13. Reference Types

Objects are accessed via references. When we ereaflgject - by class instantiation - we obtaiefanence
to the new object. If we send a message to thecbibjis done via the reference. If the objectasged as
parameter it is done via the reference. And wherothject is returned from a method it is the refeesto
the object which is returned. We sometimes usevtire reference semantics for all of this. Reference
semantics should be seen as a contrast to valueniem Value semantics is discussed in Chapter 14.

13.1. Reference Types

Lecture 4 - slide 2

A class is aeference type
Objects instantiated from classes are accesseefdngnces
The objects are allocated tre heap

Instances of classes are dealt with by use of bedaaference semantics

Although we state that references (in C# and simalaguages) correspond to pointers in C, we shioald
little careful to equivalize these. In the ordingsgfe part) of C# there is no such thing as refare
arithmetic, along the lines of pointer arithmeticd. There is no address operator, and there is no
dereferencing. (In an unsafe part of C# it is gaedio work with pointers like in C, but we will hoare
about this part of the C#). References are autcalbtidereferenced, when it is appropriate to ddfsois a
reference, the expressiop is used to access the property the object referenced by But the
expressions andr->p are both illegal.

+ Reference semantics:
« Assignment, parameter passing, aatdur n manipulateseferences to objects
« The heap:
« The memory area where instances of classes aoatdtb
« Allocation takes place when a class is instantiated
« Deallocation takes place when the object no loadfects the program
» In practice, when there are no references letiéaobject
« By a separate thread of control called the garlafiector

13.2. lllustration of variables of reference types

Lecture 4 - slide 3

Let us now illustrate how assignments work on egfees. The situation shown in Figure 13.1 depis t
variablesp1 andp2 just before we execute the assignment p2 . The situation in the figure is established
by line 1 and 2 of Program 13.1. Notice that thealdes each contain a reference tiat object. The
variables do not contain the object themselvesinstad references to the points.

97

0,2

=

(
p2 —AD@U. 4@

Figure 13.1 Variables of reference types. The situation before the assignment pl
= p2.

Point p1 = new Point(1.0, 2.0),
p2 = new Point(3.0, 4.0);

pl=p2;

Program 13.1 The variables pl and p2 refer to two
points.

Following the assignmeiptL =p2 in line 3 of Program 13.1 bogl1 andp2 reference the sanmint object.
Thus, the situation is as depicted in Figure 1Bt#2Point (1.0, 2.0) is now inaccessible (unless referenced
from other variables) and the point will disappaatomatically upon the next turn of the garbagéectir.

p1 [@0. z@
i
p2 —Ab-@ﬂ. 4.0)

Figure 13.2 Variables of reference types. The situation after the assignment pl =
p2.

With the knowledge from this section you are enagad to review the discussion of Program 12.1 in
Section 12.2.

13.3. Overview of reference types in C#

Lecture 4 - slide 4
Classes are reference types in C#, but there haeesoas well

It is reasonable to ask which types in C# act Bseace types, and which do not. Below we list the
reference types in C#:

98

« Classes

« Strings

« Arrays
e Interfaces

- Similar to classes. Contain no data. Have onlyaignes of methods
« Delegates

« Delegate objects can contain one or more methods

« Used when we deal with methods as data

We encounter interfaces in Chapter 31. Interfapedycontain references, and variables of intetfgues
behave in the same way as in the example showaedtios 13.2.

A delegate is a new type, the values of which acessed as references. We introduce delegatesajpteth
22.

Both strings and arrays are well-known, and weuasgl to accessing these via pointers in C. In &#well
- arrays and strings are accessed via references.

13.4. Comparing and copying objects via references

Lecture 4 - slide 5

There are several questions that can be asked etsmiaring and copying objects that are accessed by
references. We list some below, and we will atteto@inswer the questions in the remaining parthisf
section.

Do we compare references or the referenced objects?
Do we copy the reference or the referenced object?

How deep do we copy objects that reference other objects?

Let us assume, like in Program 13.1, thiatindp2 are references ®oint s, where the typeoint is defined
by a class. Then the expresspn== p2 returns ifp1 andp2 reference the same point. Thatandp2
reference the same point means that the two indadgects are created by the same activatiorw(f..)

In many context, we say thgt andp2 areidentical. (Identical objects and object identity is disadsm
Section 11.14). Relative to Figure 13.1 the valugie=p2 is false. Relative to Figure 13.2 the valuenf
==p2 istrue. The expressign ==p2 compares the locations (addresses) to which ppb2amdfer. The
expression does nobmpare the instance variables of the pointsnedeto byp1 andp2.

In the same way, the assignment p2 manipulates only the references. We have alreaely that in
Section 13.2. The assignment=p2 does not, in any way, copy the object referengegkb

Above, we have explainedference comparison and assignment. It makes sense to hasteallow anddeep
variations of these. This can be summarized agvisst!

99

« Comparing
» Reference comparison

- Compares if two references refers to objects ciodayehe same execution of
new

« Shallow and deep comparison
« Pair-wise comparison of fields - at varying levels
« Copying:
- Reference copying
« Shallow or deep copying
« Is also known asloning
« Somehow supported by the methagdber wi sed one in Syst em oj ect

Even in the case whepe == p2 is false (i.e.p1 andp2 are not identical) it makes sense to claim phat
andp2 are equal in some sense. It may, for instancthdease that all instance variables are pair-adgsgl.
But what does it mean for the instance variabldsetpair-wise equal? In case the instance variakes
references we are back to the original questioth vacan therefore apply recursion in our reasoabaut
equality. We talk abowghallow equality if we apply (fall back to) reference equality la¢ tsecond level. If
we do not apply reference equality at any levetalle aboutdeep equality. If p1 andp2 are deep equal the
graph structures they reference are structuraticir{isomorphic).

If p1 and p2 are reference equal they are alsdoshaljual. And if p1 and p2 are shallow equal tasyalso
deep equal. The inverse propositions are not naclssue, of course.

If you got the idea of the different kinds of comipan, you can immediately use this insight foryiog as
well. Let us describe this very briefly. The assigmtpl =p2 just copies one reference. We may ask for a
shallow copy op2 by copying value fields and by assigning corresiiumreference fields to each other.
And we may ask for a deep copy by not using referempying at any level. (This is not exactly tiudbere

is more than one reference to a given object spleansider!)

In case you need shallow or deep copying you shangigram such operations yourself. In general puesri
kinds of copying depend deeply on the type of thiea. C# supports a shallow clone operation, but y
must explicitly ‘enable it'. How this is done isclissed in Section 32.7.

An assignment of the forrar = obj 1 copies a reference

A comparison of the formabj 1 == obj 2 compares references (unless overloaded)

13.5. Equality in C#

Lecture 4 - slide 6

In this section we review the different equalityecgitions in C#. All methods mentioned in this secti
belong the classbject , see Section 28.3. We only care about referernmstin this section, because the
enclosing chapter is about reference types. Egualitong 'objects’ that belong to value types iditiarent
story.

