5. The C# Language and System

This chapter, together with Chapter 6, Chaptend,@hapter 9, is an introduction to the C# language
the C# system. On Windows, the latter is knowrNas..On purpose, we will keep the .Net part of the
material very short. Our main interest in this leetis how to program in C#, and how this is reldte
programming in other languages such as C, Javaysundl Basic.

5.1. C# seen in a historic perspective

Lecture 2 - slide 2

It is important to realize that C# stands on theusdfers of other similar object-oriented programgnin
languages. Most notably, C# is heavily inspiredaya. Java, in turn, is inspired by C++, which again
the object-oriented side - can be traced backrii (and, of course, to C on the imperative side).

Here is an overview of the most important objedtmtied programming languages from which C# has been
derived:

« Simula (1967)
« The very first object-oriented programming language
« C++(1983)
« The first object-oriented programming languagehm € family of languages
« Java (1995)
« Sun's object-oriented programming language
« C# (2001)
« Microsoft's object-oriented programming language

5.2. The Common Language Infrastructure

Lecture 2 - slide 3

The Common Language Infrastructure (CLI) is a dpmtion that allows several different programming
languages to be used together on a given platfoh@.CLI has a lot of components, typically refertedby
three-letter abbreviations (acronyms). Here arentbst important parts of the Common Language
Infrastructure:

« Common Intermediate language (CIL) including a camrype system (CTS)
« Common Language Specification (CLS) - shared blaatjuages

» Virtual Execution System (VES)

« Metadata about types, dependent libraries, atafynd more

The following illustration, taken from Wikipedidlustrates the CLI and its context.

23

c# VELNET i

KET caimpatibie langsd (it compie
Commn i T 'n--unn. -.-lln'
----- sy Camman infsrmsdiale Lasgusgs §CIL1

Thar plarFons-spe-cife: Cory «-l.c-gm
presie Fushess (GLA] cxrmpii CIL Lo mas

resdabia code rmb—nuwdmlu
e plafzm

01001100100011
11010101100110

Figure 5.1 Wikipedia's overview diagram of the CLI

.Net is one particular implementation of the Comrhanguage Infrastructure, and it is undoubtedly the
most complete one. .Net is closely associated Withdows. .Net is, however, not the only implemeiotat
of the CLI. Mono is another one, which is intendedvork on several platforms. Mono is the primary
implementation of the CLI on Linux. Mono is alscadable on Windows.

MONO and .NET are both implementations of the Cominanguage Infrastructure

The C# language and the Common Language Infrasteuate standardized by ECMA and ISO

5.3. C# Compilation and Execution

Lecture 2 - slide 5

The Common Language Infrastructure supports a tejp-sompilation process

« Compilation

« The C# compiler: Translation of C# source to CIL

« Producesdil and.exe files

« Justin timecompilation: Translation of CIL to machine code
« Execution

« With interleavedust in Timecompilation

« On Mono: Explicit activation of the interpreter

- On Window: Transparent activation of the interprete

dil and.exe files are - with some limitations - portable inween different platforms

24

6. C# inrelationto C

As already mentioned in Chapter 1, this materigkisarily targeted at people who know the C
programming language. With this outset, we do eetdto dwell on issues such as elementary types,
operators, and control structures. The reasoraisGrand C# (and Java for that sake) are similtdrase
respects.

In this chapter we will discuss the aspects of Gittwvhave obvious counterparts in C. Hopefully, the
chapter will be helpful to C programmers who hanérgerest in C# programming.

In this chapter 'C#' refers to C# version 2.0. WAverdiscuss C we refer to ANSI C ala 1989.

6.1. Simple types

Lecture 2 - slide 7

C supports the simple typetsar , bool , int , float anddouble . In addition there are a number of variation
of some of these. In this context, we will alsosider pointers as simple types.

The major differences between C# and C with resjpesiimple types are the following:

« All simple C# types have fixed bit sizes
« C# has a boolean type callegb
« C# chars are 16 bit long
« In C# there is a high-precision 128 bit numeri@fixpoint type calledecimal
» Pointers are not supported in the normal parts@f @rogram
« In the unsafe part C# allows for pointers like in C
« All simple types are in reality structs in C#, ahdrefore they have members

In C it is not possible to tell the bit sizes of timple types. In some C implementationgan for instance,
will made by 4 bytes (32 bits), but in other C ieplentations amt may be longer or shorter. In C# (as
well as in Java) the bit sizes of the simple tygesdefined and fixed as part of the specificatibthe
language.

In C there is no boolean type. Boolean false isasgmted by zero values (such as integer 0) anddooo
true is represented by any other integer valuen(asahe integer 1). In C# there is a boolean tyamed
bool , that contain the natural values denotedday andfalse .

The handling of characters is messy in C. Charaate€ are supported by the type narded . Thechar
type is an integer type. There is a great deabofusion about signed and unsigned characterscalyypi
characters are represented by 8 bits in C, allofangepresentation of the extended ASCII alphalpe€#
the typechar represent 16 bits characters. In many respe@<;#typechar corresponds to the Unicode
alphabet. However, 16 bits are not sufficient Epresentation of all characters in the Unicodeabgh The
issue of character representation, for instantexifiles, relative to the typehar is a complex issue in C#.
In this material it will be discussed in the lee@bout 10, starting in Chapter 37. More specificalou
should consult Section 37.7.

25

The high-precision, 128 bit type calleetimal is new in C#. It is a decimal floating point tyfses opposed
tofloat anddouble which are binary floating point types). Valuesypedecimal are intended for
financial calculations. Internally, a decimal vakansists of a sign bit (representing positive @gative), a
96 bit integer (mantissa) and a scaling factor ¢evemt) implicitly between £oand 10°. The 96 bit integer
part allows for representation of (at least) 28met digits. The decimal exponent allows you totket
decimal point anywhere in the 28 decimal numbee décimal type uses 3 * 4 = 12 bytes for the maatis
and 4 bytes for the exponent. (Not all bits ineékponent are used, however). For more informasea,
[decimal-floating-point].

C pointers are not intended to be used in C#. Hew&V pointers are actually supported in the pa@#
known as the unsafe part of the language. The pboéeeferences is very important in C#. Refersrened
pointers are similar, but there are several diffees as well. Pointers and references will be ested and
discussed below, in Section 6.5.

All simple types in C# are in reality representsdstructs (but not all structs are simple types)séch, this
classifies the simple types in C#adue typesas a contrast t@ference typedn addition, in C#, this
provides for definition of methods of simple typ&#tucts are discussed in Section 6.6.

Below we show concrete C# program fragments wherhahstrate some aspects of simple types.

using System;
class BoolDemo{

public static void Main(){

bool b1, b2;
bl = true ;b2= default(bool) ;
Console.WriteLine("The value of b2 is {0}", b2) ; Il False

}
}

Program 6.1 Demonstrations of the simple type bool ii
Ct.

In Program 6.1 we have emphasized the parts tlzdé e the typ@ool . We declare two boolean variables
b1 andb2, and we initialize them in the line below theiictgations. Notice the possibility of asking foeth
default value of typeool . This possibility also applies to other types. Blgput of Program 6.1 reveals that
the default value of typieol is false.

26

using System;
class CharDemo{

public static void Main(){
N

char chl = ,

ch2 = \u0041'

ch3 = \u0Oc6' ,ch4= \u00d8' ,ch5= \u00c5'

ché;
Console.WriteLine("chl is a letter: {0}", char.IsLetter(chl));
Console.WriteLine("{0} {1} {2}", ch3, ch4, char.ToLower(ch5));
ché = char.Parse("B") ;
Console.WriteLine("{0} {1}", char.GetNumericValue('3")

char.GetNumericValue('a’));

Program 6.2 Demonstrations of the simple type char il
CH#.

In Program 6.2 we demonstrate the C# tyize . We declare a number of variables, ...che, of type
char . chl ...ch5 are immediately initialized. Notice the use ofgéinquote character notation, suchaas.
This is similar to the notation used in C. Alsoicetthe'u....' escape notatianThis is four digit unicode
character notation. Each dotwn... must be a hexadecimal digit between 0 and f (3. unicode
notation can be used to denote characters, whichamecessarily available on your keyboard, ssctine
Danish letters /&, @ and A shown in Program 6.2idéailso thehar operations, such asar.IsLetter ,
which is applied orh1 in the program. TechnicallysLetter is a static method in the stru@tar (see
Section 6.6 and Section 14.3 for an introductiosttacts). There are many similar operations treestsify
characters. These operations correspond to theaatishs (macros) in the C libratgype.h . Itis
recommended that you - as an exercise - lasadger in the C# library documentation. It is important
that you are able to find information about alreadisting types in the documentation pages. See als
Exercise 2.1.

Number Systems and Hexadecimal Numbers FOCUS BOX 6.1

In the program that demonstrated the type charave keen examples of hexadecimal numbers. It is
worthwhile to understand why hexadecimal numbegsuged for these purposes. This side box is a crash
course on humber systems and hexadecimal numbers.

