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Abstract:

We propose a method for the simultaneous construction of multiple image segmentations by com-
bining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden
Markov random field structure. The resulting method constructs for a single image several, alter-
native segmentations that capture different structural elements of the image. We also apply the
method to collections of images with identical pixel dimensions, which we call image stacks. Here
it turns out that the method is able to both identify groups of similar images in the stack, and to
provide segmentations that represent the main structures in each group.

1 INTRODUCTION

Traditional clustering methods construct a
single (possibly hierarchical) partitioning of the
data. However, clustering when used as an ex-
plorative data analysis tool may not possess a
single optimal solution that is characterized as
the optimum of a unique underlying score func-
tion. Rather, there can be multiple distinct clus-
terings that each represent a meaningful view of
the data. This observation has led to a recent
research trend of developing methods for mul-
tiple clustering (or multi-view clustering). The
general goal of these methods is to automatically
construct several clusterings that represent alter-
native and complementary views of the data (see
(Miller et al., 2012) for a recent overview, and the
proceedings of the MultiClust workshop series for
current developments).

The perhaps most typical application area for
multiple clustering is document data (e.g. collec-
tions of news articles or web pages). For example,
the standard benchmark WebKB dataset consists
of university webpages that can be alternatively
clustered according to page-type (e.g. personal
homepage or course page), or the different uni-
versities the pages are taken from. Turning to
image data, previously used benchmark sets are
the CMU and the Yale Face Images data, which
consists of portrait images of different persons in

several poses, and accordingly can be clustered
according to persons or poses (Cui et al., 2007;
Jain et al., 2008). In this setting, each image
is a data-point, and (multiple) clustering means
grouping images. When, instead, one views as
a data-point a single image pixel, then multiple
clustering becomes multiple image segmentation.

Relatively few work has been done on finding
multiple, alternative image segmentations. Kim
and Zabih (2002) developed a quite specific facto-
rial Markov random field model in which an im-
age is modeled as an overlay of several layers, and
each layer corresponds to a binary segmentation.
Qi and Davidson (2009) apply a general multi-
ple clustering approach to a variety of datasets,
including images. Their multiple clustering ap-
proach falls into the category of iterative multi-
ple clustering, where given an initial (primary)
clustering, a single alternative clustering is con-
structed. Our approach, on the other hand, falls
into the category of simultaneous multiple clus-
tering methods, where an arbitrary number of
different clusterings is constructed at the same
time, and without any priority ordering among
the clusterings. Finally, Kato et al. (2003) gener-
ate alternative segmentations based on color and
texture features, respectively. However, the ob-
jective here is not to provide different, alternative
segmentations, but to combine the two segmen-
tations into a single one.



It is worth emphasizing that multiple cluster-
ing in the sense here considered is different from
the construction of cluster ensembles (Strehl and
Ghosh, 2003). In the latter, numerous cluster-
ings are built in order to overcome the conver-
gence to only locally optimal solutions of clus-
tering algorithms, and to construct out of a col-
lection of clusterings a single consensus cluster-
ing. The multiple segmentations in the sense of
(Hoiem et al., 2005; Russell et al., 2006) are seg-
mentation analogues of cluster ensembles, not of
multiple clusterings in our sense.

In this paper we develop a method for con-
structing multiple segmentations of images and
image stacks, which we define as a collection of
images with equal pixel dimensions. The most
import type of image stacks are the collection of
frames in a video sequence. However, we can also
consider other such collections of pixel-aligned
images. As we will see in the experimental sec-
tion, multiple clustering of such image stacks can
give results that combine elements of clustering
at the image and at the pixel level. For the de-
sign of our method we build on the convolution
of miztures of Gaussians model of (Jain et al.,
2008) which we customize for the segmentation
setting by combining it with a Markov Random
Field structure to account for the spatial dimen-
sion of the data.

