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Abstract. In this paper we investigate distance functions on finite state
Markov processes that measure the behavioural similarity of non-bisimilar
processes. We consider both probabilistic bisimilarity metrics, and trace-
based distances derived from standard Lp and Kullback-Leibler dis-
tances. Two desirable continuity properties for such distances are iden-
tified. We then establish a number of results that show that these two
properties are in conflict, and not simultaneously fulfilled by any of our
candidate natural distance functions. An impossibility result is derived
that explains to some extent the fundamental difficulty we encounter.

1 Introduction

Markov processes are widely used as formal system models in the presence of
uncertainty. In the formal analysis of such models, notions of equivalence tradi-
tionally play a key role [10]. However, there is an increasing interest in approxi-
mate models, such as simplified models obtained by model abstraction, or models
that are automatically learned by statistical inference from empirical data [14,
11]. When analysing the relationship between a true model and its approxima-
tion, then equivalence clearly is too strong a criterion. Therefore, concepts of
approximate equivalence that generalize probabilistic bisimulation equivalence
via the introduction of bisimulation distances have received some attention [6,
20, 19, 3, 1].

It turns out however, that some of these distances violate some natural prop-
erties one would expect from a distance function that in a meaningful sense
measures the quality of approximation. As an example, consider the automaton
Mǫ shown in Figure 1 representing a process where a biased (ǫ 6= 0) or unbiased
(ǫ = 0) coin is tossed repeatedly. For a small ǫ > 0 the model Mǫ would be
considered a good approximation of the model M0, and if a distance measure d
represents quality of approximation, then d(M0,Mǫ) should go to zero as ǫ → 0.
This property, which we will formalize as parameter continuity, is not satisfied
by the original bisimulation distances (though it turns out to be satisfied by the
discounted versions of these distances).
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Parameter continuity is not the only requirement we have on a distance
function. It should also be the case that when one model is a good approximation
of another model according to a given distance function, then some upper bounds
are implied on the error incurred by using the approximation instead of the real
model. We can, thus, formulate two high-level objectives for the design of a
distance function:

O1 If (Mn)n is a sequence of approximations for a target model M, and for
increasing n, Mn is obtained by applying an increasing amount of resources
to obtain a good approximation, then d(M,Mn) → 0.

O2 In a particular use scenario for an approximate model M′, an upper distance
bound d(M,M′) < δ between M′ and the correct model M should imply
an upper bound on the error, or loss, incurred when using M′ instead of M
in the given scenario.

We here have formulated these two objectives in a deliberately vague manner
in order to emphasize that they can give rise to a variety of more concrete,
formal conditions. One aspect of objective O1 will be captured by the parameter
continuity condition illustrated by Figure 1, and formally defined in Section 4.1
below. Parameter continuity matches the informal description of O1 in the sense
that if the correct model is M0, then models obtained by an increasing amount
of approximation effort (e.g., learned or constructed from an increasing amount
of empirical data) will be of the form Mǫ with decreasing ǫ.

Objective O2 was the main design criterion in the development of the proba-
bilistic bisimulation metrics: a bound on the probabilistic bisimulation distance
implies the same bound on the difference in probability for all properties de-
finable in certain formal languages. We follow the same approach, and partly
capture the broad objective O2 by a formal condition we will call property con-
tinuity.

O1 and O2 are conflicting objectives. Each one, individually, has a trivial
solution: O1 will be satisfied by a “minimal” distance that is constant zero (we
will allow distances that are not metrics, and where non-identical models can
have distance zero). O2, on the other hand, is satisfied by any “maximal” dis-
tance, where any two non-identical models have the maximal possible distance,
typically 1 or ∞. The challenge, then, is to find distances that in a meaningful
manner balance O1 and O2.
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Fig. 1. Biased coin model Mǫ
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In this paper we investigate how a number of different distance functions
perform with regard to the criteria of parameter and property continuity. Be-
sides the existing bisimulation distances, our main interest is with trace-based
distances that measure the distance between automata only as a function of the
probability distributions over infinite sequences defined by the automata. We
here study several constructions of distance measures derived from the standard
Lp and Kullback-Leibler distances. It will turn out that the conflict between O1
and O2 is not fully resolved by any of our candidate distance measures, and we
will derive an impossibility result that explains to some extent the fundamental
difficulty we encounter.

2 Preliminaries

Throughout, Σ denotes a finite alphabet; Σn, Σ∗, Σω denote the sets of all
strings of length n, all finite strings, and all infinite strings, respectively. A
finite string w ∈ Σ∗ defines the cylinder set wΣω ⊆ Σω. This is just the set
of all infinite strings with prefix w. Let Cyl denote the set of all cylinder sets.
Cyl is the basis of the standard topology O(Σω) on Σω, i.e., open sets in this
topology are just unions of cylinder sets. Furthermore, the cylinder sets generate
the σ-algebra A(Σω) on Σω.

The basic automaton model we use in this work is that of a Labeled Markov
Chain, or, more specifically, state-labelled, discrete time Markov chain.

Definition 1. LMC A labeled Markov chain (LMC) over Σ is a tuple M =
〈Q,Σ,Π, π, L〉, where

– Q is a finite set of states,
– Π : Q → [0, 1] is an initial probability distribution with

∑

q∈Q Π(q) = 1,
– π : Q × Q → [0, 1] is the transition probability function such that for all

q ∈ Q,
∑

q′∈Q π(q, q′) = 1.
– L : Q → Σ is a labeling function

If Π(qinit) = 1 for some unique initial state qinit of Q, then we denote M also as
〈Q,Σ, qinit, π, L〉. In contexts where the initial distribution Π does not matter,
we also simply consider the structure 〈Q,Σ, π, L〉 as a LMC.

An LMC is deterministic if a state qinit ∈ Q as described above exists, and
for all q ∈ Q, σ ∈ Σ there exists at most one state q′ ∈ Q with π(q, q′) > 0 and
L(q′) = σ.

According to the preceding definition, we assume that each state is labelled
with a unique symbol from Σ, not by a subset of a set of atomic propositions
AP, as, e.g., in [2]. Clearly, by taking Σ = 2AP , Definition 1 also accommodates
this alternative view of labeled Markov chains.

An LMC defines for each n a probability distribution over Qn, which induces
via the mapping qi1 . . . qin 7→ L(qi1) . . . L(qin) a probability distribution on Σn.
Via standard measure-theoretic constructions, these distributions define a unique
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distribution on A(Σω), which we denote by PM. When the initial distribution
Π of M is re-defined to assign probability one to q ∈ Q, then we denote the
distribution defined by the resulting LMC by PM,q. This can be simplified to
Pq, when the underlying structure 〈Q,Σ, ·, π, L〉 is clear from the context.

Linear-time properties related to traces of the model can be expressed in
linear-time temporal logic (LTL) enriched also with the derived temporal opera-
tors � (always) and ♦ (eventually). The fragment of LTL obtained by omitting
the until operator ϕ1Uϕ2 is called bounded LTL (BLTL).

3 From Equivalence to Distance

The most fundamental approach to comparing system models is by means of
concepts of system equivalence. For non-probabilistic system models, the ba-
sic tools here are bisimulation and trace equivalence. Adapted to probabilistic
system models, this gives rise to the following two notions of equivalence.

Definition 2 (Probabilistic Bisimulation [10]). Let M = 〈Q,Σ,Π, π, L〉
be an LMC. A probabilistic bisimulation on M is an equivalence relation R on
Q such that for all states (q1, q2) ∈ R:

– L(q1) = L(q2).
– π(q1, C) = π(q2, C) for each equivalence class C ∈ Q/R.