100

e o0l Equals(02) -equality
- By default, true i1 ando2 are created by execution of the samme
« Can be redefined in a particular class
* (bject.ReferenceEqual s(01, 02) -identity
« True if botho1 ando2 arenull , or if they are created by execution of the same
- Static - cannot be redefined.
j ect. Equal s(0l, 02)
e True if j ect . Ref er enceEqual s(o0l1, 02), or if ol. Equal s(02)
e 01 == 02
« True if botho1l ando2 are null, or if they are created by executionhef sameew
« An overloadable operator

g

Notice that in case we need a type-dependent casopare redefine thequals (in the first item above).
Equals is typically redefined if we wish to implement alwe-like comparison of two objects, as opposed to
the default reference comparison. (In a valuedidmparison we compare pairs of fields from the two
objects). It is not easy to redefigguals correctly. We discuss how it should be done iniSe@8.16.

ReferenceEquals IS a static method. It must therefore be activatethe form

Object.ReferenceEquals(ol, 02) . If you, for some reason, redefine theoperator as well as theguals
instance method - both of which per default areregfce equality operations - the sta&tierenceEquals
comes in handy if you need to compare referencebjexts. Alternatively, you will have to cast asfe
operands to typebject before you use-=.

The staticequals method is primarily justified because it allowsar both of the parameters or o2 to be
null. In the non-stati€quals methods, it will cause an exceptiornifis null. Notice that redefinition of the
Equals instance method affects the statwals method.

In C# it is allowed to overload the operator. Typicallyz= is overloaded to obtain some kind of shallow
comparison, see Section 13.4. If tkeoperator is overloaded you should also redefie&dbals method,
such thabl ==02 andol.Equals(c2) have the same value (whenewelis notnull).

It is worth pointing out that the meaningaaf==02 is resolved staticially, because operator oveitaad
(see Chapter 21) is a static issue in C#. In cefiraEquals(o2) is resolved dynamically, because the
instance methodquals is a virtual method (see Section 28.14) in ctagect . This affects both flexibility
(whereequals is the winner) and efficiency (whete is the winner). Exercise 4.1 is related to theses
observations.

It is worthwhile and recommended to read about gua the C# documentation &quals in theSystem
namespace. Let us also point out that there existaiple of interfaces that involve equality, ndistctly
IEquality (See Section 42.9), but indirectly alsanparable (See Section 42.8).

Redefinition of equality operators and methods: Recommendations. FOCUS BOX 13.1

As above, we assume that we deal with referenestypyou do not redefine tieguals instance method
nor the== operator, both of them denote reference equality.

If it is natural and important that equality between objects of your class shaelidon the data contents

101

(instance variables) of your class, rather tharrefierenced locations of the involved objects, gbauld
redefine theequals instance method. Follow the guidelines in Sec#B8ri6. As part of this, remember th
equality should beeflexive (x.Equals(x)), Symmetric (x.Equals(y) implies that.Equals(x)), and
transitive (x.Equals(y) ~ andy.Equals(z) implies thaik.Equals(z)).

In general, you are not recommended to overloatkfiee) the== operator. Most programmers with a C
background will be surprisedyf==y (for references or pointers) does not comparedfezences im and
y. If you overload th&quals instance method, you most likely do madnt to touch the= operator. Thus,
== will remain as the reference equality operator.

If - against these recommendations - you overlbad-{ operator, you should make sure that the meani
(semantics) of= andequals are the same. This can, for instance, be obtdipéchplementingequals by
means of=.

It would betremendously confusing to have two different meaningsef andequals , both of which differ
from the meaning OReferenceEquals

at

g

Exercise 4.1. Equality of value types and reference types
Take a close look at the following program whicksithe== operator on integers.

using System;
class WorderingAboutEquality{
public static void Main(){
inti=>5,
i=5

objectm =5,
n=>5;

Console.WriteLine(i == j);
Console.WriteLine(m == n);
}
}

Predict the result of the program. Compile andthaenprogram, and explain the results. Were your
predictions correct?

102

14. Value Types

Values - in value types - are not accessed viagrnfes. In the safe part of C# it is not possibladcess
such values via references. Variables of valuestgatain their values (and not references to tlaires).
This implies that values are allocated onritethod stack, and the creation and deletion of such values are
easier for the programmer to deal with than objenttheheap.

The numeric types, char, boolean and enumeratjpestgire value types in C#. In addition, structssahee
types in C#. (The numeric typesar , andboolean are - in fact - defined as structs in C#).

We will normally use the wordobject” with the meaningitfhstance of a class'. With this meaning, objects
are accessed by references. But in some sensesvalvalue types) are also objects in C#. Botheva
types and reference types inherit from the ofagsct . Thus, clas®bject is the common superclass of both
reference types and value types. See Section @atlitional clarification of this issue.

In order to avoid unnecessary confusion, we wilhless stated explicitly - devote the word "objeot"
instances of classes.

14.1. Value types

Lecture 4 - slide 8

In this section we introduce the tewual ue semantics.

A variable of value type contains its value
The values are allocated the method stack or within objects on the heap
Variables of value types are dealt with by useoetalledval ue semantics

Use of value types simplifies the management oftdh@d data

« Value semantics
« Assignment, call-by-value parameter passing,raadr n copy entire values
e The method stack
« The memory area where short-lived data is allocated
« Parameters and local variables
« Allocation takes place when an operation, suchrasthod, is called
- Deallocation takes place when the operation returns

Data on the method stack corresponds to variabble®image class auto in C programming.

14.2. lllustration of variables of value types

Lecture 4 - slide 9

103

Assume that the type Point is a value type

We will now demonstrate how value semantics wonkslation to assignments.

We will assume that the typint is a value type. In C# it will be programmed asract. We shovroint
defined as a struct in Section 14.3.

In Figure 14.1 we show two variables, andp2, that contairpoint values. The situation in Figure 14.1 can,
for instance, be established by the initializeoamted with the declarationsmf andp2 in Program 14.1 .
The assignmentL = p2 , also shown in Program 14.1, establishes thettuan Figure 14.2.

pl @o. z@
p2 @o. 4@

Figure 14.1 Variables of value types. The situation before the assignment pl =
p2.
Point p1 = new Point(1.0, 2.0),
p2 = new Point(3.0, 4.0);

pl=p2;

Program 14.1 Thevariables pl and p2 refer to two
points.

pl @o. 4@
p2 @o. 4@

Figure 14.2 Variables of value types. The situation after the assignment pl = p2.

The thing to notice is that the assignment p2 copies the value containedga into the variable1. The
coping process can be implemented as a bitwise, eoylytherefore it is relatively efficient.

The equality operatagrl ==p2 compares the valuespm andp2 (bitwise comparison). Let us also observe
thatpl.Equals(p2) has the same boolean valueas=p2 when the type of1 andp2 is a value type.

The observations about assignments from abovelsarba used directly on call-by-value parametesipas
Call-by-value parameter passing is - in realitgsignment of the actual parameter value to the
corresponding formal parameter.