Our approach is intended as a general method
that can be applied to image data of quite dif-
ferent types, and that thereby is a quite general
tool for explorative image data analysis. For more
specialized application tasks, our general method
may serve as a basis, but will presumably require
additional modifications and adaptations.

2 THE CONVOLUTIONAL
CLUSTERING MODEL

Probabilistic clustering approaches are based
on latent variable models where a data point x
is assumed to be sampled from a joint distribu-
tion P(X, L | 0) of an observed data variable X
and a latent variable L € {1,...,k}, governed by
parameters 6 (throughout this paper we use bold
symbols to denote tuples of variables, parameters,
etc.; when talking about random variables, then
uppercase letters stand for the variables, and low-
ercase letters for concrete values of the variables).
Clustering then is performed by learning the pa-
rameters @, and assigning x to the cluster with
index i for which P(X = @, L =i | 0) is maximal.

Lio

)

Figure 1: Multi-layer Hidden Markov Random Field

This probabilistic paradigm is readily gener-
alized to multiple clustering models. One only
needs to design a model P(X,L | ) containing
multiple latent variables L = Lq,..., L,,. Then
the joint assignment Ly = 41,..., Ly, = iy (ab-
breviated L = %) maximizing P(X = z,L; =
i1,y L = im | 0) defines the cluster indices
for « in m distinct clusterings. Models for multi-
ple clustering that are based on multiple latent
variables include the factorial Hidden Markov
Model (Ghahramani and Jordan, 1997), the fac-
torial Markov Random Fields of (Kim and Zabih,
2002), convolution of mixtures of Gaussians (Jain
et al., 2008), the latent tree models of (Poon et al.,
2010), and the factorial logistic model of (Jaeger
et al., 2011).

2.1 The Probabilistic Model

Our model is structurally identical to the facto-
rial Markov Random Field model of (Kim and
Zabih, 2002). Figure 1 shows the structure of such
a multi-layer hidden Markov random field: with
each pixel ¢ € I (I the set of all pixels) are as-
sociated m latent variables L; o = L;j1,...,Lim
and a vector of observed variables X ;. For k =
1,...,m the variables Lo = L1, ..., L, take
values in the set {1,...,ny}, so that the kth seg-
mentation will consist of nj segments.

For this paper we assume that in the case
of single image analysis, X, is simply the 3-
dimensional vector (R;,G;, B;) of rgb-values at
pixel i. In the case of image stacks with NV images,
X,; will be a 3 - N-dimensional vector containing
the rgb-values of all images in the stack. We de-
note with | X |; the dimension of X ;. Though we
do not explore this in the current paper, we note
that X ; could also contain differently defined ob-
served features of pixel 1.

For every k = 1,...,m, the latent variables
L, form a Markov random field with a square
grid structure. The distribution of X; depends



conditionally on the latent variables L;,

The marginal distribution P(L | 6) is defined
as a product of m Potts models defined by a com-
mon temperature parameter 7"

P(L=1]|6)=P(L

m
H (Lo x=le )/T
where Z is the normalization constant, and
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with ]I(lzﬁk 7& ljﬁk) = 1if li,k 7é ljyk, and = 0
otherwise.

For the conditional distribution P(X | L,8)
the model of Figure 1 implies conditional inde-
pendence for different pixels of the observed pixel
features X; given the latent pixel variables L; ,.
Moreover, we assume that the conditional model
P(X, | L;.,0) is identical for all i. It is defined
as the convolution of m mixtures of Gaussians as
follows. For k = 1,...,m and j = 1,...,n; let
Mk € RX . Writing p,, = M1y -5 Mkony,, W€ Ob-
tain for every k a distribution for a variable Z; j,
defined as a mixture of Gaussians
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where 1 stands for the unit covariance ma-
trix. For two distributions P(Y), P(Z) of two
k-dimensional real random variables Y, Z, we de-
note with P(Y )+ P(Z) their convolution, i.e., the
distribution of the sum X =Y + Z. The final
model for X; now is defined as the m-fold convo-
lution:

P(Xl | Liﬂa/“’lv" 7/1’771) =
P(Ziy | Lig,py) %% P(Zim | Lism, )

Combining the model for L and X | L, We
now obtain

log(P(L=1l,X =z | p,T)) =

—1/TZ > Wik #Lik)
k=11,j:i~j
> - Zukzzkl\ (1)
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2.2 The Regularization Term

Maximizing the log-likelihood (1) alone is a sound
approach to probabilistic multiple segmentation.
However, Jain et al. (2008) suggest to add to the
likelihood the regularization term

A by

k,k'=1,....,m j=1,...,nk
k#K j=1,..n

(ki - b ) (2)

Here A > 0 is a weight parameter that regu-
lates the strength of the influence of the reg-
ularization term. This penalty term is min-
imized when the means p;,u, corresponding
to different segmentations lie in orthogonal sub-
spaces. The rationale given for this regular-
ization term is twofold. First, the likelihood
function (1) does not have a unique maxi-
mum. Indeed, taking the case m = 2, the two
solutions (f11,--sM1ngs H2,1y- -5 H2,ny, 1) and
(,U/l,l +c... y H1,nq +c, H2,1 — Cyevvy 2,0y — € T)
(c € R?) define the same distribution, and there-
fore have the same likelihood score. Second, the
likelihood alone does not give an explicit reward
for the distinctness, or complementarity, of the re-
sulting multiple clusterings. Following other ap-
proaches to multiple clustering, it is hoped that
encouraging the means corresponding to different
clusterings to lie in orthogonal subspaces will lead
to a greater diversity of those clusterings.

We argue that the form and justification
for this particular regularization term is slightly
flawed, and that it should be replaced by a
modified version. First, we note that the non-
uniqueness of the optimal solution for (1) is not
a real problem as long as two different optimal
solutions define the same multiple segmentation.
This, however, is exactly the case for the two so-
lutions distinguished by the offset vector ¢ as de-
scribed above. Second, regularization with (2) is
not invariant under simple shifts of the coordinate
system: adding a constant vector z to all data-
points @; should have no effect on the optimal
segmentation, which should be characterized by
also adding z to all model parameters p ;. Since
(2) is not invariant under addition of a constant
to all py j, this is not the behavior one obtains
with this regularization term. We therefore pro-
pose to modify (2) so as to reward means g, for
to lie in orthogonal affine sub-spaces, rather than
orthogonal linear sub-spaces. Thus, we propose
the following regularization term:
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Thus, we reward solutions in which normal-
ized difference vectors between the means of dif-
ferent layers are orthogonal, rather than the
means themselves. The term (3) now is invari-
ant under adding, respectively subtracting, a con-
stant vector ¢ to all means of two different layers,
and hence we again have the non-uniqueness of
optimal solutions as for the pure likelihood (1).
However, as argued above, we do not see this as
a problem.

One small practical problem arises when we
define our objective function as the sum of (1)
and (3): the likelihood term (1) increases in mag-
nitude linearly with the number of pixels. The
regularization term, on the other hand, only in-
creases as a function of the number of layers and
the number of segments per layer. The choice
of an appropriate tradeoff parameter A between
likelihood and regularization term, thus, would
depend on the number of pixels. In order to get
a more uniform scale for A\ across different exper-
iments, we therefore normalize the regularization
term with the factor | I | /K, where K is the
number of terms in the sum (3).