States q1 and q2 are bisimulation-equivalent (or bisimilar), denoted q1 ∼ q2, if
there exists a bisimulation R on M such that (q1, q2) ∈ R.

Definition 3 (Probabilistic Trace Equivalence). Two states q1 ∈ M1, q2 ∈
M2 are probabilistic trace equivalent, denoted q1

T∼ q2, if PM1,q1 = PM2,q2 .

Equivalence often is too strong a condition when comparing system models.
We therefore also need quantitative measures that allow us to determine whether
one system very closely resembles another system, without being completely
indistinguishable in the sense of an equivalence relation. We study such measures
given in the form of distance functions, where small distance indicates similarity,
and zero distance means equivalence.

Thus, we consider distance functions d that map pairs of states to non-
negative numbers: d : (q1, q2) → R

≥0 ∪ {∞}. The only condition we always
require is that d(q, q) = 0. If d < ∞, d is symmetric and satisfies the triangle
inequality, then d is called a pseudo-metric. If also q1 6= q2 ⇒ d(q1, q2) > 0, then d
is a metric. We note that as a measure of approximation quality, non-symmetric
distances can be quite natural, because here the two arguments of the distance
function can have distinct roles: one being the approximation, and one being the
“real” model that is approximated. For example, if φ expresses a crucial safety
property, and M1,M2 are LMCs with PM1(¬φ) = 0 and PM2(¬φ) = 10−5,
then M2 may be considered a good (i.e., safe) approximation of M1, but not
vice-versa.
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A distance function d is consistent with bisimilarity if d(q1, q2) = 0 ⇔ q1 ∼ q2;

it is consistent with trace equivalence if d(q1, q2) = 0 ⇔ q1
T∼ q2. If a distance is

consistent with trace equivalence, then the implication q1 ∼ q2 ⇒ d(q1, q2) = 0
still holds, but not the converse.

We next introduce two types of distance functions. First we consider distance
functions that are quantitative extensions of bisimulation equivalence, and then
distance functions that extend trace equivalence.

3.1 Probabilistic Bisimilarity Metric

The bisimilarity pseudometric was originally introduced by means of logical ex-
pressions that are evaluated to real numbers at system states according to a
functional semantics [6, 20]. The distance of two states then is defined as the
supremum over all logical expressions of the differences of function values. Al-
ternative characterizations as the fixedpoint of monotone operators on pseudo-
metrics have been developed in [19, 3, 1].

However, there are some differences in the assumed underlying system models
in these papers, and the literature does not fully establish an equivalence of all
available versions of bisimilarity distance for the LMC models we here use. In
the following we therefore review one particular formalization of the bisimilarity
pseudometrics in terms of couplings.

The definitions below follow the style traditionally used in the bisimulation
context in that a distance is defined between states q1, q2 in a single underlying
model M. There is just a minor conceptual difference with no technical impli-
cations between this perspective, and the view that each qi is embedded in its
own model Mi.

Given two probability measures µ, ν on Q, we use the notation J(µ, ν) to
denote the set of all probability measures on Q × Q that have µ and ν as the
marginals on the first, respectively second, component.

Definition 4 (Coupling). Let M = 〈Q,Σ, π, L〉 be a finite LMC. The Markov
chain C = 〈Q×Q,Σ ×Σ,ω, L〉 is called a coupling for M if, for all q1, q2 ∈ Q,

1. ω((q1, q2), ·) ∈ J(π(q1, ·), π(q2, ·)), and
2. L(q1, q2) = (L(q1), L(q2)).

A coupling for M can be seen as a probabilistic pairing of two copies of M
running synchronously, although not necessarily independently.

Given a coupling C forM, and a discount factor λ ≤ 1, we define Γ C
λ : [0, 1]Q×Q →

[0, 1]Q×Q for d : Q×Q → [0, 1] and q1, q2 ∈ Q, as follows:

Γ C
λ (d)(q1, q2) =







1 if L(q1) 6= L(q2)

λ ·
∑

u,v∈Q

d(u, v) · ω((q1, q2), (u, v)) if L(q1) = L(q2)

The operator Γ C
λ has a unique least fixedpoint [1], which we denote by γC

λ .
Each γC

λ is a distance function on Q. The bisimulation distance is obtained by
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taking the minimum over all possible couplings:

db,λ := min{γC
λ | C coupling for M}. (1)

The minimum here is taken pointwise at each argument (q1, q2). It is shown
in [1] that db,λ is well-defined, as the minimum on the right of (1) is attained.
Furthermore, there is a coupling that minimizes γC

λ(q1, q2) simultaneously for all
(q1, q2). We here use the extra subscript b to distinguish this bisimilarity distance
more clearly from other distance functions we will also consider in the sequel.
db,λ is consistent with probabilistic bisimilarity.

3.2 Trace-based Distances

A distance d is trace-based, if d(q1, q2) is a function only of Pq1 and Pq2 . The
measure-theoretic construction of distributions Pq on Σω is essentially a limit of
finite-dimensional distributions on Σn (n ∈ N). In a similar manner, it is natural
to construct distances between distributions on Σω as a limit of distances on
distributions on Σn. There are, however, several possible ways of doing this.
We consider the following three canonical constructions. If d(n) is a distance
function for distributions on Σn (n ∈ N), we define induced distance functions
for distributions on Σω as

– (limit) d∞ := limn→∞ d(n)

– (per-symbol distance; limit average) dps := limn
1
nd

(n)

– (discounted sum) dλ :=
∑

n≥1 λ
nd(n) (λ < 1)

For all three constructions it holds that symmetry and triangle inequality are
preserved, i.e., if all the d(n) possess these properties, then so do dλ, d∞, and
dps (provided the limits exist).

The limit and the per-symbol distances are opposite in nature to the dis-
counted sum distances: the latter emphasizes the differences in the distribution
of initial segments w ∈ Σn of s = ws′ ∈ Σω, whereas the first two are most
sensitive to the distribution of the infinite tail s′.

In the following P1, P2 always denote probability distributions on Σω. We are
mostly concerned with distributions Pi that are defined by states qi in LMCs
Mi, i.e., Pi = Pqi . However, many of our general considerations also apply to
arbitrary distributions Pi. If Pi is of the form Pqi for some qi ∈ Mi, then we say
that Pi is generated by an LMC.

Pi induces for each n ∈ N a distribution P
(n)
i on Σn. In order to avoid

notational clutter, we suppress the superscript (n) to distinguish P
(n)
i from Pi.

Which probability space we assume for Pi in a given context will be implicit
from the arguments of Pi().