The normal numbers are decimal, using base 10mEaming of the number 123 is
1*10+2*10+3*10

The important observation is that we can use aitranpbaseb, b > 1 as an alternative to 10 for

decomposition of a number. Base numbers which @aners of 2 are particularly useful. If we use b2see

get the binary numbers. Binary numbers correspinedttl to the raw digital representation used in
computers. The binary notation of 123 is 111101dabse

27

1*P+1*2+1*2+1*2+0*2+1*2+1*2
is equal to the decimal number 123.

Binary numbers are important when we approachawer level of a computer, but as can be seen aboy
binary numbers are unwieldy and not very practidaixadecimal numbers are used instead. Hexadecir
numbers use base 16, which is\®e need 16 digits for notation of hexadecimal bara. The first 10 digit
are 0 .. 9. In lack of better notation, we useléters A .. F as the six last digits. A = 10,F.5 15.

The important observation is thegroup of four binary digits (corresponding to fdaits) can be translate
to a single hexadecimal numbdhus, we can immediately translate the binarylmem01111011 to the tw
hexadecimal digits 7 and 11. These two hexadediigiék are denoted as 7 and B respectively. With th
observation, at single byte of eight bits can wntas exactly two hexadecimal digits. Groupinghite of
1111011 leads to 0111 1011. 0111 is 7. 1011 isHithas denoted by the hexadecimal digit B. The
hexadecimal number 7B means

7*16"+11* 16°
which is 123 (in decimal notation).

The explantion above is - in a nutshell - the reasby you should care about hexadecimal numbers. In

e,
nal

17

O

Exercise 2.2 we will write programs that deal wittkadecimal numbers.

using System;
using System.Globalization;

class NumberDemof{

public static void Main(){
shyte sbl = shyte.MinValue; // Signed 8 bit integer
System.SByte sb2 = System.SByte.MaxValue;
Console.WriteLine("sbyte: {0} : {1}", sb1l, sb2) ;

byte bl = byte.MinValue; // Unsigned 8 bit integer
System.Byte b2 = System.Byte.MaxValue;
Console.WriteLine("byte: {0} : {1}", b1, b2);

short sl = short.MinValue; // Signed 16 bi tinteger
System.Int16 s2 = System.Int16.MaxValue;

Console.WriteLine("short: {0} : {1}", s1, s2);

ushort usl = ushort.MinValue; // Unsigned 16 b it integer
System.UInt16 us2= System.UInt16.MaxValue;

Console.WriteLine("ushort: {0} : {1}", us1, us2);

int i1 = int.MinValue; /I Signed 32 bit integer
System.Int32 i2 = System.Int32.MaxValue;

Console.WriteLine("int: {0} : {1}", i1, i2);

uint uil = uint.MinValue; // Unsigned 32 bit integer
System.UInt32 ui2= System.UInt32.MaxValue;

Console.WriteLine("uint: {0} : {1}", uil, ui2);

long I1 = long.MinValue; /I Signed 64 b it integer
System.Int64 12 = System.Int64.MaxValue;

Console.WriteLine("long: {0} : {1}", 11, 12);

ulong ull = ulong.MinValue; // Unsigned 64 bit integer

28

System.UInt64 ul2= System.UInt64.MaxValue;
Console.WriteLine("ulong: {0} : {1}", ull, ul2)

float f1 = float.MinValue; // 32 bit float ing-point
System.Single f2= System.Single.MaxValue;
Console.WriteLine("float: {0} : {1}", f1, f2);

double d1 = double.MinValue; // 64 bit floati ng-point
System.Double d2= System.Double.MaxValue;

Console.WriteLine("double: {0} : {1}", d1, d2);

decimal dm1 = decimal.MinValue; // 128 bit fixed- point

System.Decimal dm2= System.Decimal.MaxValue;
Console.WriteLine("decimal: {0} : {1}", dm1, dm 2);

string s = sb1.ToString()
t= 123.ToString()

Program 6.3 Demonstrations of numeric types in (

In Program 6.3 we show a program that demonsteditesimeric types in C#. For illustrative purposes,

use both the simple type names (suchtas shown inpur ple) and the underlying struct type names (such as

System.Int32 shown inblue). To give you a feeling of the ranges of the typls program prints the
smallest and the largest value for each numerie. tgp the bottom of Program 6.3 we show how the
operationToString can be used for conversion from a numeric tygeedypestring . The output of the
numeric demo program is shown in Listing 6.4 (coyweb).

Hexadecimal Numbersin C# FOCUS BOX 6.2

In Focus box 6.1 we studied hexadecimal numberswiVaow see how to deal with hexadecimal numb
in C#.

A number prefixed with Ox is written in hexadecimalation. Thus, 0x123 is equal to the decimal nemt
291.

In C and Java the prefix 0 is used for octal notatThus, in C and Java 0123 is equal to the deciomaber
83. This convention is not used in C#. In C#, Oi28st a decimal number prefixed with a redunahgit
0.

While prefixesare used for encoding of number systesnffixesof number constants are used for encocl
of numerical types. As an example, 0X123L denotesxadecimal constant of typag (a 64 bit integer).
The following suffixes can be used for integer §p¢ (unsigned)L (long), andJL (unsigned long). The
following suffixes can be used for real typEqfloat), D (double), andM (decimal). Both lowercase and
uppercase suffixes will work.

A number can formatted in both decimal and hexawalchotation. In the context ofGnsole.WriteLine
call, the format specification (or placeholdg®} will write the value of the variabliein hexadecimal

ng

29

notation. This is demonstrated by the following geggram:

using System;
class NumberDemo{
public static void Main(){
inti=0123,
j=291;
long k = 0X123L;

Console.WriteLine("{0:X}", i); // 7B

Console.WriteLine("{0:D}", i); // 123
Console.WriteLine("{0:X}", j); // 123
Console.WriteLine("{0:D}", k); // 291

}
}

In the program shown abov@,means decimal and means hexadecimal. Some additional formattings pre
also provided for number€: (currency notation): (exponential notation}; (fixed point notation)
(Compact general notationly, (number notation) (percent notationR (round trip notation for float and
double). You should consult the online documentetoy additional explanations.

Exercise 2.1. Exploring the type Char
The typesystem.Char (a struct) contains a number of useful methodd,zacouple of constants.

Locate the typsystem.Char in your C# documentation and take a look at ththods available on
characters.

You may ask where you find the C# documentatiorer&lare several possibilities. You can find ithat t
Microsoft MSDN web site ahsdn.microsoft.com . It is also integrated in Visual Studio and - tone
degree - in Visual C# express. It comes with theSDK, as a separate browser. It is also part of the
documentation web pages that comes with Mono. ufy@ a Windows user | will recommend the
Windows SDK Documentation Browser which is bundieth the C# SDK.

Along the line of the character demo program abew#e a small C# program that uses the
predicatessDigit , IsPunctuation , andisSeparator

It may be useful to find the code position - alsowkn as theode point of a character. As an example,
the code position of ‘A’ is 65. Is there a methogystem.Char which gives access to this information? If
not, can you find another way to find the code timsiof a character?

Be sure to understand the semantics (meaningeahtthodsetNumericvValue in typecChar.

Exercise 2.2. Hexadecimal numbers

In this exercise we will write a program that camweert between decimal and hexadecimal notation of
numbers. Please consult the focus boxes about éeixaal numbers in the text book version if you need
to.

You might expect that this functionality is alreguhgsent in the C# libraries. And to some degtds, i

30

The static methodoint32(string, Int32) in classconvert converts the string representation of a
number (the first parameter) to an arbitrary nungystem (the second parameter). Similar methods exi
for other integer types.

The method oString(string) in the structnt32 , can be used for conversion from an integer to a
hexadecimal number, represented as a string. Thaenpter offoString is a format string. If you pass the
string "X" you get a hexadecimal number.

The program below shows examples:

using System;
class NumberDemof{
public static void Main(){

inti = Convert.ToInt32("7B", 16); // hexa decimal 7B (in base 16) - >
// deci mal 123
Console.WriteLine(i); /1123
Console.WriteLine(123.ToString("X")); // deci mal 123 -> hexadecimal 7B
}

}

Now, write a method which converts a list (or ajrafydigits in base 16 (or more generally, base >=
2) to a decimal number.

