29. Method Combination

In this section we will primarily studsnethod combination. Secondarily we will touch on a more specialized,
related problem calleparameter variance.

29.1. Method Combination

Lecture 8 - slide 2

If two or more methods, of the same name, locaiféerent places in a class hierarchy, cooperatotoe
some problem we talk abowrethod combination.

A typical (and minimal) scene is outlined in Figa®1. Clas® is a subclass af, and in both classes there
is a method namedp. BothOp methods have the same signature.

A OD(S)
B OD(S){_:]

Figure 29.1 ClassBisa subclassof class A

Overall, and in general, there are several way®foin classa ands to cooperate. We can, for instance,
imagine that whenevermobject receives aBp message, both operations are called automati®&iycan
also imagine thaDp in classa is called explicitly byOp in classs, or the other way around.

Along the lines outlined above, we summarize twitedent method combination ideas. The first is kncag
imper ative method combination, and the second is known @l ar ative method combination.

« Programmatic (imperative) control of the combinatod Op methods
» Superclass controlled: TheOp method in class A controls the activatiorQgf in class B
« Subclass controlled: TheOp method in class B controls the activatiorQOpfin class A
« Imperative method combination
« An overall (declarative) pattern controls the muitt@peration amon@p methods
« A.Opdoesnotcall Op - BOp does not call p.
« A separate abstraction controls h@w methods in different classes are combined
« Declarative method combination

Mainstream object-oriented programming languagesuding C#, support imperative method combination.
Most of them support the variant that we call sagsicontrolled, imperative method combination.

Beta [Kristensen87] is an example of programmimgleage with superclass-controlled, imperative miétho
combination. CLOS [Steele90, Keene89] is one ofi¢heexamples of programming languages with
declarative method combination. (The interestedeeaan consult Chapter 28 of [Steele90] to leannhm
more about declarative method combination in CLOS.

241

C# supports subclass controlled, imperative metiooabination via use of the notation
base. Op(...)

The notionbase. Op(. . .) has been discussed in Section 28.7 and it hasilhestrated in Program 26.2
(line 17), Program 28.13 (line 20), and Prograni2gline 20).

29.2. Parameter Variance

Lecture 8 - slide 3

We will continue the discussion of the scene oatim Figure 29.1, now refined in Figure 29.2 shown
below. The question is how the parameter®pin classa andB vary in relation the variation of typeand

types.

i S
T o]
B Op(T x) T

Figure 29.2 ClassBisasubclassof class A, and T isa subclass of S

In Program 29.1 we create an object of the speeilclass (in line 2), and we assign it to a variable of
static typea (line 5) This is possible due to polymorphismlitre 6 we send thep message to theobject.
We assume thaip is virtual, and therefore we expect tloatin classs is called.

So far so good. The thing to notice is tbatakes a single parameter. If we pass an instandasss to
B.Op we may be in deep trouble. A problem occws.dp applies some operation from classn thes
object.

A aref;
B bref = new B();
S sref = new S();

aref = bref; // aref is of static type A and dynamic type B
aref.Op(sref); // B.Op is called with an S-obje ct as parameter.
/I What if an operation from T i s activated on the S-object?

Program 29.1 Anillustration of the problems with
covariance.

In Program 29.2 (only on web) in the web-editionshew a complete C# program which illustrates the
problem.

The story told about the scene in Program 29.1Pandram 29.2 (only on web) turns out to be flawed i
relation to C#! | could have told you the reasaut, llwill not do so right away. You should ratheké a
look at Exercise 8.1 and learn the lesson the Wagd (When access is granted to the exercise enkjtiyou
will be able to get my explanation).

242

It turns out that parameter variance is not realfglevant topic in C#...

29.3. Covariance and Contravariance

Lecture 8 - slide 4

The situation encountered in Figure 29.2 of Sec@@»x is calleadtovariance, because the typssandT (as
occurring in the parameters ©f in classa andB) vary the same way as clasgeandB. (The parameter type
T of Opin classB is a subclass of the parameter tgg Op in classA; The clas® is a subclass of class
Therefore we say thatands vary the same way asandB.)

« Covariance: The parametersandT vary the same way asands

As a contrast, the situation in Figure 29.3 belswalledcontravariance, because - in this variant of the
scene s andT vary in the opposite way asandB. Please compare carefully Figure 29.2 with Fies3.

« Contravariance: The parameters andT vary the opposite way asandB

T T

B Op(T x) S

Figure 29.3 ClassBisa subclass of class A, and the parameter class Sisa
subclass of T.

As we will see in Exercise 8.1 the distinction be&n covariance and contravariance is less rel@vayt.
However, covariance and contravariance show uphier@ontexts of C#. See Section 42.6.

Exercise 8.1. Parameter variance

First, be sure you understand the co-variance enolskated above. Why is it problematic to execute
aref.Op(sref) in the class Client?

The parameter variance problem, and the distindi&ween covariance and contravariance, is ndiraal

topic in C#. The program with the classes A/B/SiTtlee previous page compiles and runs without
problems. Explain why!

243

29.4. References

[Keene89] Sonya E. Keen@pject-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

[Steele90] Guy L. Steel€ommon Lisp, the language, 2nd Edition. Digital Press, 1990.

[Kristensen87] Bent Bruun Kristensen, Ole Lehrmdadsen, Birger Mgller-Pedersen and Kristen

Nygaard, "The BETA Programming Language"Resear ch Directions in Object-
Oriented Programming, The MIT Press, 1987. Bruce Shriver and Peter Wegn
(editors)

244

30. Abstract Classes - Sealed Classes

This chapter is abouatbstract classes. At the end of the chapter we also touchsealed classes. Relative to
our interests, sealed classes are less importamtatbstract classes.

30.1. Abstract Classes

Lecture 8 - slide 6

When we program in the object-oriented paradigim iilnportant to work out concepts as general asiblas
Programming at a general level promotes reusaljdagg Section 2.4).

In object-oriented programming languages we orgaciasses in hierarchies. The classes closest toth
are the most general classes. Take, as an exampleank account class hierarchy in Section 25h&rev
the clasBankAccount is more general thatheckAccount , SavingsAccount , etc. It is worth noticing,
however, that we were able to fully implement @émtions in the most general cla&skAccount . In the
rest of this chapter we will study even more gelhaesses, for which we cannot (or will not) implem all
the operations. The non-implemented operationstated asleclarations of intent at the most general level.
These declarations of intent should be realizddgs general subclasses.

Abstract classes are used for concepts that weotanmvill not implement in full details

Here follows our definition of an abstract clasd an abstract operation.

An abstract classis a class with one or more abstract operations

An abstract operation is specially marked operation with a name and Waital parameters,
but without a body

An abstract class

« may announce a humber of abstract operations, whictt be supplied in subclasses
« cannot be instantiated
- isintended to be completed/finished in a subclass

We will sometimes use the temoncrete class for a class which is not abstract.

You should be aware that the definition of an austclass, as given below, is not 100% accuratel&tion
to C#. In C# a class can be abstract without antingrabstract operations. More about that in Se@®.2
below, where we discuss abstract classes in C#.

The fact that an abstract class cannot be instadtia the most tangible, operational consequehce o
working with abstract classes. Many OOP programried to think of thebstract modifier as a mark, to
be associated with those classes, he or she doassmoto instantiate. Surely, this is a conseqeebat it is
not the essential idea behind abstract classes.

245

30.2. Abstract classes and abstract methods in C#

Lecture 8 - slide 7

We will first study an example of an abstract cld¥e pick an abstract stack. (This is indeed a pepular
example class in many contexts. We have tried ¢adat, but here it fits nicely).

The abstract clasgack , shown in Program 30.1, is remarkable of two reaso

1. There is no data representation in the class @tamce variables).

2. There is a fully implemented operation in the claespite the fact that the class has no datdéor t
operation to work on.

Theblue parts of Program 30.1 are the abstract operatidrese operations make up the classical stack
operationsPush, Pop, andTop together withrull , Empty, andsize . (Notice thatrop, Full , Empty andSize
are announced as properties, cf. Section 30.3)abb&act operations have signatures (method hdads)
no body blocks. In a real-life version of the praxgrwe would certainly have supplied documentation
comments with some additional explanations of thesrof the abstract operations in the class.

Thepurple part represents a fully implemented, "normal” rodticalledroggleTop . This method swaps the
order of the two top-most elements of the stack\#ilable). Notice thatoggleTop can be implemented
solely in terms of theush, Pop, Top andsize . In other words, it is not necessary for the impatation of
ToggleTop to know details of the concrete data represemtaticstacks.

246

using System;

public abstract class Stack{
abstract public void Push(Cbject el);
abstract public void Pop();

abstract public Ooject Top{
get;}

abstract public bool Full{
get;}

abstract public bool Enpty{
get;}

abstract public int Size{
get;}

public void Toggl eTop(){
if (Size >= 2){
Ooj ect topEl1 = Top; Pop();
bj ect topEl 2 = Top; Pop();
Push(t opEl 1); Push(topEl 2);

}

public override String ToString()
return String. Format (" St ack[{0}
}

}

{
1", Size);

Program 30.1 An abstract class Stack - without data
representation - with a non-abstract ToggleTop method.

In Program 30.1 the methadstring is also an example of a fully implemented methvakaich relies on an
abstract method, nametyze .

It is left as an exercise to implement a non-abssabclass of the abstract stack, see Exercise 8.3

Let us state some more detailed - a perhaps slightprising - observations about abstract clasads
abstract operations. Each of them will be discussdalv.

« Abstract classes
« can be derived from a non-abstract class
« do not need not to have abstract members
« can have constructors
« Abstract methods
- are implicitly virtual

In relative rare situations an abstract class sharit from a non-abstract class. Notice, howetet, even
abstract classes inherit (at least implicitly) frolassobject , which is a non-abstract class in C#. (In
principle, it would make good sense for the degigjioé C# to implement clagsject as abstract class. But
they did not! We only rarely make instances of €taigect).

247

The next observation is about fully implementedsts, which we mark as being abstract. As discussed
above, the purpose of this marking is to prevestaintiation of the class.

You may ask if it makes sense to have construataasclass which never is instantiated. The angsvges,
because the data encapsulated in an abstraciactassild be initialized when a concrete subclagsisf
instantiated. Due to the rules of constructor coafien, see Section 28.4 and Section 28.5, a aaietrof
classa will be activated. If no constructor is presenajrthis falls back on the parameter-less default
constructor.

Finally, we observe that the abstract methodsrapdigitly virtual. This is natural, because sucmethod
has to be (re)defined in a subclass. In C# it tsalowed explicitly to write Virtual abstract " in front of

an abstract method. Let us also observe, that streabmethod/l cannot be private. This is becaldeeed
to be visible in the classes that override

Exercise 8.2. Course and Project classes

In the earlier exercise about courses and profemisd in the lecture about classes) we programimed
classe®ooleanCourse , GradedCourse , andProject . Revise and reorganize your solution (or the model
solution) such thagooleanCourse andGradedCourse have a common abstract superclass calteese .