In this paper, we consider the following standard distance functions between
distributions P1, P2 on Σn:

– (Kullback-Leibler distance) d
(n)
KL(P1, P2) :=

∑

w∈Σn P1(w) log
P1(w)
P2(w)
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– (Lp-distance) d
(n)
Lp

(q1, q2) := (
∑

w∈Σn | P1(w) − P2(w) |p)1/p

For Lp-distances we focus our attention on p = 1 (total variation distance),
p = 2 (Euclidean distance), and p = ∞ (Maximum distance). The distance dpsKL

is well-known in information theory, and there usually called the divergence-rate.
An important tool in the analysis of the Kullback-Leibler distance is an

additivity property [9, Chapter 2], which adapted to our context can be stated
as:

d
(n+1)
KL (P1, P2) = d

(n)
KL(P1, P2) +

∑

w∈Σn

P1(w)
∑

σ∈Σ

P1(σ|w) log
P1(σ|w)
P2(σ|w)

. (2)

Also important is the following relationship between dKL and dL1 :

d
(n)
KL ≥

(d
(n)
L1

)2

2
. (3)

(see [18] for this and further, sharper, bounds). A direct implication is that for
all A ⊆ Σn

|P1(A)− P2(A) |≤
√

d
(n)
KL(P1, P2)/2. (4)

For all definitions of distances as limits one needs to verify that the limits
actually exist in order to ensure that the distances are well-defined. The following
table summarizes some relevant facts:

KL L1 L2 L∞

dλ Lemma 1 < ∞ < ∞ < ∞
d∞ Lemma 1 < ∞ ? ?
dps Prop. 1 ≡ 0 ≡ 0 ≡ 0

Here ’< ∞’ means that the distance is well defined and finite. For the dλLp

distances this is the case because the d
(n)
Lp

are bounded by a common constant

for all n. For L1 one furthermore has that d
(n)
L1

is monotonically increasing in n,

which entails d∞L1
< ∞. d

(n)
L2

and d
(n)
L∞

are not monotone in n. From Proposition 2
below it follows that d∞L2

, d∞L∞

will be not very useful even if guaranteed to be
well-defined. We therefore do not analyse their exact status further.

The d
(n)
Lp

being bounded, it is also immediate that the dpsLp
are identically

zero, denoted ≡ 0 in the table. We will not consider these distances further.

We now turn to the limiting behavior of d
(n)
KL, where the situation is a little

more intricate.

Lemma 1. (i) d
(n)
KL(P1, P2) is monotonically increasing for all P1, P2.

If P1, P2 are generated by LMCs, then one of the following cases holds:

(iia) There exists an n > 0 and w ∈ Σn with 0 = P2(w) < P1(w), so that

d
(m)
KL (P1, P2) = ∞ for all m ≥ n.

(iib) d
(n)
KL(P1, P2) ∈ O(n)
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From this Lemma it follows that dλKL and d∞KL are well-defined, but possibly
infinite.3 Furthermore, if case (iib) holds, then dλKL is finite.

Turning to the per-symbol distance, we first obtain from Lemma 1 that if
the Pi are generated by LMCs, and case (iia) of the lemma does not hold, then

0 ≤ lim inf
n

1

n
d
(n)
KL(P1, P2) ≤ lim sup

n

1

n
d
(n)
KL(P1, P2) < ∞.

To ensure that dpsKL is well-defined, one has to establish that the lim inf and
lim sup are equal in this equation. The question of this equality, i.e., the problem
of the existence of the divergence rate, is non-trivial, and has received consid-
erable attention in the literature. [15] gives examples of stochastic processes for
which the divergence rate does not exist, but also states that it exists when
P1, P2 are generated by Hidden Markov Models (HMMs). Since LMCs are a
special type of Hidden Markov Models, this would provide the solution to our
problem. However, no proof of this statement is given in [15]. Positive results on
the existence of the divergence rate for several classes of Markov processes can be
found in [13] and [8, Chapter 10]. These results do not cover the case of HMMs
or LMCs, however. In contrast, [7, 16] specifically consider the class of HMMs,
but the results of [7] applied to our problem will only lead to the trivial bound

lim supn
1
nd

(n)
KL(P1, P2) ≤ ∞, and [16] is concerned with models with continuous

observation spaces.

We will not solve the question of the existence of dpsKL in full generality here.
In the following, we only consider the case of deterministic LMCs. This case not
only greatly facilitates the theoretical analysis, but the proof of the following
Proposition also leads to an efficient way of computing dpsKL.

4

Proposition 1. Let P1, P2 be defined by deterministic LMCs M1,M2. Then

limn 1/n d
(n)
KL(P1, P2) exists.

In light of [15] it is strongly conjectured that the existence of dpsKL(P1, P2)
also holds for nondeterministic LMCs. In the following, all statements relating
to dpsKL are implicitly restricted to those cases where dpsKL is well-defined.

Having defined several candidate trace-based distances, we first check which
ones are consistent with trace equivalence.

Proposition 2. Distances are or are not consistent with trace equivalence, as
indicated by y (yes), respectively n (no), in the following table:

3 The proof of this lemma and subsequent results can be found in the online appendices
for this paper available at people.cs.aau.dk/~jaeger/publications.html

4 We note that the efficient computability of the finite-dimensional d
(n)
KL , as well as the

limits d∞KL and dpsKL is a different problem than the computation of relative entropies
for probabilistic automata, as investigated by [5]. The automata investigated in
this latter work define probability distributions over Σ∗, and the Kullback-Leibler
distance therefore becomes the infinite sum

∑
w∈Σ∗ P1(w) log(P1(w)/P2(w)).
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KL L1 L2 L∞

dλ y y y y
d∞ y y n n
dps n

For d∞L2
and d∞L∞

the proposition is shown by considering the automata of
Figure 1: denote by qǫ the initial state of automaton Mǫ. Then one obtains
that for all ǫ d∞L2

(M0,Mǫ) = d∞L∞

(M0,Mǫ) = 0. Not being able to measure
any distance between different Mǫ models makes these distance measure clearly
unsuitable for our purpose, and we will not consider them any further.

aa

a

aa

b
k

p

1− p

qinit

Fig. 2. The automata Mk,p

According to Proposition 2, also dpsKL is not consistent with trace equivalence.
An example illustrating this point is given by Figure 2. It shows a (deterministic)
LMC Mk,p parameterized by k (length of an initial sequence of a-labeled states),
and p (the indicated transition probability). Consider the case k = 1. Let p 6= p′,
and q, q′ the initial states of M1,p and M1,p′ , respectively. Then one obtains

that d
(n)
KL(q, q

′) = p log(p/p′) + (1− p) log((1 − p)/(1− p′)) is constant for all n,
so that dpsKL(q, q

′) = 0.

Even though dpsKL here also fails to distinguish different models Mk,p and
Mk,p′ , this failure is much less significant than the failure of d∞L2

and d∞L∞

for the
models Mǫ. The Mk,p are indeed only distinguishable by their initial behavior,
but indistinguishable in their infinitary, ergodic behavior. If one is primarily
concerned with the limiting behavior of systems, then d(q, q′) = 0 is appropriate.
ForM0 andMǫ of Figure 1 the ergodic behaviors are characterized by a different
frequency ofH and T , and dpsKL(q0, qǫ) = 0.5 log(0.5/(0.5+ǫ))+0.5 log(0.5/(0.5−
ǫ)) appropriately reflects this.

We therefore still consider dpsKL as a meaningful distance. Even if we insist on
consistency with trace equivalence as a necessary property for a distance, dpsKL

remains relevant for the following reason: if d is a distance that is consistent
with trace equivalence, then any mixture αd + (1 − α)d′ (0 < α < 1) of d
with another distance d′ still is consistent with trace equivalence. Thus, even if
dpsKL may not satisfy our demands for a stand-alone distance, it can still be a
very useful component in a distance defined as a mixture. We will return to the
construction of distances as mixtures in Section 6.

We here have considered constructions of distance functions for distributions
on Σω from distance functions on Σn. Of course, one may also directly define
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distances on Σω using integrals rather than sums. For example, one may define

dKL(P1, P2) =

∫

Σω

f1(s) log
f1(s)

f2(s)
dµ(s),

where the fi are density functions for Pi relative to the reference measure µ.
For this, however, according to the Radon-Nikodym theorem, we first need a
reference measure µ, so that the Pqi are both absolutely continuous with respect
to µ. In general, it will be impossible to find a natural µ that serves this pur-
pose for all relevant Pi. However, one can work around this problem by letting
µ = 1/2(P1 + P2). Distances defined in this manner, however, will fail our first
desirable property, introduced in the following section.