We remark that the probabilistic model (1)
alone also has some built-in capability to encour-
age a diversity in the parameters p, for different
layers, and hence, in the different segmentations.
This is because having two layers with very sim-
ilar means p; does not allow a much better fit
to the data than a single layer with those means.
Exploiting the full parameter space of the model
to obtain a good fit to the data, thus, will tend to
lead to some diversity in the parameters p. For
this reason, in our experiments, we also pay par-
ticular attention to the case A = 0, i.e., segmen-
tation according to the pure probabilistic model

(1).
2.3 Clustering Algorithm

We take the model parameter 3 := 1/T and the
regularization parameter A as user-defined inputs
that may be varied in an iterative data explo-
ration process. Large values of # mean that high
emphasis is put on segmentations with large con-
nected segments and smooth boundaries. Larger

values of A mean that diversity of segmentations
as measured by the regularization term (3) is
more strictly enforced.

Thus, the only model-parameters we have to
fit are the mean vectors p,,. Our goal, then, is to
maximize a score function S(pq, ..., i,,, 1) which
is given as the sum of (1) and (3).

We use a typical 2-phase iterative process for
this optimization: in a MAP-step we compute
for a current setting of the g, the most prob-
able assignment L = [ for the latent variables
according to the likelihood function (1) (since (3)
does not depend on I, we can ignore it in this
phase). In a M(aximization)-step we recompute
for the current setting L = I the p; optimiz-
ing S(tq, ..., Hy,1). This well-known clustering
approach (sometimes referred to as hard EM)
has also been proposed for image segmentation
in (Chen et al., 2010).

2.3.1 MAP-step

For the MAP-step we make use of the a-expansion
algorithm of (Boykov et al., 2001; Kolmogorov
and Zabin, 2004; Boykov and Kolmogorov, 2004).
This algorithm provides solutions to segmenta-
tion problems characterized by an energy function
FE for segmentations s, which are of the form

E(s)= Y Vi(s(i),s() + Y Dils(i)), (4)
2,7:~] 7

where s(i) is the segment label of pixel ¢, V; ; is a
penalty function for discontinuities in s, and D;
is any non-negative function measuring the dis-
crepancy of the label assignment s(i) with the
observed data for i. It is shown in (Boykov et al.,
2001) that if V; ;(s(2), s(j)) is a metric on the label
space, then the a-expansion algorithm is guaran-
teed to find a solution s that is within a constant
factor of the globally minimal energy E().

Up to a change of sign (and a correspond-
ing change from a minimization to a maximiza-
tion objective) our likelihood function (1) has
the form (4) for the m-dimensional label space
xm {1, oone) (ee (@) = (L, lim))s
with Vi (s(0).5(7) = S, Il # L) and
Di(s(i)) =l @ = S ity I

Furthermore, it is straightforward to see that
our V;; is a metric on the m-dimensional label
space.

To use the a-expansion algorithm we flat-
ten our m-dimensional label space to a one-
dimensional label space with [];-, ns different
labels. Thus, our method has a complexity that
is exponential in the number of layers. On the



other hand, the a-expansion algorithm in prac-
tice is quite efficient as a function of the number
of pixels. It is reputed to show a linear complex-
ity in practice (Boykov et al., 2001), which was
confirmed by our observations in our experiments.

2.3.2 M-step

The M-step is performed by gradient ascent, lead-
ing to a local maximum of the score function given
the current segmentation L = [.

2.3.3 Implementation

The algorithm is implemented in Matlab,
using the a-expansion implementation pro-
vided by the gco-v3.0 library available on
http://vision.csd.uwo.ca/code/.

3 EXPERIMENTS

In all our experiments we construct multiple
segmentations with the same number of segments
in each layer. We therefore refer to a multiple
segmentation with m layers and k segments in
each layer as a (m, k)-segmentation.

3.1 Single Images

Our first experiment establishes the baseline re-
sult that the segmentation methods works as in-
tended when the input closely fits the underlying
modeling assumption. To this end we construct
the image shown in Figure 2 (c) as the overlay of
the two images (a) and (b), and used our method
to construct (2,3)-segmentations from the single
input image (c). First setting A = 8 = 0, we per-
formed 200 runs of the algorithm with different
random initializations. The highest-scoring solu-
tion that was found consists of the segmentations
(d) and (e). In these figures, the color of the jth
segment in the kth layer is set to fir j, where fiz ;
is obtained from py ; by applying min-max nor-
malization to re-scale the components of all the
mean vectors p;, (K =1,...,m) into the interval
[0..255] of proper rgh-values. Essentially the same
optimal result was found in 9 out of the 200 runs.
In the remaining runs the algorithm converged to
local minima, an example of which is shown by (f)
and (g). These results were clearly identified by
the algorithm as sub-optimal by being associated
with significantly lower score function values.