Be sure to implement the metheaksed as an abstract method in classrse .

In themain method (of the client class oburse andproject) you should demonstrate that both boolean
courses and graded courses can be referred tailaples of static typeourse .

Exercise 8.3. A specialization of Stack

On the slide to which this exercise belongs, weshehown an abstract classack .

It is noteworthy that the abstragck is programmed without any instance variables (ghawithout any
data representation of the stack). Notice alsowlahave been able to program a single non-abstract
methodToggleTop , which uses the abstract methads, Pop, andpPush.

Make a non-abstract specializatiorsefck , and decide on a reasonable data representattbe efack.
In this exercise it is OK to ignore exception/efnandling. You can, for instance, assume that dipacty
of the stack is unlimited; That popping an empacktan empty stack does nothing; And that the f@mo

empty stack returns the string "Not Possible". latar lecture we will revisit this exercise in erdo
introduce exception handling. Exception handlingelevant when we work on full or empty stacks.

Write a client of your stack class, and demonstitagause of the inherited methoehgleTop . If you want,
you can also adapt my stack client class whiclassyeavailable to you in the web-edition of thiaterial.

248

30.3. Abstract Properties

Lecture 8 - slide 8

Properties were introduced in Chapter 18. Recatlphoperties allow us to get and set data of sscla
through getter and setter abstractions. From alicagipn point of view, properties are used in aegne way
as variables - both on the left and right handssfeassignments. Underneath, a property is rehfizgwo
methods - one "getter" and one "setter".

Properties can be abstract in the same way as dgtlioneans that we can announce a number of
properties which must be fully defined in subclas$®e will in Program 30.2 study an example of st
properties, namely inroint class calledstractPoint , which can be accessed both in a rectangula) (
and a polarr(a) way.r anda means radius and angle respectively. There isateo (@ariables) in class
AbstractPoint . We announcg, Y, R andA as abstract properties. These are emphasizedusipge color.
All of these are announced as both getters anerselotice theet; set; syntax. We could alternatively
announce these as only getters, or as only séftersiotice that the syntax of abstract propersesrilar to
the syntax used for automatic properties, see @et8.3.

Following the abstract properties comes three notiwy methodsiove, Rotate andToString . They are
shown inblue. They all use make heavy use the abstract pregefthe assignmert+=dx in Move, for
instance, expands to= X + dx . It first uses the getter of thproperty on the right hand side of the
assignment. Next, it uses tkeetter on the left hand side. In Program 30.2 mhg know that thex getter
and thex setter exist. The actual implementation detailslva found in a subclass.

In the web-edition of this material, we show a i@rf classabstractPoint ~ with four additional protected,
static methods which are useful for the implemeoreadf the subclasses.

using System;
abstract public class AbstractPoint {
public enum PointRepresentation {Polar, Rectangul ar}
/1 W have not yet decided on the data representation of Point

public abstract double X {
get
set

}

public abstract double Y {
get
set

}

public abstract double R {
get
set

public abstract double A {
get
set

public void Move(doubl e dx, double dy){
X += dx; Y += dy;

249

public void Rotate(doubl e angle){
A += angl e;

}
public override string ToString()({
return "(" + X+", " +Y+")" +" "+ "[r:" +R+", a" + A+ "]
}
}
Program 30.2 The abstract class Point with four abstract
properties.
In Program 30.3 we see a subclasamtractPoint . It is calledpoint . It happens to represent points the

polar way. But this is an internal (private) detdiclassPoint .

Classpoint is a non-abstract class, and therefore we prograomstructor, which is emphasizedlack.
The constructor is a little unconventional, becahsdfirst parameter allows us to specify if pareanévo
and three meangy orradius , angle . It is desirable if this could be done more eldlyaifit can! Use of
static factory methods, see Section 16.4, is Bettiatice thaPointRepresentation is an enumeration type
defined in line 5 of Program 30.2.

Emphasized ipurple we show the actual implementation of thaendy properties. Let us look &t The
getter ofx is called whenevex is used as a right-hand side value. It calculditex-coordinate of a point
from the radius and the angle. The settex igfcalled wherx is used in left-hand side context, suclkxase.
The value of expressiamis bound to the pseudo variablg ue. The setter calculates new radius and angle
values which are assigned to the instance varialblelassPoint .

Emphasized imlue we show the implementation of tRendA properties. These are trivial compared to the
X andy properties, because we happen to represent poitite polar way.

using System;

public class Point: AbstractPoint {

/I Polar representation of points:
private double radius, angle; /l radiu s, angle

// Point constructor:
publ i ¢ Poi nt (Poi nt Representation pr, double nl, double n2){
if (pr == Poi nt Representation. Pol ar) {
radius = nl; angle = n2;

else if (pr == Poi nt Representation. Rectangul ar) {
radi us = Radi usG venXy(nl, n2);

angl e Angl eG venXy(nl, n2);
} else {
t hrow new Excepti on(" Shoul d not happen");
}
}
public override double X {
get {
return XG venRadi usAngl e(radius, angle);}
set {
doubl e yBefore = YG venRadi usAngl e(radi us, angle);
angl e = Angl eG venXy(val ue, yBefore);
radi us = Radi usG venXy(val ue, yBefore);
}

250

}

public override double Y {
get {
return YG venRadi usAngl e(radi us, angle);}
set {
doubl e xBefore = XG venRadi usAngl e(radi us, angle);
angl e = Angl eG venXy(xBefore, val ue);
radi us = Radi usG venXy(xBefore, val ue);

}

}

public override double R {
get {
return radius;}
set {

radi us = val ue;}

}

public override double A {
get {
return angle;}
set {
angl e = val ue;}
}

Program 30.3 A non-abstract specialization of class Point
(with private polar representation).

In the web-edition we show a clientafstractPoint ~ andpPoint , which is similar to Program 11.3 from
Section 11.6. It shows how to manipulate instanéetassPoint via its abstract interface.

Let us summarize what we have learned from the pkesin Program 30.2, Program 30.3, and Program
30.4 (only on web). First and foremost, we havensgeabstract class in which we are able to imptéme
useful functionality flove, Rotate , andToString) at a high level of abstraction. The implementation details
in the mentioned methods rely on abstract proggenidich are implemented in subclasses. We haee als
seen a sample subclass that implements the fotraaebpgroperties.

30.4. Sealed Classes and Sealed Methods

Lecture 8 - slide 9

We will now briefly, as the very last part of tlukapter, describe sealed classes and sealed methods

A sealed class C prevents the use of C as basedflather classes

« Sealed classes
« Cannot be inherited by other classes
« Sealed methods
« Cannot be redefined and overridden in a subclass
« The modifierseal ed must be used together wiiherri de

251

Sealed classes are related to static classesesgerSl1.12, in the sense that none of them can be
subclassed. However, static classes are morectagrbecause a static class cannot have instaao®ars,
a static class cannot be used as a type, andadtes cannot be instantiated. Sealed classesatitbds
correspond to final classes and final methodswa.Ja

In some sense, abstract and sealed classes remppesite concepts. At least this holds in théofaing
sense: A sealed class cannot be subclassed; Amcthsass must be subclassed in order to be useful

If a class is abstract it does not make sensettisasealed. And the other way around, if a clasealed it
does not make sense that it, in addition, is atistkiotice that it does not make sense either ve hatual
methods in a sealed class.

A sealed class is not required to have sealed metidoreover, a class with a sealed method doeissedit
need to be sealed.

Finally, notice, that in C# a method cannot beesalithout also being overridden. Thus, $kel ed
modifier always occurs as an "extra modifier'oeérri de. The intention of sealed methods is to prevent
further overriding of virtual methods.

252

31. Interfaces

Interfaces form a natural continuation of abstd&sses, as discussed in Chapter 30. In this ahaptavill
first introduce the interface concept. Then follaarsexample, which illustrates the power of inteefa
Finally, we review the use of interfaces in theliG#aries.

31.1. Interfaces

Lecture 8 - slide 11

An interface announces a number of operationssmg®f their signatures (names and parameters). An
interface does not implement any of the announpedations. An interface only declares an intentictvh
eventually will be realized by a class or a struct.

A class or struct can implement an arbitrary nundiénterfaces. Inheritance of multiple classes inay
problematic in case the same variable or (fullyraef) operation is inherited from several supesgdassee
Section 27.5. Inheritance of the same intent fromftiple interfaces is less problematic. In a nulishieis
explains one of the reasons behind having intesfac€# and Java, instead of having multiple class-
inheritance, like in for instance C++ and Eiffel.

An interface can inherit an arbitrary number ofestimterfaces. This makes it convenient to orgaaizenall
set of inter-dependent operations in a single fiatess, which then can be combined (per inheritawié)
several other interfaces, classes or structs.

An interface corresponds to a class where all djoeiaare abstract, and where no variables areudet!In
Section 30.1 we argued that abstract classes afel as general, high-level program contributiortsis is
therefore also the case for interfaces.

An interface describes signatures of operations, but it doegmgement any of the

Here follows the most important characteristicintérfaces:

« Classes and structs can implement one or mordangs
« Aninterface can be used as a type, just like ekass

- Variables and parameters can be declared of intetiges
« Interfaces can be organized in multiple inheritaimeearchies

Let us dwell on the observation that an interfaam@es as a type. We already know that classestamdss
can be used as types. It means that we can haedblesrand parameters declared as class or sgpes.t
The observation from above states that interfaaade used the same way. Thus, it is possiblediarde
variables and parameters of an interface typewBitta moment! It is not possible to instantiatdargerface.
So which values can be assigned to variables oftarface type? The answer is that objects or watiie
class of struct types, which implement the intexfazan be assigned to variables of the interfgoe. tThis
gives a considerable flexibility in the type systdmacause arbitrary types in this way can be made
compatible, by letting them implement the samerfate(s). We will see an example of that in Sec8ar8.

253

Exercise 8.4. Theinterface | Taxable

For the purpose of this exercise you are givenupleoof very simple classes calleags andHouse. Class
Bus specializes the clasghicle . ClassHouse specializes the clagsedProperty . The mentioned
classes can easily be accessed from the web-editibie material..

First in this exercise, program an interfaeable with a parameterless operatitaxvalue . The
operation should return a decimal number.

Next, program variations of classuse and classus which implement the interfageaxable . Feel free
to invent the concrete taxation of houses and Isudsgtice that both clas®use andBus have a
superclass, namefyixedProperty andvehicle , respectively. Therefore it is essential that tiaxais
introduced via an interface.

Demonstrate that taxable house objects and takaislebjects can be used together as objects of type
ITaxable

31.2. Interfaces in C#

Lecture 8 - slide 12

Let us now be more specific about interfaces inTt¥ operations, described in a C# interface, ean b
methods, properties, indexers, or events.