The other way around, write a method which convegtssitive decimal integer to a list (or arrayddaits
in base 16 (or more generally, bége

Here is an example where the requested methodsade

public static void Main(){

int r = BaseBToDecimal(16, new List{7, 11}); / /7B ->123
List s = DecimalToBaseB(16, 123); / /123 ->{7,11}=7B
List t = DecimalToBaseB(2, 123); / /123- >{1,1,1,1,0,1,1}=
/1111011

Console.WriteLine(r);
foreach (int digit in s) Console.Write("{0} ", digit); Console.WriteLine();
foreach (int digit in t) Console.Write("{0} ", digit);

}

31

6.2. Enumerations types

Lecture 2 - slide 8

Enumeration types in C# are similar to enumeratypes in C, but a number of extensions have been
introduced in C#:

- Enumeration types of several differemderlying type€an be defined (not just)

« Enumeration types inherit a number of methods ftloentypeSystem.Enum

« The symbolic enumeration constants can be primetj(st the underlying number)
« Values, for which no enumeration constant exist, lma dealt with

- Combined enumerations represent a collection afhenations

Below, in Program 6.5 we see that the enumeragipadnoff is based on the typste . The enumeration
typeRanking is - per default - based an .
using System;
class NonSimpleTypeDemo{
public enum Ranking {Bad, OK, Good}

public enum OnOff: byte{
On=1, Off = 0}

public static void Main(){
OnOff status = OonOff.On ;
Console.WriteLine();
Console.WriteLine("Status is {0}", status);

Ranking r = Ranking.OK ;
Console.WriteLine("Ranking is {0}", roo);
Console.WriteLine("Ranking is {0}", r+1);
Console.WriteLine("Ranking is {0}", r+2);
bool resl = Enum.IsDefined(typeof(Ranking), 3);
Console.WriteLine("{0} defined: {1}", 3, resl);
bool res2= Enum.IsDefined(typeof(Ranking), Ranking.Good);
Console.WriteLine("{0} defined: {1}", Ranking.G ood , res2);
bool res3= Enum.lsDefined(typeof(Ranking), 2);
Console.WriteLine("{0} defined: {1}", 2 , res3)
foreach(string s in Enum.GetNames(typeof(Ranking)))
Console.WriteLine(s);
}

}

Program 6.5 Demonstration of enumeration types in

In the example the method®efined andGetNames are examples of static methods inherited from
System.Enum .

In line 13 of Program 6.6nis printed. In a similar C program, the numberduld be printed.

32

In line 16 OK is printed, and line 17 prints Goddline 18 the value of + 2 is 3, which does not
correspond to any of the values in typeking . Therefore the base value 3 is printed.

All the output of Program 6.5 is listed in ListiBg.

Combined enumeration (sometimes knowflags enumerationis a slightly more advanced concept. We
introduce it in Focus box 6.3.

Let us point out some additional interesting detailProgram 6.5. There are two enumeration typése
program, namely a type call@dnking and another callednoff . When we declare variables, the types
Ranking andonoff are used via their names. C programmer will bievetl to find out that it is not
necessary (and not possible) to weitem Ranking andenum OnOff . Thus, no C-likaypedefs are
necessary to introduce simple naming.

In order to disambiguate the referencing of cortstaman enumeration type, dot notationRdaking.OK
must always be used. In the same way as in C nilma@ration constants have associated an integee.val
The operationsDefined allows us to check if a given value belongs t@aameration typasDefined is
an operation (a method) in a struct caliedm

As a very pleasant surprise for the C programrhergtis access to the names of enumeration cosi$tant
the program. We show in the program that the esyRSEnum.GetNames(typeof(Ranking)) returns a
string array with the elements "Bad", "OK", and '@8b. In the same direction - as we have already see
above - it is possible to print the symbolic narokthe enumeration constants. This is very uséfuC
programs we always need a tedieutiich to obtain a similar effect..

Combined Enumer ations FOCUS BOX 6.3

Combined enumerations can be used to deal with setalsymbolic constants. Here is an example:

[Flags]
public enum Direction: byte{

North = 1, East = 2, South = 4, West = 8,
}

The first thing to notice is the mapping of symbalonstants to powers of two. We can form an esjwas
North | West which is the bitwise combination of the underlyingeger values 1 and B.s a bitwise or
operator, see Table 6.1. At the binary level, 1s|@&juivalent to 0001 | 1000 = 1001, which repristhe
number 9. You should think of 1001 as a bit arréngxe the leftmost bit is the encodingvedst and the
rightmost bit is the encoding abrth .

[Flags] is an application of an attribute, see Sectio®.39instructs the compiler to generate symbolic
names of combinations, such as the composite namewest in the example below.

We can program with the enumeration type in thiefahg way:

Direction d = Direction.North | Direction.West;

Console.WriteLine("Direction {0}", d); /Il Direction North, West
Console.WriteLine("Direction {0}", (int)d); 119
Console.WriteLine(HasDirection(d, Direction.Nor th)); // True
Console.WriteLine(HasDirection(d, Direction.Sou th)); // False

33

The methodiasDirection is a method we have programmed in the following:wa

/l'Is d in the direction e
public static bool HasDirection(Direction d, Dire ction e){
return (d & e) == e;

}

It checks ife is contained inl in the a bitwise sense. It is also possible toenaome of the combinations
explicitly in the enumeration type:

[Flags]

public enum Direction: byte{
North = 1, East = 2, South = 4, West = 8,
NorthWest = North | West, NorthEast = North | E ast,
SouthWest = South | West, SouthEast = South | E ast

}

Exercise 2.3. ECTS Grades

Define an enumeration tyeTSGrade of the grades A, B, C, D, E, Fx and F and assetfs Danish 7-
step grades 12, 10, 7, 4, 2, 0, and -3 to the sfy;nBETS grades.

What is the most naturahderlying typeof ECTSGrade?

Write a small program which illustrates how to tfs& new enumeration type.

Exercise 2.4. Use of Enumeration types

Consult the documentation of type typ@tem.Enum , and get a general overview of the methods in this
struct.

Be sure that you are able to find the documentatf@ystem.Enum

Test drive the examplnumTest, which is part of MicroSoft's documentation. Beesto understand the
program relative to its output.

Write your own program with a simple enumeratigmetyUse th&num.CompareTo method to compare
two of the values of your enumeration type.

6.3. Non-simple types

Lecture 2 - slide 9

The most important non-simple types are definedlagses and structs. These types define non-atomic
objects/values. Because C# is a very rich languages are other non-simple types as well, such as
interfaces and delegates. We will not discuss thesigs chapter, but they will play important rslie later
chapters.

34

The most important similarities between C and Chwespect to non-simple types can be summarized in
the following way:

« Arrays in C#: Indexed from 0. Jagged arrays - aryarrays
« Strings in C#: Same notation as in C, and siméaape characters
« Structs in C#: A value type like in C.

The most important differences are:

« Arrays: Rectangular arrays in C#
« Strings: Noo termination in C#
« Structs: Much expanded in C#. Structs can have adsth

A C programmer, who have experience with arrayggd, and structs from C, will immediately feel
comfortable with these types in C#. But such a@mmmer will also quickly find out, that there are
substantial new possibilities in C# that makesd#dsier.

Arrays and strings will be discussed in Section Gldsses and structs are, basically, what theofébe
book is about. The story about classes starts apteh 10.

6.4. Arrays and Strings

Lecture 2 - slide 10

Arrays and strings are both non-simple types trateell-known by C programmers. In C# both arrays a
strings are defined by classes. As we will sea,l@tiés implies that arrays and strings are reprieskas
objects, and they are accessed via referencesstlnids as a contrast to C# structs, which areesalnd
therefore not accessed via references.

The syntax of array declaration and initializatisisimilar in C and C#. In C, a string is a poirttea the
first character in the string, and it is declaréthe typechar* . C# supports a type namsting . The
notation of string constants is also similar inr@ £#, although C# offers additional possibilitftree
@".." notation, see below).

The following summarizes important differences @tvireen C and C# with respect to arrays and strings:

« Arrays in C# can be rectangular or jagged (arrdygsrays)

« In C#, an array is not a pointer to the first elame

» Index out of bound checking is done in C#

- Strings are immutable in C#, but not in C

« In C# there are two kinds of string literalsstring\n* and@"a string\n"

A multi-dimensional array in C is constructed asaamay in which the elements are themselves arfysh
arrays are known as jagged arrays in C#, becaus#l monstituent arrays need to have the same Isize

35

addition C# supports a new kind of arrays, nametyangular arrays (of two or more dimensions). Such
arrays are similar to arrays in Pascal.

C is inherently unsafe, in part because indexesbbounds are not systematically caught at ruretiG¥ is
safe in this respect. An index out of bound inmning C# program raises an exception, see Chafter 3

C programmers may be puzzled by the fact thatgdrame immutable in C#. Once a string is constdjdte
is not possible to modify the character elementb@fstring. This is also a characteristic of gfsim Java.
This makes it possible to share a given stringiresl contexts. The bookkeeping behind this iedal
interning (You can, for instance, read about internindhimndocumentation of the static method
String.Intern). In case mutable strings are necessary, the saes. Text.StringBuilder makes them
available.

The well-known double quote string notation is ubeth in C and C#. Escape characters, prefixed with
backslashes (such as"in) are used in C as well and in C#. C# supportdtamative notation, called
verbatim string constantg"..." , in which the only escape notation'iswhich stands for the double quote
character itself. Inside a verbatim string constiapossible to have newline characters, and ak&lashes
appear as backslash characters in the string. Ampgbe of a verbatim strings will be shown in Progi@.9.