104

As a contrast to the description of value assigrimease see Section 13.2 where we showed whpehap
if p1 andp2 are declared as classes (of reference typesceNibiaipl = p2 , in casel andp2 contain
references, is likely to be even more efficiennttize value assignment discussed above.

14.3. Structs in C#

Lecture 4 - slide 10

In this section we will study two C# types, whicle wrogram as structs. The two types become vapesty
The first,Point , is already well-known. See Program 11.2. Therpthwed , is also one of our recurring
examples. In Program 12.7 we programroed as a class.

In Program 14.2 we show a simplent struct. In this version the data representatiqriigate. Notice also
the constructor. The constructor is used to inmigah new point. In addition there are three mesisaax
GetY, andMove. When we learn more about C# we will most likefggramGetX andGety as properties, see
Section 18.1. We may also chose to progkane in a functional style, such that the straeiht becomes
immutable. Immutable types are discussed in Sedton.

Like in classes, it is always recommended thatgrmgram one or more constructors in a struct.nhcabe
a parameterless constructor, however. See Sedtidrfdr details on structure initialization.

The usage of struebint has already been illustrated above, see Programri&ection 14.2.

using System;

public struct Point{
private double X, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double Getx (){
return x;

}

public double Gety (){
return y;

}

public void Move(double dx, double dy){
X +=dx; y +=dy;
}

public override string ToString(){
return "Point: "+ "("+ X+ "y +)+
}
}

Program 14.2 Struct Point.

In Program 14.3 we show the straetd . StructCard represents a playing card. It uses enumeratiastyp
for card suites and card values. The playing casddmivate fields in line 11 and 12, as we will @sip The
struct is well-equipped with constructors for flehe initialization of new playing cards. The methmgbr
calculates a card color from its suite and vallee fnethod returns a value of the pre-existing type

105

System.Drawing.Color . Interesting enough in this contegystem.Drawing.Color is also a struct. We use
the fully qualified name of clas®lor in the namespac®stem.Drawing in order not to get a conflict with
theColor member in struatard .

Finally, the usuatostring (overridden from classbject) allows us to print playing cards. This is, of
course, very convenient when we write small progrémat uses structard .

using System;

public enum CardSuite:byte
{Spades, Hearts, Clubs, Diamonds };

public enum CardValue: byte
{Ace=1, Two =2, Three =3, Four=4, F ive =5,
Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten =10,
Jack = 11, Queen = 12, King = 13};

public struct Card{
private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public Card(CardSuite suite, int value){
this.suite = suite;
this.value = (CardValue)value;

}

public CardSuite Suite(){
return this.suite;

}

public CardValue Value (){
return this.value;

}

public System.Drawing.Color Color (){
System.Drawing.Color result;

if (suite == CardSuite.Spades || suite == CardSu ite.Clubs)
result = System.Drawing.Color.Black;
else

result = System.Drawing.Color.Red;
return result;

}
public override String ToString(){
return String.Format("Suite:{0}, Value:{1}, Col or:{2}",
suite, value, Color(). ToSt ring());
}

Program 14.3 Struct Card.

A simple client ofcard , which declares and constructs three playing ¢éasddown in Program 14.4. The
card inc1 is copied ta4. Finally, all cards are printed withriteLine , which internally uses the
programmedosString method in structard .

106

using System;
public class PlayingCardClient{

public static void Main(){
Card cl1 = new Card(CardSuite.Spades, CardValue. King),
c2 = new Card(CardSuite.Hearts, 1),
¢3 = new Card(CardSuite.Diamonds, 13),
c4;

c4 =cl; // Copies cl into c4

Console.WriteLine(c1);
Console.WriteLine(c2);
Console.WriteLine(c3);
Console.WriteLine(c4);

Program 14.4 A client of struct Card.

Structs are typically used for aggregation and pswation ofa few values, which we want to
treat as a value itself, and for which we wishpplg value semantics

In thesystem namespace, the typbst eTi me andTi neSpan are programmed as structs

Very large structs, which encapsulates many datalbmes, are not often seen. It is most attractivess®
structs for small bundles of data, because staretgopied back and forth when we operate on them.

It is instructive to study the interfacessyktem.DateTime andSystem.TimeSpan , which both are
programmed as structs in the C# standard library.

14.4. Structs and Initialization

Lecture 4 - slide 11

There are some peculiar rules about initializatibstruct values, at least if compared to initiafian of
class instances. We will review these peculiaritiethis section.

Program 14.5 shows that initializers, such=a&s''and = 6.6 ' cannot be used with structs. The designers of
C# insist that the default value of a struct iddp®ble, as formed by the default values of tipesyof the
instance variables andb.

/* Right, Wong?*
using System;

/1l Error:
/1l Cannot have instance field initializers in structs.
public struct StructOne{
int a = 5;
double b = 6. 6;
}

/] OK:
/'l Fields in structs are initialized to default val ues.
public struct Struct Two{

107

int a;
doubl e b;
}

Program 14.5 Fieldsin structs cannot have initializers.

Program 14.6 shows that we cannot program paral@steronstructors in a struct. This would overwttit
preexisting default constructor, which initializafields to their default values. The designdr€# wish to
control the default constructor of structs. Theadéifconstructor of a struct therefore always afites

instance variables to their default values. Our gtimct constructors should all have at least @marpeter.

/* Right, Wong?*
using System;

/'l Error:
/1 Structs cannot contain explicit paraneterless constructors.
public struct Struct Three{

int a;

doubl e b;

public StructThree(){
a = 1;
b = 2.
}

2,

}

I oK
/1 We can program a constructor with paraneters.
/1 The inplicit paraneterless constructor is still avail able.
public struct StructFour{
int a;
doubl e b;

public StructFour(int a, double b){
this.a = a;
this.b b;

}

}

Program 14.6 An explicit parameterless constructor is not
allowed.

14.5. Structs versus classes

Lecture 4 - slide 12

In order to summarize structs in relation to classe provide the following comparison:

Classes Structs

Reference type Value type

Used with dynamic instantiation Used with static instantiation

Ancestors of classbject Ancestors of classbject

Can be extended by inheritance Cannot be extended by inheritance

Can implement one or more interfa Can implement one or more interfaces
Can initialize fields with initializers Cannot initialize fields with initializers
Can have a parameterless construc Cannot have a parameterless constructor

108

14.6. Examples of mutable structs in C#

Lecture 4 - slide 13

Structs are often used for immutable objects. (Mexeise 'object’ in a loose sense, covering batletst
values and class instances). An object is immutliestate cannot be changed once the objecbéas
initialized. Recall that strings in C# are immubl

We start by studying mutable structs, and herebgeek motivation for dealing with immutable structs

Please take a new look at streeint in Program 14.2 from Section 14.3. In particulacus your attention
on theMove method. A call such gsMove(7.0, 8.0) will change the state of poipt We say that the point
p has been mutated.