Both classes, structs and interfaces can impleorabr more interfaces

Interfaces can contain signatures of methods, ptiepeindexers, and events

The syntax involved in definition of C# interfadessummarized in Syntax 31.1. The first few linesatibe
the structure of an interface as such. The remgupant of Syntax 31.1 outlines the descriptionstdrface
methods, properties, indexers and events respBctive

modifiers i nterface interface-name . base-interfaces {
method-descriptions
property-descriptions
indexer-descriptions
event-descriptions

}

return-type method-name (formal-parameter-list);

return-type property-name {
get;
set;

}

return-type t hi s[formal-parameter-list K
get;
set;

}

254

event delegate-type event-name ;

Syntax 31.1 The syntax of a C# interface, together with the syntaxes of method, property, indexer, and event
descriptionsin an interface

31.3. Examples of Interfaces

Lecture 8 - slide 13

Earlier in this material we have programmed dicg jglaying cards, see Program 10.1 and Program D®.7.
the concepts behind these classes have somethiogiimon? Well - they are both used in a wide vaét
games. This observation causes us to define atfidoggiGameObject , which is intended to capture some
common properties of dice, playing cards, and asimailar types. Both clagsie and clas€ard should
implement the interfaceameObject .

As a matter of C# coding style, all interfaceststath a capital 'I' letter. This convention makesbvious if
a type is defined by an interface. This naming emtion is convenient in C#, because classes aadaot
occur together in the inheritance clause of a cl@sth the superclass and the interfaces occer aftolon,
the class first, cf. Syntax 28.1). In this resp&st,is different from Java. In Java, interfaces eladses are
marked with the keywordsct ends andi npl enent s respectively in the inheritance clause of a class.

Two or more unrelated classes can be used togéthey implement the same interface

public enum GameObjectMedium {Paper, Plastic, Elect ronic}
public interface IGameObject{

int GameValue{
get;
}

GameObjectMedium Medium{
get;
}
}

Program 31.1 Theinterface |GameObject.

ThelGameObject interface in Program 31.1 prescribes two namegepties:Gamevalue andMedium. Thus,
classes that implement tl@meObject must define these two properties. Notice, howetrat, no semantic
constraints omGameValue or Medium are supplied. (It means that meaning is prescribed). Thus, classes that
implement the interfacesameObject are, in principle, free to supply arbitrary bododssameVvalue and

Medium. This can be seen as a weakness. In Chapter %6lveee how to remedy this by specifying the
semantics of operations in terms of preconditiors @ostconditions.

Notice also that there are no visibility modifiefsthe operationsamevalue andMedium in the interface
shown above. All operations are implicitly public.

Below, in Program 31.2, we show a version of class which implements the interfac®meObject . In
line 3 itis stated that clasge implements the interface. The actual implementatiof the two operations
are shown in the bottom part of Program 31.2 (fliom 33 to 44). Most interesting, tlBamevalue of a die
is the current number of eyes.

255

using System;

public class Die . | GanmeObj ect {
private int numberOfEyes;
private Random randomNumberSupplier;
private readonly int maxNumberOfEyes;

public Die (): this(6){}

public Die (int maxNumberOfEyes){
randomNumberSupplier =
new Random(unchecked((int)DateTime.Now.Ticks));
this.maxNumberOfEyes = maxNumberOfEyes;
numberOfEyes = NewTossHowManyEyes();

}

public void Toss (){
numberOfEyes = NewTossHowManyEyes();

}

private int NewTossHowManyEyes (){
return randomNumberSupplier.Next(1,maxNumberOfE yes + 1);

}

public int NumberOfEyes() {
return numberOfEyes;

}

public override String ToString(){
return String.Format("Die[{0}]: {1}", maxNumber OfEyes, numberOfEyes);

}

public int GaneVal ue{

get {
return nunber O Eyes;

}
}

public GaneObj ect Medi um Medi um{

get {
return
GaneObj ect Medi um Pl asti c;

Program 31.2 The class Die which implements
| GameObject.

In Program 31.3 we show a version of classl , which implements our interface. TBamevalue of a card
is, quite naturally, the card value.

using System;

public class Card : | Gamebj ect {
public enum CardSuite { spades, hearts, clubs, di amonds };
public enum CardValue { two = 2, three = 3, four =4, five =5,
six = 6, seven = 7, eight =8, nine =9,
ten = 10, jack = 11, quee n =12, king =13,
ace =14}

private CardSuite suite;
private CardValue value;

256

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

}

public CardValue Value{
get { return this.value; }

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);

}

public int GaneVal ue{
get { return (int)(this.value); }

publ i c GameObj ect Medi um Medi un{

get{
return GameObj ect Medi um Paper ;

}
}
}

Program 31.3 The class Card which implements
|GameObject.

Below, in Program 31.4 we have written a prograat #iorks on game objects of tyj@gmeObject . In
order to be concrete - and somewhat realistic make anGameObject array with three die objecs and
three card objects. In the bottom part of the pangwe exercise the common operations of dice aadny
cards, as prescribed by the interfag@meObject . The output of the program is shown in Listings31.

using System;
using System.Collections.Generic;
class Client{
public static void Main(){
Die d1 = new Die(),

d2 = new Die(10),
d3 = new Die(18);

Card c1 = new Card(Card.CardSuite.spades, Card .CardValue.queen),
c2 = new Card(Card.CardSuite.clubs, Card. CardValue.four),
¢3 = new Card(Card.CardSuite.diamonds, Ca rd.CardValue.ace);

| GanmeObj ect [] gameObjects = {d1, d2, d3, c1, c2, c3};

foreach(| GanmeObj ect gao in gameObjects){
Console.WriteLine("{0}: {1} {2}",
gao, gao. GaneVal ue, gao. Medi unj;
}
}

Program 31.4 A sample Client program of Die and Card.

Die[6]: 5: 5 Plastic

257

Die[10]: 9: 9 Plastic

Die[18]: 15: 15 Plastic

Suite:spades, Value:queen: 12 Paper
Suite:clubs, Value:four: 4 Paper
Suite:diamonds, Value:ace: 14 Paper

Listing 31.5 Output from the sample Client program of Die and
Card.

Above, bothbie (see Program 31.2) awdrd (see Program 31.3) are classes. We have in Eget@s
noticed that it would be natural to implement tyy@etCard as a struct, because a playing card - in corttvast
a die - is immutable. The client class shown ingPam 31.4 will survive if we progracerd as a struct, and
it will produce the same output as shown in Listdig5. Recall in this context that interfaces inate¢
reference types, see Section 13.3. When a varddlsiatic typaGameObject is assigned to a value of struct
typecard, the card value is boxed. Boxing is describeddati®n 14.8.

In the example above, where both the typiesandcard are implemented as classEmmeObject could as
well have been implemented as an abstract supsrdibs is the theme in Exercise 8.5.

Exercise 8.5. An abstract GameObject class

On the slide, to which this exercise belongs, weeharitten an interfacesameObject which is
implemented by both classe and clasgard .

Restructure this program such that claissand clasgard both inherit an abstract classmeObject . You
should write the classameObject .

The client program should survive this restructyrifyY ou may, however, need to change the nameeof th
typeIGameObject to GameObject). Compile and run the given client program withuyolasses.

31.4. Interfaces from the C# Libraries

Lecture 8 - slide 14

The C# library contains a number of important ifstees which are used frequently in many C#
programs

In this section we will discuss some importantifsees from the C# libraries. First, we give amitaed
overview, and in the sections following this onerendetails will be provided.

* |Comparable
« An interface that prescribescampareTo method
« Used to support general sorting and searching rdetho
* |Enumerable
« An interface that prescribes a method for accessmgnumerator
O IEnumerator
- An interface that prescribes methods for travesdata collections
» Supports the underlying machinery of the each control structure
* IDisposable

258

« An interface that prescribe&pose method
« Used for deletion of resources that cannot be eleley the garbage collector
» Supports the C#si ng control structure
* ICloneable
« An interface that prescribesctne method
* |Formattable
« An interface that prescribes an extenulestring method

IComparable is touched on in Section 31.5, primarily via aereise. In Section 31.6 we focus on the
interfacesEnumerable andiEnumerator and their roles in the realizationfafr each loops. Type
parameterized versions of these interfaces aresisd in Section 45.2. The interfaa@sposable IS
discussed in the context of 10 in Section 3hneable is discussed in a later chapter, see Section 32.7.

All the interfaces mentioned above can be thoughstiavors that can be added to many different classes.

31.5. Sample use of IComparable

Lecture 8 - slide 15

Object of classes that implemermbnpar abl e can be sorted by a method suclasy. Sort

In many contexts it is important to be able toesthat two objects or values, sagndy of a particular type
T, can be compared to each other. Thus, we mayrmusuo know ifx <y, y <x, or if x =y. But what does
X <y,y>X, andx =y mean if, for instance typEis BankAccount Or aDie ?

The way we approach this problem is to arrangettieatypeT (a class or a struct) implements the interface
IComparable . In that way, the implementation ®fmust include the methazbmpareTo, which can be used
in the following way:

x.CompareTo(y)

In the tradition of, for instance, the string compan functionstrcmp in the C standard libraggring.h the
expressiorx.CompareTo (Y) returns a negative integer resulk is considered less thgna positive integer if
x is considered greater thgnand integer zero K andy are considered to be equal.

The interfacaComparable is reproduced in Program 31.6. This shows you siowple it is. Don't use this or
a similar definition. Use the interfaceomparable as predefined in thgystem namespace.

using System;

public interface IComparable{
int CompareTo(o) ect other);

}

Program 31.6 A reproduction of the interface
IComparable.

259

The parameter afompareTo is of typeObject . This is irritating because we will almost certgiwant the
parameter to be of the same type as the classhwhjgementscomparable . When you solve Exercise 8.6
you will experience this.

There is actually two versions of the interfac@nparable in the C# libraries. The one similar to Program
31.6 and a type parameterized version, which cainstthe parameter of tilempareTo method to a given
typeT. We have more say about these two interfacesatidde42.8.

It is also worthwhile to point out the interfa@guatable , which simply prescribes &yuals method. The
interfacelEqualityComparer is a cousin interface which in additionBquals also prescribesetHashCode .
In some sensEquatable andiEqualityComparer are more fundamental th&@bmparable . It turns out
thatlEquatable only exists as a type parameterized (genericjfate.

Exercise 8.6. Comparable Dice

In this exercise we will arrange that two dice barcompared to each other. The result of
diel.CompareTo(die2) is an integer. If the integer is negatiuiel is considered less thar?2 ; If zero,
diel is considered equal tie2 ; And if positive,diel is considered greater thain2 . When two dice
can be compared to each other, it is possibleasoatray of dice with the standaalt method in C#.

Program a version of clapg: which implements the interfaggstem.IComparable

Consult the documentation of the (overloaded)statthodsystem.Array.Sort and locate theort
method which relies oicomparable elements.

Make an array of dice and sort them by use ofthe method.

31.6. Sample use of IEnumerator and IEnumerable

Lecture 8 - slide 16

In this section we will study the interfaces calleeimerator andiEnumerable . The interface
IEnumerator IS central to the design pattern calléstator, which we will discuss in the context of
collections, see Section 48.1. As already menti@ye, the interfade€numerator also prescribes the
operations behind therr each control structure.

using System;
public interface IEnumerator{
Object Current{

get;
}

bool MoveNext();

void Reset();

Program 31.7 A reproduction of the interface
| Enumerator.