With increasing A parameter the results in this
experiment deteriorated. At A = 5000 the “cor-
rect” solution was not found in 200 restarts. This
is not very surprising, since for this image with
A = 3 = 0 the correct solution is clearly distin-
guished as the solution that can achieve a perfect
score of 0 on the remaining Euclidean part of the
likelihood term (1).

|

(a) b)
(c) -
() (g)

Figure 2: Baseline: overlay image

Next, we perform a series of experiments on
the butterflies image by M.C. Escher, shown in
Figure 3, which has previously been used in (Qi
and Davidson, 2009). The size of this image is
402x401 pixels.

We first compute (2,3)-segmentations with
varying values of A (and 8 = 0). Figure 4 shows
the highest scoring results (in 20 restarts) ob-
tained for A = 0,1000, 10000. In all cases, essen-
tially the same two segmentations are computed:
one that corresponds to the main colors of the
three types of butterflies in the image, and one
that captures the finer structure of the borders
between the butterflies, as well as the shading
inside the butterflies. The main effect of the reg-
ularization term here is not a difference in the

Figure 3: Escher’s butterflies



Figure 4: Escher (2,3)-segmentations, varying A

segmentations, but only a difference in the means
associated with the segments: for the high value
A = 10000, the means in the second segmenta-
tion all have a strong green component, whereas
the means of the first component only have weak
green components. This makes the means of
the two components lie in near-orthogonal affine
spaces. A similar color-separation does not ap-
pear at A = 0.

A common way to measure dissimilarity of two
clusterings L1, Lo is normalized mutual informa-
tion

MI(Ly, L2)

NMI(Ly, Ly) = AL

where MT is the mutual information and H() the
entropy of L1, Lo, as determined by the empirical
joint distribution of L, Ly defined by the cluster
assignments of the pixels. Low values of NMI in-
dicate statistical independence, and hence dissim-
ilarity of clusterings. Furthermore, a justification
given by Jain et al. (2008) for the regularization
term (2) is that it induces a bias towards statis-
tically independent clusterings. This justification
carries over to our modified version (3). There-

fore, the NMI as an evaluation measure is quite
consistent with our objective function.

However, while low values of the regulariza-
tion term can be due to statistical independence
of the segmentations, this is not a strict correla-
tion. As discussed above, the increasing weight of
the regularization term in Figure 4 only leads to a
shift of the mean rgh-vectors without a noticeable
change in the segmentations. This leads to an im-
provement in the value of the regularization term
from 8.28 - 105 at A = 1000 to 1.82-10° at A =
10000 (at A = 0 no regularization term is com-
puted). However, the NMI values for the three so-
lutions of Figure 4 are 8.4-1073,5.4.1072,7.1.102
for A = 0,1000,10000, respectively. Thus, the
NMI values are even slightly increasing for larger
A-values.

