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1 Introduction

Currently, data mining is more or less a collection of
different techniques and tools for various types of data
sets. Imielinski [Imi95] has compared the situation in
data mining to the status of database processing in the
1960’s, prior to the advent of high-level query languages:
then one had to write a separate application program
for each query.

In this paper we take some steps towards developing
a framework for representing and analyzing a large col-
lection of data mining tasks in a principled and unified
manner. One may say that the contribution that high-
level query languages have made for classical database
processing has two different aspects: a conceptual one,
and an algorithmic one. The conceptual aspect is the
insight that a wide class of relevant queries can be ex-
pressed by formal expressions constructed according to
a small set of syntax rules. The algorithmic aspect is
the development of universal algorithms that can effi-
ciently process any query formulated in that syntax. At
the present stage, we aspire to contribute to the theory
of data mining insights that are somewhat analogous
to the conceptual aspect mentioned above, not the al-
gorithmic one. Given the huge diversity of conceivable
data mining tasks (which include almost arbitrarily am-
bitious ones), our general representational framework
can not be expected to give rise to general algorithmic
methods as well.

The data mining concept that we will develop is based
on arguing that

1. the task of data mining can be seen as the problem of
extracting the interesting part of the logical theory
of a model; and

2. the theory of a model should be formulated in a
logic able to express quantitative knowledge and
approximate truth.
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This position paper is organized as follows. In
Section 2 we present the formulation of data mining
as the task of finding the theory (in some logic) of a
model. Section 3 argues that work done in (theoretical)
AT provides a good foundation for this approach, and
describes a Bacchus-Halpern type of logic LDM (Logic
for Data Mining) that seems to be well applicable for
data mining tasks in the theory formulation. Section 4
points to research topics that emerge from our data
mining concept.

2 Data mining as theory extraction

Let us first consider one prototypical example of a
data mining problem: the finding of association rules
[AIS93],[AMS'96]. Suppose that r is a relational
database of n tuples over a relation schema R such that
each attribute A € R has domain {0,1}. Let X be a
subset of R. Denoting ¢(X) = 1 iff tuple ¢ € r has a 1
in each attribute A € X, we define the support s(X) of
X tobe [{t er |t(X)=1}/n. Let B € R, 0,7 € [0,1].
The association rule

X = Blo,7] (1)

(with o the support and v the confidence of the rule)
then holds in r, iff s(X U {B}) > o, and s(X U
{B})/s(X) > . The data mining task of finding
association rules then consists of finding expressions (1)
that are true in r. However, we do not want to list every
such expression: only when support and confidence
of the rule are sufficiently high, will we find the rule
interesting and want an algorithm to include the rule in
its output.

Abstracting from this specific example we are led
to the following formulation of data mining problems
in general: given a database r, a language L for
expressing statements about the data, and a criterion
for distinguishing interesting statements about the
data from uninteresting ones, we want to find all the
interesting statements true for r.

Formally, this means finding the set

ThI(C,r) = Th(L,r) N I(L, ),



where Th(L,r) = {¢ € L | r |= ¢} is the set of sentences
of £ true in r, and I(L,r) C L is the set of interesting
formulas of £ about r.

This theory extraction formulation is either explicitly
or implicitly used in a variety of data mining studies
[MR&6, DB93, Klo95, AMST96]. Its roots are in the
use of diagrams of models in model theory.! It is based
on the view that data mining is principally descriptive:
the task is to obtain a collection of statements about
the data.

In the theory extraction formulation, there are two
ways of delimiting the sentences that form the descrip-
tion of the model. The first is the choice of the language
L, the second is the interestingness predicate I(L,r).

Interestingness for different data mining problems
may be defined in a great variety of ways. We here
mention a few examples to illustrate the versatility
and the importance of the concept. The perhaps
simplest way in which interestingness may defined is by
a user-supplied restriction on the syntactic form of the
statements. The association-rule example above falls
into this category: a rule X = B]Jo,v] is considered
interesting iff ¢ € [p,1], v € [¢,1] for some p,q < 1.
The user may restrict the syntax of rules considered
interesting further by, for example, requesting that X
contain a certain fixed subset of attributes from R.

