints defining J| S; are identi-
cal to the original congtraints defining .J). Thus, we get
me( SJ)f{(OG 04 0)} and

Tme(J) = EXt(Tme(J T Sy))
={P e AA| P({ai,a2} = 0.6, P(as) = 0}

) ={P € AC | P(c1) 2 0.6, P({c3}) = 0},

)). Hence J <% H.

Note that Ie(J) = (3., 5. 5.0) & Ime(J). Similarly, we
compute I,o(H) = {P € AB | P({b;}) = 0.6}. Finally,
we can check that

f(Ime(J)) = {P € AC | P({e1}) = 0.6, P(cq) = 0}
= g(ime (H))v

so that (9) is satisfied.

Theproof of theorem 4.4, whichwasgivenin (Jaeger 1995),

is not constructive. Thefollowing results show that at least

inthecase of .J being apolytope, S ; can beeffectively con-
structed.



Theorem4.8 Let A = {a4,...,a,},letJ C AAbea
polytope defined by & linear inequality constraints C; =
z;l:] T,jjp((lj) < s; (7 = 1,.. . ,k?;?",jj,si € R) Then
the partition S; of A can be computed in time polynomial
inkn.

Proof: Inthe sequel, we denote P(a;) by p;. Computation
of Sy amountsto deciding the equivalence relation

a; ~a; < {a;,a;} CB forsomeB e S;. (12

For notational convenience, takei = 1,5 = 2. For P =
(p1,p2,--. ,pn) € AAweabbreviateps, . .. , p, by p. We
then get: a; ~ ay iff VP = (p1,p2,p) € AA:

PeJ (p1+p2,0,p) € Jand (0,p1 +pa,p) € J.
(13)

Now definefori = 1,... k! 7; = max{r;1, ri2 }, and let
C; be the constraint defined by replacing r;; and r;» by 7;
in C;. Let J be the polytope defined by the C;. We show
that

(IlN(IQ(—)J:j. (14)

The left to right direction in (14) isimmediate: J = .J im-
pliesthat J is definable by a set of constraintsin which p,
and p- only appear within terms of the form #(p; + p2), SO
that (13) clearly is satisfied.

For the right to left direction, assumethat a; ~ as. J C J
trivially holds, because .J is obtained from .J by sharpening
each defining constraint. Let P = (py,p2,p) € J. Con-
sideri € {1,...,k}, and assume without loss of general-
ity that 7; = r;;. By (13) we havethat (p; + p»,0,p) € J.
Since (p1 + p2, 0, p) satisfies C; iff (pl,pg,p) Satlsflesa,
we obtain that P satisfies C;. This holds for all 4, so that
JCJ.

A test for .J C .J can be conducted via k satisfiability tests
for systems of £ + 1 linear constraints on n variables.
Each such test can be conducted in time polynomial in nk
(e.g. (Chvatal 1983)). Finaly, we havetodo < n(n — 1)
tests of the relation ~, giving an overall runtime for the
construction of S; polynomial in nk. |

So far, we only have presented some limited empirical ev-
idence that the selection functions I can still be interesting
and useful. Example 4.7 shows that with I,,,. nontrivial in-
ferences can be obtained. Also, if we apply I,.,. to our ex-
ampleof section4.1, wefind that wenow infer P(A) = 0.5,
P(A1 \Y Ag) = 0.5, and P(81 AN Bg) = 0.5, which ar-
guably isthe most reasonable result. Beyond the evidence
provided by examples like these, the net result of defini-
tion 4.5 and theorem 4.6, so far, only is that we know rep-
resentation independent selection functions to exist. This,
initself, is not exciting, because the trivial selection func-
tion I, with I(.J) = J for dl .J, already is representation

independent. In order to evaluate the significance of the-
orem 4.6, we therefore have to look for general results on
the properties of I. More specifically, the question of inter-
est is: how many of the origina useful propertiesof I are
preserved under the transformation I — I, and what do we
have to trade in for gaining representation independence?

The first major concession we have to make is precision:
even where I returns point values, I, in general, will only
return intervals. By the impossibility result of Paris (1994)
that was mentioned in section 4.1, this is an unavoidable
weakness of representation independent selection func-
tions. Another property that often holds for 7, but usually
islostin I is continuity (see (Paris 1994) for aformal defi-
nition). To see why thisisthe case, consider the state space
A = {ay,a:}, and J. C AA defined by the constraint
P(a1) < 1 —¢€. Foreverye > 0 wethenhave S;, =
{{a1},{as}}, and obtain, eq., In.(J.) = {(0.5,0.5)}.
Fore = 0, however,wehave Jy = AA, S, = {{a1,a2}},
and Inne(Jo) = AA.