4 Main Properties

4.1 Parameter Continuity

We begin by giving a general formalization of the intuition that as ǫ → 0 in
Figure 1, the distance between the corresponding states of M0 and Mǫ should
go to zero.

Let π be a transition probability function on a state set Q. A sequence (πn)n
of transition probability functions on Q s-converges against π, denoted πn

s→ π,
if

(i) ∀n∀q, q′ ∈ Q : πn(q, q
′) = 0 ⇔ π(q, q′) = 0

(ii) ∀q, q′ ∈ Q : πn(q, q
′) → π(q, q′) (n → ∞)

We call this s-convergence, because condition (i) requires that the functions
in the sequence (πn) all have the same set of support as π. In other words, we
do not allow a sequence of non-zero transition probabilities to converge to zero.

Definition 5. A distance function d is parameter continuous, if for any labeled
Markov chain M = 〈Q,Σ, qinit, π, L〉, and any sequence πn

s→ π the following
holds: for Mn := 〈Q,Σ, qinit, πn, L〉, P := PM,qinit , and Pn := PMn,qinit it holds
that limn→∞ d(Pn, P ) = limn→∞ d(P, Pn) = 0.

Note that we are considering potentially non-symmetric distance functions,
which is why we have the requirements both for the limit of d(Pn, P ) and
d(P, Pn).

Parameter continuity in the sense of this definition captures an important as-
pect of the informal objective O1 from Section 1. We only consider s-convergent
sequences of transition probabilities in this definition, because a stronger require-
ment that also applies to sequences of transition probabilities ǫn → 0 would be
immediately inconsistent with objective O2, as formalized by LTL-continuity
below: consider the coin model of Figure 1, but now let the transition proba-
bilities into the H state be 1 − ǫ, and the transition probabilities into T be ǫ.
For the LTL property ♦T we then have P (♦T ) = 1 in all Mǫ with ǫ > 0, and
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P (♦T ) = 0 in M0. Thus, if we required that d(Mǫ,M0) → 0 as ǫ → 0, then an
upper bound on the distance between models could not imply an upper bound
on the probability difference for LTL formulas.

The following Proposition summarizes parameter continuity properties of
selected distances. We do not consider any more those trace-based distances
that from Proposition 2 turned out to be uninteresting.

Proposition 3. Distances are or are not parameter continuous, as indicated by
y (yes), respectively n (no), in the following tables:

KL L1 L2 L∞

dλ y y y y
d∞ n n
dps y

db,λ
λ = 1 n
λ < 1 y

The negative result for db,1 is obtained from a characterization of db,1 in terms
of the reachability probability in couplings C of a state (q1, q2) with L(q1) 6=
L(q2) [3, 1]. Applied to the models Mǫ of Figure 1, this characterization shows
that db,1(q0, qǫ) = 1 for all ǫ > 0.

The negative results for d∞KL and d∞L1
are also obtained by considering the

models Mǫ, where one again obtains that distances between M0 and Mǫ are
given by the maximal possible values: for all ǫ > 0 d∞KL(q0, qǫ) = ∞, d∞L1

(q0, qǫ) =
2.

4.2 Property Continuity

In the following, we call any measurable subset ϕ ⊆ Σω a property. Thus, “prop-
erty” is the same as “event” in standard probability theoretic language. We
prefer the term property here, because in the present context we view ϕ rather
as a property of a system behavior than as an observed event, and it will later
be more natural to speak about LTL-definable properties, than LTL-definable
events.

Definition 6 (Φ-continuity). Let ϕ ⊆ Σω be a property. A distance d is
ϕ-continuous, if

∀ǫ > 0 ∃δ > 0 ∀P1, P2 : d(P1, P2) ≤ δ ⇒ |P1(ϕ)− P2(ϕ)| ≤ ǫ. (5)

If Φ ⊂ 2Σ
ω

is a class of properties, then d is Φ-continuous, if d is ϕ-continuous
for all ϕ ∈ Φ.

If d is Φ-continuous, then the δ-bound on d(P1, P2) needed to ensure that
|P1(ϕ) − P2(ϕ)| ≤ ǫ will depend on ϕ. In the following definition these bounds
are required to be uniform for all ϕ.

Definition 7 (Uniform Φ-continuity). Let Φ ⊂ 2Σ
ω

be a class of properties.
A distance d is uniformly Φ-continuous, if

∀ǫ > 0 ∃δ > 0 ∀ϕ ∈ Φ, ∀P1, P2 : d(P1, P2) ≤ δ ⇒ |P1(ϕ)− P2(ϕ)| ≤ ǫ. (6)
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The following lemma is a straightforward, but useful observation.

Lemma 2. Let d1, d2 be two distance function, such that there exists a contin-
uous function f with f(0) = 0, and d1 ≤ f(d2). Then, for any Φ: (uniform)
Φ-continuity of d1 implies (uniform) Φ-continuity of d2.

According to (3) Lemma 2 applies to d1 = d
(n)
L1

and d2 = d
(n)
KL with f(x) =√

2x. Since f does not depend on n, the same also is true for d1 = d∞L1
and

d2 = d∞KL. Thus, proving (uniform) Φ-continuity for d∞L1
is sufficient to also

prove it for d∞KL.

Lemma 3. A BLTL-definable property φ ⊆ Σω is a finite union of cylinder
sets. A distance d is (uniformly) BLTL continuous iff it is (uniformly) Cyl-
continuous.

The first statement in this lemma follows from a straightforward induction
on BLTL formulas. The second statement then is a direct consequence of the
definitions. Combining Lemma 3 with the fact that measures on Σω are uniquely
defined by the measures of cylinder sets, one obtains:

Lemma 4. BLTL-continuity implies consistency with trace equivalence.

We now formulate our main results on property continuity.

Proposition 4. Distances are or are not uniformly BLTL continuous, BLTL
continuous, or not BLTL continuous as indicated by uy, y, respectively n, in the
following tables:

KL L1 L2 L∞

dλ y y y y
d∞ uy uy
dps n

db,λ
λ = 1 uy
λ < 1 y

Proposition 5. Distances are or are not uniformly LTL continuous, LTL con-
tinuous, or not LTL continuous, as indicated by uy, y, respectively n, in the
following tables:

KL L1 L2 L∞

dλ n n n n
d∞ uy uy
dps n

db,λ
λ = 1 uy
λ < 1 n

The negative results for the dλ distances are established by again considering
the automata Mk,p of Figure 2, and the LTL sentence ♦b. Let p1 6= p2, and
Pk,i the distribution defined by Mk,pi (i = 1, 2) Then, for all k: | Pk,1(♦b) −
Pk,2(♦b) |= | p1 − p2 |. On the other hand, for all discounted distances, and all
δ > 0, there exists a k such that d(Pk,1, Pk,2) < δ.

According to Proposition 5, d∞KL, d
∞
L1

and db,1 have very strong property
continuity characteristics. However, according to Proposition 3, this comes at
the price of not fulfilling objective O1.

Comparison of Propositions 3 and 5 shows that so far we have failed to
construct a distance function implementing both our objectives. In the following
section we will see that to some extent this is due to a fundamental limitation.
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5 Impossibility Results

The proofs of the positive results expressed by Propositions 4 and 5 are not based
on the concrete logical characterizations of property classes LTL and BLTL, but
on the underlying topological and measure-theoretic structure of these proper-
ties. This is not surprising, since the definitions of the distance measures we have
been considering also are based on general measure-theoretic concepts, without
reference to linear temporal logic.