260

We have reproducadnumerator from theSystem.Collections namespace in Program 31.7. The
operationgurrent , MoveNext , andReset are used to traverse a collection of data. Hidubdnind the
interface should be some simple bookkeeping whickva us to keep track of the current element, and
which element is next. You can think of this aguesor, which step by step is moved through the collectio
The propertycurrent returns the element pointed out by the cursor.mthodvioveNext advances the
cursor, and it returns true if it has been posdibimove the cursor. The methreset moves the cursor to
the first element, and it resets the bookkeepimphkes.

You are not allowed to modify the collection whilés traversed via a C# enumerator. Notice, irtipalar,
that you are not allowed to delete the elementiobtibycurrent during a traversal. In that respect, C#
enumerators are more limited than tlaeator ~ counterpart in Java which allows for exactly oeéetion
for each movement in the collection. It can als@lgpied that theenumerator interface is too narrow. It
would be nice to have a boolea#sNext property. It could also be worthwhile to have ateaded
enumerator with &lovePrevious operation.

Like it was the case for the interfacemparable , as discussed in Section 31.5, there is alsoe typ
parameterized version @numerator . See Section 45.2 for additional details.

using System.Collections;

public interface IEnumerable{
IEnumerator GetEnumerator();

}

Program 31.8 A reproduction of the interface
|Enumerable.

ThelEnumerable interface, as reproduced in Program 31.8, onlggrilees a single method called
GetEnumerator . This method is intended to return an object (@glthe class (struct) of which implements
thelEnumerator interface. Thus, if a type implements tBeumerable interface, it can deliver an
iterator/enumerator object via use of the operati@Bnumerator

As mentioned above, ther each control structure is implemented by means of ematoes. The or each
form

foreach(ElementType e in collection) statement

is roughly equivalent with

IEnumerator en = collection.GetEnumerator();
while (en.MoveNext()){
ElementType e = (ElementType) en.Current();
statement;

}

The type of the collection is assumed to implentieatinterface Enuner abl e. Additional fine details should
be taken into consideration. Please consult settdi4 of the C# Language Specification [ECMA-384]
[Hejlsberg06] for the full story.

We will now present a realistic example that usesmerator andiEnumerable . We return to the

Interval type, which we first met when we discussed oveléoboperators in Section 21.3. The original
Interval struct appeared in Program 21.3. Recall that &mval, such as [5 - 10] is different from [10 -5].
The former represents the sequence 5, 6, 7, & @hile the latter represents 10, 9, 8, 7, 6, Shénversion
we show in Program 31.9 we have elided the oper&tom Program 21.3.

261

The enumerator functionality is programmed in &at8, local class calladtervalEnumerator , Starting at
line 39. This class implements the interfe@amerator . The classtervalEnumerator has a reference to
the surrounding interval. (The reference to theaurding object is provided via the constructoline 44

and 68). It also has the instance variadle, which represents of the cursor. Per conventlunyalue -1
represents an interval which has been reset. Tdgegycurrent is now able to calculate and return a value
from the interval. Notice that we have to distirsfubetween rising and falling intervals in the dtadal
expression in line 50-52. BotioveNext andreset are easy to understand if you have followed thailde

until this point.

The methodsetEnumerator (line 67-69), which is prescribed by the interfageumerable (see line 4), just
returns an instance of the private clagsvalEnumerator discussed above. Notice that we in line 68 pass
this (the current instance of thaerval) to thelntervalEnumerator object.

We show how to make simple traversals of interiaBrogram 31.10.

using System;
using System.Collections;

public struct Interval: | Enuner abl e{
private readonly int from, to;

public Interval(int from, int to){
this.from = from;
this.to = to;

}

public int From{
get {return from;}

public int To{
get {return to;}

public int Length{
get {return Math.Abs(to - from) + 1;}

}

public int this[int i){
get {if (from <= to){
if (i >= 0 && i <= Math.Abs(from-t0))
return from + i;
else throw new Exception("Error"); }
else if (from > to){
if (i >= 0 && i <= Math.Abs(from-t0))
return from - i;
else throw new Exception("Error"); }
else throw new Exception("Should not happe n"); }

}

/I Overloaded operators have been hidden in this version
private class Interval Enunerator: | Enunerator{

private readonly Interval interval;
private int idx;

public Interval Enunerator (Interval i){

this.interval = i;
idx = -1; /] position enunerator outside range

262

}

public Object Current{
get {return (interval.From< interval.To) ?
interval.From+ idx :
interval . From - idx;}

}

public bool MyveNext (){
if (idx < Math. Abs(interval.To - interval.Fron))
{idx++; return true;}
el se
{return fal se;}
}

public void Reset(){
idx = -1;
}
}

public | Enunerator GetEnunerator (){
return new I nterval Enunmerator (this);
}

Program 31.9 |Enumerator in the type Interval.

While we are here, we will discuss the nested,|lo@ssintervalEnumerator of classnterval a little
more careful. Why is it necessary to pass a referémthe enclosingterval in line 687 Or, in other
words, why can't we access then andto Interval — instance variables in line 6 from the nested &ldagse
reason is that antervalEnumerator object is not a 'subobject’ of amerval object. An
IntervalEnumerator objectis not really part of the enclosimgerval object TheintervalEnumerator

can, however, access (both public and privatesatagables (static variables) of clagsrval

We could as well have placed the clagsvalEnumerator outside the classterval , simply as a sibling
class ofinterval . But classntervalEnumerator would just pollute the enclosing namespace. The
IntervalEnumerator is only relevant inside the interval. Therefore pl&ce it as a member of class
Interval . By making it private we, furthermore, preventalis of classiterval to access it.

Nested classes are, in general, a more advancied itdpas, in part, something to do with scopiotgs in
relation to the outer classes, and in relatiorufzesclasses. Java is more sophisticated than @&#sopport
of nested classes. In java, an inner clagsthe surrounding classis a nested class for which instances of
is connected to (is part of) a particular instaofce. See also our discussion of Java in relation tanC#
Section 7.3.

using System;
using System.Collections;

public class app {
public static void Main(){
Interval ivl = new Interval(14,17);

foreach(int k in ivl){
Console. Wite("{0,4}", k);

Console.WriteLine();

263

| Enunerator e = ivl. Get Enunerator();
whil e (e. MoveNext ()){
Console. Wite("{0,4}", (int)e.Current);

Console.WriteLine();

}

}

Program 31.10 Iteration with and without foreach based on the
enumerator.

31.7. Sample use of IFormattable

Lecture 8 - slide 17

ThelFormattable interface prescribestastring method of two parameters. As such, thstring
method ofiFormattable is different from the well-knowmoString method of clasebject , which is
parameterless, see Section 28.3. Both methods q@adtext string. The nemstring method is used
when we need more control of the textual result.

Here follows a reproduction aformattable from theSystem namespace.

using System;

public interface IFormattable{
string ToString(string format, IFormatProvider fo rmatProvider);

Program 31.11 Areproduction of the interface
|Formattable.

We can characterize thestring method in the following way:

« The first parameter is typically a single lettemfatting string, and the other is an
IFormatProvider

» ThelformatProvider can provide culture sensible information.
e ToString from Object typically callsToString(null, null)

The first parameter dfoString is typically a string with a single character. Bonple types as well as
DateTime , & number of predefined formatting strings arengef. We have seen an example in Section 6.10.
For the types we program we can define our own &tting letters. This is known a&sstom formatting.

Below, in Program 31.12 we will show how to progremstom formatting of a playing card struct.

The second parameterofstring is of typelFormatProvider , which is another interface from tBestem
namespace. An object of typrmatProvider typically provides culture sensible formattingarhation.
For simple types and farateTime , a format provider represents details such asuhency symbol, the
decimal point symbol, or time-related formattingripols. If the second parametenig , the object bound
to Culturelnfo.CurrentCulture should be used as the default format provider.

264

Below we show how to program custom formattingtofict card , which we first met in the context of
structs in Section 14.3. Notice that straatd implementsformattable . The details in the twostring
methods should be easy to understand.

using System;

public enum CardSuite:byte
{Spades, Hearts, Clubs, Diamonds };

public enum CardValue: byte
{Ace =1, Two =2, Three =3, Four =4, F ive =5,
Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten =10,
Jack = 11, Queen = 12, King = 13};

public struct Card: | For mat t abl e{
private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

/I Card methods and properties here...

public System.Drawing.Color Color ()}{
System.Drawing.Color result;

if (suite == CardSuite.Spades || suite == CardSu ite.Clubs)
result = System.Drawing.Color.Black;
else

result = System.Drawing.Color.Red;
return result;

}
public override String ToString()({
return this.ToString(null, null);
}
public String ToString(string format, IFormatProv ider fp){
if (format == null || format == "G" || format == "L")
return String.Format("Card Suite: {0}, Valu e: {1}, Color: {2}",
suite, value, Color() .ToString());
else if (format == "S")
return String.Format("Card {0}: {1}", suite , (int)value);
else if (format == "V")
return String.Format("Card value: {0}", val ue);
else throw new FormatException(
String.Format("Invalid format: {0}", format));
}
}

Program 31.12 The struct Card that implements
|Formattable.

In Program 31.13 we show how to make use of customatting of playing card objects. The resulting
output can be seen in Listing 31.14.

265

using System;
class CardClient{

public static void Main(){

Card cl1 = new Card(CardSuite.Hearts, CardValue. Eight),
c2 = new Card(CardSuite.Diamonds, CardValu e.King);
Console.WriteLine("cl is a {0}", cl1);
Console.WriteLine("cl is a {0: S}", cl); Console.WriteLine();
Console.WriteLine("c2 is a {0: S}", ¢c2);
Console.WriteLine("c2 is a {0:L}", c2);
Console.WriteLine("c2 is a {0: V}", c2);
}
}
Program 31.13 A client of Card which applies formatting of
cards.
clis a Card Suite: Hearts, Value: Eight, Color: Co lor [Red]

clis a Card Hearts: 8

c2 is a Card Diamonds: 13
c2 is a Card Suite: Diamonds, Value: King, Color: C olor [Red]
c2 is a Card value: King

Listing 31.14 Output fromthe client program.

31.8. Explicit Interface Member Implementations

Lecture 8 - slide 18

Interfaces give rise to multiple inheritance, aneréfore we need to be able to deal with the chngdis of
multiple inheritance. These have already been dgsuliin Section 27.5.

The problems, as well as the C# solution, can bevgarized in the following way:

If a member of an interface collides with a memtifest class, the member of the interface can
be implemented as an explicit interface member

Explicit interface members can also be used toempghnt several interfaces with colliding
members

The programs shown below illustrate the problemthedsolution. The claszrd, in Program 31.15 has a
Value property. The interfaceameObject in Program 31.16 also prescribegatue property. (It is similar
to the interface of Program 31.1 which we have entered earlier in this chapter). When classi
implementaGameObject in Program 31.17 the new version of classl will need to distinguish between
its ownvalue property and thealue property it implements because of the interfa@e@eObject . How
can this be done?

