
 23

5. The C# Language and System

This chapter, together with Chapter 6, Chapter 7, and Chapter 9, is an introduction to the C# language and
the C# system. On Windows, the latter is known as .Net. On purpose, we will keep the .Net part of the
material very short. Our main interest in this lecture is how to program in C#, and how this is related to
programming in other languages such as C, Java, and Visual Basic.

5.1. C# seen in a historic perspective
Lecture 2 - slide 2

It is important to realize that C# stands on the shoulders of other similar object-oriented programming
languages. Most notably, C# is heavily inspired by Java. Java, in turn, is inspired by C++, which again - on
the object-oriented side - can be traced back to Simula (and, of course, to C on the imperative side).

Here is an overview of the most important object-oriented programming languages from which C# has been
derived:

 • Simula (1967)
• The very first object-oriented programming language

• C++ (1983)
• The first object-oriented programming language in the C family of languages

• Java (1995)
• Sun's object-oriented programming language

• C# (2001)
• Microsoft's object-oriented programming language

5.2. The Common Language Infrastructure
Lecture 2 - slide 3

The Common Language Infrastructure (CLI) is a specification that allows several different programming
languages to be used together on a given platform. The CLI has a lot of components, typically referred to by
three-letter abbreviations (acronyms). Here are the most important parts of the Common Language
Infrastructure:

 • Common Intermediate language (CIL) including a common type system (CTS)
• Common Language Specification (CLS) - shared by all languages
• Virtual Execution System (VES)
• Metadata about types, dependent libraries, attributes, and more

The following illustration, taken from Wikipedia, illustrates the CLI and its context.

 24

Figure 5.1 Wikipedia's overview diagram of the CLI

.Net is one particular implementation of the Common Language Infrastructure, and it is undoubtedly the
most complete one. .Net is closely associated with Windows. .Net is, however, not the only implementation
of the CLI. Mono is another one, which is intended to work on several platforms. Mono is the primary
implementation of the CLI on Linux. Mono is also available on Windows.

 MONO and .NET are both implementations of the Common Language Infrastructure

The C# language and the Common Language Infrastructure are standardized by ECMA and ISO

5.3. C# Compilation and Execution
Lecture 2 - slide 5

 The Common Language Infrastructure supports a two-step compilation process

 • Compilation
• The C# compiler: Translation of C# source to CIL
• Produces .dll and .exe files
• Just in time compilation: Translation of CIL to machine code

• Execution
• With interleaved Just in Time compilation
• On Mono: Explicit activation of the interpreter
• On Window: Transparent activation of the interpreter

 .dll and .exe files are - with some limitations - portable in between different platforms

 25

6. C# in relation to C
As already mentioned in Chapter 1, this material is primarily targeted at people who know the C
programming language. With this outset, we do not need to dwell on issues such as elementary types,
operators, and control structures. The reason is that C and C# (and Java for that sake) are similar in these
respects.

In this chapter we will discuss the aspects of C# which have obvious counterparts in C. Hopefully, the
chapter will be helpful to C programmers who have an interest in C# programming.

In this chapter 'C#' refers to C# version 2.0. When we discuss C we refer to ANSI C ala 1989.

6.1. Simple types
Lecture 2 - slide 7

C supports the simple types char , bool , int , float and double . In addition there are a number of variation
of some of these. In this context, we will also consider pointers as simple types.

The major differences between C# and C with respect to simple types are the following:

 • All simple C# types have fixed bit sizes
• C# has a boolean type called bool
• C# chars are 16 bit long
• In C# there is a high-precision 128 bit numeric fixed-point type called decimal
• Pointers are not supported in the normal parts of a C# program

• In the unsafe part C# allows for pointers like in C
• All simple types are in reality structs in C#, and therefore they have members

In C it is not possible to tell the bit sizes of the simple types. In some C implementations an int , for instance,
will made by 4 bytes (32 bits), but in other C implementations an int may be longer or shorter. In C# (as
well as in Java) the bit sizes of the simple types are defined and fixed as part of the specification of the
language.

In C there is no boolean type. Boolean false is represented by zero values (such as integer 0) and boolean
true is represented by any other integer value (such as the integer 1). In C# there is a boolean type, named
bool , that contain the natural values denoted by true and false .

The handling of characters is messy in C. Characters in C are supported by the type named char . The char
type is an integer type. There is a great deal of confusion about signed and unsigned characters. Typically,
characters are represented by 8 bits in C, allowing for representation of the extended ASCII alphabet. In C#
the type char represent 16 bits characters. In many respects, the C# type char corresponds to the Unicode
alphabet. However, 16 bits are not sufficient for representation of all characters in the Unicode alphabet. The
issue of character representation, for instance in text files, relative to the type char is a complex issue in C#.
In this material it will be discussed in the lecture about IO, starting in Chapter 37. More specifically, you
should consult Section 37.7.

 26

The high-precision, 128 bit type called decimal is new in C#. It is a decimal floating point type (as opposed
to float and double which are binary floating point types). Values in type decimal are intended for
financial calculations. Internally, a decimal value consists of a sign bit (representing positive or negative), a
96 bit integer (mantissa) and a scaling factor (exponent) implicitly between 100 and 10-28. The 96 bit integer
part allows for representation of (at least) 28 decimal digits. The decimal exponent allows you to set the
decimal point anywhere in the 28 decimal number. The decimal type uses 3 * 4 = 12 bytes for the mantissa
and 4 bytes for the exponent. (Not all bits in the exponent are used, however). For more information, see
[decimal-floating-point].

C pointers are not intended to be used in C#. However, C pointers are actually supported in the part of C#
known as the unsafe part of the language. The concept of references is very important in C#. References and
pointers are similar, but there are several differences as well. Pointers and references will be contrasted and
discussed below, in Section 6.5.

All simple types in C# are in reality represented as structs (but not all structs are simple types). As such, this
classifies the simple types in C# as value types, as a contrast to reference types. In addition, in C#, this
provides for definition of methods of simple types. Structs are discussed in Section 6.6.

Below we show concrete C# program fragments which demonstrate some aspects of simple types.

1
2
3
4
5
6
7
8
9
10
11

using System;

class BoolDemo{

 public static void Main(){
 bool b1, b2;
 b1 = true ; b2 = default(bool) ;
 Console.WriteLine("The value of b2 is {0}", b2) ; // False
 }

}

 Program 6.1 Demonstrations of the simple type bool in
C#.

In Program 6.1 we have emphasized the parts that relate to the type bool . We declare two boolean variables
b1 and b2, and we initialize them in the line below their declarations. Notice the possibility of asking for the
default value of type bool . This possibility also applies to other types. The output of Program 6.1 reveals that
the default value of type bool is false.

 27

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using System;

class CharDemo{

 public static void Main(){
 char ch1 = 'A' ,
 ch2 = '\u0041' ,
 ch3 = '\u00c6' , ch4 = '\u00d8' , ch5 = '\u00c5' ,
 ch6;

 Console.WriteLine("ch1 is a letter: {0}", char.IsLetter(ch1));

 Console.WriteLine("{0} {1} {2}", ch3, ch4, char.ToLower(ch5));

 ch6 = char.Parse("B") ;
 Console.WriteLine("{0} {1}", char.GetNumericValue('3') ,
 char.GetNumericValue('a'));
 }

}

 Program 6.2 Demonstrations of the simple type char in
C#.

In Program 6.2 we demonstrate the C# type char . We declare a number of variables, ch1 ... ch6 , of type
char . ch1 ... ch5 are immediately initialized. Notice the use of single quote character notation, such as 'A' .
This is similar to the notation used in C. Also notice the '\u....' escape notation. This is four digit unicode
character notation. Each dot in '\u....' must be a hexadecimal digit between 0 and f (15). The unicode
notation can be used to denote characters, which are not necessarily available on your keyboard, such as the
Danish letters Æ, Ø and Å shown in Program 6.2. Notice also the char operations, such as char.IsLetter ,
which is applied on ch1 in the program. Technically, IsLetter is a static method in the struct Char (see
Section 6.6 and Section 14.3 for an introduction to structs). There are many similar operations that classify
characters. These operations correspond to the abstractions (macros) in the C library ctype.h . It is
recommended that you - as an exercise - locate IsLetter in the C# library documentation. It is important
that you are able to find information about already existing types in the documentation pages. See also
Exercise 2.1.

Number Systems and Hexadecimal Numbers FOCUS BOX 6.1FOCUS BOX 6.1FOCUS BOX 6.1FOCUS BOX 6.1

In the program that demonstrated the type char we have seen examples of hexadecimal numbers. It is
worthwhile to understand why hexadecimal numbers are used for these purposes. This side box is a crash
course on number systems and hexadecimal numbers.

The normal numbers are decimal, using base 10. The meaning of the number 123 is

 1 * 102 + 2 * 101 + 3 * 100

The important observation is that we can use an arbitrary base b, b > 1 as an alternative to 10 for
decomposition of a number. Base numbers which are powers of 2 are particularly useful. If we use base 2 we
get the binary numbers. Binary numbers correspond directly to the raw digital representation used in
computers. The binary notation of 123 is 1111011 because

 28

 1 * 26 + 1 * 25 + 1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20

is equal to the decimal number 123.