While the loss of precision and of continuity run counter
conventional desiderata for a selection function, they both
can be justified to some extent by arguing that the relevant
state space we should consider is not so much the more or
less arbitrarily specified underlying set A, asthe set of “se-
mantic concepts’ implicit in our knowledge J. The ele-
ments of S; are just the formalization of such a notion of
semantic concept, and the use of I correspondsto using this
set asthetruly relevant state space. Introducing aconstraint
P(a;) < 1 — ¢, then, more than establishing a numeri-
cal constraint, carries the impact of introducing {a;} asa
semantic concept that we have to account for in our state
space.

The following theorem provides some positive results on
what is preserved under the transformation I — 1.

Theorem 4.9 The principlesof weak independenceand ir-
relevant information are preserved under thetransformation
I — I. If I isdimension independent, then the relativiza-
tion principle also is preserved under I — 1.

Proof: (Sketch) Weonly provethe statement for weak inde-
pendence and irrelevant information, omitting the (simpler)
proof for relativization.

Thekey to the proof isthe following observation: if .J is of
the form (3), then S; is essentialy the product of S ;s and
Syc. Thereisaminor complication: Sz [S;¢] may con-
tain the element B, := {b € B | VP € JB : P(b) = 0}
[thesimilarly defined C]. Then S ; will contain the “irreg-
ular” set Ay := B x CyUBy x C. Theexact claim wewant
to proveis

SJ:(SJB\BOXSJC\CO)UAO. (15)

We denotetheright hand side of (15) by S*. Itisstraightfor-
ward to verify that J = Ext(J| S*), which showsthat S*



isarefinement of S;. It remainsto show, conversely, that
S* isarefinement of S;. This meansthat we haveto show
that there do not exist distinct elements s7, s5 € S* with
sy ~ s3 (since S* isarefinement of S;, the equivalencere-
lation ~ also iswell-defined on S* by: s} ~ s5 iff a; ~ as
for somea; € sf, as € s3). We proceed indirectly, and as-
sume that such s, s} exist. The case where either s} or s3
isequal to A easily leadsto acontradiction, so we assume
that s7 = (sB,s0), 53 = (s2,55) with s? € S5 \ B,
s¢ €850\ Co(i=1,2).

It follows that there exists P € J with P(s7) > 0. From
s} ~ s5, using criterion (13), it then follows that there also
isQ € JwithQ(s7) > 0andQ(s3) > 0. Marginalizingon
B yieldstheresult: thereexists Q7 € JP with QB (sP) >
0and QB (sP) > 0. Lete := min{QB(sP),QB(s¥)}.
From s{ £ s§ (with ~ defined by J¢) it follows that
there exists Q' € J¢, QF € AC \ JC that agree
on all elements of S, except s and s$', and such that
QY (sY) — QY (s§)| = 6 < e. Without loss of gener-
ality, assume that Q' (s7') (= Q' (s5)) = Q¥ () + 0.
It is readily verified, that the two marginals Q® and QY
can be extended to a measure O on S* with O(s}) =
min{Q (s{), QB (sP)} > 6. From s} ~ s; it followsthat
O’ obtained from O by shifting probability mass § from s}
to s againisin J. But now the marginal of O’ on C isjust
Q¢ , which thus would have to belong to ¢, contradicting
our assumption. This completesthe proof that S* C S;.

Having established (15), the remainder of the proof for
weak independence and irrelevant information is simple.
Fromthefact that .J | S isof theform (3), and the assump-
tion that I satisfies the respective principles, we obtain
(2) and (5), respectively, for I(J)[S; = I(J]S;). Itis
readily verified that the validity of (2) and (5) is preserved
when then I(J)[ S, is extended to A via EXt(I(J)[Sy).

O

The third line in table 1 summarizes the contents of theo-
rem 4.9 and the negative results mentioned above. Line 4
and 5 also explicitly list the propertiesof I,,,, and I.,,, some
of which can be derived directly from the entriesin lines 1-
3; othersrequire short, separate, proofs.

5 CONCLUSION

Rationality criteria for measure selection functions mostly
have been formulated in terms of formal principles, or ax-
ioms. Entropy maximization has the best track record with
respect to these principles; it is therefore often regarded as
the one most reasonable selection rule. In this paper we
have pointed out that rationality might also be based on the
statistical criterion of identifying the most likely source for
theinformationwearegiven, and that under such achanged
perspective center of mass may look much more attractive
than maximum entropy.

Representation independence is one intuitively reasonable
formal principlethat even entropy maximizationfailsto sat-
isfy. It has been shown that we can gain representation in-
dependence when we are willing to forfeit some of the de-
cisiveness of our inferences. Thisresult is equally relevant
for center of massand for maximum entropy inference, asin
particular it yields alanguage independent variant of center
of mass. We have presented results that show that the mod-
ification of a selection rule I to its representation indepen-
dent variant I preservesat |east some of those characteristic
features of I that made I attractivein thefirst place.
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