It is therefore tempting to try to construct on a slightly broader topological
basis also a distance measure that is both parameter- and LTL-continuous. This
approach also suggests itself because of the fact that LTL-definable properties
still have a quite simple topological structure: any LTL-definable set A ⊆ Σω is
a Boolean combination of Gδ-sets, where a Gδ-set is a countable intersection of
open sets [17, Theorem 5.2]. From this it follows that for LTL-continuity of d it
would be enough to show that d is continuous for Gδ-sets.

However, as we now show, it is even impossible to obtain continuity for all
open sets in conjunction with parameter continuity.

Proposition 6. There exists an open set O, such that there does not exist a
distance function d that is parameter continuous and O-continuous.

The open set O constructed in the proof of the preceding theorem is not LTL-
definable. The theorem, therefore, only delimits the possibilities of obtaining pa-
rameter continuous and LTL-continuous distance functions by purely topological
and measure-theoretic constructions. However, the proof of Proposition 6 also
directly leads to the following:

Proposition 7. There does not exist a distance function d that is parameter
continuous and uniformly BLTL-continuous.

Thus, we find that uniform (B)LTL-continuity is inconsistent with parameter
continuity. However, uniform continuity is a very strong demand to begin with,
so the main objective of combining parameter continuity and LTL-continuity still
could be feasible. In the next section we show that this is indeed the case. Before
we give a concrete example, we establish some general results about mixtures of
distance functions.

6 Mixture Constructions

In Section 3 we justified our continued interest in the dpsKL distance in spite of
the fact that it is not consistent with trace equivalence by its possible use as a
component in a mixture of distances.

Definition 8. Let n ∈ N∪{∞}, and for i = 1, . . . , n: αi ∈ [0, 1] with
∑

i αi = 1,
and di a distance function. Then d :=

∑

i αidi is called a mixture of the di. If
n < ∞, then d is a finite mixture.
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It is well-known that mixtures of distances preserve essential metric proper-
ties such as symmetry and the triangle-inequality. In the following we summarize
to what extent the distance properties we are studying are preserved. We say
that a property of a distance is preserved under mixtures, if a mixture d has the
property whenever all its constituent di have the property. A property is strongly
preserved if d has the property whenever at least one di has the property. The
following Lemma summarizes the relevant preservation properties.

Lemma 5. The following properties are preserved under mixtures:

– The left to right direction d(P1, P2) = 0 ⇐ q1 ≡ q2 (≡∈ {∼,
T∼}) of consis-

tency with bisimulation- or trace-equivalence.
– Parameter continuity

The following properties are strongly preserved under mixtures:

– The right to left direction d(P1, P2) = 0 ⇒ q1 ≡ q2 (≡∈ {∼,
T∼}) of consis-

tency with bisimulation- or trace-equivalence.
– Φ-continuity and uniform Φ-continuity.

We next investigate two different distances that are constructed as mixtures.

6.1 Expected LTL Distance

Definition 9. For φ ∈ LTL define

dφ(P1, P2) := |P1(φ) − P2(φ)|.

Let φ1, φ2, . . . be an enumeration of LTL, αi ∈ (0, 1) with
∑

i αi = 1, and define

dQ :=
∑

i

αidφi .

dQ(P1, P2) can be interpreted as the expected difference |P1(φ) − P2(φ)| for
LTL formulas that are randomly generated according to probabilities αi. As an
empirical evaluation measure for how well a learned system model approximates
the LTL properties of a true system model M1, this distance was used in [11].
The following proposition now states that with dQ we have the first distance
that satisfies both of our main objectives.

Proposition 8. dQ is parameter and LTL continuous.

Even though dQ satisfies our main objectives, it clearly still has some signif-
icant shortcomings. First, the concrete values of dQ(P1, P2) depend very much
on the coefficients αi. When the αi are just more or less arbitrarily set in a
synthetic construction of dQ, then the actual values of dQ will lack a mean-
ingful interpretation. If, however, αi represents a meaningful probability of φi

(for example, the expected frequency with which φi will be checked in a given
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application context), then dQ(P1, P2) is interpretable as the expected deviation
between LTL-probabilities computed in M1 and M2.

Second, dQ poses computational problems. The only currently available ap-
proach to (approximately) computing dQ is to compute dφi for a sample i =
i1, . . . , ik. If αi can be computed for a given φi, and the φij in the sample are all

distinct, then dQ is bounded by [
∑k

j=1 αijdφij
,
∑k

j=1 αijdφij
+ (1 −∑k

j=1 αij )].

If the αi are only implicitly given by a random generator for LTL formulas, then
dQ can be estimated by the empirical distance 1/k

∑k
j=1 dφij

.

6.2 KL mixture

A second mixture construction we consider is

dmix
KL := αdλKL + (1 − α)dpsKL.

The motivation for dmix
KL is that it combines a distance function that is mostly

sensitive to differences in the initial behavior of a system (dλKL), and a distance
that measures differences in the long-run, ergodic behavior (dpsKL).

dmix
KL is consistent with trace-equivalence, parameter continuous, and inherits

the BLTL-continuity of dλKL. However, d
mix
KL is not LTL continuous (as expected

from Proposition 6, since dmix
KL is a purely measure theoretic construction). Con-

cretely, dmix
KL still is subject to the counterexample described for the dλ in con-

nection with Proposition 5.

7 Conclusion

In this paper we have investigated a number of distances on finite state Markov
Processes, which measure the behavioural similarity of non-bisimilar processes.
We have considered both bisimulation distances and trace-based distances. In
particular, we focused on several constructions derived from the standard Lp

and Kullback-Leibler distances. The continuity aspects for which we have tested
the distances are natural properties one would expect from a distance that in
a meaningful sense measures the relationship between a true model and its ap-
proximations. On one hand we study the parameter continuity, which guarantees
that the distances are continuous in the transition probabilities. On the other
hand we analyzed the concept of a good approximation of a system in the light
of a given distance function. We expect from a good distance to provide us some
bounds on the error incurred by using the approximation of a model instead of
the real model in given contexts.

We demonstrated that none of the considered distances fully respects the
continuity properties that we considered. This failure is partially explained by
an impossibility result that reveals to some extent the fundamental difficulties
that one encounters when trying to achieve such complex goals.
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A Appendix

Proof (Proof of Lemma 1). (i) directly follows from (2). (iia) follows directly

from the definition of d
(n)
KL (the assumption that the Pi are defined by an LMC is

not needed here). Now assume that the Pi are generated by LMCs Mi, and that
(iia) does not hold. Let π1,max be the maximal transition probability in M1, and
π2,min the minimal non-zero transition probability in M2. Then

d
(n)
KL(P1, P2) =

∑

w∈Σn:P1(w)>0

P1(w) log
P1(w)

P2(w)
≤

∑

w∈Σn:P1(w)>0

P1(w) log
πn
1,max

πn
2,min

= n log
π1,max

π2,min

.

(7)

Proof (Proof of Proposition 1). First observe that the proposition is trivially
true if case (iia) of Lemma 1 holds. Assume, then, that (iia) does not apply.