Below, in Program 6.7 we will demonstrate a nundfeaspects of arrays in C#.

using System;
class ArrayStringDemo{
public static void Main(){
string[] al,
a2 ={"a", "bb", "ccc"},
al = new string[[{"ccc", "bb", "a"};

int[] bl=new int[2,4],
b2 ={{1,2,3,4}, {5,6,7,8}};

double[][] c1 = { new double[{1.1, 2.2},

new double[]{3.3, 4.4, 5.5, 6.6} };
Console.WriteLine("Array lengths. al:{0} b2:{1 } c1:{2}",
al.Length b2.Length cl.Length);
Array.Clear(a2,0,3);
Array.Resize< string>(ref a2,10);
Console.WriteLine("Lenght of a2: {0}", a2.Leng th);
Console.WriteLine("Sorting al:");
Array.Sort(al);
foreach(string str in al) Console.WriteLine(st r;
}
}

Program 6.7 Demonstrations of array types in C

We declare two variables] anda2, of the typestring] . In other wordsal anda2 are both arrays of
strings.al is not initialized in its declaration. (Local vables in C# are not initialized to any default edlu
a2 is initialized by means of aarray initializer, namely{"a", "bb", "ccc"} . The length of the array is
determined by the number of expressions withirptie of curly braces.

36

The array$1 andb2 are both rectangular 2 times 4 arrays.
The arraye1 is an example of a jagged arrayf1] is an array of length 21[2] is an array of length 4.

Next we try out theength operation oral, b2 andcl. The resultis al:B2:8c1:2 . Please notice and
understand the outcome.

Finally we demonstrate a number of additional ofp@na on arraysClear , Resize , andsSort . These are all
methods in the classstem.Array

The output of the array demo program is shown stihg 6.8 (only on web).

Arrays, as discussed above, will be used in marypof future programs. But as an alternative, yoautd
be aware of the collection classes, in particulartype parameterized, "generic" collection clastkese
classes will be discussed in Chapter 45.

Now we will study a program example that illusteateses of the typaring

using System;
class ArrayStringDemo{

public static void Main(){

string s1 = "OOP";

System.String s2 = "\u004f\u004f\u0050" ; I/ equivalent
Console.WriteLine("s1 and s2: {0} {1}", s1, s2);
string s3 = @"OOP on

the \n semester "'Dat1/Inf1/SW3""
Console.WriteLine("\n{0}", s3);

string s4 = "OOP on \n the \\n semester \"Dat1/Infl/ SW3\"";
Console.WriteLine("\n{0}", s4);

string sb = "OOP E06".Substring(0,3) ;
Console.WriteLine("The substring is: {0}", s5)

Program 6.9 A demonstration of strings in C

The stringss1 ands2 in Program 6.9 contain the same three charactansely 'O', 'O’, and 'P"'.

Similarly, the strings referred kg ands4 are equal to each other (in the sense that thetpicothe same
sequences of characters). As already mentionedeabioe string constant in line 10-11 igexbatim string
constantin which an escape sequence likedenotes itself. In verbatim strings, onlyhss a special
interpretation, namely as a single quoute character

Finally, in Program 6.9, theubstring operation from the clasystem.String is demonstrated.

The output of the string demonstration programriogfPam 6.9 is shown in Listing 6.10 (only on web).

37

Exercise 2.5. Use of array types

Based on the inspiration from the accompanying gt@nyou are in this exercise supposed to expetimen
with some simple C# arrays.

First, consult the documentation of the clagsem.Array . Please notice the properties and methods that
are available on arrays in C#.

Declare, initialize, and print an array of namesg.(array of strings) of all members of your group.
Sort the array, and search for a given name sistigm.Array.BinarySearch method.

Reverse the array, and make sure that the revessirics.

Exercise 2.6. Use of string types

Based on the inspiration from the accompanying gtenyou are in this exercise supposed to expetimen
with some simple C# strings.

First, consult the documentation of the clagsem.String - either in your documentation browser or at
msdn.microsoft.com . Read the introduction (remarks) to string whiohtains useful information! There
exists a large variety of operations on stringeaB¢ make sure that you are aware of these. Mahg mof
will help you a lot in the future!

Make a string of your own first name, written witbcaped Unicode characters (like we did for "OQ@P" i
the accompanying example). If necessary, conseltitiicode code charts (Basic Latin and Latin-fjrtd
the appropriate characters.

Take a look at theystem.String.Insert method. Use this method to insert your last namtbe first

name string. Make your own observations abaugtt relative to the fact that strings in C# are
immutable.

6.5. Pointers and references

Lecture 2 - slide 11

Pointers are instrumental in almost all real-lif@i@grams, both for handling dynamic memory allmeat
and for dealing with arrays. Recall that an arragiis simply a pointer to the first element of dreay.

References in C# (and Java) can be understoodeasriated form of pointers. C# references are neve
explicitly dereferenced, references are not coupeatrays, and references cannot be operatechahei
arithmetic C# operators; There are no pointer ugtiic in (the safe part of) C#. As a special notic€++
programmers: References in C# have nothing to ttoneferences in C++.

Here follows an itemized overview of pointers aatérences.

38

« Pointers
« In normal C# programs: Pointers are not used
« All the complexity of pointers, pointer arithmetiereferencing, and the address
operator is not found in normal C# programs
« In specially marked unsafe sections: Pointers eansed almost as in C.
« Do not use them in your C# programs!
» References
« Objects (instance of classes) are always accesseefgrences in C#
» References are automatically dereferenced in C#
« There are no particular operators in C# that deg¢a@ to references

Program 6.11 shows some basic uses of referen€s ifihe variablesRef andanotherCRef are declared

of typec. ¢ happens to be an almost trivial class that we kafieed in line 3-5. Classes are reference types
in C (see Chapter 13ref declared ininline 11 is assignedhtdl (a reference to nothing) in line 12. Next,
in line 15,cref is assigned to a new instancecoVia the reference itref we can access the members
andy in thec object, see line 18. We can also pass a refe@nagarameter to a functieras in line 19.

This does not copy the referenced object when iegter

using System;

public class C {
public double x, y;

}

public class ReferenceDemo {
public static void Main(){
C cRef, anotherCRef;
cRef = null;

Console.WriteLine("ls cRef null: {0}", cRef == null);

cRef = new C();
Console.WriteLine("ls cRef null: {0}", cRef == null);

Console.WriteLine("x and y are ({0},{1})", cRef.x , cRefy);
anotherCRef = F(cRef);
}

public static C F(C p){
Console.WriteLine("x and y are ({0},{1})", p-X, p.y);
return p;

}
}

Program 6.11 Demonstrations of references in (
The output of Program 6.11 is shown in Listing 6(G2ly on web).

There is no particular complexity in normal C# margs due to use of references

39

6.6. Structs

Lecture 2 - slide 12

Structs are well-known by C programmers. It is matehy that arrays and structs are handled in very
different ways in C. In C, arrays are deeply cote@to pointers. Related to the discussion inrasgerial,
we will say that pointers are dealt with laference semanticsee Section 13.1. Structs in C are dealt with
by value semanticsee Section 14.1. Structs are copied by assignmpem@meter passing, and returns.
Arrays are not!

Let us now compare structs in C and C#:

« Similarities
« Structs in C# can be used almost in the same watrads in C
» Structs areralue typesn both C and C#
- Differences
« Structs in C# are almost as powerful as classes
» Structs in C# can have operations (methods) isénge way as classes
« Structs in C# cannot inherit from other structslasses

In Program 6.13 we see a program with a struceédabint . The variablg1 contains a point (3.0, 4.0).
Because structs are value typgisdoes not refer to a point.dontainsthe two coordinates of typ@uble
that represents the poingg. is uninitialized. In line 151 is copied intg2. This is a field-by-field (bit-by-
bit) copy operation. No manipulation of referenisegvolved. Finally we show the activation of athwed
Mirror onp2. Hereby the state of the second point is mutaigeBt-4).

using System;

public struct Point {
public double x, y;
public Point(double x, double y){this.x = x; this y=v}
public void Mirror(){x = -x; y = -y;}

} /I end Point

public class StructDemo{

public static void Main(){
Point p1 = new Point(3.0, 4.0),

p2;
p2=pl ;
p2.Mirror() ;
Console.WriteLine("Point is: ({0},{1})", p2.x, p 2.y);
}}

Program 6.13 Demonstrations of structs in C

40

6.7. Operators

Lecture 2 - slide 13

Expressions in C# have much in common with expoassin C. Non-trivial expressions are built withe us
operators. We summarize the operators in C# ineT@ldl. As it appears, there is a substantial opevith
the well-known operators i C. Below the table wé eémment on the details.

Associativity

Level Category Operators (binary/tertiary)

. X.y f(x) alx] X++ X-- .
L PIEN new typeof checked unchecked default delegate JEAES ()T
13 |Unary + -1~ 44x =X (T)x true false sizeof left to right
12 Multiplicative * / % left to right
11 |Additive + - left to right
10 |Shift < >> left to right
9 _I?elatlona_l g < <= > >= s as left to right
ype testing
8 Equality = [E left to right
7 LoglcallbltW|se;& left to right
and
6 Logical/bitwise , left to right
xor
5 LoglcallbltW|se;| left to right
or
Conditional .
&&
4 and left to right
3 Conditional or || left to right
5 Null 2 left to right
coalescing
1 Conditional 7 right to left
Assignment or|_ P
0 Lambda L e 0_&_ L right to left
expression |~ - - = = F =

Table 6.1 The operator priority table of C#. Operators wittghilevel numbers
have high priorities. In a given expression, operatof high priority are
evaluated before operators with lower priority. Tresaciativity tells if operators
at the same level are evaluated from left to righfrom right to left.