Another way to define interestingness is through
some concept of a-priori expectation: a statement is
interesting if it is unexpected. As an example consider
the situation where we have an up-to-date dataset r as
well as an older version s of the same database from
which r was obtained by deleting (some) and adding
(many) tuples. We may expect that most general
statements that were true in the old database remain
true in the new version, and be particularly interested
in statements for which this is not the case, and which
thereby describe some qualitative change in the data.
Thus, we might define: I(L,r) := £\ Th(L,s).

Interestingness as unexpectedness can also be defined
in a very general, completely logical way, devoid of
any user-input: Fagin (cf. [Fag90]) calls a first-order
sentence ¢ “very uninteresting” if it is true in large
finite random structures with asymptotic probability
1, i.e. if we look at all possible structures over the
domain {1,...,n} (there are only finitely many), and
the proportion of structures in which ¢ holds tends to
1 as n — oo, then ¢ is very uninteresting. In a similar
way we can derive a general criterion for interestingness
in the present context: one condition for interestingness
of ¢ € £ may often be that the probability for ¢ to hold
in a randomly generated database tends to 0 as the size
of the database tends to oo.

In principle, one might incorporate the given concept

IFollowing Imielinski, one could also view the task of data
mining as querying ThI(L,T).

of interestingness directly into the choice of £, and,
indeed, there is always some choice between using a
richer background language £ and a more complicated
definition of interestingness on the one hand, and using
a more restricted language £ with a simpler concept
of interestingness on the other. However, we feel that
usually a natural distinction can be made between a
more static part of the specification of a data mining
task reflected in the choice of £, and a more dynamic
part reflected in the definition of interestingness.

Given our general description of data mining prob-
lems, we can identify three distinct subtasks that a data
mining system has to deal with.

1. we have to be able to check the validity of ¢ € L in
r, i.e., decide the relation r |= ¢;

2. we have to check whether ¢ is interesting, and

3. we must have some method of searching for candi-
date sentences ¢ that are to be checked for inter-
estingness and validity. Particularly, this may mean
to identify plausible sentences , i.e. those that by
some token are likely to be true in r.

The first two of these subtasks are mostly deductive
in nature, whereas the third task will usually have to be
performed by inductive methods.

One method for finding plausible ¢ is the use of
sampling techniques: rather than considering the whole
database r at once we may first look at a small random
sample s C r of the data. The result of a validity
check for ¢ in s then can be used to evaluate the
likelihood for ¢ to be true in r (cf. [KM94]). Also,
the part of Th(L,r) NI already computed may be used
to further direct our search: clearly, we can discard ¢
when ¢ € Th(L,r) NI with = ¢ — —p has already
been found.

Our theory extraction concept of data mining is a
natural one that is directly applicable to such problems
as finding association rules or functional dependencies.
Its division into three distinct components is a concep-
tualization that may prove helpful for identifying and
solving characteristic problems of data mining. We do
not claim that in building actual data mining systems it
is always advisable to use an architecture with distinct
subroutines for each of these components.

3 A logic for data mining

Proceeding from the theory extraction formulation,
what, then, is a good logic £? Obviously, for each
specific data mining task one chooses only a small
language. Thus the above question might be more
accurately formulated as: what is a good language
L such that many data mining tasks can be usefully
formulated as theory extraction in a suitably defined
subclass of L7



The success of tuple relational calculus for querying
relational databases, and the ability of expressing
powerful integrity constraints using the same formalism,
suggest that tuple relational calculus is a good starting
point for such a logic.

However, there is an important ingredient missing
from the tuple relational calculus. It uses a language
that talks about fully specified relations between tuples.
For data mining tasks, the information we want to
extract from a database rarely takes the form of strict
laws. More often we look for quantitative information,
e.g. that a given rule applies to a certain portion of
the entries in the database, or for statements that are
only approximately true, e.g. that might be true in
the domain from which the data is taken, but are not
strictly valid in the database due to noisy and imprecise
measurements. Being thus of central importance, we
make statements about a qualified validity of formulas
an integral part of the language.? It turns out that
such extensions have been considered in detail in Al
literature [Bac90b],[Hal90].