266

The solution to the problem is callexplicit interface member implementation. In line 30-32 of Program
31.17, emphasized jpur ple, we use th&gameObject.Value syntax to make it clear that here we
implement thevalue property fromGameObject . This is an explicit interface implementation.

In the client classes of clasard we need access to bothlue operations. In order to access the explicit
interface implementation ofalue from thecard variablecs (declared in line 6) we need to castto the
interfaceiGameObject . This is illustrated in line 14 of Program 31.I8e output of Program 31.18 in
Listing 31.19 reveals that everything works as elgx

using System;

public class Card{

public enum CardSuite { spades, hearts, clubs, di amonds };

public enum CardValue { two = 2, three = 3, four =4, five = 5,
six = 6, seven = 7, eight =8, nine =9,
ten = 10, jack = 11, quee n=12, king =13,
ace =14}

private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

}

public CardVal ue Val ue{
get { return this.value; }

}

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);
}
}

Program 31.15 The class Playing card with a property
Value.

public enum GameObjectMedium {Paper, Plastic, Elect ronic}
public interface IGameObject{

i nt Val ue{
get;
}

GameObjectMedium Medium{
get;
}
}

Program 31.16 The Interface | GameObject with a conflicting
Value property.

267

using System;

public class Card: | Ganeoj ect {
public enum CardSuite { spades, hearts, clubs, di amonds };
public enum CardValue { two = 2, three = 3, four =4, five = 5,
six = 6, seven = 7, eight =8, nine =9,
ten = 10, jack = 11, quee n=12, king =13,
ace =14}

private CardSuite suite;
private CardValue value;

public Card(CardSuite suite, CardValue value){
this.suite = suite;
this.value = value;

}

public CardSuite Suite{
get { return this.suite; }

}

publ i c CardVal ue Val ue{
get { return this.value; }

public override String ToString(){
return String.Format("Suite:{0}, Value:{1}", su ite, value);

}

int | GaneQbj ect . Val ue{
get { return (int)(this.value); }

}
public GameObjectMedium Medium{
get{
return GameObjectMedium.Paper;
}
}
}
Program 31.17 A class Card which implements
| GameObject.
using System;
class Client{
public static void Main(){
Card cs =
new Card(Card.CardSuite.spades, Card.CardVal ue.queen);
/I Use of Value from Card
Console.WriteLine(cs. Val ue);

/I Must cast to use the implementation of
/l Value from IGameObject
Console.WriteLine(((I Ganehj ect) cs) . Val ue);
}
}

Program 31.18 Sample use of class Card in a Client
class.

268

queen
12

Listing 31.19 Output of Card Client.

In some situations, an explicit interface implenagion can also be used to "hide" an operationviesare
forced to implement because the interface requte$tge will meet an example in Section 45.14, wheee
want to make it difficult to use theid operation on a linked list. Another example isspreed in the context
of dictionaries in Section 46.3.

31.9. References

[Hejlsberg06] Anders Hejlsberg, Scott Wiltamuth d&eter GoldeThe C# Programming Language.
Addison-Wesley, 2006.
[Ecma-334] "The C# Language Specification”, Jun@2ECMA-334.

269

270

32. Patterns and Techniques

This chapter is the last one in our second leabrait inheritance. The chapter is about patterds an
programming techniques related to inheritance. I8imchapters appeared in Chapter 16 and Chaptier 24
classes/objects and for operations respectively.

32.1. The Composite design pattern

Lecture 8 - slide 20

The Composite design pattern, which we are about to study,ab@ioly the most frequently occurring GOF
design pattern at all. Most real-life programs tlatwrite benefit from it. Recall from Section 1@t the
GOF design patterns are the ones described irritiieal design pattern book [Gamma96].

A Composite deals with hierarchical structures of objectamiore practical terms, the pattern deals with
tree-tructures whose nodes are objects. The mambéhind the pattern is to providaréforminterface to
both leaves and inner nodes in the tree.

From a client point of view, it is easy to operatethe nodes of @omposite. The reason is that all
participating objects share the interface provibgdhe abstraatomponent class.

Componen

Figure 32.1 Atemplate of the class structure in the Composite design pattern.

In Figure 32.1 we show the three classes thathegprincipled level - make upGomposite: The abstract
classcomponent and its two subclassesaf andComposite . The important things to notice are:

« The diagram in Figure 32.1 is a class diagramanatbject diagram.

» Clients access botleaf nodes ancdtomposite nodes (inner nodes in the tree) via the interface
provided by the abstract classmponent .

« Thecomposite (inner) node aggregates one or moseponents , eitherLeaf nodes or (recursively)
othercomposite nodes. This makes up the tree structure. It iomapt the you are able to grasp the
idea that the aggregation in Figure 32.1 givestaserecursive tree structure of objects.

In the following sections we will study an exampfea composite design pattern which allows us to
represent songs of notes and pauses. In appendinis68.3 we discuss another example, involving a
sequence of numbers and the typeval

The tree structure may be non-mutable and builteisstructors

Alternatively, the tree structure may be mutabiel Built viaAdd andrRemove operations

271

32.2. A Composite Example: Music Elements

Lecture 8 - slide 21

The example in this section stems from the minjgatoprogramming (MIP) exam of January 2008 [mip-
jan-08]. Imagine that we are interested in a reprgion of music in terms of notes and pausesh &uc
representation can - in a natural way - be destdriisesComposite, see Figure 32.2. In this composite
structure, both &lote and aPause areMusicElements . A SequentialMusicElement consists of a number of
MusicElements , such aslote S, Pause S, and othekusicElement S. The immediate constituents of a
SequentialMusicElement are played sequentially, one after the othepasillelMusicElement is
composed similar teequentialMusicElement . The immediate constituents obParalleIMusicElement

are played at the same time, however.

MusicElement
 a j A3 . .
Note| - “._ | Pause

equentialMusicElement | ParallelMusicElement

Figure 32.2 The class diagram of Music Elements

As we will see in Program 32.3\ate is characterized by a duration, value, volume,iaattument. A
Pause is characterized by a duration. As such, it makersense to have a common superclassief and
Pause. In the same way, it may be considered to havaramn superclass skquentialMusicElement
andParallelMusicElement which captures their common aggregatiomadicElements

A number of different operations can be appliedarnily on allMusicElement S:Play , Transpose |,
TimeStretch , Newlnstrument , Fade, etc. Below, in Program 32.3 we program the op@mnatinearize
Duration , andTranspose . TheLinearize operations transforms a music element to a sequafriower-
level objects which represent MIDI events. A seaqaeof MIDI events can be played on most computars.
this way,Linearize becomes the indireetay operation.

32.3. An application of Music Elements

Lecture 8 - slide 22

As we already realized in Section 32.1 the objectsComposite are organized in a tree structure. In Figure
32.3 we show an example oBequentialMusicElement . When we play theequentialMusicElement in
Figure 32.3 we will first hear note N1. After N1mes a pause P followed by the notes N2 and N3.
Following N3 we will hear N4, N5 and N6 which aleayed simultaneously. As such, N4-N6 may form a
musical chord. In the web edition of the material lmk to a MIDI file of a structure similar to Rige 32.3
[midi-sample].

272

SequentialMusicElement

Seq uantlalmﬁgl;ﬂamnt [Parallall«ihs_h:Elamnﬂ

Figure 32.3 A possible tree of objects which represent various music elements.
Nodes named Ni are Note instances, and the node named P isa Pause instance

Below, in Program 32.1 we show a program that eseasequentialMusicElement similar to the tree-
structure drawn in Figure 32.3 The program relieshe auxiliary classong. The classong and another
supporting classimedNote are available to interested readers [song-anddinmie-classes]. Using these two
classes it is easy to generate MIDI files fremsicElement objects.

public class Application{
public static void Main(){

MusicElement someMusic =
SequentialMusicElement.MakeSequentialMusicElem ent(
SequentialMusicElement.MakeSequentialMusicEl ement(
new Note(60, 480),
new Pause(480),
new Note(64, 480),
new Note(60, 480)),
ParallelMusicElement.MakeParallelMusicElemen t(
new Note(60, 960),
new Note(64, 960),
new Note(67, 960)

)

Song aSong = new Song(someMusic.Linearize(0));
aSong.WriteStandardMidiFile("song.mid");

}
}

Program 32.1 An application of some MusicElement
objects.

32.4. Implementation of MusicElement classes

Lecture 8 - slide 23

In this section we show an implementation ofXfueicElement classes of Figure 32.2. The classes give rise
to non-mutable objects, along the lines of theudismn in Section 12.5.

We start by showing the abstract classicElement , see Program 32.2. It announces the projmeittion
the methodranspose , and the methotnearize . Other of the mentioned music-related operatioasat
included here. As you probably expdmiration returns the total length of\dusicElement . Transpose
changes the value (the pitch) ofiasicElement . Linearize transforms aiusicElement to an array of
(lower-level)TimeNote o0bjects [song-and-timednote-classes].

273

public abstract class MusicElement{

public abstract int Duration{

get;
}
public abstract MusicElement Transpose(int levels);
public abstract TimedNote[] Linearize(int startTi me);

Program 32.2 The abstract class MusicElement.

The classvote is shown next, see Program 32i8te encapsulates the note value, duration, volume, and
instrument (see line 5-8). Following two construstave see the propemyration which simply returns
the value of the instance varialleation . The methodinearize carries out the transformation of the
Note to a singular array dfimedNote . TheTranspose method adds to the value of thee . The shown
activation ofByteBetween enforces that the value is between 0 and 127.

using System;
public class Note: MusicElement{

private byte value;

private int duration;

private byte volume;

private Instrument instrument;

public Note(byte value, int duration, byte volume ,
Instrument instrument){
this.value = value;
this.duration = duration;
this.volume = volume;
this.instrument = instrument;

}

public Note(byte value, int duration):
this(value, duration, 64, Instrument.Piano){

}

public override int Duration{
get{
return duration;
}
}

public override TimedNote[] Linearize(int startTi me){
TimedNote[] result = new TimedNote[1];
result[0] = new TimedNote(startTime, value, dur ation, volume,
instrument);
return result;

}

public override MusicElement Transpose(int levels)
return new Note(Util.ByteBetween(value + level s, 0, 127),
duration, volume, instrument);

Program 32.3 Theclass Note.

The classause shown in Program 32.4 is almost trivial.

274

using System;
public class Pause: MusicElement{
private int duration;

public Pause(int duration){
this.duration = duration;

}

public override int Duration{

get{
return duration;

}
}

public override TimedNote[] Linearize(int startTi me){
return new TimedNote[0];

}

public override MusicElement Transpose(int levels)i
return new Pause(this.Duration);

}
}

Program 32.4 The class Pause.