Binary numbers are important when we approach the lower level of a computer, but as can be seen above,
binary numbers are unwieldy and not very practical. Hexadecimal numbers are used instead. Hexadecimal
numbers use base 16, which is 24. We need 16 digits for notation of hexadecimal numbers. The first 10 digits
are 0 .. 9. In lack of better notation, we use the letters A .. F as the six last digits. A = 10, ..., F = 15.

The important observation is that a group of four binary digits (corresponding to four bits) can be translated
to a single hexadecimal number. Thus, we can immediately translate the binary number 01111011 to the two
hexadecimal digits 7 and 11. These two hexadecimal digits are denoted as 7 and B respectively. With this
observation, at single byte of eight bits can written as exactly two hexadecimal digits. Grouping the bits of
1111011 leads to 0111 1011. 0111 is 7. 1011 is 11 which is denoted by the hexadecimal digit B. The
hexadecimal number 7B means

 7 * 16 1 + 11 * 16 0

which is 123 (in decimal notation).

The explantion above is - in a nutshell - the reason why you should care about hexadecimal numbers. In
Exercise 2.2 we will write programs that deal with hexadecimal numbers.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

using System;
using System.Globalization;

class NumberDemo{

 public static void Main(){
 sbyte sb1 = sbyte.MinValue; // Signed 8 bit integer
 System.SByte sb2 = System.SByte.MaxValue;
 Console.WriteLine("sbyte: {0} : {1}", sb1, sb2) ;

 byte b1 = byte.MinValue; // Unsigned 8 bit integer
 System.Byte b2 = System.Byte.MaxValue;
 Console.WriteLine("byte: {0} : {1}", b1, b2);

 short s1 = short.MinValue; // Signed 16 bi t integer
 System.Int16 s2 = System.Int16.MaxValue;
 Console.WriteLine("short: {0} : {1}", s1, s2);

 ushort us1 = ushort.MinValue; // Unsigned 16 b it integer
 System.UInt16 us2= System.UInt16.MaxValue;
 Console.WriteLine("ushort: {0} : {1}", us1, us2);

 int i1 = int.MinValue; // Signed 32 bit integer
 System.Int32 i2 = System.Int32.MaxValue;
 Console.WriteLine("int: {0} : {1}", i1, i2);

 uint ui1 = uint.MinValue; // Unsigned 32 bit integer
 System.UInt32 ui2= System.UInt32.MaxValue;
 Console.WriteLine("uint: {0} : {1}", ui1, ui2);

 long l1 = long.MinValue; // Signed 64 b it integer
 System.Int64 l2 = System.Int64.MaxValue;
 Console.WriteLine("long: {0} : {1}", l1, l2);

 ulong ul1 = ulong.MinValue; // Unsigned 64 bit integer

 29

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 System.UInt64 ul2= System.UInt64.MaxValue;
 Console.WriteLine("ulong: {0} : {1}", ul1, ul2) ;

 float f1 = float.MinValue; // 32 bit float ing-point
 System.Single f2= System.Single.MaxValue;
 Console.WriteLine("float: {0} : {1}", f1, f2);

 double d1 = double.MinValue; // 64 bit floati ng-point
 System.Double d2= System.Double.MaxValue;
 Console.WriteLine("double: {0} : {1}", d1, d2);

 decimal dm1 = decimal.MinValue; // 128 bit fixed- point
 System.Decimal dm2= System.Decimal.MaxValue;
 Console.WriteLine("decimal: {0} : {1}", dm1, dm 2);

 string s = sb1.ToString() ,
 t = 123.ToString() ;

 }

}

 Program 6.3 Demonstrations of numeric types in C#.

In Program 6.3 we show a program that demonstrates all numeric types in C#. For illustrative purposes, we
use both the simple type names (such as int , shown in purple) and the underlying struct type names (such as
System.Int32 shown in blue). To give you a feeling of the ranges of the types, the program prints the
smallest and the largest value for each numeric type. At the bottom of Program 6.3 we show how the
operation ToString can be used for conversion from a numeric type to the type string . The output of the
numeric demo program is shown in Listing 6.4 (only on web).

Hexadecimal Numbers in C# FOCUS BOX 6.2FOCUS BOX 6.2FOCUS BOX 6.2FOCUS BOX 6.2

In Focus box 6.1 we studied hexadecimal numbers. We will now see how to deal with hexadecimal numbers
in C#.

A number prefixed with 0x is written in hexadecimal notation. Thus, 0x123 is equal to the decimal number
291.

In C and Java the prefix 0 is used for octal notation. Thus, in C and Java 0123 is equal to the decimal number
83. This convention is not used in C#. In C#, 0123 is just a decimal number prefixed with a redundant digit
0.

While prefixes are used for encoding of number systems, suffixes of number constants are used for encoding
of numerical types. As an example, 0X123L denotes a hexadecimal constant of type long (a 64 bit integer).
The following suffixes can be used for integer types: U (unsigned), L (long), and UL (unsigned long). The
following suffixes can be used for real types: F (float), D (double), and M (decimal). Both lowercase and
uppercase suffixes will work.

A number can formatted in both decimal and hexadecimal notation. In the context of a Console.WriteLine
call, the format specification (or placeholder) {i:X} will write the value of the variable i in hexadecimal

 30

notation. This is demonstrated by the following C# program:

using System;
class NumberDemo{
 public static void Main(){
 int i = 0123,
 j = 291;
 long k = 0X123L;

 Console.WriteLine("{0:X}", i); // 7B
 Console.WriteLine("{0:D}", i); // 123
 Console.WriteLine("{0:X}", j); // 123
 Console.WriteLine("{0:D}", k); // 291
 }
}

In the program shown above, D means decimal and X means hexadecimal. Some additional formattings are
also provided for numbers: C (currency notation), E (exponential notation), F (fixed point notation), G
(Compact general notation), N (number notation), P (percent notation), R (round trip notation for float and
double). You should consult the online documentation for additional explanations.

 Exercise 2.1. Exploring the type Char

The type System.Char (a struct) contains a number of useful methods, and a couple of constants.

Locate the type System.Char in your C# documentation and take a look at the methods available on
characters.

You may ask where you find the C# documentation. There are several possibilities. You can find it at the
Microsoft MSDN web site at msdn.microsoft.com . It is also integrated in Visual Studio and - to some
degree - in Visual C# express. It comes with the C# SDK, as a separate browser. It is also part of the
documentation web pages that comes with Mono. If you are a Windows user I will recommend the
Windows SDK Documentation Browser which is bundled with the C# SDK.

Along the line of the character demo program above, write a small C# program that uses the char
predicates IsDigit , IsPunctuation , and IsSeparator .

It may be useful to find the code position - also known as the code point - of a character. As an example,
the code position of 'A' is 65. Is there a method in System.Char which gives access to this information? If
not, can you find another way to find the code position of a character?

Be sure to understand the semantics (meaning) of the method GetNumericValue in type Char .

 Exercise 2.2. Hexadecimal numbers

In this exercise we will write a program that can convert between decimal and hexadecimal notation of
numbers. Please consult the focus boxes about hexadecimal numbers in the text book version if you need
to.

You might expect that this functionality is already present in the C# libraries. And to some degree, it is.

 31

The static method ToInt32(string, Int32) in class Convert converts the string representation of a
number (the first parameter) to an arbitrary number system (the second parameter). Similar methods exist
for other integer types.

The method ToString(string) in the struct Int32 , can be used for conversion from an integer to a
hexadecimal number, represented as a string. The parameter of ToString is a format string. If you pass the
string "X" you get a hexadecimal number.

The program below shows examples:

 using System;
class NumberDemo{
 public static void Main(){
 int i = Convert.ToInt32("7B", 16); // hexa decimal 7B (in base 16) - >
 // deci mal 123
 Console.WriteLine(i); // 123

 Console.WriteLine(123.ToString("X")); // deci mal 123 -> hexadecimal 7B
 }
}

Now, write a method which converts a list (or array) of digits in base 16 (or more generally, base b, b >=
2) to a decimal number.

The other way around, write a method which converts a positive decimal integer to a list (or array) of digits
in base 16 (or more generally, base b).