The operators shown in red are new and specif@#tol he operatarew creates an instance (an object) of a
class or it initializes a value of struct. We hakeady encountere@w in some of the simple demo
programs, for instance Program 6.11 and Prograf 6de Section 12.2 for details @nw. The operators
as andtypeof will not be discussed here. Please refer to Se@@012 for details on these. The operations
checked anduncheked relate to the safe and unsafe part of C# respygtiin this material we only deal
with the safe part, and therefore these two C#aipes can be disregarded. Tde@ault operator gives
access to the default value of value types, seeoBel?2.3. Thejelegate operator is used for definition of
anonymous functions, see Section 22.1. The unary andfalse operators tell when a value in a user

41

defined type is regarded fase or falserespectively. See Section 21.2 for more detalt® @xpressionx ??
y is a convenient shortcut of I=null ? x : y . See Section 14.9 for more details?on=> is the
operator which is used to form lambda expressios#43.0, see Section 22.4.

A couple of C operators are not part of C#. Theeskloperatag and the dereference operatare not
found in (the safe part of) C# (but they are adyumbailable in the unsafe part of the languagéeyrare
both related to pointers, and as discussed in@e6tb pointers are not supported in (the safeqgip@#.

All the remaining operators should be familiarte C programmer.

The operators listed above have fixed and predgfimeanings when used together with primitive tyipes
C#. On top of these it is possible to define nevamirags of some of the operators on objects/valtigewr
own types. This is calledperator overloadingand it is discussed in more details in ChapteT2& subset
of overloadable operators is highlighted in Tallel2

6.8. Commands and Control Structures

Lecture 2 - slide 14

Almost all control structures in C can be usedséuime way in C#

Commandgalso known astatements) are able to mutate the program state at run-#ikeesuch, the most
important command is the assignment. The commamustitute the "imperative heart" of the programming
language. The control structures provide meansdquencing the commands.

The commands and control structures of C# forma llrge extent - a superset of the commands amtdoto
structures of C. Thus, the knowledge of commandscantrol structures in C can be used directly when
learning C#.

As usual, we will summarize similarities and diéfeces between C and C#. The similarities are the
following:

- Expression statements, suchhasa + 5

« Blocks, such ag=5;b=a}

e if ,if-else ,switch ,for ,while ,do-while ,return ,break ,continue , andgoto in C# are all
similar to C

As in C, an expression becomes a command if dlisvied by a semicolon. Therefore we have emphdsize
the semicolon above in the assignmesat + 5;

As it will be clear from Program 6.15 below, ttveitch control structures in C and C# differ substantiall

The main differences between C and C# regardingy@asiructures are the following:

» The C#oreach loop provides for easy traversal of all elementa collection
» try-catch-finally andthrow in C# are related to exception handling

42

« Some more specialized statements have been aghdekkd , unchecked , using , lock and
yield

Theforeach control structures is an easy-to-use versionfof foop, intended for start-to-end traversal of
collections. We will not here touch ory-catch-finally andthrow. Please refer to our coverage of
exception handling in Section 36.2 for a discussibtihese.

Let us now look at some concrete program exampitssocontrol structures. In the examples below, prog
fragments shown ined color illustrate erroneous aspects. Program fragsnehown irgreen are all right.

/* Right , Wrong */
using System;

class IfDemo {

public static void Main(){
inti=0;

/*
if (i){

Console.WriteLine("i is regarded as true");

else {
Console.WriteLine("i is regarded as false");

}
%

if (i 1= 0){

Console.WriteLine("i is not 0");

}

else {
Console.WriteLine("i is 0");

}

}
}

Program 6.14 Demonstrations of i

Theif-else control structure has survived from C. Progrand @nlreality illustrates a difference between
handling of boolean values of C and C#. This hesadly been treated in Section 6.1. The point isaha

expression of noneol type (such the intege) cannot be used as the controlling expressiom dfese
control structure i C#.

Let us now look at a program wislvitch control structures. As already mentioned earliered are a number
of noteworthy differences between C and C# regagrsiritch.

/* Right , Wrong */
using System;

class SwitchDemo {
public static void Main(){
intj=1,k=1;

/*
switch (j) {
case 0: Console.WriteLine("j is 0");
case 1: Console.WriteLine("j is 1");

43

case 2: Console.WriteLine("] is 2");
default: Console.WriteLine("j is not 0, 1 or 2");

}
*

switch (k) {
case 0: Console.WriteLine("m is 0"); break;
case 1. Console.WriteLine("m is 1"); break;
case 2: Console.WriteLine("m is 2"); break;

default: Console.WriteLine("m is not O, 1 or 2"); break;
}
switch (k) {
case 0: case 1: Console.WriteLine("n is O or 1"); break;
case 2: case 3: Console.WriteLine("n is 2 or 3"); break;
case 4: case 5: Console.WriteLine("n is 4 or 5"); break;
default: Console.WriteLine("n is not 1, 2, 3, 4, or 5"); break;
}

string str = "two";
switch (str) {

case "zero": Console.WriteLine("str is 0"); break;
case "one": Console.WriteLine("str is 1"); b reak;
case "two": Console.WriteLine("str is 2"); b reak;
default: Console.WriteLine("stris not 0, 1 o r 2"); break;
}
}
}

Program 6.15 Demonstrations of switc

The first switch in Program 6.15 is legal in C, hus illegal i C#. It illustrates thé&all through problemlf j
is 0, case 0, 1, 2, andfault ~ are all executed in a C program. Most likely, phegrammer intended to
write the second switch, starting in line 17, inietheaclcase is broken with use of th@eak command. In
C# the compiler checks that each branch of a swigster encounters the ending of the branch (and, th
never falls through to the succeeding branch).

The third switch in the demo program shows that twmore cases can be programmed together. Thas, li
in C, itis legal to fall trough empty cases.

The final switch shows that it is possible to switm strings in C#. This is very convenient in maoptexts!
In C, the type of the switch expression must begral (which means an integer, char, or an enuroerat

type).

Let us also mention that C# allows special gotcstroigts goto case constantandgoto default) inside a
switch. With use of these it is possible to jungnirone case to another, and it is even possilgeoigram a
loop inside a switch (by jumping from one caseri@bieady executed case). It is recommended onlgeo
these specialized goto constructs in exceptiohaisons, or for programming of particular pattefins
which it is natural to organize a solution aroundltiple branches that can pass the control to ettodr).

Next we will study a program that illustrates fooeeach loop.

/* Right , Wrong */
using System;

class ForeachDemo {
public static void Main(){

44

int[lia=1{1, 2, 3, 4, 5};
int sum = 0;

foreach(intiin ia)
sum +=1i;

Console.WriteLine(sum);
}
}

Program 6.16 Demonstrations of foreac

As mentioned abovegreach is a variant of a for loop that traverses all edats of a collection. (See how
this is provided for in Section 31.6). In the exdenpf Program 6.16 all elements of the array aredrsed.
Thus, the loop variabliewill be 1, 2, 3, 4 and 5 in succession. Many affim C# have been directed
towards supporting foreach on the collection tyjp@s$ you program yourself. Also notice that loomtrol
variable,i , is declared inside the foreach construct. Thisioabe done in a conventional for loop in C
(although it can be done in C99 and in C++).

Finally, we will see an example tfy-catch.

[* Right , Wrong */
using System;

class TryCatchDemo {
public static void Main(){
inti=5,r=0,j=0;

/*

r=ilo;
Console.WriteLine("r is {0}", r);
*

try {
r=ilj
Console.WriteLine("r is {0}", r);
} catch(DivideByZeroException e){
Console.WriteLine("r could not be computed");
}
}
}

Program 6.17 Demonstrations of try catc

Division by 0 is a well-known cause of a run-tinteoe. Some compilers are, in some situations, eveart
enough to identify the error at compile-time. llogham 6.17 the erroneous program fragment nevehesa
the activation ofvriteLine in line 10, because the division by zero haltspitogram.

The expressionvj , wherej is 0, is embedded intay-catch control structure. The division by zero raises
an exception in the running program, which may éedted in the catch part. TigiteLine in line 17 is
encountered in this part of the example. Thuspthgram survives the division by zero. Later in the
material, starting in Chapter 33, we discuss +@agdetails - errors and error handling and tleeaiitry-

catch.

Before we leave the assignments and control streiegte want to mention thaefinite assignmentle in C#.
The rule states that every declared variable mustsBigned to a value before the variable is Udweal.
compiler enforces the rule. Take a look at the pogbelow.