We note at this point that NMI values have
to be used with caution when assessing dissimi-
larity of image segmentations (rather than other
types of data clusterings): NMI is a function
only of cluster membership of pixels. However,
for segmentations one is perhaps more inter-
ested in the borders defined between segments,
than in the global grouping of pixels into seg-
ments. Figures 5-7 illustrate this issue. Fig-
ure 5 shows a modified version of Escher’s but-
terflies in which we have superimposed an ad-
ditional square grid structure on the butterfly
image. Figure 6 is shows a hypothetical (2,4)-
segmentation (not computed by our method) of
this image. Both segmentations identify the grid
structure — the first one dividing the structure
according to columns (and background), the sec-
ond according to rows (and background). For the
non-background pixels row and column member-
ship are independent random variables. The mu-
tual information of the two segmentations there-
fore reduces to —P(b) log P(b) — (1— P(b))log(1—
P(b)), where P(b) is the probability of back-
ground pixels (i.e. the relative image area covered
by background). In the limit where the size of the
squares is increased, and P(b) — 0, the mutual in-
formation of the two segmentations, thus, goes to
zero (and so does the normalized mutual informa-
tion). This shows that dissimilarity as measured
by low mutual information need not correspond
to the kind of complementarity we may be look-
ing for in different segmentations. Figure 7 shows
the (2,4)-segmentation actually obtained by our
method. The result shown is for A = 0, but re-
sults for higher A-values are similar. Clearly, we
will not obtain segmentations similar to those in
Figure 6, since these would score very poorly in



Figure 5: Butterflies with squares

Figure 6: Segmentations with low mutual information

the likelihood term (1), and their low NMI score
also would not be reflected in a low value of the
regularization term.

We see, thus, that neither need there be a
good correspondence between low NMI values
and complementarity of segmentations in the in-
tuitive sense, nor does the regularization term
necessarily induce a strong bias towards low NMI
solutions. Fortunately, as Figure 7 shows, the
likelihood score alone is quite successful in pro-
ducing segmentations that are complementary in
an intuitively meaningful sense.

In the next experiment we keep A = 0 fixed,
and vary 8 = 1000,16000. As the results in
Figure 8 show, the effect is quite consistent
with expectations: the already fairly smooth first
segmentation remains quite stable (even though
some further smoothing of the borders occurs),
whereas the smoothing of the initially rather frag-
mented second segmentation leads to an eventual
dissolving of the structure, including the elimina-
tion of one of the three segments (we note that
we here always manually label segmentations as

Figure 7: Actual (2,4)
with squares

Figure 9: Escher (3,2)-segmentation

“first” and “second” to facilitate the compari-
son; the algorithm may return either segmenta-
tion with index 1 or 2).

Finally, we perform a (3,2)-segmentation with
A = = 0. The result is shown in Figure 9.
The first segmentation again is based on the main
underlying color distribution, isolating the blue
butterflies from the rest. The last segmentation
again represents mostly the border structure and
shading. Finally, the segmentation in the mid-
dle is mostly identifying the green butterflies, but
also represents some structure. Qi and Davidson
(2009) present a (2,2)-segmentation for the but-
terfly image obtained from their iterative cluster-
ing method. Their two segmentations are quite
similar in nature to the first two in Figure 9.

3.2 Image Stacks

As a first experiment with an image stack, we
used the collection of 25 flag-images shown in Fig-
ure 10 (each at a resolution of 150 x 75 pixels).
Again setting A = § = 0, the highest scor-
ing (2,3)-segmentation is shown at the bottom
of Figure 10. Here we now depict the different
segments using arbitrarily chosen greyscale val-
ues. The means py, ; characterizing segments now
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Figure 10: Stack of flag images

are 3 - 25 dimensional vectors that can be inter-
preted as an average color sequence for pixels in
a segment. Taking for visualization the average
over all colors in the sequence typically leads to
all segments represented by very similar brown-
ish colors (although, curiously, in this particular
case the average colors for the segmentation with
the vertical stripes yield a somewhat washed-out
looking French flag). The same “correct” solution
here was found in 9 out of 50 random restarts.

A second image stack we constructed consists
of 10 images each of trains and horses, as shown
in Figure 11. We performed (2,3)-segmentation
with A = 0 and 8 = 50. The highest scoring
result within 400 runs is shown at the bottom
of Figure 11. The method identifies the main
structures in the two groups of images also in this
somewhat more diverse collection of images. The
results in the different runs were relatively stable,
with other high-scoring solutions similar to the
top-scoring one. Results with lower scores often
separated the two groups of images less clearly,
or contained segmentations in which on segment
was reduced to very few pixels.