The classsequentialMusicElement represents the sequenceviokicElement s as a list of typeist<T>
Besides the construct®@equentialMusicElement offers afactory method for convenient creation of an
instance. Factory methods have been discusseciin®é&6.4. Program 32.1 shows how the factory oubth
can be applietburation adds the duration of theusicElement parts together. Notice that this may cause
recursive addition. Likewis@ranspose carries out recursive transpositions of thgicElement parts.

using System;
using System.Collections.Generic;

public class SequentialMusicElement: MusicElement{
private List<MusicElement> elements;

public SequentialMusicElement(MusicElement[] elem ents){
this.elements = new List<MusicElement>(elements);

}

Il Factory method:
public static MusicElement

MakeSequentialMusicElement(params MusicElement[] elements){
return new SequentialMusicElement(elements);
}
public override TimedNote[] Linearize(int startTi me){

int time = startTime;
List<TimedNote> result = new List<TimedNote>();

foreach(MusicElement me in elements){
result. AddRange(me.Linearize(time));
time = time + me.Duration;

}

return result. ToArray();

}

public override int Duration{
get{

275

int result = 0;

foreach(MusicElement me in elements){
result += me.Duration;

}
return result;
}
}
public override MusicElement Transpose(int levels)
List<MusicElement> transposedElements = new Lis t<MusicElement>();

foreach(MusicElement me in elements)
transposedElements.Add(me.Transpose(levels));

return new SequentialMusicElement(transposedEle ments.ToArray());
}
}
Program 32.5 The class Sequential MusicElement.
The classrarallelMusicElement resembleSsequentialMusicElement a lot. Notice, however, the different

implementation oburation in line 29-39.

using System;
using System.Collections.Generic;

public class ParalleIMusicElement: MusicElement{
private List<MusicElement> elements;

public ParallelIMusicElement(MusicElement[] elemen ts){
this.elements = new List<MusicElement>(elements);

}

/I Factory method:
public static MusicElement

MakeParalleIMusicElement(params MusicElement[] elements){
return new ParallelIMusicElement(elements);
}
public override TimedNote[] Linearize(int startTi me){

int time = startTime;
List<TimedNote> result = new List<TimedNote>();

foreach(MusicElement me in elements){
result. AddRange(me.Linearize(time));
time = startTime;

}

return result. ToArray();

}

public override int Duration{

get{
int result = 0;

foreach(MusicElement me in elements){
result = Math.Max(result, me.Duration);

}

return result;

}

276

}

public override MusicElement Transpose(int levels)i
List<MusicElement> transposedElements = new Lis t<MusicElement>();

foreach(MusicElement me in elements)
transposedElements.Add(me.Transpose(levels));

return new ParalleIMusicElement(transposedEleme nts.ToArray());
}
}

Program 32.6 The class ParallelMusicElement.

This completes our discussion of heasicElement composite. The important things to pick up from th
example are:

1. The tree structure of objects defined by the ssels oMusicElement

2. The uniform interface of music-related operatioreviled to clients ofusicElement
As stressed in Section 32.1 these are the primaritsrof Composite.

In Section 58.3 of the appendix we present an mahdit and similar example of a composite which inge
aninterval . Interval is the type we encountered in Section 21.3 whedis@issed operator overloading.

32.5. A Composite Example: A GUI

Lecture 8 - slide 27

We will study yet another example ofCamposite design pattern. A graphical user interface (GH) i
composed of a number fafrms, such as buttons and textboxes. The classes b#tgad forms make up a
Composite design pattern.

Ciich Me

d |}

Figure 32.4 A Form (Window) with two buttons, a textbox, and a panel.

We construct the simple GUI depicted in Figure 3ZHe actual hierarchy of objects involved are shaw
Figure 32.5. Thus, the GUI is composed of thre¢obst(yellow, green, and blue) and two textboxesit@v
and grey). The blue button and the grey textboxaggFegated into a so-called panel (which has red
background in Figure 32.4).

277

(aForm|

("Click Me" | [“Erase” | [aTextBox| |[aPanel|
("A" | (aTextBox|

Figure 32.5 Thetree of objects behind the graphical user interface. These
objects represents a composite design pattern in an executing program.

The Form class hierarchy of .NET and C# is vergdaA small extract is shown in Figure 32.6. Agson
classcomponent, all classes are from the namesps@gem.Windows.Forms

There are twa&Composites in Figure 32.6. The first one is (object) rootgdchassForm, which may

aggregate an arbitrary number of Windows form dbjethe classorm represents a window. The class
Control is the superclass of GUI elements that displafggnimation on the screen. There are approximate 25
immediate and direct subclasses of ctassrol . In reality the classe®xtBox , Button , andPanel are all
indirect subclasses abntrol

The other Composite is, symmetrically, (object)teaobyPanel , which likeForm may aggregate an
arbitrary number oform objects. ClasBane is intended for grouping of a collection of coidro

Component

Control

P o O S S

Form Button TextBox Panel

Figure 32.6 An extract of the Windows Form classes for GUI building. We see
two Composites among these classes.

Below, in Figure 32.6 we show how to constructfthren object tree shown in Figure 32.5, which giviee
to the GUI of Figure 32.4. We program a class whvehnamenindow. Ourwindow class inherits from class
Form. Thus, oumwindow isaForm. Shown inblue we highlight instantiation of GUI elements. Shown
purple we highlight the actual construction of the treecture of Figure 32.5. Theontrols property of a
Form, referred in line 60 - 67, give access tolbection of controls, of typ€ontrolCollection

As it appears in line 23 and 31, we also add aleoofpevent handlers, programmed as private metfrods
line 70 - 83. We have discussed event handlerhapter 23. The associated event handlers just
acknowledge when we click on of the three buttdritb® GUI.

using System;
using System.Windows.Forms;
using System.Drawing;

/[In System:
// public delegate void EventHandler (Object sender , EventArgs e)
public class Window : Forn{

Button b1, b2, paBt;
Panel pa;

278

TextBox th, paThb;

/I Constructor
public Window (){
this.Size=new Size(150,300);

bl = new Button();
b1.Text="Click Me";
bl.Size=new Size(100,25);
bl.Location = new Point(25,25);
bl.BackColor = Color.Yellow;
b1.Click += ClickHandler;
/I Alternatively:
/I b1.Click+=new Even
b2 = new Button();
b2.Text="Erase";
b2.Size=new Size(100,25);
b2.Location = new Point(25,55);
b2.BackColor=Color.Green;
b2.Click += EraseHandler;
/I Alternatively:
/I b2.Click+=new Even
tb = new Text Box();
th.Location = new Point(25,100);
th.Size=new Size(100,25);
th.BackColor=Color.White;
tb.ReadOnly=true;
tb.RightToLeft=RightToLeft.Yes;

pa = new Panel ();
pa.Location = new Point(25,150);
pa.Size=new Size(100, 75);
pa.BackColor=Color.Red;

paBt = new Button();
paBt. Text="A",
paBt.Location = new Point(10,10);
paBt.Size=new Size(25,25);
paBt.BackColor=Color.Blue;
paBt.Click += PanelButtonClickHandler;

paTb = new Text Box();
paTh.Location = new Point(10,40);
paTb.Size=new Size(50,25);
paTh.BackColor=Color.Gray;
paTb.ReadOnly=true;
paTh.RightToLeft=RightToLeft.Yes;

this. Controls. Add(bl);
this. Control s. Add(b2);
this. Control s. Add(tb);

pa. Control s. Add(paBt) ;
pa. Control s. Add(paTb) ;

thi s. Control s. Add(pa);
}

/I Eventhandler:
private void ClickHandler(object obj, EventArgs e
th.Text = "You clicked me";

}

/I Eventhandler:
private void PanelButtonClickHandler(object obj,

279

tHandler(ClickHandler);

tHandler(EraseHandler);

a) {

EventArgs ea) {

paTh.Text +="A";
}

/I Eventhandler:
private void EraseHandler(object obj, EventArgs e a){
th.Text=""

}
}

class ButtonTest{

public static void Main(){
Window win = new Window();
Application.Run(win);

}
}

Program 32.7 A program that builds a sample composite
graphical user interface.

32.6. Cloning

Lecture 8 - slide 30

We briefly discussed copying of objects in Secti@M of the lecture about classes and objectidn t
section we will continue this discussion. Firstwi# distinguish between different types of objecipying.
Later, in Section 32.7, we will see how to enahke pire-existingiemberwiseClone operation to client
classes.

Instead of the word "copy" we often use the wolldrie":

Cloning creates a copy of an existing ob

There are different kinds of cloning, distinguishmdthe copying depth:

« Shallow cloning:
« Instance variables of value type: Copied bit-by-bit
« Instance variables of reference types:
« The reference is copied
« The object pointed at by the referenceas copied
« Deep cloning:
» Like shallow cloning
- But objects referred by references are copied saaly

Shallow cloning is the variant supported by tenberwiseClone operation in Section 32.7. Only a single
object is copied.

Deep cloning copies a network of objects, and if,irageneral, involve many objects.

280

Recall that cloning is only relevant for instanoéslasses, for which reference semantics apply Gleapter
13). Values of structs obey value semantics, arsiels struct values are (shallow) copied by assagrsn
and by parameter passing. See Chapter 14 for adalitiletails.

32.7. Cloning in C#

Lecture 8 - slide 31

Shallow cloning is supported "internally" by anyjexti in a C# program execution. The reason isdahgt
object inherit from clasebject in which the protected methatmberwiseClone implements shallow
cloning. (See Section 28.3 for an overview of theghmads in classbject). Recall from Section 27.3 that a
protected method of a class C is visible in C antthé subclasses of ¢, but not in clients of C.

In this section we will see how we can unleashptitgectedviemberwiseClone operation as a public
operation of an arbitrary class.

Below, in Program 32.8 we show how to implemenibaeableroint class. First, notice thabint
implements the interfaaeloneable , which prescribes a single method caltashe . We have already in
Section 31.4 seemloneable in the context of other flavoring interfaces fréme C# libraries. The public
methodclone of classPoint , shown inpur ple, delegates its work to the protected method
MemberwiseClone . In other words, outlone methods send @emberwiseClone message to the current
Point Object.MemberwiseClone makes the bitwise, shallow copy of the point, @mdturns it. Notice that
from a static point of view, the returned objecbigypeobject . As we will see below, this will typically
imply a need to cast the returned object roiat .

Although aclone method typically delegates its workMemberwiseClone , it is not necessary to do so.
Clone may, alternatively, use a constructor and appat@ibbject mutations in order to produce the copy,
which makes sense for the class in question (wikickassPoint in the example shown below).

using System;

public class Point: | Cl oneabl e {
private double x, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

public double X {
get {return x;}
set {x = value;}

}

public double Y {
get {return y;}
set {y = value;}

public Point move(double dx, double dy){
Point result = (Poi nt) Menmber wi seCl one(); // cloning from within Point is OK.
result.x = x + dx;
result.y =y + dy;
return result;

}

281

/I public Clone method that delegates the work of
Il the protected method MemberwiseClone();
public Onject Cone()({

return Menberw seC one();
}

public override string ToString(){
return "Point: "+ "(" + X+ " +y + ") + "
}
}

Program 32.8 A cloneable class Paint.