In Program 14.7, which is a client of streeint from Program 14.2, the poipt is moved twice. The
program output in Listing 14.8 (only on web) iseagpected.

using System;

public class Application{

public static void Main(){
Point p1 = new Point(1.0, 2.0);

pl.Move(3.0, 4.0); // p1 has moved to (4.0, 6.0)
pl.Move(5.0, 6.0); // p1 has moved to (9.0, 12.0)

Console.WriteLine("{0}", p1);
}

}

Program 14.7 Moving a point by mutation.

The struct in Program 14.9 is similar to Progran?1Zhe difference is thatove in Program 14.9 returns a
point, namely the current point, denoted bys. But - as shown in Program 14.10 this causes kesub
some situations. Following the program we will eplthe reason.

using System;

public struct Point {
private double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double Getx (){
return x;

}

public double Gety (){
return y;

}

public Poi nt Move(double dx, double dy){
X +=dx; y += dy;

109

return this; /lreturns a copy of the current object

}

public override string ToString(){
return "Point: "+ "("+ x +"," +y +")" + "

}
}
Program 14.9 The struct Point - mutable, where move returns a
Point.
In Program 14.10 the expressignMove(3.0, 4.0).Move(5.0, 6.0) is parsed ag1.Move(3.0,
4.0)).Move(5.0, 6.0) due the left associativity of the dot operatorp$ds first moved by 3.0 and 4.0 to

(4, 6).move returnsa new copy of the point (4, 6). (This observation is importaif)is new copy of the
point is an anonymous point, because it it is ot&ned in any variable. The anonymous pointésth
moved to (9.0, 12.0). In line 9 of Program 14.10p#iat p1, which - as argued - is located at (4, 6). The
program output shown in Listing 14.11 confirms observations.

using System;
public class Application{

public static void Main(){
Point p1 = new Point(1.0, 2.0);

pl. Move(3.0, 4.0).Mve(5.0, 6.0);
Console.WriteLine("{0}", p1); // Where is pl located?

}
}

Program 14.10 Application the struct Point - Cascaded
moving.
Point: (4,6).

Listing 14.11 Output from the application.

The state of affairs in Program 14.10 is not satisfry. We have mixed imperative and functional
programming in an unfortunate way. In the followsegtion we will make another versionnaive that
works as expected when used in the cascading masudr as in the expressignMove(3.0,

4.0).Move(5.0, 6.0) . The new version will be programmed in a functiomay, and it will illustrate use of
immutable structs.

14.7. Examples of immutable structs in C#

Lecture 4 - slide 14

As an alternative tolove in Program 14.9 we can programve in such a way that an expression like
p.Move(7.0, 8.0) returns a new point, different from the poinpirThe new point is displaced 7.0 in the x
direction and 8.0 in the y direction relative te toint inp. The state of is not changed biylove. We
typically want to get hold on the new point in asignment, such as in

g = p-Move(7.0, 8.0);

110

Program 14.12 shows yet another version of streigt , in whichMove constructs and returns a new point.
In this versiorpoint is immutable. Once constructed we never changedbrdinates of a point. This is
signalled by making the instance variablendy readonly, see line 4.

Notice the difference betweefve in Program 14.12 andove in Program 14.9.

using System;

public struct Point {
private readonl y double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double Getx (}{
return x;

}

public double Gety (¥
return y;

}

public Point Myve(double dx, double dy){
return new Point (x+dx, y+dy);

}
public override string ToString(){
return "Point: " +"(" +x + """ +y +")" + "
}
}

Program 14.12 The struct Point - immutable.

In Program 14.13 we show the counterpart to Prodrért0 and Program 14.7.
The expressiopl.Move(3.0, 4.0).Move(5.0, 6.0) now does the following:

1. pl.Move(3.0, 4.0) returns a copy of the point jn. The copy is located in (4,6).
2. The pointin (4,6) is moved to (9,12) by the secoallitoMove. This creates yet another point.

The 'yet another point' is finally copied into treriablep2.

using System;
public class Application{
public static void Main(){
Point p1 = new Point(1.0, 2.0),
p2;
p2 = pl. Move(3.0, 4.0).Mve(5.0, 6.0);

Console.WriteLine("{0} {1}", p1, p2);
}

Program 14.13 Application the struct Point - immutable.

111

As shown in Listing 14.14 the original pointgn is not altered. The point, which finally is copiedb p2, is
located as expected.

Point: (1,2). Point: (9,12).
Listing 14.14 Output from the application.

There is a misfit between mutable datatypes anaigalue semantics

It is recommended to use structs in C# togethdr avilunctional programming style

The deep insight of all this is that we shouldvstifior a functional programming style when we deisth
structs. Structs are born to obey value semarithis.does not fit with the 'imperative point mutetiidea,
as exemplified in Program 14.9 and Program 14.5e. the style in Program 14.12 and Program 14.13
instead.

In this and the previous section | have benefitethfSestoft's and Hansen's explanations and exarfipla
the bookC# Precisely.

Exercise 4.2. Are playing cards and dice immutable?

Evaluate and discuss the classesandcard with respect to mutability. (If you access thigeise from
the web edition there are direct links to the ratéwersions of clagsie and clasgard).

Make sure that you understand what mutability mealadive to the concrete code. Explain it to your
fellow programmers!

More specific, can you argue for or against theéxckhat aDie instance/value should be mutable?
And similarly, can you argue for or against theroléhat acard instance/value should be mutable?

Why is it natural to use structs for immutable abjeand classes for mutable objects? Please coypare
findings with the remarks in ‘the solution' whersiteleased.

14.8. Boxing and Unboxing

Lecture 4 - slide 15

C# has a uniform type system in the sense that\@ties types and reference types are compatible.
Conceptually, the compatibility is ensured by thet that both value types and reference typeseaieed
from the clas®bject . See Section 28.2. Operationally, the compatjbiditensured by the boxing of value
types. This will be the theme in this section.

Boxing involves a wrapping of a value in an object of ¢thessobj ect

Unboxing involves an unwrapping of a value from an object

112

- Boxing

» Done as ammplicit type conversion

« Involves allocation of a new object on the heap @aling of the value into that object
« Unboxing

« Doneexplicitly via a type cast

« Involves extraction of the value of a box

Boxing takes place when a simple value or a stsusbund to a variable or a parameter of refer¢yppe.
This is, for instance, the case if an integer vaduygassed to a parameter of typgect in a method.

When a value is boxed it is embedded in an objet¢he heap, together with information about thetgp
the value. If the boxed value (an object) is unloxean therefore be checked if the unboxing malesse.

In Program 14.15 we first illustrate boxing of ateigeri and a boolean in line 8 and 9. The boxing is
done implicitly. Next follows unboxing of the aledyaboxed values in line 11 and 12. Unboxing must be
done explicitly. Unboxing is accomplished by cabtsth in the assignmentsjtandc, respectively, and in
the context of the arithmetic and logical expressid.ine 14 and 15 illustrate attempts to do unfgxi
without casts. This is illegal, and the compilerdf out.