Here is an example where the requested methods are used:

 public static void Main(){
 int r = BaseBToDecimal(16, new List{7, 11}); / / 7B -> 123
 List s = DecimalToBaseB(16, 123); / / 123 -> {7, 11} = 7B
 List t = DecimalToBaseB(2, 123); / / 123 - > {1, 1, 1, 1, 0, 1, 1 } =
 // 1111011
 Console.WriteLine(r);
 foreach (int digit in s) Console.Write("{0} ", digit); Console.WriteLine();
 foreach (int digit in t) Console.Write("{0} ", digit);
 }

 32

6.2. Enumerations types
Lecture 2 - slide 8

Enumeration types in C# are similar to enumeration types in C, but a number of extensions have been
introduced in C#:

 • Enumeration types of several different underlying types can be defined (not just int)
• Enumeration types inherit a number of methods from the type System.Enum
• The symbolic enumeration constants can be printed (not just the underlying number)
• Values, for which no enumeration constant exist, can be dealt with
• Combined enumerations represent a collection of enumerations

Below, in Program 6.5 we see that the enumeration type OnOff is based on the type byte . The enumeration
type Ranking is - per default - based on int .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

using System;

class NonSimpleTypeDemo{

 public enum Ranking {Bad, OK, Good}

 public enum OnOff: byte{
 On = 1, Off = 0}

 public static void Main(){
 OnOff status = OnOff.On ;
 Console.WriteLine();
 Console.WriteLine("Status is {0}", status);

 Ranking r = Ranking.OK ;
 Console.WriteLine("Ranking is {0}", r);
 Console.WriteLine("Ranking is {0}", r+1);
 Console.WriteLine("Ranking is {0}", r+2);

 bool res1 = Enum.IsDefined(typeof(Ranking), 3);
 Console.WriteLine("{0} defined: {1}", 3, res1);

 bool res2= Enum.IsDefined(typeof(Ranking), Ranking.Good);
 Console.WriteLine("{0} defined: {1}", Ranking.G ood , res2);

 bool res3= Enum.IsDefined(typeof(Ranking), 2);
 Console.WriteLine("{0} defined: {1}", 2 , res3) ;

 foreach(string s in Enum.GetNames(typeof(Ranking)))
 Console.WriteLine(s);
 }

}

 Program 6.5 Demonstration of enumeration types in C#.

In the example the methods IsDefined and GetNames are examples of static methods inherited from
System.Enum .

In line 13 of Program 6.5 On is printed. In a similar C program, the number 1 would be printed.

 33

In line 16 OK is printed, and line 17 prints Good. In line 18 the value of r + 2 is 3, which does not
correspond to any of the values in type Ranking . Therefore the base value 3 is printed.

All the output of Program 6.5 is listed in Listing 6.6.

Combined enumeration (sometimes known as flags enumeration) is a slightly more advanced concept. We
introduce it in Focus box 6.3.

Let us point out some additional interesting details in Program 6.5. There are two enumeration types in the
program, namely a type called Ranking and another called OnOff . When we declare variables, the types
Ranking and OnOff are used via their names. C programmer will be relieved to find out that it is not
necessary (and not possible) to write enum Ranking and enum OnOff . Thus, no C-like typedefs are
necessary to introduce simple naming.

In order to disambiguate the referencing of constants in an enumeration type, dot notation ala Ranking.OK
must always be used. In the same way as in C, the enumeration constants have associated an integer value.
The operation IsDefined allows us to check if a given value belongs to an enumeration type. IsDefined is
an operation (a method) in a struct called Enum.

As a very pleasant surprise for the C programmer, there is access to the names of enumeration constants from
the program. We show in the program that the expressions Enum.GetNames(typeof(Ranking)) returns a
string array with the elements "Bad", "OK", and "Good". In the same direction - as we have already seen
above - it is possible to print the symbolic names of the enumeration constants. This is very useful. In C
programs we always need a tedious switch to obtain a similar effect..

Combined Enumerations FOCUS BOX 6.3FOCUS BOX 6.3FOCUS BOX 6.3FOCUS BOX 6.3

Combined enumerations can be used to deal with small sets symbolic constants. Here is an example:

 [Flags]
 public enum Direction: byte{
 North = 1, East = 2, South = 4, West = 8,
 }

The first thing to notice is the mapping of symbolic constants to powers of two. We can form an expression
North | West which is the bitwise combination of the underlying integer values 1 and 8. | is a bitwise or
operator, see Table 6.1. At the binary level, 1 | 8 is equivalent to 0001 | 1000 = 1001, which represents the
number 9. You should think of 1001 as a bit array where the leftmost bit is the encoding of West and the
rightmost bit is the encoding of North .

[Flags] is an application of an attribute, see Section 39.6. It instructs the compiler to generate symbolic
names of combinations, such as the composite name North, West in the example below.

We can program with the enumeration type in the following way:

 Direction d = Direction.North | Direction.West;
 Console.WriteLine("Direction {0}", d); // Direction North, West
 Console.WriteLine("Direction {0}", (int)d); // 9
 Console.WriteLine(HasDirection(d, Direction.Nor th)); // True
 Console.WriteLine(HasDirection(d, Direction.Sou th)); // False

 34

The method HasDirection is a method we have programmed in the following way:

 // Is d in the direction e
 public static bool HasDirection(Direction d, Dire ction e){
 return (d & e) == e;
 }

It checks if e is contained in d in the a bitwise sense. It is also possible to name some of the combinations
explicitly in the enumeration type:

 [Flags]
 public enum Direction: byte{
 North = 1, East = 2, South = 4, West = 8,
 NorthWest = North | West, NorthEast = North | E ast,
 SouthWest = South | West, SouthEast = South | E ast
 }

 Exercise 2.3. ECTS Grades

Define an enumeration type ECTSGrade of the grades A, B, C, D, E, Fx and F and associate the Danish 7-
step grades 12, 10, 7, 4, 2, 0, and -3 to the symbolic ECTS grades.

What is the most natural underlying type of ECTSGrade?

Write a small program which illustrates how to use the new enumeration type.

 Exercise 2.4. Use of Enumeration types

Consult the documentation of type type System.Enum , and get a general overview of the methods in this
struct.

Be sure that you are able to find the documentation of System.Enum

Test drive the example EnumTest , which is part of MicroSoft's documentation. Be sure to understand the
program relative to its output.

Write your own program with a simple enumeration type. Use the Enum.CompareTo method to compare
two of the values of your enumeration type.

6.3. Non-simple types
Lecture 2 - slide 9

The most important non-simple types are defined by classes and structs. These types define non-atomic
objects/values. Because C# is a very rich language, there are other non-simple types as well, such as
interfaces and delegates. We will not discuss these in this chapter, but they will play important roles in later
chapters.

 35

The most important similarities between C and C# with respect to non-simple types can be summarized in
the following way:

 • Arrays in C#: Indexed from 0. Jagged arrays - arrays of arrays
• Strings in C#: Same notation as in C, and similar escape characters
• Structs in C#: A value type like in C.

The most important differences are:

 • Arrays: Rectangular arrays in C#
• Strings: No \0 termination in C#
• Structs: Much expanded in C#. Structs can have methods.

A C programmer, who have experience with arrays, strings, and structs from C, will immediately feel
comfortable with these types in C#. But such a C programmer will also quickly find out, that there are
substantial new possibilities in C# that makes life easier.

Arrays and strings will be discussed in Section 6.4. Classes and structs are, basically, what the rest of the
book is about. The story about classes starts in Chapter 10.

6.4. Arrays and Strings
Lecture 2 - slide 10

Arrays and strings are both non-simple types that are well-known by C programmers. In C# both arrays and
strings are defined by classes. As we will see later, this implies that arrays and strings are represented as
objects, and they are accessed via references. This stands as a contrast to C# structs, which are values and
therefore not accessed via references.

The syntax of array declaration and initialization is similar in C and C#. In C, a string is a pointer to a the
first character in the string, and it is declared of the type char* . C# supports a type named string . The
notation of string constants is also similar in C and C#, although C# offers additional possibilities (the
@"..." notation, see below).

The following summarizes important differences in between C and C# with respect to arrays and strings:

 • Arrays in C# can be rectangular or jagged (arrays of arrays)
• In C#, an array is not a pointer to the first element
• Index out of bound checking is done in C#
• Strings are immutable in C#, but not in C
• In C# there are two kinds of string literals: "a string\n" and @"a string\n"

A multi-dimensional array in C is constructed as an array in which the elements are themselves arrays. Such
arrays are known as jagged arrays in C#, because not all constituent arrays need to have the same size. In

 36

addition C# supports a new kind of arrays, namely rectangular arrays (of two or more dimensions). Such
arrays are similar to arrays in Pascal.

C is inherently unsafe, in part because indexes out of bounds are not systematically caught at run-time. C# is
safe in this respect. An index out of bound in a running C# program raises an exception, see Chapter 36.

C programmers may be puzzled by the fact that strings are immutable in C#. Once a string is constructed, it
is not possible to modify the character elements of the string. This is also a characteristic of strings in Java.
This makes it possible to share a given string in several contexts. The bookkeeping behind this is called
interning. (You can, for instance, read about interning in the documentation of the static method
String.Intern). In case mutable strings are necessary, the class System.Text.StringBuilder makes them
available.

The well-known double quote string notation is used both in C and C#. Escape characters, prefixed with
backslashes (such as in "\n") are used in C as well and in C#. C# supports an alternative notation, called
verbatim string constants, @"..." , in which the only escape notation is "" which stands for the double quote
character itself. Inside a verbatim string constant it possible to have newline characters, and all backslashes
appear as backslash characters in the string. An example of a verbatim strings will be shown in Program 6.9.