In Program 32.9 we show how a client of clas&t uses the implementetbone operation. Notice the
casting, and notice that the subexpresgiobione() is evaluated before the casting. (A possible
misconception would be thatoint)p1 is evaluated first). The evaluation order is duthe precedence of
the cast operator in relation to the precedent¢kedtiot operator, see Table 6.1.

using System;
public class Application{

public static void Main(){
Point p1 = new Point(1.1, 2.2),
P2, p3;

p2 = (Point)pl.d one(); [/l Firstpl.Clone(), then cast to Point.
p3 = pl.move(3.3, 4.4);
Console.WriteLine("{0} {1} {2}", p1, p2, p3);

}

}

Program 32.9 A sample client of class Point.

It may be tempting to circumvent ti&oneable interface, the implementation of our own cloneragien,
and delegation t®emberwiseClone . This temptation is illustrated in Program 32.TBe compiler will find
out, and it tells that we cannot just aamberwiseClone , because it is not a public operation.

Why make life so difficult? Why not support shalleapying of all objects in an easy way, by making
MemberwiseClone public in clas®bject? The reason is that the designers of the programiaimguage (C#,
and Java as well) have decided that the prograrafreeclass should make an explicit decision abdutiv
objects should be cloneable.

There are almost certainly some classes for whigllevnot want copying of instances, singletons (see
Section 16.3) for instance. There are also soassek in which we do not want the standard bitwise
copying provided bwemberwiseClone . Such classes should behave like Program 32.8rshbave, but
instead of delegating the cloningMemberwiseClone , the copy operation should be programmed in the
Clone method to suit the desired copying semantics.

using System;
public class Application{
public static void Main(){

Point p1 = new Point(1.1, 2.2),
P2, p3;

282

p2 = (Poi nt) pl. Menber wi sed one();
/I Compile-time error.
/I Cannot access protected member 'object. Memberwis eClone()'
[l via a qualifier of type 'Point'

p3 = pl.move(3.3, 4.4);
Console.WriteLine("{0} {1} {2}", p1, p2, p3);
}

}
Program 32.10 lllegal cloning with MemberwiseClone.

32.8. Cloning versus use of copy constructors

Lecture 8 - slide 32

In Section 32.7 we found out that cloning of clstances - on purpose - is rather cumbersome in C#
Therefore we have earlier recommended the usepyfconstructors as an alternative means. See Section
12.5 for details and for an example.

In this section we will evaluate and exemplify gaver of copying by cloning (as in Section 32. Tatige
to copying by use of copy constructors.

In a nutshell, the insight can be summarized is wWay:

Cloning withobj . d one() is more powerful than use of copy constructorsabee
obj . G one() may exploit polymorphism and dynamic binding

In order to illustrate the differences between igr(by use of thelone method) and copying (by use of a
copy constructor) we will again use the clas@st . Below, in Section 32.7 we show a version sinitar
Program 32.8 but now with an additional copy caritor (line 12 - 14).

using System;
using System.Drawing;

public class Point: | Cl oneabl e {
protected double X, y;

public Point(double x, double y){
this.x = x; this.y = y;
}

/I Copy constructor
publi ¢ Point(Point p){
this.x = p.x; this.y = p.y;
}

public virtual double X {
get {return x;}
set {x = value;}

}

public virtual double Y {
get {return y;}
set {y = value;}

283

}

public virtual Point move(double dx, double dy){
Point result = (Point)MemberwiseClone(); // cl oning from within Point is OK.
result.x = x + dx;
result.y =y + dy;
return result;

}

I/ public Clone method that delegates the work of
/I the protected method MemberwiseClone();
public virtual Object Cone(){
return Menberw seC one();
}

public override string ToString(){
return "Point: " + (" + X + "y +)"+ .
}
}

Program 32.11 A cloneable class Point.

We also show a subclassrafint calledcColorPoint , see Program 32.12. It addsor instance variable
to the instance variables inherited from clesst , and it has its own copy constructor in line 1(B-

public class ColorPoint: Poi nt {
protected Color color;

public ColorPoint(double x, double y, Color c):
base(x,y){
this.color = c;

}

/I Copy constructor
publ i ¢ Col or Poi nt (Col or Poi nt cp):

base(cp. x, cp. y){
this.color = cp.color;

}

/I Clone method is inherited

public override string ToString(){
return "ColorPoint: " + "(" + x +"," + y + ")" +":" + color;

}
}

Program 32.12 A cloneable class ColorPoint.

In thecColor andcolorPoint client program, shown below in Program 32.13, sbauld focus on the list
pointList , as declared in line 14. We add tr@nt objects and tw@olorPoint Objects tgointList in
line 17 - 20. Next, in the foreach loop startindirm¢ 23 we clone each of the four points in tisg land we
add the cloned points to the initially empty lighedPointList . The elements itionedPointList are
printed at the end of the program. The output 1ssting 32.14 - reveals that the cloning is susb@dsWe
end up having tweoint instances and twoolorPoint instances imlonedPointList

using System;
using System.Drawing;
using System.Collections.Generic;

public class Application{

284

public static void Main(){

Point p1 = new Point(1.1, 2.2),
p2 = new Point(3.3, 4.4);
ColorPoint cpl = new ColorPoint(5.5, 6.6, Color .Red),
cp2 = new ColorPoint(7.7, 8.8, Color .Blue);

List<Point> pointList = new List<Point>(),
clonedPointList = new List<Point>() ;

pointList.Add(p1);
pointList.Add(cpl);
pointList.Add(p2);
pointList.Add(cp2);

/I Clone the points in pointList and add them to cl onedPointList:
foreach(Point p in pointList){

cl onedPoi nt Li st. Add((Poi nt) (p. Clone()));
}

foreach(Point p in clonedPointList)
Console.WriteLine("{0}", p);

Program 32.13 Polymorphic Cloning of Points.

Point: (1,1,2,2).
ColorPoint: (5,5,6,6):Color [Red]
Point: (3,3,4,4).
ColorPoint: (7,7,8,8):Color [Blue]

Listing 32.14 Output of both polymorphic and non-
polymorphic cloning.

Let us now attempt to replicate the functionalityPoogram 32.13 with use of copy constructors, see
Program 32.15. The attempt, shown in Program 3R.1ie 24 - 26 fails, because the activation &f topy
constructors deliveroint objects, even if @olorPoint object is passed as input. Instead we must perform
explicit type dispatch, as shown in line 29-34.d€lg constructors cannot exhibit virtual behavior.

The solution in Program 32.13 based onAbiet andcColorPoint classes in Program 32.11 and Program
32.12 works because tlowne method in Program 32.11 (line 35 - 37) is inheritg ColorPoint . As
already explained, the inherited method delegétesark toMmemberwiseClone , which always copies its
receiver. Thus, iMemberwiseClone is activated on aolorPoint Object it copies &olorPoint object.

using System;

using System.Drawing;

using System.Collections.Generic;
public class Application{

public static void Main(){

Point p1 = new Point(1.1, 2.2),
p2 = new Point(3.3, 4.4);
ColorPoint cpl = new ColorPoint(5.5, 6.6, Color .Red),
cp2 = new ColorPoint(7.7, 8.8, Color .Blue);

List<Point> pointList = new List<Point>(),
clonedPointList = new List<Point>()

285

pointList.Add(p1);
pointList.Add(cpl);
pointList.Add(p2);
pointList.Add(cp2);

/1 Cannot copy Col or Point objects with copy constructor of Point.
/1 Conpiles and runs, but gives wong result.

/1 foreach(Point p in pointList){

/1 cl onedPoi nt Li st. Add(new Poi nt (p));

I}

/I Explicit type dispatch:
foreach(Point p in pointList){
if (p is ColorPoint)
cl onedPoi nt Li st. Add(new Col or Poi nt ((Col or Poi nt)p));
else if (p is Point)
cl onedPoi nt Li st. Add(new Poi nt (p));
}

foreach(Point p in clonedPointList)
Console.WriteLine("{0}", p);

Program 32.15 Non-polymorphic Cloning of Points - with use
of copy constructors.

32.9. The fragile base class problem

Lecture 8 - slide 33
As the next part of this Pattern and Techniquegtelnave will study the so-called fragile base classblem.

The problem can be summarized in this way:

If all methods are virtual it is possible to intcag erroneous dynamic bindings

This can happen if a new method in a superclagivén the same name as a dangerous method
in a subclass

The program in Program 32.16 is a principled AB@magle.B is a subclass a@f, andB has a dangerous
methodv2 As a dangerous method, clients of classust be fully aware that2is called, because it can
have serious consequences. (A possible seriousgo@sce may be to erase the entire harddisk). As
illustrated in theclient classM2can only be activated onsaobject.

/1 Original program No problens.
using System;
class A {

public void M1(){
Console.WriteLine("Method 1");
}
}

286

class B: A {

public void M2(){
Console.WriteLine(" Danger ous Method 2");

}
}

class Client{

public static void Main(){
A a =new B();
B b = new B();

a.M1(); // Nothing dangerous expected
Il a.M2(); /I Compile-time error
/['A" does not contain a definition f or '‘M2'
b.M2(); // Expects dangerous operation

Program 32.16 Theinitial program.

Let us now assume that we replace clagsth a new version with the following changes:

1. A new virtual methodi2is added to A.

2. The existing metho#1in A now callsm2

This is shown in Program 32.17.

We will, in addition, assume that all involved madls M1 andm2) are virtual, and tha#2in B overridesvi2
in A. In C# this is not a natural assumption, but walhis is the default semantics (and the only iptess
semantics).

It is purely accidental that the new method in€kabas the same name as the dangerous methindclass
B.

In theclient class in Program 32..mv1() will - unexpectedly - call the dangerous metivadn classs,
because the variabéehas dynamic typs. Similarly,a.M2() callsm2in B. The programmer, who wrote class
A, expected that the expressiomi() would call the sibling method2in classal This could come as an
unpleasant surprise.

/I Dangerous program.

/I M2 is virtual in A and overridden in B.
/1 Conpiles and runs

/I Default Java semantics.

using System;

/I New version of A
class A {

public void M1(){

Console.WriteLine("Method 1");
this. M();
}

/I New method in this version.
/I Same name as the dangerous operation in subcla ssB

287

public virtual void M2({
Console.WriteLine("M2 in new version of A");

}
}

class B: A{

public overri de void M2(){
Console.WriteLine("Dangerous Method 2");

}
}

class Client{

public static void Main(){
A a=new B();
B b = new B();

a. ML(); /I Nothing dangerous expected
/I Will, however, call the dangerous o peration
/I because M2 is virtual.

a.M2(); // Makes sense when M2 exists in class A.
/Il Calls the dangerous method

b.M2(); // Calls the dangerous method.
I/l This is expected, however.
}

}
Program 32.17 Therevised version with method A.M2 being
virtual.

