
Data Mining as Selective Theory Extraction in Probabilistic LogicManfred Jaeger Heikki Mannila� Emil WeydertMPI Informatik, Im StadtwaldD-66123 Saarbr�ucken, Germanyfjaeger,mannila,weydertg@mpi-sb.mpg.de1 IntroductionCurrently, data mining is more or less a collection ofdi�erent techniques and tools for various types of datasets. Imielinski [Imi95] has compared the situation indata mining to the status of database processing in the1960's, prior to the advent of high-level query languages:then one had to write a separate application programfor each query.In this paper we take some steps towards developinga framework for representing and analyzing a large col-lection of data mining tasks in a principled and uni�edmanner. One may say that the contribution that high-level query languages have made for classical databaseprocessing has two di�erent aspects: a conceptual one,and an algorithmic one. The conceptual aspect is theinsight that a wide class of relevant queries can be ex-pressed by formal expressions constructed according toa small set of syntax rules. The algorithmic aspect isthe development of universal algorithms that can e�-ciently process any query formulated in that syntax. Atthe present stage, we aspire to contribute to the theoryof data mining insights that are somewhat analogousto the conceptual aspect mentioned above, not the al-gorithmic one. Given the huge diversity of conceivabledata mining tasks (which include almost arbitrarily am-bitious ones), our general representational frameworkcan not be expected to give rise to general algorithmicmethods as well.The data mining concept that we will develop is basedon arguing that1. the task of data mining can be seen as the problem ofextracting the interesting part of the logical theoryof a model; and2. the theory of a model should be formulated in alogic able to express quantitative knowledge andapproximate truth.�Permanent address: Department of Computer Science, Uni-versity of Helsinki, P.O. Box 26, FIN-00014 Helsinki, Finland.Heikki.Mannila@cs.helsinki.�. Work supported by the Academyof Finland and the Alexander von Humboldt Stiftung.

This position paper is organized as follows. InSection 2 we present the formulation of data miningas the task of �nding the theory (in some logic) of amodel. Section 3 argues that work done in (theoretical)AI provides a good foundation for this approach, anddescribes a Bacchus-Halpern type of logic LDM (Logicfor Data Mining) that seems to be well applicable fordata mining tasks in the theory formulation. Section 4points to research topics that emerge from our datamining concept.2 Data mining as theory extractionLet us �rst consider one prototypical example of adata mining problem: the �nding of association rules[AIS93],[AMS+96]. Suppose that r is a relationaldatabase of n tuples over a relation schema R such thateach attribute A 2 R has domain f0; 1g. Let X be asubset of R. Denoting t(X) = 1 i� tuple t 2 r has a 1in each attribute A 2 X , we de�ne the support s(X) ofX to be jft 2 r j t(X) = 1gj=n: Let B 2 R, �; 
 2 [0; 1].The association rule X ) B [�; 
] (1)(with � the support and 
 the con�dence of the rule)then holds in r, i� s(X [ fBg) � �, and s(X [fBg)=s(X) � 
: The data mining task of �ndingassociation rules then consists of �nding expressions (1)that are true in r. However, we do not want to list everysuch expression: only when support and con�denceof the rule are su�ciently high, will we �nd the ruleinteresting and want an algorithm to include the rule inits output.Abstracting from this speci�c example we are ledto the following formulation of data mining problemsin general: given a database r, a language L forexpressing statements about the data, and a criterionfor distinguishing interesting statements about thedata from uninteresting ones, we want to �nd all theinteresting statements true for r.Formally, this means �nding the setThI(L; r) = Th(L; r) \ I(L; r);
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where Th(L; r) = f' 2 L j r j= 'g is the set of sentencesof L true in r, and I(L; r) � L is the set of interestingformulas of L about r.This theory extraction formulation is either explicitlyor implicitly used in a variety of data mining studies[MR86, DB93, Klo95, AMS+96]. Its roots are in theuse of diagrams of models in model theory.1 It is basedon the view that data mining is principally descriptive:the task is to obtain a collection of statements aboutthe data.In the theory extraction formulation, there are twoways of delimiting the sentences that form the descrip-tion of the model. The �rst is the choice of the languageL, the second is the interestingness predicate I(L; r).Interestingness for di�erent data mining problemsmay be de�ned in a great variety of ways. We heremention a few examples to illustrate the versatilityand the importance of the concept. The perhapssimplest way in which interestingness may de�ned is bya user-supplied restriction on the syntactic form of thestatements. The association-rule example above fallsinto this category: a rule X ) B [�; 