45

using System;
class DefiniteAssignmentDemo{

public static void Main(){
int a, b;
bool c;

if (ReadFromConsole("Some Number") < 10){
a=1b=2;

}else {
a=2,

}

Console.WriteLine(a);
Console.WriteLine(b); /I Use of unassigned local variable 'b’

while (a < b){
c=(a>h)
a = Math.Max(a, b);
}

Console.WriteLine(c); /I Use of unassigned local variable 'c'

}

public static int ReadFromConsole(string prompt){
Console.WriteLine(prompt);
return int.Parse(Console.ReadLine());

}
}

Program 6.18 Demonstrations of definite assignme

The program declares three variakdes, andc in line 6-7, without initializing them. Variableis used in
line 16, but it cannot be guarantied thatithése control structure in line 9-13 assigns a valuthto
variableb. Therefore, using eonservative approaclthe compiler complains about line 16. The error
message is emphasized in the comment at the dime df6.

Similarly, the variable declared in line 7 is not necessarily assignethbwhile control structure in line
18-21. Recall that i >=b when we enter the while loop, the line 19 and r20reever executed. This
explains the error message associated to line 24.

The definite assignment rule, enforced by the ctangimplies that we never get run-time errors ttue
uninitialized variables. On the other hand, the mlko prevents some program from executing octeele
input. If the number read in line 9 of Program Gid &ss than 10 bothandc will be assigned when used in
thewriteLine calls.

6.9. Functions

Lecture 2 - slide 15
Functions are the primary abstractions in C. In'fQ#iction" (or "function member") is the common nauof

a variety of different kinds of abstractions. Thestwell-known of these is known as methods. Therst
are properties, events, indexers, operators, anstrewtors.

46

Functions in C# belong to types: classes or strittss, functions in C# cannot be freestandingilke.
Functions are always found inside a type.

The conceptual similarities between functions iard methods in C# are many and fundamental. In our
context it is, however, most interesting to conaeton the differences:

- Several different parameter passing techniquestin C
« Call by value. For input. No modifier.
« Call by reference. Fanput and outpubr output only
« Input and output: Modifiefef
» Output: Modifierout
« Modifiers used both with formal and actual paramsete
» Functions with a variable number of input paranseieiC# (cleaner than in C)
« Overloaded function members in C#
» First class functions (delegates) in C#

In C all parameters are passed by value. Howewassipg a pointer by value in C is often proclairasdall
by referenceln C# there are several parameter passing modkdy valueand two variants cfall by
reference(ref andout parameters). The default parameter passing mazdl isy value Call by reference
parameter passing in C (via pointers) is not tieesasef parameters in C#ef parameters in C# are
much more like Pascadr (variable) parameters.

In C it is possible, but messy, to deal with fuons of a variable (or an arbitrary) number of argata. In
C# this is easier and cleaner. It is supportechbydrams keyword in a formal parameter list. An example is
provided in Program 6.20.

A function in C is identified by its name. A methdC# is identified by its name together with thipes of
the formal parameters (the so-calledthod signature This allows several methods with the same names
coexist, provided that their formal parameter tygiéfer. A set of equally named methods (with diéfiet
formal parameter types) is known@gerloadedmethods.

A function in C# can be handled without namingtidh Such functions are known as delegates. Rddmy
come from the functional programming language pgradwhere functions most often dnest class objects
Something ofirst classcan be passed as parameters, returned as resoitfuhctions, and organized in
data structures independent of naming. Delegaten s& be more and more important in the developmient
C#. In C# 3.0 the nearby conceptdadhbda expressiorsndexpression treelsave emerged. We have much
more to say about delegates later in this matesgs ,Chapter 22.

[* Right , Wrong */

using System;

/*
public int Increment(int i){
returni+ 1;

}

public void Main (){
inti=>5,
j = Increment(i);
Console.WriteLine("i and j: {0}, {1}", i, j);
} /I end Main

a7

*/
public class FunctionDemo {

public static void Main (){
SimpleFunction();

}

public static void SimpleFunction(){
inti=>5,
j = Increment(i);
Console.WriteLine("i and j: {0}, {1}", i, J);
}

public static int Increment(int i)}{
returni + 1;

}
}

Program 6.19 Demonstration of simple functions in ¢

Program 6.19 shows elementary examples of funcfimeshods) in a C# program. The program text
decorated witlied color shows two functionsjain andincrement , outside of any type. This is illegal in C#.

Shown ingreen we again see the functioitrement , now located in a legal context, namely insidetjipe
(class)FunctionDemo . The functionsimpleFunction callsincrement in a straightforward way. The
functionMain serves amain programin C#. It is here the program starts. We seenthat calls
SimpleFunction

using System;
public class FunctionDemo {

public static void Main (){
ParameterPassing();

}

public static void ValueFunction (double d) {
d++;}

public static void RefFunction (ref double d) {
d++;}

public static void OutFunction (out double d) {
d=28.0;}

public static void ParamsFunction(out double res,
params double[] input)i
res =0;
foreach(double d in input) res +=d;

}

public static void ParameterPassing(){
double myVarl = 5.0;
ValueFunction(myVarl);
Console.WriteLine("myVarl: {0:f}", myVarl); //'5.00

double myVar2 = 6.0;
RefFunction(ref myVar2);
Console.WriteLine("myVar2: {0:f}", myVar2); /1 7.00

double myVars3;
OutFunction(out myVar3);

48

Console.WriteLine("myVar3: {0:f}", myVar3); /1 8.00

double myVar4;
ParamsFunction(out myVar4, 1.1, 2.2, 3.3, 4.4, 5.5) . 1116.50
Console.WriteLine("Sum in myVar4: {0:f}", myVar 4);

}
}

Program 6.20 Demonstration of parameter passing in
CH#.

The four functions in Program 6.2@3lueFunction , RefFunction , OutFunction , andParamsFunction
demonstrate the different parameter passing teabaigf C#.

The call-by-value parameterin valueFunction has the same status as a local variablelieFunction
Therefore, the call ofalueFunction with myvarl as actual parameter does not affect the valug\edr1 . It
does, however, affect the valuedoh valueFunction , but this has no lasting effect outsid@ueFunction

In a nutshell, this is the idea of call by valuegraeters.

In RefFunction , the formal parametel;, is aref parameter. The corresponding actual parameter Ipeust
variable. And indeed it is a variable in our sanmgdévation ofRefFunction , namely the variable named
myVar2. InsideRefFunction , the formal parameteris analias of the actual parametanyvar2). Thus, the
incrementing oti actually incrementsiyvar2. Pascal programmers will be familiar with this macism (via
var parameters) but C programmers have not ena@ahtieis before - at least not while programmin@in

OutFunction ~demonstrates the use of @it parameterout parameters are similar tef parameters, but
only intended for data output from the function.ieldetails of ef andout parameters appears in Section
20.6 and Section 20.7.

Notice that in C#, the keywordsf andout must be used both in the formal parameter listiarke actual
parameter list. This is nice, because you will bgrepot the parameter passing mode in calls. Irt otbgr
programming language it is necessary to consulfuthetion definition to find out about the paramete
passing modes of the parameters involved.

The first parameter ¢faramsFunction , res , is anout parameter, intended for passing the sum ofnfhe
parameter back to the caller. The formpatam parameteripput , must be an array. The similar actual
parameters (occurring at the end of the actuahpatex list) are inserted as elements into a neayaand
bound to the formal parameteput . With this mechanism, an arbitrary number of "fEstameters” (of the
same or comparable types) can be handled, anddulimdb an array in the C# function, which is being
called.

Program 6.21 (only on web) shows a class with foethods, all of which are namedThese functions are
distinguished by different formal parameters, apdlifferent parameter passing modes. Passing agent
value parameter activates the figsPassing a double value parameter activates tomde. Passing a
double and a bool (both as values) activates fha khFinally, passing an integeef parameter activates
the fourthr.

49

6.10. Input and output

Lecture 2 - slide 16

In C, the functiongrintf andscanf are important for handling output to the screeput from the
keyboard, and file 1O as well. It is therefore matgting for C programmers to find out how the samil
facilities work in C#.

In C#, theCconsole class encapsulates the streams knovstaxlard inputandstandard outpytwhich per
default are connected to the keyboard and the scidee various write functions in tlzensole class are
quite similar to therintt function in C. Theconsole class' read functions are not as advancedaas in
C. There is not direct counterpart of thedanf function in C#.

First, in Program 6.22 we will study uses of iiéte andwriteLine functions.

/* Right , Wrong */

using System;
public class OutputDemo {

/I Placeholder syntax: {<argument#>[,<width>][:<format>[<precision>]][}

public static void Main(){

Console.Write("Argument number only: {0} {1} \n", 1,1.2);

/I Console.WriteLine("Formatting code d: {0:d} {1.d} " 2,2.2);
Console.WriteLine("Formatting codes d and f: {0:d} {1:f} " 3,3.3);
Console.WriteLine("Field width: {0,10:d} {1,10:f} " 4,4.4);
Console.WriteLine("Left aligned: {0,-10:d} {1,-10:f} " 5,5.5);
Console.WriteLine("Precision: {0,10:d5} {1,10:5} ", 6, 6.6);
Console.WriteLine("Exponential: {0,10:e5} {1,10:e5} ", 7,7.7);
Console.WriteLine("Currency: {0,10:c2} {1,10:c2} ", 8, 8.887);
Console.WriteLine("General: {0:g} {L.g} ", 9, 9.9);
Console.WriteLine("Hexadecimal: {0:x5} ", 12);

Console.WriteLine("DateTime formatting with F: {0:F} ", DateTime.Now);
Console.WriteLine("DateTime formatting with G: {0:G} ", DateTime.Now);
Console.WriteLine("DateTime formatting with T: {0:T} ", DateTime.Now);
}
}

Program 6.22 Demonstrations of Console output in (

Like printf in C, the method@rite andwriteLine accept a control string and a number of additional
parameters which are formatted and inserted iga@timtrol stringwrite andwriteLine — actually rely on an
underlyingrormat method in classtring . Notice that a there exists many overloadeiec and

WriteLine methods in the clag®nsole . Here we concentrate of those that take a strihg eontrol string -
as the first parameter.