We are able to print both objects and values irfitted writeLine of Program 14.15. This is because the
methodTosString uses the type information of a boxed value to jgi®¥or natural generation of a printable
string.

using System;
public class BoxingTest{
public static void Main(){
inti=15, |, k;

bool b = false, c, d;

bject obj1 =1, /1l boxing of the value of i
obj2 = b; /1 boxing of the value of b
j (int) obj1; /| unboxi ng obj 1

C (bool) obj 2; /'l unboxi ng obj 2

/I k =i+ objl; // Compilation error
/I d =b && obj2; /I Compilation error

k=i+ (int)obj1;
d=b&& (bool) obj 2;
Console.WriteLine("{0}, {1}, {2}, {3}, {4}, {5} , {6}, {7},
i, obj1, b, obj2, j, c, k, d) :
}
}

Program 14.15 A programthat illustrates boxing and
unboxing.

The output of the program is shown in Listing 14.16

113

15, 15, False, False, 15, False, 30, False

Listing 14.16 Output of the boxing and unboxing
program.

14.9. Nullable types

Lecture 4 - slide 16

A variable of reference typan be null
A variable of value typeannot be null

A variable ofnullable value type can be null

Nullable types provide a solution to the followidgsire:

All values of a value type (such asnt) 'are in use'. In some programs we wish to have a
distinguished value in which stands for 'no value'.

When we use reference types we use the distingliisite value for such purposes. However, when we
program with value types this is not possible. Efme the concept afullable types has been invented. It
allows a variable of a value type to have the iftigtishedyull value.

Before we see how nullable types are expressed weCwill take a look at a motivating example,
programmed without use of nullable types. Thedelails of the example are available in the welsieerof
the material. In Program 14.17 (only on web) wegpaim a simple integer sequence class, which reqiese
an ordered sequence of integer values. We prokideyipe withmin andmax operations. The problem is
which value to return fromiin andmax in case the sequence is empty. In Program 14.Ifétwen -1, but
this is a bad solution because -1 may very wethkeeninimum or the maximum number in the sequence.
Please make sure that you understand the probl&mogram 14.17 before you proceed.

In Program 14.18 we show another version of alassquence . In this solution, the methodsn andmax
return a value of typent 2. i nt ? means a nullable integer type. Thus, the valtle is a legal value innt 2.
This is exactly what we need becawse andMax are now able to signal that there is no minimunyimam
value in an empty sequence.

public class IntSequence {
private int[] sequence;

public IntSequence(par ans int[] elements){
sequence = new int[elements.Length];
for(inti = 0; i < elements.Length; i++){
sequence[i] = elementsi];

}

public int? Mn({
int theMinimum;
if (sequence.Length == 0)
return nul | ;
else {

114

theMinimum = sequence[0];
foreach(int e in sequence)
if (e < theMinimum)
theMinimum = e;

return theMinimum;

}

public i nt? Max({
int theMaximum;
if (sequence.Length == 0)
return nul | ;
else {
theMaximum = sequence[0];
foreach(int e in sequence)
if (e > theMaximum)
theMaximum = e;

return theMaximum;

}

/I Other useful sequence methods

}

Program 14.18 An integer sequence with Min and Max
operations - with int?.

In Program 14.19 we show an application of clasgquence , where we illustrate both empty and non-
empty sequences. Notice the use of the propreyalue in line 14. The propertyasvalue can be applied
on a value of a nullable type. The output of thegpam is shown in Listing 14.20 (only on web).

using System;
class IntSequenceClient{
public static void Main(){

IntSequence isl
i s2

new | nt Sequence(-5, -1, 7, -8, 13),
new | nt Sequence();

ReportMinMax(is1);
ReportMinMax(is2);
}

public static void ReportMinMax(IntSequence iseq)
if (i seq. M n().HasVal ue && iseq. Max() . HasVal ue)
Console.WriteLine("Min: {0}. Max: {1}",
iseg.Min(), iseq.Max());
else
Console.WriteLine("Int sequence is empty");

}

Program 14.19 A client of IntSequence.

Let us now summarize the important properties dable types in C#:

115

« Many operators arkfted such that they also are applicable on nullablegsyp
- An implicit conversion can take place frantot ?
« An explicit conversion (a cast) is needed frontot

The observations about implicit conversion fronoa-mullable type to its nullable type? is as expected.
A value in a narrow type can be converted to ae/aiua broader type. The other way around reqaines
explicit cast.

Only value types can be nullable. It is therefapegible to have nullable struct types. It is ordggible to
built a nullable type on a non-nullable type. There, the types 22, t 22?2, etc. are undefined in C#.

A nullable type 2 is itself a value type. It might be tempting tonsmler a value of t ? as a boxing o¥ (see
Section 14.8). This is, however, not a correctrpritation. A boxed value belongs to a referenpe.t
value int ? belongs to a value type.

The nullable type 2 is syntactic sugar for the typel | abl e<t > for some given value type Nul | abl e<t >
is a generic struct, which we discuss briefly ictitm 42.7.

The typepool ? has three valuetrue, false, andnull. The operator& and| have been lifted to deal with the
null value. In addition, conditional and iterative aohstructures allow control expressions of typel 2.
In these control structuresi| counts adalse.

Thenull-coalescing C# operator 22 is convenient when we work with nullable typese Bxpressior 22y
is a shortcut ofx I=null 2 x : y . The?? operator can be used to provide default valuesehbles of
nullable types. In the context of

int? i = null,
i=7

the expression?? 5 returns 5, but?? 5 returns 7. The? operator can also be used on reference types!

116

15. Organization of C# Programs

This chapter is of a different nature than the jmes chapters.

At this point you are supposed to be able to progsenple classes, like tlme class in Program 10.1, the
Point class in Program 11.2, and tekAccount class in Program 11.5. Eventually, it will be nesary to

care about how classes are organized in relatiea¢h other. We chose to cover C# program organizat

now. In case you are not motivated for these issumscan skip the chapter at this point in timet You are
advised to come back to it before you start writamge C# programs.

If you want to read more about the organizatio@#fprograms, you are recommended to study chater 1
of C# Language Specification [ECMA-334].

We show a lot of examples in this chapter. In tledwdition, all examples are present. In the paggion,
only the most fundamental examples appear. Thexefioyou want to understand all the details of thi
chapter, read the web edition.

15.1. Program Organization

Lecture 4 - slide 18

The structure and organization of a C# programadécally different from the structure and organizatof
both C programs and Java programs. Below we eng#hasime important observations about the
organization of C# programs.

e C# programs are organized in namespaces
« Namespace can contain types and - recursivelyer oilimespaces
« Namespaces (and classes) in relation to files:
« One of more namespaces in a single file
« A single namespace in several files
« Asingle class in several files - partial classes
« The mutual order of declarations is not significianC#.
» No declaration before use.
« When compiled, C# programs are organized in assesnbl
e .exeand. dl files

As noticed above, a single namespace can be sputa several source files. In Section 11.12 we=ha
also seen that a single class - callgrdial class - can be defined in two or more source files.