Below, in Program 6.7 we will demonstrate a number of aspects of arrays in C#.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using System;

class ArrayStringDemo{

 public static void Main(){
 string[] a1,
 a2 = {"a", "bb", "ccc"};

 a1 = new string[]{"ccc", "bb", "a"};

 int[,] b1 = new int[2,4],
 b2 = {{1,2,3,4}, {5,6,7,8}};

 double[][] c1 = { new double[]{1.1, 2.2},
 new double[]{3.3, 4.4, 5.5, 6.6} };

 Console.WriteLine("Array lengths. a1:{0} b2:{1 } c1:{2}",
 a1.Length , b2.Length , c1.Length);

 Array.Clear(a2,0,3);

 Array.Resize< string>(ref a2,10);
 Console.WriteLine("Lenght of a2: {0}", a2.Leng th);

 Console.WriteLine("Sorting a1:");
 Array.Sort(a1);
 foreach(string str in a1) Console.WriteLine(st r);
 }

}

 Program 6.7 Demonstrations of array types in C#.

We declare two variables, a1 and a2, of the type string[] . In other words, a1 and a2 are both arrays of
strings. a1 is not initialized in its declaration. (Local variables in C# are not initialized to any default value).
a2 is initialized by means of an array initializer, namely {"a", "bb", "ccc"} . The length of the array is
determined by the number of expressions within the pair of curly braces.

 37

The arrays b1 and b2 are both rectangular 2 times 4 arrays.

The array c1 is an example of a jagged array. c1[1] is an array of length 2. c1[2] is an array of length 4.

Next we try out the Length operation on a1, b2 and c1 . The result is a1:3 b2:8 c1:2 . Please notice and
understand the outcome.

Finally we demonstrate a number of additional operations on arrays: Clear , Resize , and Sort . These are all
methods in the class System.Array .

The output of the array demo program is shown in Listing 6.8 (only on web).

Arrays, as discussed above, will be used in many of your future programs. But as an alternative, you should
be aware of the collection classes, in particular the type parameterized, "generic" collection classes. These
classes will be discussed in Chapter 45.

Now we will study a program example that illustrates uses of the type string .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

using System;

class ArrayStringDemo{

 public static void Main(){
 string s1 = "OOP";
 System.String s2 = "\u004f\u004f\u0050" ; // equivalent
 Console.WriteLine("s1 and s2: {0} {1}", s1, s2);

 string s3 = @"OOP on
 the \n semester ""Dat1/Inf1/SW3""" ;
 Console.WriteLine("\n{0}", s3);

 string s4 = "OOP on \n the \\n semester \"Dat1/Inf1/ SW3\" ";
 Console.WriteLine("\n{0}", s4);

 string s5 = "OOP E06".Substring(0,3) ;
 Console.WriteLine("The substring is: {0}", s5) ;
 }

}

 Program 6.9 A demonstration of strings in C#.

The strings s1 and s2 in Program 6.9 contain the same three characters, namely 'O', 'O', and 'P'.

Similarly, the strings referred by s3 and s4 are equal to each other (in the sense that they contain the same
sequences of characters). As already mentioned above, the string constant in line 10-11 is a verbatim string
constant, in which an escape sequence like \n denotes itself. In verbatim strings, only "" has a special
interpretation, namely as a single quoute character.

Finally, in Program 6.9, the Substring operation from the class System.String is demonstrated.

The output of the string demonstration program in Program 6.9 is shown in Listing 6.10 (only on web).

 38

 Exercise 2.5. Use of array types

Based on the inspiration from the accompanying example, you are in this exercise supposed to experiment
with some simple C# arrays.

First, consult the documentation of the class System.Array . Please notice the properties and methods that
are available on arrays in C#.

Declare, initialize, and print an array of names (e.g. array of strings) of all members of your group.

Sort the array, and search for a given name using System.Array.BinarySearch method.

Reverse the array, and make sure that the reversing works.

 Exercise 2.6. Use of string types

Based on the inspiration from the accompanying example, you are in this exercise supposed to experiment
with some simple C# strings.

First, consult the documentation of the class System.String - either in your documentation browser or at
msdn.microsoft.com . Read the introduction (remarks) to string which contains useful information! There
exists a large variety of operations on strings. Please make sure that you are aware of these. Many of them
will help you a lot in the future!

Make a string of your own first name, written with escaped Unicode characters (like we did for "OOP" in
the accompanying example). If necessary, consult the unicode code charts (Basic Latin and Latin-1) to find
the appropriate characters.

Take a look at the System.String.Insert method. Use this method to insert your last name in the first
name string. Make your own observations about Insert relative to the fact that strings in C# are
immutable.

6.5. Pointers and references
Lecture 2 - slide 11

Pointers are instrumental in almost all real-life C programs, both for handling dynamic memory allocation,
and for dealing with arrays. Recall that an array in C is simply a pointer to the first element of the array.

References in C# (and Java) can be understood as a restricted form of pointers. C# references are never
explicitly dereferenced, references are not coupled to arrays, and references cannot be operated on via the
arithmetic C# operators; There are no pointer arithmetic in (the safe part of) C#. As a special notice to C++
programmers: References in C# have nothing to do with references in C++.

Here follows an itemized overview of pointers and references.

 39

 • Pointers
• In normal C# programs: Pointers are not used

• All the complexity of pointers, pointer arithmetic, dereferencing, and the address
operator is not found in normal C# programs

• In specially marked unsafe sections: Pointers can be used almost as in C.
• Do not use them in your C# programs!

• References
• Objects (instance of classes) are always accessed via references in C#
• References are automatically dereferenced in C#
• There are no particular operators in C# that are related to references

Program 6.11 shows some basic uses of references in C#. The variables cRef and anotherCRef are declared
of type C. C happens to be an almost trivial class that we have defined in line 3-5. Classes are reference types
in C (see Chapter 13). cref declared in in line 11 is assigned to null (a reference to nothing) in line 12. Next,
in line 15, cref is assigned to a new instance of C. Via the reference in cref we can access the members x
and y in the C object, see line 18. We can also pass a reference as a parameter to a function F as in line 19.
This does not copy the referenced object when entering F.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

using System;

public class C {
 public double x, y;
}

public class ReferenceDemo {

 public static void Main(){

 C cRef, anotherCRef;
 cRef = null;
 Console.WriteLine("Is cRef null: {0}", cRef == null);

 cRef = new C();
 Console.WriteLine("Is cRef null: {0}", cRef == null);

 Console.WriteLine("x and y are ({0},{1})", cRef.x , cRef.y);
 anotherCRef = F(cRef);
 }

 public static C F(C p){
 Console.WriteLine("x and y are ({0},{1})", p.x, p.y);
 return p;
 }

}

 Program 6.11 Demonstrations of references in C#.

The output of Program 6.11 is shown in Listing 6.12 (only on web).

 There is no particular complexity in normal C# programs due to use of references

 40

6.6. Structs
Lecture 2 - slide 12

Structs are well-known by C programmers. It is noteworthy that arrays and structs are handled in very
different ways in C. In C, arrays are deeply connected to pointers. Related to the discussion in this material,
we will say that pointers are dealt with by reference semantics, see Section 13.1. Structs in C are dealt with
by value semantics, see Section 14.1. Structs are copied by assignment, parameter passing, and returns.
Arrays are not!

Let us now compare structs in C and C#:

 • Similarities
• Structs in C# can be used almost in the same way as structs in C
• Structs are value types in both C and C#

• Differences
• Structs in C# are almost as powerful as classes

• Structs in C# can have operations (methods) in the same way as classes
• Structs in C# cannot inherit from other structs or classes

In Program 6.13 we see a program with a struct called Point . The variable p1 contains a point (3.0, 4.0).
Because structs are value types, p1 does not refer to a point. It contains the two coordinates of type double
that represents the points. p2 is uninitialized. In line 15, p1 is copied into p2. This is a field-by-field (bit-by-
bit) copy operation. No manipulation of references is involved. Finally we show the activation of a method
Mirror on p2. Hereby the state of the second point is mutated to (-3,-4).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

using System;

public struct Point {
 public double x, y;
 public Point(double x, double y){this.x = x; this .y = y;}
 public void Mirror(){x = -x; y = -y;}
} // end Point

public class StructDemo{

 public static void Main(){
 Point p1 = new Point(3.0, 4.0),
 p2;

 p2 = p1 ;

 p2.Mirror() ;
 Console.WriteLine("Point is: ({0},{1})", p2.x, p 2.y);
 }
}

 Program 6.13 Demonstrations of structs in C#.

 41

6.7. Operators
Lecture 2 - slide 13

Expressions in C# have much in common with expressions in C. Non-trivial expressions are built with use of
operators. We summarize the operators in C# in Table 6.1. As it appears, there is a substantial overlap with
the well-known operators i C. Below the table we will comment on the details.

Level Category Operators Associativity
(binary/tertiary)

14 Primary
x.y f(x) a[x] x++ x--

 new typeof checked unchecked default delegate
left to right

13 Unary + - ! ~ ++x --x (T)x true false sizeof left to right

12 Multiplicative * / % left to right

11 Additive + - left to right

10 Shift << >> left to right

9
Relational and
Type testing

< <= > >= is as left to right

8 Equality == != left to right

7
Logical/bitwise
and

& left to right

6
Logical/bitwise
xor

^ left to right

5
Logical/bitwise
or

| left to right

4
Conditional
and

&& left to right

3 Conditional or || left to right

2
Null
coalescing

?? left to right

1 Conditional ?: right to left

0
Assignment or
Lambda
expression

= *= /= %= += -
= <<= >>= &= ̂ = |= =>

right to left

Table 6.1 The operator priority table of C#. Operators with high level numbers
have high priorities. In a given expression, operators of high priority are
evaluated before operators with lower priority. The associativity tells if operators
at the same level are evaluated from left to right or from right to left.