In all our experiments results were quite ro-
bust under variations of the A and § parameters.
Good results are typically already obtained at the
baseline setting A = f = 0. Note that § = 0
means that the Markov random field structure
of the model is ignored, and that the MAP step
could be implemented in a much simplified man-
ner. In applications where smooth and contigu-

Figure 11: Stack of Horse and Train images

ous segments are required, settings of 8 > 0 will
be needed. The impact of the A parameter on
the segmentations was rather small. It appears
that larger values of A affected the placement of
the mean parameters representing the different
segments, but not so much the resulting segmen-
tations themselves.

We close this section with some information
on the runtimes of our experiments: a single run
of a (2,3) or (3,2)-segmentation of the 402x401
pixel butterfly image takes about 1 minute on av-
erage, with an average of about 8 iterations of
MAP and M steps until our termination criterion
is met that the score improvement in one itera-
tion is less than 2%. The same experiments with
the image at twice the resolution take about twice
as long. The average runtime for the Horse-Train
image stack also is about 1 minute. The higher
dimensionality of the feature vector here is offset
by the smaller number of pixels at the resolution
of 151x151 for the images in the stack. For the
Horse-Train stack most of the computation time



(about 90%) is taken by the M step, which is more
affected by the dimensionality of the feature vec-
tor. For the butterfly image, on the other hand,
most of the time (approx. 70%) is spent on the
MAP step.

4 CONCLUSION

We have introduced a method for construct-
ing multiple segmentations of image stacks by
combining the convolution of mixtures of Gaus-
sians model (Jain et al., 2008) with a multi-
layer Markov Random field. While novel in this
form, the resulting model is a quite straightfor-
ward combination of existing components. The
main original contribution of this paper is the
first dedicated investigation of multiple cluster-
ing for image segmentation, and the introduction
of (multiple) segmentation of image stacks. We
note that the latter is different from cosegmenta-
tion (Rother et al., 2006) and standard video seg-
mentation, where also “stacks” of images are seg-
mented simultaneously, but where a separate seg-
mentation is computed for each image (or frame).

We have conducted a range of experiments
that demonstrate that the method is able to pro-
duce meaningful results in a broad variety of
datasets. Applied to single images, it is able
to identify the structures of multiple constituent
components. Applied to image stacks, it can per-
form a simultaneous clustering at the image and
at the pixel level. All these results were obtained
using only the basic rgb pixel features. No task-
specific preprocessing or feature engineering was
needed to obtain our results. One can thus con-
clude, that the proposed method provides a useful
baseline approach for explorative image analysis.

For more specific application purposes or data
analysis objectives, it will be necessary to con-
struct more specific pixel features. One possi-
ble such application domain is multiple segmen-
tation of video sequences. The frames of a video
can obviously be seen as an image stack. Us-
ing only the rgb pixel features our method is not
very well adapted to video analysis, since it does
not take into account the temporal order of the
frames. New pixel features that capture some of
the temporal dynamics of the pixel values can be
constructed, for example, simply by considering
the variance of the pixel’s rgb values, or by con-
structing features that describe the trajectory of
the pixel’s rgb values in rgb-space. Performing
multiple segmentation of video sequences based

on such features is a topic for future work.

In this paper we have also tried to evaluate the
usefulness of regularization terms along the lines
proposed in (Jain et al., 2008) for stimulating di-
versity in the multiple segmentations. Our results
lead to some doubts both with regard to the ef-
fectiveness of the regularization term to produce
segmentations with low mutual information, and
with regard of the usefulness of mutual informa-
tion as a measure for diversity in image segmen-
tations. On the other hand, our results indicate
that the likelihood term (1) alone is quite capable
of identifying the most relevant, distinct segmen-
tations.
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