117

15.2. Examples of Program Organization

Lecture 4 - slide 19

In the majority of the small programs, which wegenet in this material, namespaces do not appe#ciéyp
Most of the programs we have shown until now is thaterial follow the pattern of Program 15.1.

/I The most simple organization
Il A class located directly in the gl obal nanespace
/I In source file ex.cs

using System;
public class C {

public static void Main(){
Console.WriteLine("The start of the program");

}
}

Program 15.1 A single class in the anonymous default
namespace.

In Program 15.1 the clasds a member of the (implicitly statedlobal name space. The compilation of the
program in Program 15.1 can be done as shown tmgi&5.2 (only on web).

Below, in Program 15.3 the namespagesndN2 are members of the global name spaeeontains a
nested namespace called N3.

You should use namespaces to group classes thahsenbelong together, either conceptually or adogrd
the architecture of the software you are creatifamespaces are also useful if you have identicaliyed
types (such as two classes with the same nameglibatd coexist. In that case, place the conflictypes in
different namespaces, and be sure to use the Edolamespaces with qualified access - "namespace
dotting". Use of several namespaces, suatias2, andNs in Program 15.3 is, in general, relevant only in
large programs with many types.

/I Several namespaces, including nested namespaces.
/I In source file ex.cs

namespace N1 {
public class C1{};

namespace N2 {
internal class C2{};
public class C3{};

namespace N3 {
public class C4{
C2v;
}
}
}

Program 15.3 Two namespaces and a nested namespace with
classes.

118

In Program 15.4 we show how to use the classges?, c3, andc4 from Program 15.3. Thasing directives
import the types of a namespace. Importing a naatespimplies that types in N can be used without
gualification. Thus, we can writeinstead of\.T. The threausing directives in line 15-17 of Program 15.4
open up the namespaces N2 andN2.N3. If the namespaces in Program 15.3 and the alass shown in
Program 15.4 are compiled to two different assesslll files) therc2 cannot be used in tiaient class.
The reason is that is internal in its assembly.

Il A client program
/I In source file client.cs

/*
Nanmespace N1
public class Cl
Nanmespace N2
internal class C2
public class C3
Nanmespace N3
public class C4
*/

using N1;

using N2;
using N2.N3;

public class Client{
Clv=new C1();

I/l The type or namespace name 'C2' could not be fou nd.
Il C2 w = new C2();
C3 x = new C3();
C4 'y = new C4();
}

Program 15.4 A client of classes in different namespaces.

If you avoid theusing directives, you are punished with the need toaue® of "namespace dotting". If you
wish to see the effect of this, please consult Rmgl5.5 (only on web)

The compilation of Program 15.3 together with Paogrl5.5 and Program 15.4 (only on web) is shown in
Listing 15.6 (only on web).

Nested namespaces can be given by textual neasrgfiown in Program 15.3 or in Program 15.7 (only o
web). Alternatively, it can be given as shown indg?am 15.8. In Program 15.8 the namespaieesdNs

are both member of the namespaceThus, the situation in Program 15.8 is identioghe situation shown
in Program 15.7 (only on web).

119

/I Equivalent to the previous program
/I No physical namespace nesting
/I In source file ex-equiv.cs

namespace N1.N2 {
public class C1{};
public class C2{};

}

namespace N1.N3 {
public class C3{}

Program 15.8 Equivalent program with nested namespaces -
no physical nesting.

The classes1, c2, andc3 of either Program 15.8 or Program 15.7 (only obWe&an be used inGlient

class, as shown in Program 15.9 (only on web).comepilation can be done as shown in Listing 15dk0y(
on web).

A namespace, such mso in Program 15.11 is open ended in the sensetilfitan be added tatro

from another source file. Both Program 15.11 arajfam 15.12 contribute to thharo namespace. Thus,
when the two source files are taken togetihen, contains the types B, andc. The use of the namespace
Intro is shown irClient class in Program 15.13 (only on web). In Listirtlgl¥ (only on web) we show
how to compile the two source fileiscs andf2.cs behind the namespac@o together.

/I f1.cs: First part of the namespace Intro
using System;
namespace Intro{

internal class A {

public void MethA (){
Console.WriteLine("This is MethA in class Int ro.A");
}
}

public class B {
private A var = new A();
public void MethB (){
Console.WriteLine("This is MethB in class Int ro.B");
Console.WriteLine("{0}", var);

}
}

}

Program 15.11 Part one of namespace Intro with the classes A
and B.

I/ f2.cs: Second part of the namespace Intro
using System;

namespace Intro{

120

public class C {
private A varl = new A();
private B var = new B();

public void MethC (){
Console.WriteLine("This is MethC in class Int ro.C");
Console.WriteLine("{0}", var);
Console.WriteLine("{0}", varl);

}
}
}

Program 15.12 Part two of namespace Intro with the
classC.

The problem reported in line 18 of Program 15.1i&@seon the compilation of the program to two diéfiet
assemblies, as shown in Listing 15.14. If bothithe namespace and tlagent class are compiled to a
single assembly there will be no error in line 18.

The compilations shown in Listing 15.14 illustr&i@v to compile the filetl.cs andf2.cs together. In
general, it is possible to compile a number of Gdree files together as though these source filre w
contained in a single large source file. This whgampilation is often an easy way to compile a benof
C# source files that depend on each other in @roulys. Alternatively, each file must be compiled
isolation and in a particular order, with use af idierence compiler option.

Notice also, from Listing 15.14, that you can cohthe name of the assembly via use ofdiite compiler
option.

15.3. Namespaces and Visibility

Lecture 4 - slide 20

In this section we summarize the visibility ruldgypes and namespaces, both of which can ocdatlirer)
namespaces.

« Types declared in a namespace
« Can either have public or internal access
« The default visibility is internal
« Internal visibility is relative to an assembly tr@onamespace
« Namespaces in namespaces
« There is no visibility attached to namespaces
« A namespace is implicitly public within its contaig namespace

You should pay attention to the default visibilititypes in namespaces. If you do not give a Jigjbi
modifier of a typer (a class, for instance) in a namesp@ceis internal inN. This may lead to surprises if
you in reality forgot to state thatshould have been public. We have already discusseth Section 11.16.

121

15.4. Namespaces and Assemblies

Lecture 4 - slide 21

« Namespaces
« The top-level construct in a compilation unit
« May contain types (such as classes) and nestedspaces
« ldentically named members of different namespaaasco-exist
« There is no coupling between classes/namespacesoantk files/directories
« Assemblies
« A packaging construct produced by the compiler
« Not a syntactic construct in C#
« A collection of compiled types - together with rasmes on which the types depend

« Versioning and security settings apply to asserablie

Thefile/directory organization, theamespace/class organization and thassembly
organization are relatively independent of eacleioth

15.5. References

[Ecma-334] "The C# Language Specification”, Jun@2ECMA-334.