The operators shown in red are new and specific to C#. The operator new creates an instance (an object) of a
class or it initializes a value of struct. We have already encountered new in some of the simple demo
programs, for instance Program 6.11 and Program 6.13. See Section 12.2 for details on new. The operators is ,
as and typeof will not be discussed here. Please refer to Section 28.12 for details on these. The operations
checked and uncheked relate to the safe and unsafe part of C# respectively. In this material we only deal
with the safe part, and therefore these two C# operators can be disregarded. The default operator gives
access to the default value of value types, see Section 12.3. The delegate operator is used for definition of
anonymous functions, see Section 22.1. The unary true and false operators tell when a value in a user

 42

defined type is regarded as true or false respectively. See Section 21.2 for more details. The expression x ??

y is a convenient shortcut of x != null ? x : y . See Section 14.9 for more details on ??. => is the
operator which is used to form lambda expressions in C#3.0, see Section 22.4.

A couple of C operators are not part of C#. The address operator & and the dereference operator * are not
found in (the safe part of) C# (but they are actually available in the unsafe part of the language). They are
both related to pointers, and as discussed in Section 6.5 pointers are not supported in (the safe part of) C#.

All the remaining operators should be familiar to the C programmer.

The operators listed above have fixed and predefined meanings when used together with primitive types in
C#. On top of these it is possible to define new meanings of some of the operators on objects/values of your
own types. This is called operator overloading, and it is discussed in more details in Chapter 21. The subset
of overloadable operators is highlighted in Table 21.1.

6.8. Commands and Control Structures
Lecture 2 - slide 14

 Almost all control structures in C can be used the same way in C#

Commands (also known as statements) are able to mutate the program state at run-time. As such, the most
important command is the assignment. The commands constitute the "imperative heart" of the programming
language. The control structures provide means for sequencing the commands.

The commands and control structures of C# form - to a large extent - a superset of the commands and control
structures of C. Thus, the knowledge of commands and control structures in C can be used directly when
learning C#.

As usual, we will summarize similarities and differences between C and C#. The similarities are the
following:

 • Expression statements, such as a = a + 5 ;
• Blocks, such as {a = 5; b = a;}
• if , if-else , switch , for , while , do-while , return , break , continue , and goto in C# are all

similar to C

As in C, an expression becomes a command if it is followed by a semicolon. Therefore we have emphasized
the semicolon above in the assignment a = a + 5;

As it will be clear from Program 6.15 below, the switch control structures in C and C# differ substantially.

The main differences between C and C# regarding control structures are the following:

 • The C# foreach loop provides for easy traversal of all elements in a collection
• try-catch-finally and throw in C# are related to exception handling

 43

• Some more specialized statements have been added: checked , unchecked , using , lock and
yield .

The foreach control structures is an easy-to-use version of a for loop, intended for start-to-end traversal of
collections. We will not here touch on try-catch-finally and throw. Please refer to our coverage of
exception handling in Section 36.2 for a discussion of these.

Let us now look at some concrete program examples with control structures. In the examples below, program
fragments shown in red color illustrate erroneous aspects. Program fragments shown in green are all right.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/* Right , Wrong */
using System;

class IfDemo {

 public static void Main(){
 int i = 0;

 /*
 if (i){
 Console.WriteLine("i is regarded as true");
 }
 else {
 Console.WriteLine("i is regarded as false");
 }
 */

 if (i != 0){
 Console.WriteLine("i is not 0");
 }
 else {
 Console.WriteLine("i is 0");
 }
 }
}

 Program 6.14 Demonstrations of if.

The if-else control structure has survived from C. Program 6.14 in reality illustrates a difference between
handling of boolean values of C and C#. This has already been treated in Section 6.1. The point is that an
expression of non-bool type (such the integer i) cannot be used as the controlling expression of an if-else
control structure i C#.

Let us now look at a program with switch control structures. As already mentioned earlier there are a number
of noteworthy differences between C and C# regarding switch.

1
2
3
4
5
6
7
8
9
10
11

/* Right , Wrong */
using System;

class SwitchDemo {
 public static void Main(){
 int j = 1, k = 1;

 /*
 switch (j) {
 case 0: Console.WriteLine("j is 0");
 case 1: Console.WriteLine("j is 1");

 44

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

 case 2: Console.WriteLine("j is 2");
 default: Console.WriteLine("j is not 0, 1 or 2");
 }
 */

 switch (k) {
 case 0: Console.WriteLine("m is 0"); break;
 case 1: Console.WriteLine("m is 1"); break;
 case 2: Console.WriteLine("m is 2"); break;
 default: Console.WriteLine("m is not 0, 1 or 2"); break;
 }

 switch (k) {
 case 0: case 1: Console.WriteLine("n is 0 or 1"); break;
 case 2: case 3: Console.WriteLine("n is 2 or 3"); break;
 case 4: case 5: Console.WriteLine("n is 4 or 5"); break;
 default: Console.WriteLine("n is not 1, 2, 3, 4, or 5"); break;
 }

 string str = "two";
 switch (str) {
 case "zero": Console.WriteLine("str is 0"); break;
 case "one": Console.WriteLine("str is 1"); b reak;
 case "two": Console.WriteLine("str is 2"); b reak;
 default: Console.WriteLine("str is not 0, 1 o r 2"); break;
 }
 }
}

 Program 6.15 Demonstrations of switch.

The first switch in Program 6.15 is legal in C, but it is illegal i C#. It illustrates the fall through problem. If j
is 0, case 0, 1, 2, and default are all executed in a C program. Most likely, the programmer intended to
write the second switch, starting in line 17, in which each case is broken with use of the break command. In
C# the compiler checks that each branch of a switch never encounters the ending of the branch (and, thus,
never falls through to the succeeding branch).

The third switch in the demo program shows that two or more cases can be programmed together. Thus, like
in C, it is legal to fall trough empty cases.

The final switch shows that it is possible to switch on strings in C#. This is very convenient in many contexts!
In C, the type of the switch expression must be integral (which means an integer, char, or an enumeration
type).

Let us also mention that C# allows special goto constructs (goto case constant and goto default) inside a
switch. With use of these it is possible to jump from one case to another, and it is even possible to program a
loop inside a switch (by jumping from one case to an already executed case). It is recommended only to use
these specialized goto constructs in exceptional situations, or for programming of particular patterns (in
which it is natural to organize a solution around multiple branches that can pass the control to each other).

Next we will study a program that illustrates the foreach loop.

1
2
3
4
5
6

/* Right , Wrong */
using System;

class ForeachDemo {
 public static void Main(){

 45

7
8
9
10
11
12
13
14
15

 int[] ia = {1, 2, 3, 4, 5};
 int sum = 0;

 foreach(int i in ia)
 sum += i;

 Console.WriteLine(sum);
 }
}

 Program 6.16 Demonstrations of foreach.

As mentioned above, foreach is a variant of a for loop that traverses all elements of a collection. (See how
this is provided for in Section 31.6). In the example of Program 6.16 all elements of the array are traversed.
Thus, the loop variable i will be 1, 2, 3, 4 and 5 in succession. Many efforts in C# have been directed
towards supporting foreach on the collection types that you program yourself. Also notice that loop control
variable, i , is declared inside the foreach construct. This cannot be done in a conventional for loop in C
(although it can be done in C99 and in C++).

Finally, we will see an example of try-catch.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

/* Right , Wrong */
using System;

class TryCatchDemo {
 public static void Main(){
 int i = 5, r = 0, j = 0;

 /*
 r = i / 0;
 Console.WriteLine("r is {0}", r);
 */

 try {
 r = i / j;
 Console.WriteLine("r is {0}", r);
 } catch(DivideByZeroException e){
 Console.WriteLine("r could not be computed");
 }
 }
}

 Program 6.17 Demonstrations of try catch.

Division by 0 is a well-known cause of a run-time error. Some compilers are, in some situations, even smart
enough to identify the error at compile-time. In Program 6.17 the erroneous program fragment never reaches
the activation of WriteLine in line 10, because the division by zero halts the program.

The expression i / j , where j is 0, is embedded in a try-catch control structure. The division by zero raises
an exception in the running program, which may be handled in the catch part. The WriteLine in line 17 is
encountered in this part of the example. Thus, the program survives the division by zero. Later in the
material, starting in Chapter 33, we discuss - in great details - errors and error handling and the use of try-
catch.

Before we leave the assignments and control structure we want to mention the definite assignment rule in C#.
The rule states that every declared variable must be assigned to a value before the variable is used. The
compiler enforces the rule. Take a look at the program below.