The following call ofprintt in C
printf("x: %d, y: %5.2f, z: %Le\n", x, y, z);
is roughly equivalent to the following call of wfiteLine in C#

Console.WriteLine("x: {0:d}, y: {1,5:F2}, z: {2:E}" VXY, 2);

50

The equivalence assumes thas of type inty is a float, and that is a long double.

The general syntax off@aceholder(the stuff in between pairs of curly braces) i@#formatting string is
{<argument#>[,<width>][:<format>[<precision>]]}

where[...] denotes optionality (zero or one occurrence).

C programmers do often experience strange andesusrformatting of output if the conversion chasesct
(such ag, f, ande in the example above) are inconsistent with theadtype of the corresponding variables
or expressions(y, andz in the example). In C#, such problems are cauglihd compiler, and as such
they do not lead to wrong results. This is a musbded improvement.

Let us briefly explain the examples in line 9-2Fobgram 6.22. In line 9 the default formattingised. This
corresponds to the letter cogleln line 10 an error occurs because the ebdely accepts integers. The
number 2.2 is not an integer. In line 13 we illastruse of width 10 for an integer and a floatiogip
number. Line 14 is similar, but it uses left jus@ttion (because the width is negative). Line liistrates use
of the precision 5 for an integer and a floatingagpaumber. In line 16 we format two numbers in
exponential (scientific) notation. In line 17 whudtrate formatting of currencies (kroner or daleor
instance, dependent on the culture setting). L&edtresponds to line 9. Line 19 calls for hexaaeti
formatting of a number.

One way to learn more about output formatting isdonsult the documentation of the static methaehat
in classsystem.String . From there, goto Formatting Overview. Later iis thnaterial, in Section 31.7, we
will see how we can program custom formatting af @un types.

The last three example lines in Program 6.22 ilfustformatting of objects of tymmteTime in C#. Such
objects represent at point in time. In the exantple expressiobateTime.Now denotes the current point in
time.

The output of Program 6.22 is shown in Listing 6(@3ly on web).
We now switch from output to input.

/* Right , Wrong */

using System;
public class InputDemo {

public static void Main(){
Console.Write("Input a single character: ");
char ch = (char) Console.Read()
Console.WriteLine("Character read: {0}", ch);
Console.ReadLing()

Console.Write("Input an integer: ");
inti = int.Parse(Console.ReadLine())
Console.WriteLine("Integer read: {0}", i);

Console.Write("Input a double: ");

doubled = double.Parse(Console.ReadLine())
Console.WriteLine("Double read: {0:f}", d);

51

Program 6.24 Demonstrations of Console input in ¢

In Program 6.24€onsole.Read() reads a single character. The result returnegcstive integer, or -1 if

no character can be read (typically because wweaged at the end of an input fil®ead blocks untilenter

is typed. Non-blocking input is also available tha methodconsole.ReadKey . The expression
Console.ReadLine() reads a line of text into a string. The last thighlighted examples show how to read
a text string and, via threarse method in typent anddouble , to convert the strings read to values of type
int anddouble respectively. Notice thatanf in C can take hand of such cases.

The output of Program 6.24 is shown in Listing 6(@5ly on web).

Later in this material we have much more to sayuaibgout and output in C#. See Chapter 37 - Chegfer
The most important concept, which we will deal witlthese chapters, is the various kinds of strean®st.

6.11. Comments

Lecture 2 - slide 17

We finalize our comparison of C and C# with an oi@w of the different kinds of C# comments. Redadit
C only supports delimited comments (although C mogners also often use single-line comments, which
actually is used in C++ and in newer versions ¢€89)).

C# supports two different kinds of comments and XWitiants of these:

» Single-line commentslikein C++
/I This is a single-line comment

« Delimited commentslikein C
/* This is a delimited comment */

« XML single-line comments:

/Il <summary> This is a single-line XML comment </s ummary>
« XML delimited comments:
[** <summary> This is a delimited XML comment </sum mary> */

XML comments can only be given before declaratios inside other fragments. XML comments are used
for documentation of types. We have much more yoas@ut XML comments in our discussion of
documentation of C# programs. Delimited C# commeatsiot be nested.

6.12. References

[Decimal-floating- Decimal Floating Point in .NET
point] http://www.yoda.arachsys.com/csharp/decimal.html

52

7. C# In relation to Java

C# is heavily inspired by Java. In this sectionwil at an overall level, compare Java and C#. Gbal of
this relatively short chapter is to inform Javagreammers about similarities and differences intiateto C#.
It is recommended that you already have familiarigeurself with C# in relation to C, as coveredimapter
6.

In this chapter 'Java'’ refers to version to 5.0'@#drefers to C# version 2.0.

7.1. Types

Lecture 2 - slide 20

In Java, types can be defined by classes andactsf This is also possible in C#. In additionn@@kes it
possible to define structs and delegates to wiiiefetare no counterparts in Java. Java supports
sophisticated, class based enumeration types. Eatioretypes in C# are simpler, and relative close
enumeration types in C. - This is the short stéfier the itemized summary, we will compare the two
languages more carefully.

The similarities and differences with respect foety can be summarized in this way:

« Similarities.
« Classes in both C# and Java
« Interfaces in both C# and Java
« Differences.
« Structs in C#, not in Java
» Delegates in C#, not in Java
« Nullable types in C#, not in Java
« Class-like Enumeration types in Java; Simpler agp@nan C#

If you have written a Java program with classesiataifaces, it is in most cases relatively easyanslate
the program to C#. In this material we discusssdasn C# in Chapter 11 an interfaces in Chapter 31

There are no structs in Java. Structs in C# atbeabutset, similar to structs in C. (See Sediiénfor a
discussion of C structs versus C# structs). Yoomkadge of C structs is a good starting point forking
with structs in C#. However, structs in C# are lilgaxtended compared with C. As an important
observation, C# structs have a lot in common wiisses. Most important, there are operations (ndsjho
and constructors in both C# classes and C# stitic$salso possible to control the visibility ohth and
operations in both classes and structs. Strud@stiare value types, in the meaning that instantssurts
are contained in variables, and copied by assigtsvard in parameter passings. In contrast, classes
reference types, in the meaning that instancekas$es are accessed by references. Instancessé<iare
not copied in assignments and in parameter pasgtogsnore details on structs see Chapter 14, ncpéar
Section 14.3.

Delegates in C# represents a type of methods. égdét object can contain a method. More correatly,
delegate can contain a reference to a methodn lactually contain several such references. Withais
delegates it becomes possible to treat methodatasin the same way as instance of classes reprdatnt
We can store a method in a variable of delegate. Wy can also pass a method as a parameter teeanot

53

method. In Java it is not possible pass a methasla parameter to another method. If we needssvpave
have to pass an object of clasis whichmis a method. Needless to say, this is a compticaiel contrived
way of using function parameters. - In C#, delegare the foundation of events (see Chapter 23yhwim
turn, are instrumental to programming of graphicsr interfaces in C# and certain design pattetdeast
the Observer (see Section 24.1). For more details on delegatstsee Chapter 22.

Nullable types relate to value types, such as tstrécvariable of a struct typgecannot contain the value
null . In contrast, a variable of class typean contain the valueill . The nullables type, denoted?, is a
variant ofs which includes theull value. For more details, see Section 14.9.

Enumeration types in both C# and Java allow usso@ate symbolic constants to values in an intgger.
We demonstrated enumeration types in C# in Seét@wf the previous chapter. In Java, an enumeratio
type is a special form of a class. Each enumenahab is an instance of this special class. Coresgttyy an
enumeration type in Java is a reference type. larCénumeration type is a value type. - As a Jastaic
remark, enumeration types did not exist in earlgioms Java. Enumeration types were simulateddsy af
final static variables (ondnal static variable for each value in the enumeration typag support of
enumeration types shifted dramatically in Java ftddn almost no support in previous versions tovilea
support via special classes. It is remarkablettiafiava designers have chosen to use so maniseffor
enumeration types!

7.2. Operations

Lecture 2 - slide 21

Operations in Java programs are defined by mettiadselong to classes. This is our only possjbdit
defining operations in Java. In C# there existesgadditional possibilities. In this material Wwave
devoted an entire lecture 'Data Access and Opesatffstom Chapter 17 to Chapter 24) to these issues

The similarities and differences with respect teragions can be summarized in this way:

- Similarities: Operations in both Java and C#
« Methods
- Differences: Operations only in C#
» Properties
« Indexers
« Overloaded operators
« Anonymous methods

As already mentioned above, C# methods can beatkfimboth classes and structs. It is not possible
define local methods in methods - neither in Cdaxra. The closest possibility in C# is use of anumys
methods, see below.