] is consideredinteresting i� � 2 [p; 1]; 
 2 [q; 1] for some p; q � 1.The user may restrict the syntax of rules consideredinteresting further by, for example, requesting that Xcontain a certain �xed subset of attributes from R.Another way to de�ne interestingness is throughsome concept of a-priori expectation: a statement isinteresting if it is unexpected. As an example considerthe situation where we have an up-to-date dataset r aswell as an older version s of the same database fromwhich r was obtained by deleting (some) and adding(many) tuples. We may expect that most generalstatements that were true in the old database remaintrue in the new version, and be particularly interestedin statements for which this is not the case, and whichthereby describe some qualitative change in the data.Thus, we might de�ne: I(L; r) := L n Th(L; s).Interestingness as unexpectedness can also be de�nedin a very general, completely logical way, devoid ofany user-input: Fagin (cf. [Fag90]) calls a �rst-ordersentence ' \very uninteresting" if it is true in large�nite random structures with asymptotic probability1, i.e. if we look at all possible structures over thedomain f1; : : : ; ng (there are only �nitely many), andthe proportion of structures in which ' holds tends to1 as n ! 1, then ' is very uninteresting. In a similarway we can derive a general criterion for interestingnessin the present context: one condition for interestingnessof ' 2 L may often be that the probability for ' to holdin a randomly generated database tends to 0 as the sizeof the database tends to 1.In principle, one might incorporate the given concept1Following Imielinski, one could also view the task of datamining as querying ThI(L;r).

of interestingness directly into the choice of L, and,indeed, there is always some choice between using aricher background language L and a more complicatedde�nition of interestingness on the one hand, and usinga more restricted language L with a simpler conceptof interestingness on the other. However, we feel thatusually a natural distinction can be made between amore static part of the speci�cation of a data miningtask re
ected in the choice of L, and a more dynamicpart re
ected in the de�nition of interestingness.Given our general description of data mining prob-lems, we can identify three distinct subtasks that a datamining system has to deal with.1. we have to be able to check the validity of ' 2 L inr, i.e., decide the relation r j= ';2. we have to check whether ' is interesting, and3. we must have some method of searching for candi-date sentences ' that are to be checked for inter-estingness and validity. Particularly, this may meanto identify plausible sentences ', i.e. those that bysome token are likely to be true in r.The �rst two of these subtasks are mostly deductivein nature, whereas the third task will usually have to beperformed by inductive methods.One method for �nding plausible ' is the use ofsampling techniques: rather than considering the wholedatabase r at once we may �rst look at a small randomsample s � r of the data. The result of a validitycheck for ' in s then can be used to evaluate thelikelihood for ' to be true in r (cf. [KM94]). Also,the part of Th(L; r)\ I already computed may be usedto further direct our search: clearly, we can discard 'when  2 Th(L; r) \ I with j=  ! :' has alreadybeen found.Our theory extraction concept of data mining is anatural one that is directly applicable to such problemsas �nding association rules or functional dependencies.Its division into three distinct components is a concep-tualization that may prove helpful for identifying andsolving characteristic problems of data mining. We donot claim that in building actual data mining systems itis always advisable to use an architecture with distinctsubroutines for each of these components.3 A logic for data miningProceeding from the theory extraction formulation,what, then, is a good logic L? Obviously, for eachspeci�c data mining task one chooses only a smalllanguage. Thus the above question might be moreaccurately formulated as: what is a good languageL such that many data mining tasks can be usefullyformulated as theory extraction in a suitably de�nedsubclass of L?