3.1 Syntax
For simplicity, we consider a database over a single
relation schema R = {Ay,... ..., A,} of attributes A;.

Each attribute A; has a domain D;, which is a structure
on which functions and relations may be defined. A
database r over R is a set of tuplest = (t[As], ..., t[A.]),
where t[A;] € D; for all i.

The tuple relational calculus, denoted by TRC, is
constructed from variables s,t,... ranging over the
tuples in the database, constant symbols for every
element of D; (1 = 1,...,n), symbols for the functions
and relations defined on the D;, and the attribute
symbols Aq,..., A,.

Terms are built by the rules: every constant symbol
for an element of D; is a term of sort D,. If o1,...,0.,
are terms (of sort D;), and f is an m-ary function
symbol for D;, then f(o1,...,0m) is a term of sort D,.
If s is a variable, and A; an attribute symbol, then s[A;]
is a term of sort D;.

Atomic formulas are either of the form T'(oq ...0m),
where 0, is a term of sort D;, and T is an m-ary relation
symbol on D,, or of the form ¢ = 7 with ¢ and 7 are
terms of sort D;.

By closing the language defined so far under boolean
connectives (A and —) and quantification (3 and V) over
the tuple variables one obtains the usual tuple relational
calculus TRC.

Next, we extend this language by a construct that
allows us to represent statements about the approxi-
mate truth of formulas. Syntactically this additional

2 Another alternative would be using tuple relational calculus
augmented with aggregate functions; the foundations of such
languages, however, do not seem as simple as in the other
alternative.

construct is very similar to the statistical probability
terms introduced by Bacchus [Bac90a]. Semantically,
however, we have in mind a wider range of possible in-
terpretations for these new terms.

An error term is either a constant symbol ¢ for some
g € @ (or, when necessary, a countable extension of
Q), or an expression of the form G(x(s) | ¥(s)), where
X(8),v(s) are formulas in TRC (i.e., not containing any
error terms themselves!) whose free variables are among
s=(81,-..,8k)

An atomic error formula is any expression of the form
n < § or n =9, with error terms 7 and §.

Our final representation language LDM is obtained
by again closing the union of 7RC and the set of
atomic error formulas under boolean connectives and
quantification.

For an example of an LDM expression, let R, X, B, o,
~ be as in the association rule example from section 2.

Then
GBI =1| N\ (tA1=1)) >~ (2)
AeX

is an LDM-expression with the intended meaning that
the association rule X =- B has confidence v. Similarly,
the formula

AeX

is meant to represent the fact that the rule X = B
has significance 0. Here we have used a convention to
simply write G(x(s)) instead of G(x(s) | 7(s)) where
7(s) is a tautology.

In the following section we provide £LDM with a
semantics in which (2) and (3) will have the intended
meaning.

3.2 Semantics: error measures

The definition of the relation r |= ¢ is straightforward
for any ¢ € TRC. To also define this relation for
arbitrary ¢ € LDM we have to explain the meaning
of an error term G(x | ¥).

A somewhat vague, yet useful, guiding intuition is
that such a term represents the “degree of falsity” of x
given that ¢ is true. Formally, we use error measures
to capture this intuition.

Let R be a relational schema.
for R is any function g that assigns to every triple
(r,x(s),%(s)), where r is a database over R, and
x(s),%(s) are formulas of TRC, a value ¢ € R N0, 1]
such that

L. g(r,x(s),4(s)) =0

An error measure

if r = 9Y(s) = x(s), and

r = dsy(s).
if r = —~Jsy(s).



Given an error measure g, the interpretation of an er-
ror term G(x(s) | ¥(s)) in r is the value g(r, x(s),¥(s)),
and the relation r = ¢ (more precisely: r =, ¢) is de-
fined in the obvious manner for ¢ € LDM.

The definition for error measures given here is about
as general as can be. The conditions 1. and 2.
listed here are minimal requirements for how an error
measure behaves with respect to logical properties of
its arguments. These conditions will also be met
by many functions that we would not consider as
sensible error measures. We shall leave it to some later
work to describe further reasonable conditions for error
measures.