Let Mi = (Qi, Σ, qinit,i, πi, Li) (i = 1, 2). We construct a new LMC M1,2

whose states represent transitions in synchronous runs of the Mi. More precisely,
states in M1,2 are of the form (q1, q2, σ) where q1, q2 are states that are reached
by a sequence of synchronized transitions, and σ is the symbol defining the next
transition:

Q1,2 = {(q1, q2, σ) ∈ Q1 ×Q2 ×Σ | ∃w ∈ Σ∗ : qinit,i
w→ qi (i = 1, 2);π1(q1, σ) > 0}

Π1,2((q1, q2, σ)) =

{

π1(q1, σ) if qi = qinit,i (i = 1, 2)
0 otherwise

π1,2((q1, q2, σ), (q
′
1, q

′
2, σ

′)) =

{

π1(q
′
1, σ

′) if q′1 = π1(q1, σ) and q′2 = π2(q2, σ)
0 otherwise

L1,2((q1, q2, σ)) = L1(q1)

Observe that Q1,2 is deterministic, except for the random choice of the initial
state. The transition probabilities in Q1,2 are determined only by the transition
probabilities in M1. Thus, Q1,2 is essentially an augmented version of M1 that
also tracks the state of M2 in a synchronized run.

We define on the states of M1,2 the function

f((q1, q2, σ)) := log
π1(q1, σ)

π2(q2, σ)
(8)

From the assumption that Lemma 1 (iia) does not hold, it follows that
f((q1, q2, σ)) < ∞ for all states (q1, q2, σ). Iteratively applying (2) to decom-

pose d
(n)
KL, we obtain:

d
(n)
KL(P1, P2) = E(n−1)[

n−1
∑

k=1

f((q1,k, q2,k, σk))]

whereE(n−1) denotes the expectation inM1,2 over state sequences ((q1,k, q2,k, σk))k
of length n−1. Note that it must be the case that L1(qinit,1) = L2(qinit,2); hence
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d
(1)
KL(P1, P2) = 0, and the first symbol never contributes to d

(n)
KL(P1, P2). With

f((q1, q2, σ)) in M1,2 we directly start measuring the KL-distance due to possi-
ble discrepancies in the label probabilities at the second states of the Mi, which
is why in (8) we have n on the left, and n− 1 on the right side.

Let R1, . . . , RK be the recurrent classes of M1,2. Conditional on reaching
class Rj , one has by the ergodic theorem for Markov chains (e.g. [12, Theorem

1.10.2]) that 1/n
∑n−1

k=1 f((q1,k, q2,k, σk)) converges almost surely to

f̄k :=
∑

(q1,q2,σ)∈Rk

ρk((q1, q2, σ))f((q1, q2, σ)),

where ρk is the stationary distribution on Rk. In particular, this implies that
conditional on the chain reaching Rk:

lim
n

1

n− 1
E(n−1)[

n−1
∑

k=1

f((q1,k, q2,k, σk)) | Rk] = f̄k. (9)

Thus, if αk is the absorption probability of Rk, we obtain

lim
n

1

n− 1
E(n−1)[

n−1
∑

k=1

f((q1,k, q2,k, σk))] =

K
∑

k=1

αkf̄k.

This shows that limn 1/n d
(n)
KL(P1, P2), exists. Furthermore, since the ρk and αk

can be obtained by solving linear systems in | Q1,2 | variables, the proof also
gives a polynomial algorithm for computing dpsKL(P1, P2). However, the worst-
case complexity is still rather high: If |Qi |∼ N , then Q1,2 can have N2 states,
and the computation of the ρk and αk involve inversions of matrices of dimensions
N2 × N2. Thus, depending on what algorithms are used for matrix inversion,
the overall complexity is between O(N5) and O(N6). Alternatively, one can also

approximate dpsKL(P1, P2) by computing 1/(n−1)E(n−1)[
∑n−1

k=1 f((q1,k, q2,k, σk))]
for a sufficiently large n. This can be done in time O(n |Q1,2 |).

Proof (Proof of Proposition 2). We prove the results in the following table, where
the numbers in parenthesis refer to sections of the proof:

KL L1 L2 L∞

dλ y (1) y (1) y (1) y (1)
d∞ y (2) y (2) n (3) n (3)
dps n (5) n (4) n (4) n (4)

In all cases the direction d(P1, P2) = 0 ⇐ q1
T∼ q2 is immediate, since the

distances are functions only of the distributions Pqi . Thus, we have to check
whether, conversely, P1 6= P2 implies d(P1, P2) > 0.

(1): If P1 6= P2, then there exists an n and w ∈ Σn with P1(w) 6= P2(w).

Then for X ∈ {KL, L1, L2, L∞} d
(n)
X (P1, P2) > 0, and hence dλX(P1, P2) > 0.
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(2): For X ∈ {KL, L1} one has for all n that d
(n+1)
X ≥ d

(n)
X . For KL this Lem-

malem:dKLngrowth (i), and for L1 it can be easily seen directly from the defini-

tion. From this, similar as in (1), one obtains that for some n: 0 < d
(n)
X (q1, q2) ≤

d∞X (q1, q2).
(3): Figure 1 shows an LMC model Mǫ for a a sequence of tosses with a

biased or unbiased (ǫ = 0) coin. Let Pǫ be the distribution defined by Mǫ.

For n ≥ 1 and i ≤ n let Σ
(n)
i consist of the {H,T }-words with exactly i

occurrences of H . Also, let a = 0.5 + ǫ, and b = 0.5− ǫ. Then

(d
(n)
L2

(P0, Pǫ))
2 =

∑n
i=0

∑

w∈Σ
(n)
i

(P0(w)− Pǫ(w))
2

=
∑n

i=0

(

n
i

)

(0.5n − aibn−i)2

=
∑n

i=0

(

n
i

)

(0.52n − 0.5n−1aibn−i + a2ib2(n−i))
= 0.52n · 2n − 0.5n−1(a+ b)n + (a2 + b2)n

= (0.5 + 2ǫ2)n − 0.5n

For any ǫ < 0.5, thus, d
(n)
L2

(P0, Pǫ) → 0 as n → ∞, and so d∞L2
(P0, Pǫ) = 0.

For L∞ one has d
(n)
L∞

(P0, Pǫ) = an − 0.5n, which also goes to 0 as n → ∞.

(4) This immediately follows from the fact that dps ≡ 0 whenever the d(n)

are bounded, and that for every p ≥ 1 and n ≥ 1 d
(n)
Lp

() ≤ 2.

(5) Figure 2 shows a deterministic LMC Mk,p parameterized by k (length of
an initial sequence of a-labeled states), and p (the indicated transition probabil-
ity). At present we only need to consider the case k = 1 (we will revisit the models
Mk,p again later). For the automata M1,p then Pqinit(a

ω) = p and Pqinit(aba
ω) =

1−p. Let q1, q2 be the initial states in M1,p and M1,p′ , respectively. Then for all

n ≥ 2 d
(n)
KL(q1, q2) is constant equal to p log(p/p′) + (1− p) log((1− p)/(1− p′)),

and hence dpsKL(q1, q2) = 0.

Proof (Proof of Proposition 3). We prove the results listed in the following tables,
where the numbers in parenthesis refer to sections of the proof:

KL L1 L2 L∞

dλ y (2) y (1) y (1) y (1)
d∞ n (3) n (3)
dps y (4)

db,λ
λ = 1 n (5)
λ < 1 y (6)

In the present context n is used to index the sequence πn, and we use k as
the index for the finite dimensional distance functions d(k).