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The success of tuple relational calculus for queryingrelational databases, and the ability of expressingpowerful integrity constraints using the same formalism,suggest that tuple relational calculus is a good startingpoint for such a logic.However, there is an important ingredient missingfrom the tuple relational calculus. It uses a languagethat talks about fully speci�ed relations between tuples.For data mining tasks, the information we want toextract from a database rarely takes the form of strictlaws. More often we look for quantitative information,e.g. that a given rule applies to a certain portion ofthe entries in the database, or for statements that areonly approximately true, e.g. that might be true inthe domain from which the data is taken, but are notstrictly valid in the database due to noisy and imprecisemeasurements. Being thus of central importance, wemake statements about a quali�ed validity of formulasan integral part of the language.2 It turns out thatsuch extensions have been considered in detail in AIliterature [Bac90b],[Hal90].3.1 SyntaxFor simplicity, we consider a database over a singlerelation schema R = fA1; : : : : : : ; Ang of attributes Ai.Each attribute Ai has a domain Di, which is a structureon which functions and relations may be de�ned. Adatabase r over R is a set of tuples t = (t[Ai]; : : : ; t[An]),where t[Ai] 2 Di for all i.The tuple relational calculus, denoted by TRC, isconstructed from variables s; t; : : : ranging over thetuples in the database, constant symbols for everyelement of Di (i = 1; : : : ; n), symbols for the functionsand relations de�ned on the Di, and the attributesymbols A1; : : : ; An.Terms are built by the rules: every constant symbolfor an element of Di is a term of sort Di. If �1; : : : ; �mare terms (of sort Di), and f is an m-ary functionsymbol for Di, then f(�1; : : : ; �m) is a term of sort Di.If s is a variable, and Ai an attribute symbol, then s[Ai]is a term of sort Di.Atomic formulas are either of the form T (�1 : : : �m),where �j is a term of sortDi, and T is anm-ary relationsymbol on Di, or of the form � = � with � and � areterms of sort Di.By closing the language de�ned so far under booleanconnectives (^ and :) and quanti�cation (9 and 8) overthe tuple variables one obtains the usual tuple relationalcalculus TRC.Next, we extend this language by a construct thatallows us to represent statements about the approxi-mate truth of formulas. Syntactically this additional2Another alternative would be using tuple relational calculusaugmented with aggregate functions; the foundations of suchlanguages, however, do not seem as simple as in the otheralternative.

construct is very similar to the statistical probabilityterms introduced by Bacchus [Bac90a]. Semantically,however, we have in mind a wider range of possible in-terpretations for these new terms.An error term is either a constant symbol q for someq 2 Q (or, when necessary, a countable extension ofQ), or an expression of the form G(�(s) j  (s)); where�(s);  (s) are formulas in TRC (i.e., not containing anyerror terms themselves!) whose free variables are amongs = (s1; : : : ; sk).An atomic error formula is any expression of the form� � � or � = �, with error terms � and �.Our �nal representation language LDM is obtainedby again closing the union of TRC and the set ofatomic error formulas under boolean connectives andquanti�cation.For an example of an LDM expression, let R;X;B; �,
 be as in the association rule example from section 2.Then G(t[B] = 1 j Â2X(t[A] = 1)) � 
 (2)is an LDM-expression with the intended meaning thatthe association rule X ) B has con�dence 