We now turn to different kinds of error measures, and
how they may be utilized in the formalization within
LDM of interesting data mining problems.

Some error measures can be naturally defined in terms
of the subsets of tuples in r defined by y and ¥, i.e. the
sets r(x(s)) == {(t1,...,tx) | t: €r, v = x[t1,..., t]}
and r(¢(s)) := {(t1,...,tx) | t: €Er, T EY[t1,. .., tx]}.

One such error measure is g, defined as

r,x(s s)) = | x(W(s) A ~x(s)) |
91(r,x(s),9(s)) : | r((s)) |

if | r(¢(s)) |> 0 and g1 (r, x(s),¢(s)) := 1 else.

Observe that in the special case that s = () we get
gi(r,x,¥) = 0if r = ¢ Ax, and gi(r,x,¢)
otherwise. Compare this to the behaviour of the term
gi(r,x = ¢) (e gi(r,x — ¢, 7) with 7 a tautology),
which equals 0 if r =4 — y and 1if r =¥ A —x.

g1 is the appropriate error measure for giving the
intended semantics to (2) and (3):

r =g (2)A(3)

iff the association rule X = B[r,~] holds in r.
Another natural error measure is g3, which, roughly
speaking, is inversely proportional to the size of the
maximal sub-database r' C r in which the implication
Vs(y(s) = x(8)) is true. Precisely, for given r, 4, x let

m = maz{|x'| | ¥ Cr, ' = Vs((s) = x(s))},

and put
ga(r, x(8),%(s)) =1 — .

v

Observe that here g3(r,x(s),¥(s)) = gs(r,x(s) —
0(s)).

gs is one way to let an error measure represent the
minimal amount of change necessary to transform the
database r into a database r’ with r' = ¢ — y
here simply by deleting tuples. This, however, is not
the only kind of manipulations that one may consider.
Alternatively, we may change some attribute values of
some tuples in the database. In case that we are given
some metric d; on every domain D, of attributes A;

that we are allowed to change, we can then quantify
in numerous ways the amount of change necessary to
transform r into r'.

Suppose, for instance, that r’ is obtained from r by
changing the attribute values of A;,..., A; in some
or all tuples of r, and that d; is a metric on D; for
1=1,...,k. Then we may let

c(r,r') 1=

maz{d;(t[A;],t'[A]) [t e€r, i=1,...,k}, (4)

where t' is the transformation of ¢. Putting c(r,r’) := 1
if ' can not be obtained from r by such changes, we
then let

ga(r,x(8),9(s)) :=
inf{c(r,r’) | r |: VS(’I/)(S) - X(s))} (5)

Note that this error measure only is defined for a specific
underlying relation schema, whereas ¢g; and g3 may be
applied to any relation schema.

As an example for how error measures of the type
(5) may be applied, we consider approzimate functional
dependencies.

Let R be a relation schema, X,Y C R. A functional
dependency X — Y holds in an R-database r if for
all s,t € r : s[A;] = t[A;] for all A, € X implies
s[A;] = t[A;] for all A; € Y. Now suppose that every
domain D; with A; € Y is equipped with a metric (for
simplicity, assume, for instance, that D; = R for all
j). Then we may speak of an “approximate functional
dependency with accuracy €” when s[A;] = ¢[A;] for all
A; € X implies d;(s[4,],t[4,]) <eforall 4; €Y.

We can now represent the statement that X — Y is
a functional dependency with accuracy e by the LDM-
expression

GO N Glal=tAD = N\ G141 =14]) <«

A;EX AJEY

which has the intended meaning when G is interpreted
by the error measure g4 obtained from the d; (4; € Y)
through (4) and (5).

While the representation language £LDM here de-
scribed already is quite powerful, there are a multitude
of possibilities to further increase its expressiveness.