 46

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

using System;

class DefiniteAssignmentDemo{

 public static void Main(){
 int a, b;
 bool c;

 if (ReadFromConsole("Some Number") < 10){
 a = 1; b = 2;
 } else {
 a = 2;
 }

 Console.WriteLine(a);
 Console.WriteLine(b); // Use of unassigned local variable 'b'

 while (a < b){
 c = (a > b);
 a = Math.Max(a, b);
 }

 Console.WriteLine(c); // Use of unassigned local variable 'c'

 }

 public static int ReadFromConsole(string prompt){
 Console.WriteLine(prompt);
 return int.Parse(Console.ReadLine());
 }
}

 Program 6.18 Demonstrations of definite assignment.

The program declares three variables a, b, and c in line 6-7, without initializing them. Variable b is used in
line 16, but it cannot be guarantied that the if-else control structure in line 9-13 assigns a value to the
variable b. Therefore, using a conservative approach, the compiler complains about line 16. The error
message is emphasized in the comment at the end of line 16.

Similarly, the variable c declared in line 7 is not necessarily assigned by the while control structure in line
18-21. Recall that if a >= b when we enter the while loop, the line 19 and 20 are never executed. This
explains the error message associated to line 24.

The definite assignment rule, enforced by the compiler, implies that we never get run-time errors due to
uninitialized variables. On the other hand, the rule also prevents some program from executing on selected
input. If the number read in line 9 of Program 6.18 is less than 10 both b and c will be assigned when used in
the WriteLine calls.

6.9. Functions
Lecture 2 - slide 15

Functions are the primary abstractions in C. In C# "function" (or "function member") is the common name of
a variety of different kinds of abstractions. The most well-known of these is known as methods. The others
are properties, events, indexers, operators, and constructors.

 47

Functions in C# belong to types: classes or structs. Thus, functions in C# cannot be freestanding like in C.
Functions are always found inside a type.

The conceptual similarities between functions in C and methods in C# are many and fundamental. In our
context it is, however, most interesting to concentrate on the differences:

 • Several different parameter passing techniques in C#
• Call by value. For input. No modifier.
• Call by reference. For input and output or output only

• Input and output: Modifier ref
• Output: Modifier out
• Modifiers used both with formal and actual parameters

• Functions with a variable number of input parameters in C# (cleaner than in C)
• Overloaded function members in C#
• First class functions (delegates) in C#

In C all parameters are passed by value. However, passing a pointer by value in C is often proclaimed as call
by reference. In C# there are several parameter passing modes: call by value and two variants of call by
reference (ref and out parameters). The default parameter passing mode is call by value. Call by reference
parameter passing in C (via pointers) is not the same as ref parameters in C#. ref parameters in C# are
much more like Pascal var (variable) parameters.

In C it is possible, but messy, to deal with functions of a variable (or an arbitrary) number of arguments. In
C# this is easier and cleaner. It is supported by the params keyword in a formal parameter list. An example is
provided in Program 6.20.

A function in C is identified by its name. A method in C# is identified by its name together with the types of
the formal parameters (the so-called method signature). This allows several methods with the same names to
coexist, provided that their formal parameter types differ. A set of equally named methods (with different
formal parameter types) is known as overloaded methods.

A function in C# can be handled without naming it at all. Such functions are known as delegates. Delegates
come from the functional programming language paradigm, where functions most often are first class objects.
Something of first class can be passed as parameters, returned as results from functions, and organized in
data structures independent of naming. Delegates seem to be more and more important in the development of
C#. In C# 3.0 the nearby concepts of lambda expressions and expression trees have emerged. We have much
more to say about delegates later in this material, see Chapter 22.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

/* Right , Wrong */

using System;

/*
public int Increment(int i){
 return i + 1;
}

public void Main (){
 int i = 5,
 j = Increment(i);
 Console.WriteLine("i and j: {0}, {1}", i, j);
} // end Main

 48

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

*/

public class FunctionDemo {

 public static void Main (){
 SimpleFunction();
 }

 public static void SimpleFunction(){
 int i = 5,
 j = Increment(i);
 Console.WriteLine("i and j: {0}, {1}", i, j);
 }

 public static int Increment(int i){
 return i + 1;
 }
}

 Program 6.19 Demonstration of simple functions in C#.

Program 6.19 shows elementary examples of functions (methods) in a C# program. The program text
decorated with red color shows two functions, Main and Increment , outside of any type. This is illegal in C#.

Shown in green we again see the function Increment , now located in a legal context, namely inside the type
(class) FunctionDemo . The function SimpleFunction calls Increment in a straightforward way. The
function Main serves as main program in C#. It is here the program starts. We see that Main calls
SimpleFunction .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

using System;
public class FunctionDemo {

 public static void Main (){
 ParameterPassing();
 }

 public static void ValueFunction (double d) {
 d++;}

 public static void RefFunction (ref double d) {
 d++;}

 public static void OutFunction (out double d) {
 d = 8.0;}

 public static void ParamsFunction(out double res,
 params double[] input){
 res = 0;
 foreach(double d in input) res += d;
 }

 public static void ParameterPassing(){
 double myVar1 = 5.0;
 ValueFunction(myVar1);
 Console.WriteLine("myVar1: {0:f}", myVar1); // 5.00

 double myVar2 = 6.0;
 RefFunction(ref myVar2);
 Console.WriteLine("myVar2: {0:f}", myVar2); // 7.00

 double myVar3;
 OutFunction(out myVar3);

 49

34
35
36
37
38
39
40
41

 Console.WriteLine("myVar3: {0:f}", myVar3); // 8.00

 double myVar4;
 ParamsFunction(out myVar4, 1.1, 2.2, 3.3, 4.4, 5.5) ; // 16.50
 Console.WriteLine("Sum in myVar4: {0:f}", myVar 4);
 }

}

 Program 6.20 Demonstration of parameter passing in
C#.

The four functions in Program 6.20, ValueFunction , RefFunction , OutFunction , and ParamsFunction
demonstrate the different parameter passing techniques of C#.

The call-by-value parameter d in ValueFunction has the same status as a local variable in ValueFunction .
Therefore, the call of ValueFunction with myVar1 as actual parameter does not affect the value of myVar1 . It
does, however, affect the value of d in ValueFunction , but this has no lasting effect outside ValueFunction .
In a nutshell, this is the idea of call by value parameters.

In RefFunction , the formal parameter d, is a ref parameter. The corresponding actual parameter must be a
variable. And indeed it is a variable in our sample activation of RefFunction , namely the variable named
myVar2 . Inside RefFunction , the formal parameter d is an alias of the actual parameter (myVar2). Thus, the
incrementing of d actually increments myVar2 . Pascal programmers will be familiar with this mechanism (via
var parameters) but C programmers have not encountered this before - at least not while programming in C.

OutFunction demonstrates the use of an out parameter. out parameters are similar to ref parameters, but
only intended for data output from the function. More details of ref and out parameters appears in Section
20.6 and Section 20.7.

Notice that in C#, the keywords ref and out must be used both in the formal parameter list and in the actual
parameter list. This is nice, because you will hereby spot the parameter passing mode in calls. In most other
programming language it is necessary to consult the function definition to find out about the parameter
passing modes of the parameters involved.

The first parameter of ParamsFunction , res , is an out parameter, intended for passing the sum of the input
parameter back to the caller. The formal param parameter, input , must be an array. The similar actual
parameters (occurring at the end of the actual parameter list) are inserted as elements into a new array, and
bound to the formal parameter input . With this mechanism, an arbitrary number of "rest parameters" (of the
same or comparable types) can be handled, and bundled into an array in the C# function, which is being
called.

Program 6.21 (only on web) shows a class with four methods, all of which are named F. These functions are
distinguished by different formal parameters, and by different parameter passing modes. Passing an integer
value parameter activates the first F. Passing a double value parameter activates the second F. Passing a
double and a bool (both as values) activates the third F. Finally, passing an integer ref parameter activates
the fourth F.

 50

6.10. Input and output
Lecture 2 - slide 16

In C, the functions printf and scanf are important for handling output to the screen, input from the
keyboard, and file IO as well. It is therefore interesting for C programmers to find out how the similar
facilities work in C#.

In C#, the Console class encapsulates the streams known as standard input and standard output, which per
default are connected to the keyboard and the screen. The various write functions in the Console class are
quite similar to the printf function in C. The Console class' read functions are not as advanced as scanf in
C. There is not direct counterpart of the C scanf function in C#.

First, in Program 6.22 we will study uses of the Write and WriteLine functions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/* Right , Wrong */

using System;
public class OutputDemo {

// Placeholder syntax: {<argument#>[,<width>][:<format>[<precision>]]}

 public static void Main(){
 Console.Write("Argument number only: {0} {1} \n", 1, 1.1);
// Console.WriteLine("Formatting code d: {0:d} ,{1:d} ", 2, 2.2);

 Console.WriteLine("Formatting codes d and f: {0:d} {1:f} ", 3, 3.3);
 Console.WriteLine("Field width: {0,10:d} {1,10:f} ", 4, 4.4);
 Console.WriteLine("Left aligned: {0,-10:d} {1,-10:f} ", 5, 5.5);
 Console.WriteLine("Precision: {0,10:d5} {1,10:f5} ", 6, 6.6);
 Console.WriteLine("Exponential: {0,10:e5} {1,10:e5} ", 7, 7.7);
 Console.WriteLine("Currency: {0,10:c2} {1,10:c2} ", 8, 8.887);
 Console.WriteLine("General: {0:g} {1:g} ", 9, 9.9);
 Console.WriteLine("Hexadecimal: {0:x5} ", 12);

 Console.WriteLine("DateTime formatting with F: {0:F} ", DateTime.Now);
 Console.WriteLine("DateTime formatting with G: {0:G} ", DateTime.Now);
 Console.WriteLine("DateTime formatting with T: {0:T} ", DateTime.Now);
 }
}

 Program 6.22 Demonstrations of Console output in C#.