. Similarly,the formulaG(Â2X(t[A] = 1) ^ (t[B] = 1)) � � (3)is meant to represent the fact that the rule X ) Bhas signi�cance �. Here we have used a convention tosimply write G(�(s)) instead of G(�(s) j �(s)) where�(s) is a tautology.In the following section we provide LDM with asemantics in which (2) and (3) will have the intendedmeaning.3.2 Semantics: error measuresThe de�nition of the relation r j= ' is straightforwardfor any ' 2 TRC. To also de�ne this relation forarbitrary ' 2 LDM we have to explain the meaningof an error term G(� j  ).A somewhat vague, yet useful, guiding intuition isthat such a term represents the \degree of falsity" of �given that  is true. Formally, we use error measuresto capture this intuition.Let R be a relational schema. An error measurefor R is any function g that assigns to every triple(r; �(s);  (s)), where r is a database over R, and�(s);  (s) are formulas of TRC, a value q 2 R \ [0; 1]such that1. g(r; �(s);  (s)) = 0 if r j=  (s)! �(s); andr j= 9s (s):g(r; �(s);  (s)) = 1 if r j= :9s (s):2. g(r; �(s);  (s)) � g(r; �0(s);  0(s)); ifj=  (s)$  0(s) and j= �0(s)! �(s)
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Given an error measure g, the interpretation of an er-ror term G(�(s) j  (s)) in r is the value g(r; �(s);  (s)),and the relation r j= ' (more precisely: r j=g ') is de-�ned in the obvious manner for ' 2 LDM.The de�nition for error measures given here is aboutas general as can be. The conditions 1. and 2.listed here are minimal requirements for how an errormeasure behaves with respect to logical properties ofits arguments. These conditions will also be metby many functions that we would not consider assensible error measures. We shall leave it to some laterwork to describe further reasonable conditions for errormeasures.We now turn to di�erent kinds of error measures, andhow they may be utilized in the formalization withinLDM of interesting data mining problems.Some error measures can be naturally de�ned in termsof the subsets of tuples in r de�ned by � and  , i.e. thesets r(�(s)) := f(t1; : : : ; tk) j ti 2 r; r j= �[t1; : : : ; tk]gand r( (s)) := f(t1; : : : ; tk) j ti 2 r; r j=  [t1; : : : ; tk]g.One such error measure is g1, de�ned asg1(r; �(s);  (s)) := j r( (s) ^ :�(s)) jj r( (s)) jif j r( (s)) j> 0 and g1(r; �(s);  (s)) := 1 else.Observe that in the special case that s = ; we getg1(r; �;  ) = 0 if r j=  ^ �, and g1(r; �;  ) = 1otherwise. Compare this to the behaviour of the termg1(r; � !  ) (i.e. g1(r; � !  ; �) with � a tautology),which equals 0 if r j=  ! � and 1 if r j=  ^ :�.g1 is the appropriate error measure for giving theintended semantics to (2) and (3):r j=g1 (2) ^ (3)i� the association rule X ) B[�; 
] holds in r.Another natural error measure is g3, which, roughlyspeaking, is inversely proportional to the size of themaximal sub-database r0 � r in which the implication8s( (s)! �(s)) is true. Precisely, for given r;  ; � letm := max fjr0 j j r0 � r; r0 j= 8s( (s)! �(s))g;and put g3(r; �(s);  (s)) := 1� mjr j :Observe that here g3(r; �(s);  (s)) = g3(r; �(s) ! (s)).g3 is one way to let an error measure represent theminimal amount of change necessary to transform thedatabase r into a database r0 with r0 j=  ! � {here simply by deleting tuples. This, however, is notthe only kind of manipulations that one may consider.Alternatively, we may change some attribute values ofsome tuples in the database. In case that we are givensome metric di on every domain Di of attributes Ai

that we are allowed to change, we can then quantifyin numerous ways the amount of change necessary totransform r into r0.Suppose, for instance, that r0 is obtained from r bychanging the attribute values of A1; : : : ; Ak in someor all tuples of r, and that di is a metric on Di fori = 1; : : : ; k. Then we may letc(r; r0) :=max fdi(t[Ai]; t0[Ai]) j t 2 r; i = 1; : : : ; kg; (4)where t0 is the transformation of t. Putting c(r; r0) := 1if r0 can not be obtained from r by such changes, wethen letgd(r; �(s);  (s)) :=inf fc(r; r0) j r0 j= 8s( (s)! �(s))g: (5)Note that this error measure only is de�ned for a speci�cunderlying relation schema, whereas g1 