Properties provide for getters and setters of di€ldstance variables as well as class varialdesic
variables) in C#. In Java it is necessary to defire¢hods for getting and setting of instance véggmbA
single property in C# can either be a getter, @®sair both. From an application point of viewpjperties
are used as though we access of the variableslass/object directly (as it would be possibléng t
variables were public). For more details on prapsrsee Chapter 18.

54

Indexers can be understood as a special kind pepties that define array-like access to objects\atues

in C#. The notatiomi] anda]i] = x is well-know when the namedenotes an array andiifis an integer.
In C# we generalize this notation to arbitrary amstes of classes and structs denoteal byith an indexer

we program the meaning of accessing the i'th eleofen(alii) and the meaning of setting the i'th element
of a (afi] = ...). Indexers are discussed in Chapter 19.

In most languages, the operators like, <, and& have fixed meanings, and they only work with timepge
types (such ast , bool , char , etc). We reviewed the C# operators in Sectiondhd as it appears,
operators in C, Java, and C# have much in commmalava, the operators only work for certain presfi
types, and you cannot change the meaning of thEm@tors. In C# it is possible to use the existipgrator
symbols for operations in your own types. (You agrninvent new operator symbols, and you cannot@han
the precedence nor the associativity of the symbdle say that the operators in C# caroberloaded For
instance, in C# it would be possible to definerti@aning ofiBankAccount + aTriangle , Where

aBankAccout refers to an instance of cla&skAccount andaTriangle refers to an instance of class
GeometricShape . When the existing operator symbols are natureglismtion to our own classes, the idea of
overloaded operators is great. In other situatiomsrloaded operators do not add much value.

We are used to a situation where procedures, fumgtand methods have names. In both Java and C# we
can define named methods in classes. In C#, walsardefine named methods in structs. In C# it is
possible to define non-named methods as well. Asgbarbitrary expressions, we can create a fonabir
method. Such a function or method is called a @géedds indicated by the name, delegates are glosel
related to delegate types, as discussed abovectim®&.1. For more details on this topic see Céap? and

in particular the program examples of Section 22.1.

7.3. Other substantial differences

Lecture 2 - slide 22

In addition to the overall differences in the aoé#ypes and operations, as discussed in the texiqus
sections, there are a number of other substaritiatehces between Java and C#. The most impoofant
these differences are summarized below.

« Program organization
« No requirements to source file organization in C#
« Exceptions
« No catch or specifyequirement in C#
» Nested and local classes
« Classes inside classes are static in C#inNer classes$ike in Java
e Arrays
« Rectangular arrays in C#
» Virtual methods
« Virtual as well as non-virtual methods in C#

In Java there is a close connection between clasgksources files. It is usually recommendedttiexe is
only one class per file, but the rule is actudiigttthere can be one public and several non-pualagses per
Java source file. The proper name of the souressfibuld be identical to the name of the publissla
Likewise, there is a close connection between pggekand directories. A package consists of theetas
whose source files belong to a given directoryhe drganization of C# programs is different. IntGére is
no connection between the names of classes améithe of a C# source files. A source file can contai

55

several classes. Instead of packages, C# orgagzesin namespaces and assemblies. Namespaces are
tangible, as they are represented syntacticalllggrsource files. A namespace contains types and/or
recursively other (nested) namespaces. Assembbgzraduced by the C# compiler. Assemblies reptesen
‘packaging' mechanism, and assemblies are almtbsigonal to both the file/directory organizatiordahe
namespace organization. As it appears, C# usexla more complex - and presumably more powerful -
program organization than Java. We discuss orgamizaf C# programs in Chapter 15 at the end of the
lecture about Classes.

Java supports botthecked exceptiorsdunchecked exceptionsut it is clearly the ideal of Java to work
with checked exceptions. (Unchecked exceptionsis hown as RuntimeExceptions). It is natural to as
about the difference. A checked exception museeitie handled in the methedn which is occurs, or the
methodvmust declare that an activationnofan cause an exception (of a given type) whiclersabfm

need to care about. This is sometimes calle@dleh or specify principleThe most visible consequence of
this principle is that Java methods, which do rastdie exceptions, must declare that ttieyws specific
types of exceptions. Thus, the signature of Javads include information about the kind errorgythey
cause. - C# does not adhere todhtch or specify principldn C# all exceptions correspond to the so-called
RuntimeExceptions in Java. Exceptions in C# areudised in Chapter 36.

Java is stronger than C# with respect to classnged®doth Java and C# suppetttic nested classéssing
Java terminology). In this setup, the innermossizan only refer to static members of the outesclin
contrast to C#, Java also supports ircl@assesAn instance of an inner class has a referencastance of
the outer class. Inner classes have implicatiotise@bject structure. Static nested classes hageich
implications. In addition, Java suppoldsal classeshat are local to a method, aadonymous classes
which are instantiated on the fly. C# does not.

In both Java and C# it is possible to work withagsrin which the elements themselves are arragssaon
recursively. Using C# terminology, this is caliadged arraysbecause it facilitates multi-dimensional
arrays of irregular shapes. In contrast to Javan@dition supporteectangular arraysin which all rows
are of equal lengths. We have already discusseg¢hgnd rectangular arrays in our comparison witt C
Section 6.4.

Virtual methods relate to redefinition of method<lass hierarchies (inheritance). In Java all washare
virtual. What this means (for C#) is explained @tals in Section 28.14. In C# it is possible todhhoth
virtual and non-virtual methods. This complicates tinderstanding of inheritance quite a bit. Tlaeee
however, good reasons to support both. In Sec2zod ®e will review a prominent example where the
uniform use of virtual methods in Java runs intuble.

56

8. C# In relation to Visual Basic

This chapter is intended for students who havechdraund in imperative Visual Basic programmingeTh
goal of this chapter is to make the transfer froisudl Basic to C# as easy as possible. We do that b
showing and discussing a number of equivalent ViBaaic and C# programs. In this chapter Visuali®as
programs are shown on a blue background, and Gfftgn are shown on a green background. The
discussion of equivalent Visual Basic and C# progigtextually organized in between the two program

In this chapter 'Visual Basic' refers to the vansib Visual Basic supported by the .Net Framewazision
2.0.

In this edition the comparison of Visual Basic &@¥lis only available in the web version of the mate

57

58

9. C# Tools and IDEs

Many potential C# programmers will be curious alioots and environments (IDEs) for C# programming.
Therefore we will, briefly, enumerate the most awg possibilities. We will mention possibilitieshoth
Windows and Unix.

9.1. C# Tools on Windows

Lecture 2 - slide 41
Windows is the primary platform of C#. This is doghe fact that C# is a Microsoft language.

Microsoft supplies several different set of todlattsupport the C# programmer:

« .NET Framework SDK 3.5
« "Software Development Kit"
« Command line tools, such as the C# compier
« Visual C# Express
» IDE - An Integrated Development Environment
« A C# specializediree version of Microsoft Visual Studio 2008
« Visual Studio
» IDE - An Integrated Development Environment
» The professionabommercialdevelopment environment for C# and other programmi
languages

The .Net Standard Development Kit (SDK) supporésrtw tools, including a traditional C# compiler.
Although many programmers today use contemporaBsl8uch as Visual Studio or Eclipse, | find it
important that all programmers understand the kasicunderlying activation of the compiler.

The Visual C# Express edition is a free (gratigjara of Visual Studio, explicitly targeted at studs and
other newcomers to C#. There are video resoursegifeo-resources] available for getting startetth @i#
2008 Express. The experience you get with VisuaE&#ress can immediately be transferred to Visual
studio. The two IDEs are very similar.

Visual Studio is the commercial flagship environtmeiC# programming. You will have to buy Visual

Studio if you want to use it. Notice, however, thany universities have an academic alliance with
Microsoft that provides access to Visual Studio atieer Microsoft software.

9.2. C# Tools on Unix

Lecture 2 - slide 42

The MONO project provides tools for C# developmemiLinux, Solaris, Mac OS X, Unix in general, and
interesting enough also on Windows. MONO is thei@dd you swear to the Linux platform.

Let us summarize the MONO resources, availablbed tnux people:

59

« MONO
« An open sourcgroject (sponsored by Novell)
» Corresponds the the Microsoft SDK
- Based on ECMA specifications of C# and the Commanguage Infrastructure (CLI)
Virtual Machine
« Command line tools
« Compilersimes (C# 1.5) andmcs (C# 2.0)
¢ MONO on cs.aau.dk
« Mono is already installed on the application ses\arcs.aau.dk
« MONO on your own Linux machine
« You can install MONO yourself if you wish
« MonoDevelop
« A GNOME IDE for C#

For good reasons, the MONO CLI is not as updatedeadNET solutions. MONO will most probably
always be at least one step behind Microsoft.

9.3. References

[Cs-video-resourcesC# Express Video Lectures
http://msdn.microsoft.com/en-us/beginner/bb9646gixa

60