(1) For X ∈ {L1, L2, L∞} one has the global bound d
(k)
X (P1, P2) ≤ 2 for

all k, P1, P2. Therefore, for any given δ > 0 there exists a k > 0, such that
∑

j>k λ
jd

(j)
X (P, Pn) < δ/2, regardless of n. For any word w ∈ Σ∗: Pn(w) → P (w)

as n → ∞. For X ∈ {L1, L2, L∞} it then immediately follows that for all k

d
(k)
X (Pn, P ) → 0 (n → ∞). For sufficiently large n, thus, also

∑k
j=1 λ

jd
(j)
X (P, Pn) <

δ/2.
(2) This is analogous to part (1), but now using Lemma 1 (iib) to bound for

sufficiently large k the tail-sums
∑

j>k λ
jd

(j)
KL(P, Pn) < δ/2 (uniformly for all n,

and also for the symmetric case d
(j)
KL(Pn, P )).
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(3) Consider again the models Mǫ as defined by Figure 1, and let Pǫ be the
distribution defined by Mǫ. For w ∈ {H,T }∗ let %H(w) ∈ [0, 1] denote the
relative frequency of occurrence of H in w. For n > 0, and δ > 0 define

Ok,δ := {w ∈ {H,T }k | %H(w) ∈ [1/2− δ, 1/2 + δ]}

Then by the weak law of large numbers

lim
k→∞

P0(Ok,ǫ/2) = 1, lim
k→∞

Pǫ(Ok,ǫ/2) = 0.

For dKL and dL1 we can bound

d
(k)
KL(P0, Pǫ) ≥ P0(Ok,ǫ/2) log

P0(Ok,ǫ/2)

Pǫ(Ok,ǫ/2)
+ P0(Σ

k \Ok,ǫ/2 log
P0(Σ

k\On,ǫ/2)

Pǫ(Σk\On,ǫ/2)
)

d
(n)
L1

(P0, Pǫ) ≥| P0(Ok,ǫ/2)− Pǫ(Ok,ǫ/2) | + | P0(Σ
k \Ok,ǫ/2)− Pǫ(Σ

k \Ok,ǫ/2) |

For dKL this inequality is another consequence of the additivity property [9,
Chapter 2], and for dL1 it follows from basic arithmetic. As k → ∞, the right
hand sides of these inequalities go to ∞ (dKL), respectively 2 (dL1). Thus, re-
gardless of ǫ, d∞KL(P0, Pǫ) = ∞, and d∞L1

(P0, Pǫ) = 2.

(4)We show that limn lim supk 1/k d
(k)
KL(P, Pn) = limn lim supk 1/kd

(k)
KL(Pn, P ) =

0. This shows parameter continuity of dpsKL whenever d
(k)
KL(P, Pn) is well-defined

for P and all Pn. Similar as in the proof of Lemma 1 we write:

d
(k)
KL(P, Pn) =

∑

w∈Σk:P (w)>0

P (w) log
P (w)

Pn(w)
=

∑

w∈Σk:P (w)>0

P (w) log

∑

q:L(q)=w P (q)
∑

q:L(q)=w Pn(q)
,

(10)
where q : L(q) = w stands for all state sequences q ∈ Qk whose label sequence
is equal to w. Furthermore, we assume the summation to be restricted to those
q which have a non-zero probability under P , or, equivalently, under Pn. Then
we can bound the right-hand side of (10) by

∑

w∈Σk:P (w)>0

P (w) log max
q:L(q)=w

P (q)

Pn(q)
. (11)

For every δ > 0 and all sufficiently large n we have P (q)
Pn(q)

≤ (1+δ)k for all q and k.

Thus, (11) can be bounded by k log(1+δ), and therefore lim supk 1/k d
(k)
KL(P, Pn) ≤

log(1 + δ). The case for d
(k)
KL(Pn, P ) is analogous.

(5) As under (3), let q1, q2 be the H-states in M0, respectively Mǫ. For any
coupling C of M0 and Mǫ, γ

C
1 (q1, q2) is the probability that C starting from

(q1, q2) will eventually reach a state labeled with (H,T ) or (T,H) [3, 1]. Since
for any coupling the transition probability to (H,T ) or (T,H) from both (H,H)
and (T, T ) is at least ǫ, this probability is one. Thus, db,1(q1, q2) = 1 for all ǫ > 0.

(6) Let M,Mn as in Definition 5. For clarity we denote in the following with
q, qn corresponding states of M and Mn, i.e., q and qn are the same elements
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of Q, but equipped with the different transition probabilities π, respectively πn.
Given an ǫ > 0, we can choose n0 ≥ 1 so that for all n ≥ n0, and all q ∈ Q:
∑

q′∈Q |π(q, q′)− πn(qn, q
′
n) |< ǫ.

For n ≥ n0 we can now define couplings Cn of M and Mn so that for all q

∑

q′∈Q

ωn((q, qn)(q
′, q′n)) ≥ 1− ǫ.

With γC
λ() ≤ 1, we then obtain for all q ∈ Q:

γCn

λ (q, qn) = λ(
∑

q′

γCn

λ (q′, q′n)ωn((q, qn)(q
′, q′n)) +

∑

s,t:s6=t

γC
λ(s, t

′
n)ωn((q, qn)(s, t

′
n)))

≤ λ(max
q′

γCn

λ (q′, q′n)(1− ǫ) + ǫ),

and hence
max

q
γCn

λ (q, qn) ≤ λ(max
q

γCn

λ (q, qn)(1 − ǫ) + ǫ).

Since ǫ can be chosen arbitrarily small, this implies that maxq γ
Cn

λ (q, qn) → 0
for n → ∞, and therefore also db,λ(q, qn) → 0 for all q.

Proof (Proof of Proposition 4). We prove the results in the following tables,
where the numbers in parenthesis refer to sections of the proof.

KL L1 L2 L∞

dλ y (1) y (1) y (1) y (1)
d∞ uy (2) uy (2)
dps n (3)

db,λ
λ = 1 uy (4)
λ < 1 y (5)

(1) Let X ∈ {KL, L1, L2, L∞}, wΣω be a cylinder set with w ∈ Σn, and

ǫ > 0. If dλX(P1, P2) < δ, then d
(n)
X (P1, P2) < δ/λn =: γ. Furthermore, for δ and

hence γ sufficiently small, d
(n)
X (P1, P2) < γ implies | P1(w) − P2(w) |< ǫ (the

exact dependence of γ on ǫ varies for X = KL, L1, L2, L∞).
That the dλX are not uniformly BLTL continuous is demonstrated by the

example of the automata Mk,p shown in Figure 2: the distance between the
initial states of Mk,p and Mk,0.5 decreases on the order of λk, but for all k
|PMk,p,qinit(©kb)− PMk,p,qinit(©kb)| = |p− 0.5|.

(2) For X ∈ {KL, L1} one has that d
(n)
X (P1, P2) ≤ d∞X (P1, P2) for all n. Thus,

a bound on d∞X uniformly bounds all d
(n)
X , and hence, as above in part (1), all

| P1(w)− P2(w) |.
(3) This follows by Lemma 4 and Proposition 2.
(4) This follows from Lemma 10 in [3].
(5) We first need to introduce some notation related to state traces in cou-

plings C. We denote with (q, q′) = (q0, q
′
0), ..., (qn−1, q

′
n−1) finite traces in C. We

write Tr((q, q′), n) for the set of all traces of length n starting at (q0, q
′
0) = (q, q′).

The transition probabilities ω then also define a distribution over Tr((q, q′), n).
We denote with LC((q, q′), n) the set of label consistent traces in Tr((q, q′), n),
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i.e., those (q, q′) with L(qi) = L(q′i) for i = 0, . . . , n − 1. Finally, for n ≥ 1 we
define the event

(q, q′)
n→ l.i. := LC((q, q′), n− 1) \ LC((q, q′), n).