and g3 may beapplied to any relation schema.As an example for how error measures of the type(5) may be applied, we consider approximate functionaldependencies.Let R be a relation schema, X;Y � R. A functionaldependency X ! Y holds in an R-database r if forall s; t 2 r : s[Ai] = t[Ai] for all Ai 2 X impliess[Aj ] = t[Aj ] for all Aj 2 Y . Now suppose that everydomain Dj with Aj 2 Y is equipped with a metric (forsimplicity, assume, for instance, that Dj = R for allj). Then we may speak of an \approximate functionaldependency with accuracy �" when s[Ai] = t[Ai] for allAi 2 X implies dj(s[Aj ]; t[Aj ]) � � for all Aj 2 Y .We can now represent the statement that X ! Y isa functional dependency with accuracy � by the LDM-expressionG( ^Ai2X(s[Ai] = t[Ai])! ^Aj2Y (s[Aj ] = t[Aj ])) � �;which has the intended meaning when G is interpretedby the error measure gd obtained from the dj (Aj 2 Y )through (4) and (5).While the representation language LDM here de-scribed already is quite powerful, there are a multitudeof possibilities to further increase its expressiveness.To mention a few: we might introduce functionsand relations on the tuples themselves. This is not areal extension, though: such relations and functionscan always be encoded in an additional attribute.A more fundamental extension would consist in theintroduction of variables ranging over the domains andquanti�cation over these variables. We have chosen notto include domain variables in our language because thiswould make LDM undecidable whenever the underlyingrelation schema R contains attributes with a domain
4



whose �rst-order theory is undecidable (as, for instance,the natural numbers with addition and multiplication).As it is de�ned here, LDM is decidable whenever theinterpretation of the error terms G(�; �) is computable.Some further extensions have not been introducedhere mostly for simplifying the exposition, but maybe considered in the future. These include selectivequanti�cation of the variables in the error terms, i.e.using terms Gs0(�(s);  (s)) for some s0 � s in whichonly the variables s0 are bound, while those in s n s0remain free, as well as the combination of error terms ofdi�erent kinds G1(�; �); G2(�; �); : : : to be interpreted bydi�erent error measures, and nested error terms.4 Research questionsThe general framework of LDM gives rise to theformulation and investigation of theoretical questionsabout characteristic data mining problems.� What is the complexity of querying ThI(L; r), asa function of the logical complexity of L. (Note:deciding whether a formula ' of LDM is true indatabase r can be solved in time polynomial in thesize of the database { provided that evaluation oferror-terms G(� j  ) is polynomial.)� What types of quantitative information do we seekto extract in data mining; and can it always beencoded by error measures? What are the mostuseful error measures, and what are their commonproperties?� Which inductive methods can be used search e�-ciently for sentences in ThI(L; r)? See also [MT96]for some simple general complexity results in thiscontext.� Is it possible to develop a theory of `data miningtask optimization', which would somehow resemblethe theory of query optimization?References[AIS93] Rakesh Agrawal, Tomasz Imielinski, and ArunSwami. Mining association rules between setsof items in large databases. In sigmod93, pages207 { 216, May 1993.[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrish-nan Srikant, Hannu Toivonen, and A. InkeriVerkamo. Fast discovery of association rules. InUsama M. Fayyad, Gregory Piatetsky-Shapiro,Padhraic Smyth, and Ramasamy Uthurusamy,editors, Advances in Knowledge Discovery andData Mining, pages 307 { 328. AAAI Press,Menlo Park, CA, 1996.[Bac90a] F. Bacchus. Lp, a logic for representing andreasoning with statistical knowledge. Computa-tional Intelligence, 6:209{231, 1990.
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