Like printf in C, the methods Write and WriteLine accept a control string and a number of additional
parameters which are formatted and inserted into the control string. Write and WriteLine actually rely on an
underlying Format method in class String . Notice that a there exists many overloaded Write and
WriteLine methods in the class Console . Here we concentrate of those that take a string - the control string -
as the first parameter.

The following call of printf in C

printf("x: %d, y: %5.2f, z: %Le\n", x, y, z);

is roughly equivalent to the following call of of WriteLine in C#

Console.WriteLine("x: {0:d}, y: {1,5:F2}, z: {2:E}" , x, y, z);

 51

The equivalence assumes that x is of type int, y is a float, and that z is a long double.

The general syntax of a placeholder (the stuff in between pairs of curly braces) in a C# formatting string is

{<argument#>[,<width>][:<format>[<precision>]]}

where [...] denotes optionality (zero or one occurrence).

C programmers do often experience strange and erroneous formatting of output if the conversion characters
(such as d, f , and e in the example above) are inconsistent with the actual type of the corresponding variables
or expressions (x, y, and z in the example). In C#, such problems are caught by the compiler, and as such
they do not lead to wrong results. This is a much needed improvement.

Let us briefly explain the examples in line 9-23 of Program 6.22. In line 9 the default formatting is used. This
corresponds to the letter code g. In line 10 an error occurs because the code d only accepts integers. The
number 2.2 is not an integer. In line 13 we illustrate use of width 10 for an integer and a floating-point
number. Line 14 is similar, but it uses left justification (because the width is negative). Line 15 illustrates use
of the precision 5 for an integer and a floating-point number. In line 16 we format two numbers in
exponential (scientific) notation. In line 17 we illustrate formatting of currencies (kroner or dollars, for
instance, dependent on the culture setting). Line 18 corresponds to line 9. Line 19 calls for hexadecimal
formatting of a number.

One way to learn more about output formatting is to consult the documentation of the static method Format
in class System.String . From there, goto Formatting Overview. Later in this material, in Section 31.7, we
will see how we can program custom formatting of our own types.

The last three example lines in Program 6.22 illustrate formatting of objects of type DateTime in C#. Such
objects represent at point in time. In the example, the expression DateTime.Now denotes the current point in
time.

The output of Program 6.22 is shown in Listing 6.23 (only on web).

We now switch from output to input.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

/* Right , Wrong */

using System;
public class InputDemo {

 public static void Main(){
 Console.Write("Input a single character: ");
 char ch = (char) Console.Read() ;
 Console.WriteLine("Character read: {0}", ch);
 Console.ReadLine() ;

 Console.Write("Input an integer: ");
 int i = int.Parse(Console.ReadLine()) ;
 Console.WriteLine("Integer read: {0}", i);

 Console.Write("Input a double: ");
 double d = double.Parse(Console.ReadLine()) ;
 Console.WriteLine("Double read: {0:f}", d);
 }
}

 52

 Program 6.24 Demonstrations of Console input in C#.

In Program 6.24 Console.Read() reads a single character. The result returned is a positive integer, or -1 if
no character can be read (typically because we are located at the end of an input file). Read blocks until enter
is typed. Non-blocking input is also available via the method Console.ReadKey . The expression
Console.ReadLine() reads a line of text into a string. The last two, highlighted examples show how to read
a text string and, via the Parse method in type int and double , to convert the strings read to values of type
int and double respectively. Notice that scanf in C can take hand of such cases.

The output of Program 6.24 is shown in Listing 6.25 (only on web).

Later in this material we have much more to say about input and output in C#. See Chapter 37 - Chapter 39 .
The most important concept, which we will deal with in these chapters, is the various kinds of streams in C#.

6.11. Comments
Lecture 2 - slide 17

We finalize our comparison of C and C# with an overview of the different kinds of C# comments. Recall that
C only supports delimited comments (although C programmers also often use single-line comments, which
actually is used in C++ and in newer versions of C (C99)).

C# supports two different kinds of comments and XML variants of these:

 • Single-line comments like in C++
// This is a single-line comment

• Delimited comments like in C
/* This is a delimited comment */

• XML single-line comments:
/// <summary> This is a single-line XML comment </s ummary>

• XML delimited comments:
/** <summary> This is a delimited XML comment </sum mary> */

XML comments can only be given before declarations, not inside other fragments. XML comments are used
for documentation of types. We have much more to say about XML comments in our discussion of
documentation of C# programs. Delimited C# comments cannot be nested.

6.12. References

[Decimal-floating-
point]

Decimal Floating Point in .NET
http://www.yoda.arachsys.com/csharp/decimal.html

 53

7. C# in relation to Java

C# is heavily inspired by Java. In this section we will, at an overall level, compare Java and C#. The goal of
this relatively short chapter is to inform Java programmers about similarities and differences in relation to C#.
It is recommended that you already have familiarized yourself with C# in relation to C, as covered in Chapter
6.

In this chapter 'Java' refers to version to 5.0 and 'C#' refers to C# version 2.0.

7.1. Types
Lecture 2 - slide 20

In Java, types can be defined by classes and interfaces. This is also possible in C#. In addition, C# makes it
possible to define structs and delegates to which there are no counterparts in Java. Java supports
sophisticated, class based enumeration types. Enumeration types in C# are simpler, and relative close to
enumeration types in C. - This is the short story. After the itemized summary, we will compare the two
languages more carefully.

The similarities and differences with respect to types can be summarized in this way:

 • Similarities.
• Classes in both C# and Java
• Interfaces in both C# and Java

• Differences.
• Structs in C#, not in Java
• Delegates in C#, not in Java
• Nullable types in C#, not in Java
• Class-like Enumeration types in Java; Simpler approach in C#

If you have written a Java program with classes and interfaces, it is in most cases relatively easy to translate
the program to C#. In this material we discuss classes in C# in Chapter 11 an interfaces in Chapter 31

There are no structs in Java. Structs in C# are, at the outset, similar to structs in C. (See Section 6.6 for a
discussion of C structs versus C# structs). Your knowledge of C structs is a good starting point for working
with structs in C#. However, structs in C# are heavily extended compared with C. As an important
observation, C# structs have a lot in common with classes. Most important, there are operations (methods)
and constructors in both C# classes and C# structs. It is also possible to control the visibility of data and
operations in both classes and structs. Structs in C# are value types, in the meaning that instances of structs
are contained in variables, and copied by assignments and in parameter passings. In contrast, classes are
reference types, in the meaning that instances of classes are accessed by references. Instances of classes are
not copied in assignments and in parameter passings. For more details on structs see Chapter 14, in particular
Section 14.3.

Delegates in C# represents a type of methods. A delegate object can contain a method. More correctly, a
delegate can contain a reference to a method. It can actually contain several such references. With use of
delegates it becomes possible to treat methods as data, in the same way as instance of classes represent data.
We can store a method in a variable of delegate type. We can also pass a method as a parameter to another

 54

method. In Java it is not possible pass a method M as a parameter to another method. If we need to pass M, we
have to pass an object of class C in which M is a method. Needless to say, this is a complicated and contrived
way of using function parameters. - In C#, delegates are the foundation of events (see Chapter 23), which, in
turn, are instrumental to programming of graphical user interfaces in C# and certain design patters, not least
the Observer (see Section 24.1). For more details on delegate types see Chapter 22.

Nullable types relate to value types, such as structs. A variable of a struct type S cannot contain the value
null . In contrast, a variable of class type C can contain the value null . The nullable S type, denoted S?, is a
variant of S which includes the null value. For more details, see Section 14.9.

Enumeration types in both C# and Java allow us to associate symbolic constants to values in an integer type.
We demonstrated enumeration types in C# in Section 6.2 of the previous chapter. In Java, an enumeration
type is a special form of a class. Each enumerated value is an instance of this special class. Consequently, an
enumeration type in Java is a reference type. In C# an enumeration type is a value type. - As a Java-historic
remark, enumeration types did not exist in early versions Java. Enumeration types were simulated by a set of
final static variables (one final static variable for each value in the enumeration type). The support of
enumeration types shifted dramatically in Java 1.5: from almost no support in previous versions to heavy
support via special classes. It is remarkable that the Java designers have chosen to use so many efforts on
enumeration types!

7.2. Operations
Lecture 2 - slide 21

Operations in Java programs are defined by methods that belong to classes. This is our only possibility of
defining operations in Java. In C# there exists several additional possibilities. In this material we have
devoted an entire lecture 'Data Access and Operations' (from Chapter 17 to Chapter 24) to these issues.