Thus, (q, q′)
n→ l.i. is the set of traces starting with (q, q′) that become label

inconsistent after exactly n − 1 steps. Note that (q, q′)
n→ l.i. can be seen as a

subset of any Tr((q, q′),m) with m ≥ n, and that the value of ω((q, q′)
n→ l.i.)

does not depend on which Tr((q, q′),m) is assumed as the underlying probability
space.

The following claim is a generalization for the discounted case of a claim
(somewhat implicitly, and without proof) already made in [3].

Claim 1:

Let C = 〈Q×Q,Σ × Σ,ω, L〉 be the coupling for which db,λ = γC
λ . Then for

all n ≥ 1:

db,λ(q, q
′) ≥

n
∑

i=0

λiω((q, q′)
i+1→ l.i.) (12)

Proof of Claim 1: First, we note that the claim is true if L(q) 6= L(q′): then

db,λ(q, q
′) = 1, ω((q, q′)

1→ l.i.) = 1, and ω((q, q′)
i→ l.i.) = 0 for all i > 1.

The case L(q) = L(q′) is by induction on n. For n = 0 we then have

ω((q, q′)
1→ l.i.) = 0, and so the right side of (12) evaluates to 0. For n > 0

we obtain:

db,λ(q, q
′) = λ

∑

u,v

db,λ(u, v)ω((q, q
′), (u, v))

= λ



ω((q, q′)
2→ l.i.) +

∑

u,v:L(u)=L(v)

db,λ(u, v)ω((q, q
′), (u, v)





≥ λ



ω((q, q′)
2→ l.i.) +

∑

u,v:L(u)=L(v)

n−1
∑

j=1

λjω((u, v)
j+1→ l.i.)ω((q, q′), (u, v))



(13)

= λ



ω((q, q′)
2→ l.i.) +

n−1
∑

j=1

λjω((q, q′)
j+2→ l.i.)





=

n
∑

i=1

λiω((q, q′)
i+1→ l.i.) =

n
∑

i=0

λiω((q, q′)
i+1→ l.i.)

For (13) the induction hypothesis is used, and the fact that because of L(u) =

L(v) we have ω((u, v)
1→ l.i.) = 0.

From claim 1 we obtain the slightly weaker statement

db,λ(q, q
′) ≥ λn(1− ω(LC((q, q′), n+ 1))). (14)
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Now consider w ∈ Σn. By condition 1. in the definition of couplings, we can
write

Pq(w) =
∑

(q,q′)∈Tr((q,q′),n):

L(q)=w

ω((q, q′)), Pq′(w) =
∑

(q,q′)∈Tr((q,q′),n):

L(q′)=w

ω((q, q′)).

Thus, using (14):

|Pq(w) − Pq′ (w) |≤ 1− ω(LC((q, q′), n)) ≤ db,λ(q, q
′)/λn−1

Proof (Proposition 5). We prove the results in the following tables, where the
numbers in parenthesis refer to sections of the proof:

KL L1 L2 L∞

dλ n (1) n (1) n (1) n (1)
d∞ uy (2) uy (2)
dps n (4)

db,λ
λ = 1 uy (3)
λ < 1 n (1)

(1) Consider again the automata Mk,p of Figure 2, and the LTL sentence ♦b
(eventually b). Let p1 6= p2, and let Pi,k be the distribution defined by the initial
state of Mk,pi (i = 1, 2) Then, for all k: |P1,k(♦b) − P2,k(♦b) |=| p1 − p2 |. On
the other hand, for all discounted distances limk→∞ d(P1,k, P2,k) = 0.

(2) Recall from Section 2 that O and A denote the class of open, respectively
measurable, subsets of Σω. We can actually show the much stronger statement
that d∞KL and d∞L1

are uniformly A-continuous. For this, we first show the follow-
ing strengthening of Proposition 4:

Claim 2 : d∞KL and d∞L1
are uniformly O-continuous.

Proof of Claim 2: Let O ∈ O. O is the union ∪∞
i=0Ci of cylinder sets Ci. Let

ǫ > 0, and consider two probability measures P1, P2. Let 0 < m < ∞ be such
that for i = 1, 2:

Pi(O) − Pi(∪m
j=0Cj) ≤ ǫ/3.

Let n be the maximal prefix-length defining one of the Cj (0 ≤ j ≤ m), i.e.:

n := max{k | Cj = wΣω, w ∈ Σk, 0 ≤ j ≤ m}.

Now define
On := {w ∈ Σn | wΣω ⊆ ∪m

j=0Cj}
Then Pi(O

n) = Pi(∪m
j=0Cj) (where, by a slight abuse of notation, Pi(O

n) stands
for Pi({wΣω | w ∈ On})), and

|P1(O)−P2(O) |≤|P1(O)−P1(O
n) | + |P1(O

n)−P2(O
n) | + |P2(O)−P2(O

n) | .

With | P1(O
n) − P2(O

n) |≤ d
(n)
L1

(P1, P2) ≤ d∞L1
(P1, P2) we thus obtain |

P1(O)− P2(O) |≤ ǫ if d∞L1
(P1, P2) < ǫ/3. This proves the claim for d∞L1

. For d∞KL

it then follows from Lemma 2. From Claim 2 we obtain the stronger result:
Claim 3: d∞KL and d∞L1

are uniformly A-continuous.
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To prove Claim 3, we just need the fact that a probability measure P on
A(Σω) is regular, which means that for all measurable A ∈ A:

P (A) = inf{P (O) | A ⊆ O ∈ O}

(see [4, Chapter 8.1]). With this, Claim 3 immediately follows from Claim 2.
(3) For db,1 uniform A-continuity is given by Corollary 11 of [3].
(4) Follows from Proposition 4.

Proof (Proposition 6). We construct an open set O, such that for M0 and Mǫ

from Figure 1: P0(O) < 1/4, and Pǫ(O) > 1/2, for all ǫ > 0.
For w ∈ Σ∗ let %H(w) denote the relative frequency of occurrences of T in

w. For i, n ∈ N define

Oi,n := {wΣω | w ∈ Σn : %H(w) ≥ 1/2 + 2−i}

By the law of large numbers, there exists for every i an n(i) ∈ N, so that
Pǫ(Oi,n(i)) ≥ 1/2 for all ǫ > 2−i+1, and P0(Oi,n(i)) < 2−(i+2). Now O = ∪iOi,n(i)

has the desired properties.

Proof (Proposition 7). Each Oi,n(i) as defined in the proof of Proposition 6 is
BLTL-definable. Thus, for every ǫ > 0 there exists a BLTL-definable property φ
with |P0(φ)− Pǫ(φ)| ≥ 1/4.

Proof (Lemma 5). All claims are immediate from the definitions. The preserva-
tion of parameter continuity is the only case for which the constraint

∑

i αi = 1
is required (although

∑

i αi < ∞ would also be sufficient).

Proof (Proposition 8). A single dφ obviously is {φi}-continuous. LTL continuity
then follows with Lemma 5.

That each dφ is parameter continuous can be seen from the automata-theoretic
approach to verification [21]: PM,q(φ) can be computed as a reachability prob-
ability in the automaton constructed as the product of the automaton M con-
taining q, and the automaton recognizing φ. The transition probabilities, and
hence reachability probabilities, in the product are a continuous function of the
transition probabilities in M (cf. also Theorem 2 of [11]).
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