122

16. Patterns and Techniques

Throughout this material we there will be chaptétsd "Patterns and Techniques". A number of such
chapters are oriented towards object-oriented dgsatterns. In Section 16.1 we therefore introdbee
general idea of design patterns, and in Sectio W6.specialize this to a discussion of objectriad
design patterns. In Section 16.3 we encounteritsieobject-oriented design pattern, the one called
Singleton. In Section 16.5 we discuss how to avoid leakingape information from a class.

16.1. Design Patterns

Lecture 4 - slide 23

Design patterns originate from the area of archite¢ and they were pioneered by the architectsBipher
Alexander.

The following is an attempt to give a very denseé eoncentrated definition of design patterns.

A pattern is a named nugggtinstructive information that captures the etis¢éstructure and

insight of a successful family of proven solutidasa recurring problerthat arises within a
certain_contexéind system of forcg8rad Appleton]

Each of the important, underlined words - and arfgave - are addressed below:

« Named: Eases communication about problems and solutions

« Nugget: Emphasizes the value of the pattern

« Recurring problem: A pattern is intended to solve a problem that $eiodeappear.
« Proven solution: The solution must be proven in a number of exjsirograms

« Nontrivial solution: We are not interested in collecting trivial andriolois solutions
« Context: The necessary conditions and situation for apglyve pattern

« Forces: Considerations and circumstances, often in muniadlict with each other

A set of design patterns serve as a catalogue lbpvoen solutions to (more or less) frequentlgaeing
problems. A design pattern has a name that ease&sthmunication among programmers. A design pattern
typically reflects a solution to a problem, whisnion-trivial and distanced from naive and obvisaisitions.

16.2. Object-oriented Design Patterns

Lecture 4 - slide 24

Object-oriented design patterns were introducetierbook Design Patterns - Elements of
Reusable Object-Oriented Software" by Gamma, Helm, Johnson and Vlissides.

Numerous books have been written about designrpattand other kinds of patterns as well). The book
mentioned above, [Gamma96], was the first and maigine, and it still has a particular status mdhrea. It

123

is often referred to as the GOF (Gang of Four) bdble patterns and pattern categories mentionexvbel
stem from the original book.

« Twenty three patterns categorized as
» Creational Patterns
« Abstract factory, Factory method, Singleton, ...
« Structural Patterns
» Adapter, Composite, Proxy, ...
- Behavioral Patterns
« Command, Iterator, Observer, ...

There are patterns in a variety of different araasl, at various levels of abstractions

16.3. The Singleton pattern

Lecture 4 - slide 25

The concrete contribution of this chapter is $gleton design pattern. As stated below, us&iofleton is
intended to ensure that a given class can be tinetizh at most once.

Problem: For some classes we wish to guaranteathabst one instance of the class can be
made.

Solution: The singleton design pattern

The idea ofSingleton is to remove the constructor from the client ifgee. This is done by making it private.
Instead of the constructor the class provides éigstatic method, callethstance in Program 16.1, which
controls the instantiation of the class. Insideltlhiance method the private constructor is available, of
course. The private, static variallequelnstance ~ keeps track of an existing instance (if it exislis)here
already exists an instance, the.ance method returns it. If notpstance creates an instance and assigns it
to the variableniquelnstance for future use. All this appears in Program 16.1.

public class Singleton{
/I Instance variables
private static Singleton uniquelnstance = null;
private Singleton(){

/I Initialization of instance variables

public static Singleton Instance(){
if (uniquelnstance == null)
uniquelnstance = new Singleton();

return uniquelnstance;

}
/I Methods

124

Program 16.1 Atemplate of a singleton class.

Let us program a singletane class. It is shown below in Program 16.2. We hakeady seen theie class
in Section 10.1 (Program 10.1) and Section 12.ddiam 12.5).

It should be easy to recognize the pattern frongiara 16.1 in Program 16.2.

using System;

public class Die {
private int numberOfEyes;
private Random randomNumberSupplier;
private int maxNumberOfEyes;

private static Di e uniquelnstance = null;

private Die (){

randomNumberSupplier = new Random(unchecked((in t)DateTime.Now.Ticks));
this.maxNumberOfEyes = 6;

Toss();

public static Die Instance(){
if (uniquelnstance == null)
uniquelnstance = new Die();

return uniguelnstance;

}

/I Die methods: Toss and others

Program 16.2 A singleton Die class.

Let us know bring the singletare class into action. It is done in Program 16.3stHiiotice that we cannot
just instantiate the singletane class. The compiler will complain. In Program 1%& attempt to make two
dice with use of thenstance method. In reality, the second callieftance returns the same die as
returned by the first call ofistance . Thus,d2 andd3 refer to the same object. The program first totses
die referred byi2 four times, and next it tosses the die referred3bfpve times. In realitythe same die is
tossed nine times. The output of the die tossiognam is shown in Listing 16.4 (only on web).

Recall our very first class example in Section 1hIProgram 10.2 the three differai¢ objects tossed in
identical ways. The reason is that they use theparsite - but identically seedeRandom objects. The
solution is to use a singlet&andom class, which ensures that at most a sirghelom object can exist. The
threeDie objects will share thrandom object. With this organization we solve the "plaiaiossing problem”.
Please consult Exercise 3.7 and its solution.

using System;

class diceApp {

public static void Main(){

/I Die dl = new Die(); // Compile-time error:
/I The type 'Die' has no constructors defined

125

Die d2
d3

Di e. I nstance(),
Di e. I nstance();

for(inti=1;i<5; i++){
Console.WriteLine(d2);
d2.Toss();

for(inti=5; i< 10; i++){
Console.WriteLine(d2);
d3.Toss();

/I Test for singleton:
if d2 == d3)

Console.WriteLine("d2 and d3 refer to same di e instance");
else
Console.WriteLine("d2 and d3 do NOT refer to same die instance");

}

}
Program 16.3 Application of the singleton Die class.

You may ask ifSingleton is important in everyday programming. How ofterma@mhave a class that only
can give rise to one object? The singleb@an shown above is not a very realistic usé&iofgleton.

Singleton is probably not the most frequently used pattBui.every now and then we encounter classes,
which it does not make sense to instantiate meltiphes. In these situations is it nice to know hlow
proceed. Us&ingleton instead of a homegrown ad hoc solution! Thereaddbtional details which can be
brought up in the context of Singleton, see [sitaylensdn].

16.4. Factory methods

Lecture 4 - slide 27

As we have seen in Chapter 12, instantiation afsela by use of programmed constructors is the prima
means for creation of new objects. In some sitnatibowever, direct use of constructors is notitflex
enough. In this section we will see how we can ng@d use of static methods as a supplementarysnean
for object creation. Such methods are cafléatbry methods.