The similarities and differences with respect to operations can be summarized in this way:

 • Similarities: Operations in both Java and C#
• Methods

• Differences: Operations only in C#
• Properties
• Indexers
• Overloaded operators
• Anonymous methods

As already mentioned above, C# methods can be defined in both classes and structs. It is not possible to
define local methods in methods - neither in C# or Java. The closest possibility in C# is use of anonymous
methods, see below.

Properties provide for getters and setters of fields (instance variables as well as class variables - static
variables) in C#. In Java it is necessary to define methods for getting and setting of instance variables. A
single property in C# can either be a getter, a setter, or both. From an application point of view, properties
are used as though we access of the variables of a class/object directly (as it would be possible if the
variables were public). For more details on properties see Chapter 18.

 55

Indexers can be understood as a special kind of properties that define array-like access to objects and values
in C#. The notation a[i] and a[i] = x is well-know when the name a denotes an array and if i is an integer.
In C# we generalize this notation to arbitrary instances of classes and structs denoted by a. With an indexer
we program the meaning of accessing the i'th element of a (a[i]) and the meaning of setting the i'th element
of a (a[i] = ...). Indexers are discussed in Chapter 19.

In most languages, the operators like +, - , <, and & have fixed meanings, and they only work with the simple
types (such as int , bool , char , etc). We reviewed the C# operators in Section 6.7, and as it appears,
operators in C, Java, and C# have much in common. In Java, the operators only work for certain predefined
types, and you cannot change the meaning of these operators. In C# it is possible to use the existing operator
symbols for operations in your own types. (You cannot invent new operator symbols, and you cannot change
the precedence nor the associativity of the symbols). We say that the operators in C# can be overloaded. For
instance, in C# it would be possible to define the meaning of aBankAccount + aTriangle , where
aBankAccout refers to an instance of class BankAccount and aTriangle refers to an instance of class
GeometricShape . When the existing operator symbols are natural in relation to our own classes, the idea of
overloaded operators is great. In other situations, overloaded operators do not add much value.

We are used to a situation where procedures, functions, and methods have names. In both Java and C# we
can define named methods in classes. In C#, we can also define named methods in structs. In C# it is
possible to define non-named methods as well. As part of arbitrary expressions, we can create a function or
method. Such a function or method is called a delegate. As indicated by the name, delegates are closely
related to delegate types, as discussed above in Section 7.1. For more details on this topic see Chapter 22 and
in particular the program examples of Section 22.1.

7.3. Other substantial differences
Lecture 2 - slide 22

In addition to the overall differences in the area of types and operations, as discussed in the two previous
sections, there are a number of other substantial differences between Java and C#. The most important of
these differences are summarized below.

 • Program organization
• No requirements to source file organization in C#

• Exceptions
• No catch or specify requirement in C#

• Nested and local classes
• Classes inside classes are static in C#: No inner classes like in Java

• Arrays
• Rectangular arrays in C#

• Virtual methods
• Virtual as well as non-virtual methods in C#

In Java there is a close connection between classes and sources files. It is usually recommended that there is
only one class per file, but the rule is actually that there can be one public and several non-public classes per
Java source file. The proper name of the source file should be identical to the name of the public class.
Likewise, there is a close connection between packages and directories. A package consists of the classes
whose source files belong to a given directory. - The organization of C# programs is different. In C# there is
no connection between the names of classes and the name of a C# source files. A source file can contain

 56

several classes. Instead of packages, C# organizes types in namespaces and assemblies. Namespaces are
tangible, as they are represented syntactically in the source files. A namespace contains types and/or
recursively other (nested) namespaces. Assemblies are produced by the C# compiler. Assemblies represent a
'packaging' mechanism, and assemblies are almost orthogonal to both the file/directory organization and the
namespace organization. As it appears, C# uses a much more complex - and presumably more powerful -
program organization than Java. We discuss organization of C# programs in Chapter 15 at the end of the
lecture about Classes.

Java supports both checked exceptions and unchecked exceptions, but it is clearly the ideal of Java to work
with checked exceptions. (Unchecked exception is also known as RuntimeExceptions). It is natural to ask
about the difference. A checked exception must either be handled in the method M in which is occurs, or the
method M must declare that an activation of M can cause an exception (of a given type) which callers of M
need to care about. This is sometimes called the catch or specify principle. The most visible consequence of
this principle is that Java methods, which do not handle exceptions, must declare that they throws specific
types of exceptions. Thus, the signature of Java methods include information about the kind errors they may
cause. - C# does not adhere to the catch or specify principle. In C# all exceptions correspond to the so-called
RuntimeExceptions in Java. Exceptions in C# are discussed in Chapter 36.

Java is stronger than C# with respect to class nesting. Both Java and C# support static nested classes (using
Java terminology). In this setup, the innermost class can only refer to static members of the outer class. In
contrast to C#, Java also supports inner classes. An instance of an inner class has a reference the instance of
the outer class. Inner classes have implications to the object structure. Static nested classes have no such
implications. In addition, Java supports local classes that are local to a method, and anonymous classes
which are instantiated on the fly. C# does not.

In both Java and C# it is possible to work with arrays in which the elements themselves are arrays, and so on
recursively. Using C# terminology, this is called jagged arrays, because it facilitates multi-dimensional
arrays of irregular shapes. In contrast to Java, C# in addition supports rectangular arrays, in which all rows
are of equal lengths. We have already discussed jagged and rectangular arrays in our comparison with C in
Section 6.4.

Virtual methods relate to redefinition of methods in class hierarchies (inheritance). In Java all methods are
virtual. What this means (for C#) is explained in details in Section 28.14. In C# it is possible to have both
virtual and non-virtual methods. This complicates the understanding of inheritance quite a bit. There are,
however, good reasons to support both. In Section 32.9 we will review a prominent example where the
uniform use of virtual methods in Java runs into trouble.

 57

8. C# in relation to Visual Basic

This chapter is intended for students who have a background in imperative Visual Basic programming. The
goal of this chapter is to make the transfer from Visual Basic to C# as easy as possible. We do that by
showing and discussing a number of equivalent Visual Basic and C# programs. In this chapter Visual Basic
programs are shown on a blue background, and C# programs are shown on a green background. The
discussion of equivalent Visual Basic and C# program is textually organized in between the two programs.

In this chapter 'Visual Basic' refers to the version of Visual Basic supported by the .Net Framework version
2.0.

In this edition the comparison of Visual Basic and C# is only available in the web version of the material.

 58

 59

9. C# Tools and IDEs

Many potential C# programmers will be curious about tools and environments (IDEs) for C# programming.
Therefore we will, briefly, enumerate the most obvious possibilities. We will mention possibilities in both
Windows and Unix.

9.1. C# Tools on Windows
Lecture 2 - slide 41

Windows is the primary platform of C#. This is due to the fact that C# is a Microsoft language.

Microsoft supplies several different set of tools that support the C# programmer:

 • .NET Framework SDK 3.5
• "Software Development Kit"
• Command line tools, such as the C# compiler csc

• Visual C# Express
• IDE - An Integrated Development Environment
• A C# specialized, free version of Microsoft Visual Studio 2008

• Visual Studio
• IDE - An Integrated Development Environment
• The professional, commercial development environment for C# and other programming

languages

The .Net Standard Development Kit (SDK) supports the raw tools, including a traditional C# compiler.
Although many programmers today use contemporary IDEs such as Visual Studio or Eclipse, I find it
important that all programmers understand the basic and underlying activation of the compiler.

The Visual C# Express edition is a free (gratis) variant of Visual Studio, explicitly targeted at students and
other newcomers to C#. There are video resources [cs-video-resources] available for getting started with C#
2008 Express. The experience you get with Visual C# Express can immediately be transferred to Visual
studio. The two IDEs are very similar.

Visual Studio is the commercial flagship environment of C# programming. You will have to buy Visual
Studio if you want to use it. Notice, however, that many universities have an academic alliance with
Microsoft that provides access to Visual Studio and other Microsoft software.

9.2. C# Tools on Unix
Lecture 2 - slide 42

The MONO project provides tools for C# development on Linux, Solaris, Mac OS X, Unix in general, and
interesting enough also on Windows. MONO is the choice if you swear to the Linux platform.

Let us summarize the MONO resources, available to the Linux people:

 60

 • MONO
• An open source project (sponsored by Novell)
• Corresponds the the Microsoft SDK
• Based on ECMA specifications of C# and the Common Language Infrastructure (CLI)

Virtual Machine
• Command line tools
• Compilers: mcs (C# 1.5) and gmcs (C# 2.0)

• MONO on cs.aau.dk
• Mono is already installed on the application servers at cs.aau.dk

• MONO on your own Linux machine
• You can install MONO yourself if you wish

• MonoDevelop
• A GNOME IDE for C#

For good reasons, the MONO CLI is not as updated as the .NET solutions. MONO will most probably
always be at least one step behind Microsoft.

9.3. References

[Cs-video-resources] C# Express Video Lectures
http://msdn.microsoft.com/en-us/beginner/bb964631.aspx