To mention a few: we might introduce functions
and relations on the tuples themselves. This is not a
real extension, though: such relations and functions
can always be encoded in an additional attribute.
A more fundamental extension would consist in the
introduction of variables ranging over the domains and
quantification over these variables. We have chosen not
to include domain variables in our language because this
would make LDM undecidable whenever the underlying
relation schema R contains attributes with a domain



whose first-order theory is undecidable (as, for instance,
the natural numbers with addition and multiplication).
As it is defined here, LDM is decidable whenever the
interpretation of the error terms G(-,-) is computable.
Some further extensions have not been introduced
here mostly for simplifying the exposition, but may
be considered in the future. These include selective
quantification of the variables in the error terms, i.e.
using terms Gs'(x(s),¥(s)) for some s’ C s in which
only the variables s’ are bound, while those in s\ s
remain free, as well as the combination of error terms of
different kinds G1(-,-),Ga(-,"),... to be interpreted by
different error measures, and nested error terms.

4 Research questions

The general framework of L£DM gives rise to the
formulation and investigation of theoretical questions
about characteristic data mining problems.

e What is the complexity of querying T'hI(L,r), as
a function of the logical complexity of £. (Note:
deciding whether a formula ¢ of LDM is true in
database r can be solved in time polynomial in the
size of the database — provided that evaluation of
error-terms G(y | ¢) is polynomial.)

e What types of quantitative information do we seek
to extract in data mining; and can it always be
encoded by error measures? What are the most
useful error measures, and what are their common
properties?

e Which inductive methods can be used search effi-
ciently for sentences in ThI(L,r)? See also [MT96]
for some simple general complexity results in this
context.

e Is it possible to develop a theory of ‘data mining
task optimization’, which would somehow resemble
the theory of query optimization?

References
[A1S93]

Rakesh Agrawal, Tomasz Imielinski, and Arun
Swami. Mining association rules between sets
of items in large databases. In sigmod93, pages

207 216, May 1993.
[AMS™96] Rakesh Agrawal, Heikki Mannila, Ramakrish-

nan Srikant, Hannu Toivonen, and A. Inkeri
Verkamo. Fast discovery of association rules. In
Usama M. Fayyad, Gregory Piatetsky-Shapiro,
Padhraic Smyth, and Ramasamy Uthurusamy,
editors, Advances in Knowledge Discovery and
Data Mining, pages 307 — 328. AAAI Press,
Menlo Park, CA, 1996.

F. Bacchus. Lp, a logic for representing and
reasoning with statistical knowledge. Computa-

tional Intelligence, 6:209-231, 1990.

[Bac90a]

[Bac90b]

[DBY3]

[Fag90]

[Hal90]

[Imi95]

[K1095]

[KM94]

[MR&6]

[MT96]

F. Bacchus. Representing and Reasoning With
Probabilistic Knowledge. MIT Press, 1990.

Luc De Raedt and Maurice Bruynooghe. A
theory of clausal discovery.
the Thirteenth International Joint Conference on
Artificial Intelligence (IJCAT-93), pages 1058 —
1053, Chambéry, France, 1993. Morgan Kauf-

mann.

In Proceedings of

R. Fagin. Finite model theory — a personal per-
spective. In S. Abiteboul and P. Kanellakis, edi-
tors, Proceedings 1990 International Conference
on Database Theory, number 470 in Springer
Lecture Notes in Computer Science, 1990.

J.Y. Halpern. An analysis of first-order logics of
probability. Artificial Intelligence, 46:311 350,
1990.

Tomasz Imielinski. Invited talk at KDD-95.

1995.

Willi Kloesgen. Efficient discovery of interesting
statements in databases. Journal of Intelligent
Information Systems, 4(1):53 69, 1995.

J. Kivinen and H. Mannila.
sampling in knowledge discovery. In Proceedings
of the 13th ACM Symposium on Principles of
Database Systems (PODS 94), 1994.

Heikki Mannila and Kari-Jouko Raiha. Design
by example: An application of Armstrong rela-
tions. Journal of Computer and System Sciences,
33(2):126 — 141, 1986.

The power of

Heikki Mannila and Hannu Toivonen. On an
algorithm for finding all interesting sentences. In

Proc. ECMSCR’96, 1996. To appear.