We have already studied classnt several times, see Section 11.6 and Section itbe version of class
Point shown in Program 16.5 below we need constructarbdth polar and rectangular initialization of
points. Recall that rectangular represented pbiat® ordinary(x,y) coordinates and that polar represented
points haver,a) - radius and angle - coordinates. If we use twestractors for the initialization, both will
take two double parameters. In Program 16.5 welg@pextra enumeration parameter to the last
constructor, shown in line 16. This is an ugly solu

126

using System;
public class Point {

publ i ¢ enum Poi nt Representation {Pol ar, Rectangul ar}
private double r, a; /I polar data repr: radius, angle

/I Construct a point with polar coordinates
publ i c Point (double r, double a){

this.r =r;
this.a = a;
}
/I Construct a point, the representation of which d epends

/I on the third parameter.
public Point (doubl e parl, double par2, PointRepresentation pr){

if (pr == PointRepresentation. Pol ar) {
r = parl; a = par2;

el se {
r
a

}
}

private static double RadiusGivenXy(double x, dou ble y)}{
return Math.Sqrt(x * x +y *y);
}

private static double AngleGivenXy(double x, doub le y){
return Math.Atan2(y,x);

}

/I Remaining Point operations not shown

}

Radi usG venXy(par 1, par 2) ;
Angl eG venXy(par 1, par 2);

Program 16.5 A clumsy attempt with two overloaded
constructors.

In Program 16.6 we show another version, in whithdonstructor is private. From the outside, the tw
static factory methodgakePolarPoint andMakeRectangularPoint are used for construction of points.
Internally, these methods delegate their work éoptfivate constructor. This is a much more symmetri
solution than Program 16.5, and it allows us toehgeod names for the "constructors"” - or more ctigre

thefactory methods.

using System;
public class Point {
public enum PointRepresentation {Polar, Rectangul ar}

private double r, a; I/ polar data repr: radius, angle

/I Construct a point with polar coordinates
private Point(double r, double a){

this.r=r;

this.a = a;

}
public static Point MakePol ar Poi nt (doubl e r, double a){

127

return new Point(r,a);

}

public static Point MakeRect angul ar Poi nt (doubl e x, double y){
return new Poi nt (Radi usG venXy(x,Yy), Angl eG venXy(Xx,Y));

}

private static double RadiusGivenXy(double x, dou ble y)}{
return Math.Sqrt(x * x +y *y);

}

private static double AngleGivenXy(double x, doub le y){
return Math.Atan2(y,x);

}

/I Remaining Point operations not shown
}

Program 16.6 A better solution with static factory
methods.

In the web-edition of this material we present Aroexample of factory methods. This example isigiv
the context of thenterval struct, which we will encounter in Section 21.8eTconstructor problem of this
type is that structs do not allow parameterlessttoators. It is, however, natural for us to have a
parameterless constructor for an empty intervalgiam 16.7 (only on web) shows a clumsy solution, a
Program 16.8 (only on web) shows a more satistacolution that uses a factory method.

In Section 32.10 we come back to factory methond,ia particular to an object-oriented design patte
calledFactory Method, which relies on inheritance.

Chose a coding style in whidactory methods are consistently nameskke. . . (.. .)

128

16.5. Privacy Leaks

Lecture 4 - slide 29

The discussion in this section is inspired by tbekAbsolute Java by Walter Savitch. Privacy leaks is
normally not thought of as a design pattern.

Problem: A method can return part of its privatestwhich can be mutated outside the olject

To be concrete, let us look at the problem in cdreéProgram 16.9 and Program 16.10. We use ptieger
in this example. Properties will be introduced tma@ter 18. On the slide belonging to this exammestow
a version with methods instead. The cle@son represents the birth date asa@ object. In order to make
our points clear we provide a simple implementatibtheDate class in Program 16.9. In real-life
programming we would, of course, use C#'s exighungTime struct. You should notice that the property
DateOfBirth in line 17-19 of Program 16.10 returns a referdnce privateDate object, which represents
the person's birthday.

The client of clasgerson , shown in Program 16.11 mutates tha object referred by. The mutation of
theDate objects takes place in line 10. This object caromfthe birthday of person p. Is this at all

reasonable to do so, you may ask. | would answes™\if you have access to a mutatée object chances
are that you will forget were it came from, andrgvwelly you may be tempted to modify (mutate) it.

As shown in the output of the client program, istlrig 16.12, Hanne is now 180 years old. We have
managed to modify her age despite the fact thiadast is private in clag®erson .

As of now we leave it as an exercise to find gaaldt®ns to this problem, see Exercise 4.3.

public class Date{
private ushort year;
private byte month, day;

public Date(ushort year, byte month, byte day){
this.year = year; this.month = month; this.day = day;

public ushort Year{
get{return year;}
set {year = value;}
}

public byte Month{
get{return month;}
set {month = value;}
}

public byte Day{
get{return day;}
set {day = value;}
}

public override string ToString(){
return string.Format("{0}.{1}.{2}",day, month, year);
}
}

Program 16.9 A Mutable Date class.

129

public class Person{

private string name;
private Date dateCf Birth, dateOfDeath;

public Person (string name, Date dateOfBirth){
this.name = name;
this.dateOfBirth = dateOfBirth;
this.dateOfDeath = null;

}

public string Name{
get {return name;}
set {name = value;}

}

public Date DateOfBirth{
get{ return dateOfBirth;}

}

public ushort AgeAsOf(Date d){
return (ushort)(d.Year - dateOfBirth.Year);

}

public bool Alive(){
return dateOfDeath == null;

}

public override string ToString(){
return "Person: " + name + " " + dateOfBirth;

}
}
Program 16.10 A Person class that can return its private birth
Date.
using System;
class Client{
public static void Main(){
Person p = new Person("Hanne", new Date(1926, 1 2, 24));

Date d = p.DateO Birth;
d. Year -= 100;
Console.WriteLine("{0}", p):

Date today = new Date(2006,8,31);
Console.WriteLine("Age of Hanne as of {0}: {1}.
today, p.AgeAsOf(today));

Program 16.11 A client of the Person which modifies the
returned birth Date.

Person: Hanne 24.12. 1826
Age of Hanne as of 31.8.2006: 180.

Listing 16.12 The output of the Person client program.

130

Exercise 4.3. Privacy Leaks
The starting point of this exercise is the obseovetabouprivacy leaks on the accompanying slide.

Make sure that you understand the problem. Tesedhe program (together with its dependaston
class andbate class) on your own computer.

If you have not already done so, read the sectionitgprivacy leaks in the textbook!
Find a good solution to the problem, program it] &est your solution.

Discuss to which degre@mu will expect that this problem to occur in everygaggramming situations.

We return to th®ate andPerson classes in Section 20.4 and Section 20.5. In thes#ons we also
comment on the privacy leak problem.

16.6. References

[Gamma96] E. Gamma, R. Helm, R. Johnson and Jsidés Design Patterns. Elements of
Reusable Object-oriented Software. Addison Wesley, 1996.

[Singleton-msdn] MSDN: Implementing Singleton in C#
http://msdn.microsoft.com/en-us/library/ms99855@xas

131

132