Method 1

Danger ous Met hod 2
Dangerous Method 2
Dangerous Method 2

Listing 32.18 Output of revised program.

If we, in C#, just add theizmethod to class, and chang#1 such that it calls2, as shown in Program
32.19 (only on web) it is not possible to compikessB. The problem is that we have a method, nannzid
both classs andB. This is the problem that we have discussed ini@e28.9. The programmer should
decide ifm2in B should be declared asw, or if it shouldover ri de M2from classa. In the latter cases2in
A must be declared as virtual.

If you want additional details about the fragilesba&lass problem, the web-version of the papelagmitwo
additional variants of Program 32.17.

The fragile base class problem illustrates a daofjesing virtual methods (dynamic binding) all oviee
place. In rare situations, as the one construct&tagram 32.17, it may lead to dangerous resuits.
summarize, the problem arises if a method in alasbés unintentionally called instead of a methmd
superclass. In C#, both the superclass and théasshoust specify if dynamic binding should takacpl In
the superclass the involved method mustibe ual , and in the subclass the method must usewte i de
modifier. Alternatively, we may opt for static bind, as in Program 32.20. As illustrated by ProgB19
the C# programmer is likely to get a warning ineche or she approaches the fragile base classpmobl

288

32.10. Factory design patterns

Lecture 8 - slide 34

Instantiation of classes is done by tle@ operator (see Section 6.7) in cooperation witbrastructor (see
Section 12.4). Imagine that we need numerous inetaaf clasg in a large program. This would lead to a
situation where there appears may expressiongdbtimnew C(...) in the program. Why can this be
considered as a problem?

One problem with many occurrencesel C(...) is if we - eventually - would like to instantisaeother
class, say a subclass®fin this situation we would prefer to make ateange at a single place in the
program, instead of a spread of changes througheyirogram.

Another problem may occur if we need two or monestauctors which we cannot easily distinguish gy th
formal parameters of the constructors. We have seamples of such situations in Section 16.4.

As yet another problem, we may wish to introducedgnames for object instantiations, beyond the
possibilities of constructors.

Various uses of factory methods can be seen as@swuo the problems pointed out above. We will
distinguish between the following variations oftfary methods:

» Factory methods implemented with class methodtidsteethods) in C, or in another class
« The design patterRactory Method which handles instantiation in instance methoddieft
subclasses
« Relies on instance methods in class hierarchidswiritual methods
« The design patterAbstract Factory which is good for instantiation of product famdie
* Relies on instance methods in class hierarchidswiritual methods

As already pointed out, we have seen examplesat $actory methods in Section 16.4. We will dissthe
design patterifractory Method below, in Section 32.11. In the current versiothef material we do not
discussAbstract Factory.

32.11. The design pattern Factory Method

Lecture 8 - slide 35

TheFactory Method design pattern relies on virtual instance methiodsclass hierarchy that take care of
class instantiation. Theactory Method scene is shown diagrammatically in Figure 32.7 and
programmatically in Program 32.22.

The probleris how to facilitate instantiation of differentatys ofProduct s (line 3-13 in Program 32.22) in
SomeOperation (line 20) of clasEreator .

The Factory Method solutias to carry out the instantiation in overriddertwal methods in subclasses of
classcreator . The actual instantiations take place in line 26 32 of Program 32.22. BomeOperation
the highlighted cali hi s. Fact or yMet hod() will either cause instantiation abncreteProduct 1 or
ConcreteProduct_2 , depending on the dynamic type of the creator.

289

Subclasses afreator decide whichProduct to instantiate

Lol Creator

FactoryMethod()

SomeCperation()

ConcreteProduct 1 Cuncr!t\ef‘r{:duct 2 ¥
i

ComcreteCreatar 1 Conorete Creator 2
Fasnaryiethad{) FattoryMethadd

Figure 32.7 Atemplate of the class structure in the Factory Method design
pattern.

using System;

public abstract class Product{
public Product(){}

public class ConcreteProduct_1: Product{
public ConcreteProduct_1(){}

}

public class ConcreteProduct_2: Product{
public ConcreteProduct_2(){}

}

public abstract class Creator{
public abstract Product FactoryMethod();

public void SomeOperation(){
Product product = Fact or yMet hod() ;

}
}

public class ConcreteCreator_1: Creator{
public override Product FactoryMethod(){
return new ConcreteProduct_1();

}
}

public class ConcreteCreator_2: Creator{
public override Product FactoryMethod(){
return new ConcreteProduct_2();

}
}

Program 32.22 Illustration of Factory Method in C#.

Factory Method calls for a quite complicated scene of parallasslhierarchies. The key mechanism behind
the pattern is the activation of a virtual methigahf a fully defined, non-abstract method in thes{edxt)
classcreator . In many contextstactory Method will be too complicated to set up. If, howeve thajor
parts of the class hierarchies already have beablishied, the use éfactory Method allows for flexible
variations ofProduct instantiations.

290

32.12. The Visitor design pattern

Lecture 8 - slide 37

TheVisitor design pattern is typically connected to @anposite design pattern, which we have discussed
in Section 32.1. Recall thatGomposite gives rise to a tree of objects, all of which esgpa uniform client
interface. TheVisitor design pattern is about a particular organizatiothe operations that visit each node
in such a tree.

Relative to th&Composite class diagram, shown in Figure 32.1, we will desctwo different organizations
of the tree visiting operations:

« The natural object-oriented solution:
« One method per operation p&mponent class
« TheVisitor solution
« All methods that pertain to a given operation afactored and encapsulated in its own
class

The natural object-oriented solution, mentionest fits the solution that falls out of t@®mposite design
pattern. We will illustrate it in the context ofethhtSequence Composite in Section 32.13.

TheVisitor solution is an alternative - and more complicatethanization which keeps all operations of a
given traversal together. This is the solutionhaf\fisitor design pattern. It will be exemplified in Section
32.15.

32.13. Natural object-oriented IntSequence tralsrs

Lecture 8 - slide 38

We have studied the integer sequence compositgpienaix Section 58.3. The class diagram of this
particularComposite is shown in Figure 58.1. Please recapitulate $sisergce of the integer sequence idea
from there.

We will now discuss three different operations vmeed to visit each object in a integer sequenees t
such as the seven nodes of the tree shown in FiduPe The operations akex, Min, andSum Min andMax
find the smallest/largest number in the tree respey. sumadds all numbers in the tree together.

Below we show th&tin, Max, andsumoperations in four class@sSequence |, IntSingular , Intinterval ,
andintComposite . All of the operation need to traverse the tregcstire. Inner nodes in the composite tree
are represented as instances of the ale&snpSeq , as shown in Program 32.26. The operatiins Max,
andsumare implemented recursively in this classCémposite is a recursive data structure which in a
natural way calls for recursive processing. Altls archetypical for a composite structure.

public abstract class IntSequence {

public abstract int M n {get;}
public abstract int Vax {get;}
public abstract int Sum();

}
Program 32.23 The abstract class IntSequence.

2901

public class Intinterval: IntSequence{

private int from, to;

public Intinterval(int from, int to){

this.from = from;
this.to = to;

}

public int From{
get{return from;}

public int To{
get{return to;}

}

public override int

M n{

get {return Math.Min(from,to);}

public override int

Max{

get {return Math.Max(from,to);}

public override int
int res = 0;

Sum({

int lower = Math.Min(from,to),
upper = Math.Max(from,to);

for (int i = lower; i <= upper; i++)

res +=1i;
return res;
}
}

Program 32.24 Theclass Intinterval.

public class IntSingular: IntSequence{

private int it;

public IntSingular(int it){
this.it = it;
}

public int Thelnt{
get{return it;}

public override int
get {return it;}

public override int
get {return it;}

public override int
return it;
}
}

M n{

Max{

Sum({

Program 32.25 Theclass IntSingular.

292

public class IntCompSeq: IntSequence{

private IntSequence s1, s2; // Binary sequence: Exactly two subsequences.
public IntCompSeq(IntSequence s1, IntSequence s2) {

this.s1 = s1;

this.s2 = s2;
}

public IntSequence First{
get{return s1;}

public IntSequence Second{
get{return s2;}

public override int M n{
get {return Math.Min(s1.Min, s2.Min);}

public override int Max{
get {return Math.Max(s1.Max, s2.Max);}

public override int Sum(){
return s1.Sum() + s2.Sum();

}
}

Program 32.26 The class IntCompSeq.

In the web version of the material we show an iatespquence client which traverses a composite tree
structure of integer sequences with use of theadipeisMin , Max, andsum see Program 32.27 (only on web).
In Listing 32.28 (only on web) we also show thegmean output.

The programming oftin,, Max, andsumin the integer sequence classes, as shown alsavatural object-
oriented programming of the traversals. Each ofdlie involved classes hasvin, Max, and asumoperation.
The operations are located in the immediate neiditdmal of the data on which they rely. Everythingjrig.

But the solution shown in this section is ndfiaitor. In the next section we will discuss and motiag
transition from the natural object-oriented solntto a visitor. After that we will reorganizén, Max and
Sumas visitors.

32.14. Towards a Visitor solution

Lecture 8 - slide 39

Before we study Visitors for integer sequence trsals we will discuss the transition from the natur
object-oriented traversal to thMesitor design pattern.

The main idea of/isitor is to organize all methods that take part in aéi@aar traversal, in a singhgsitor
class. In our example from Section 32.13 it mehaswe will haveminvisitor , MaxVisitor , and
sumvisitor class. All of these classes share a comwmsitar interface.

293

The following steps are involved the transitiomfroatural object-oriented visiting to theésitor design
pattern:

« Avisitor interface and three concrete Visitor classes efieel

« Thelintsequence classes are refactored - the traversal methodwa@ved to the visitor classes
e Accept methods are defined in theSequence classesAccept takes avisitor as parameter
e Accept passeshis to the visitor, which in turn may activatecept on components

From the web-version of the material we providesatG-animation that illustrates the transition.
Try the accompanying SVG animation

In the following section we will study an examplie the slipstream of the example we will explainian
discuss additional details. The pros and conseYiktor solution are summarized in Section 32.16.

32.15. A Visitor example: IntSequence

Lecture 8 - slide 40
Let us now reorganize the integer sequence tradgdrsan Section 32.13 to\disitor.

We provide three different traversals: find minimuimd maximum, and calculate sum. This will givser
to three different visitor objects: a minimum uvigita maximum visitor, and a sum visitor of types
MinVisitor , MaxVisitor , andSumvVisitor ~ respectively. The three classes implement a commsr
interface. Each of the visitors will haveitintinterval , VisitSingular , andvisitCompSeq methods.
As a naming issue, we chose to use the nasne for all of them. This choice relies on method ¢eading.
With these considerations we are able to underdtandsitor interface shown in Program 32.29.

public interface Visitor{
int Visit (Intinterval iv);
int Visit (IntSingular iv);
int Visit (IntCompSeq iv);
}

Program 32.29 The Visitor Interface.

The abstract superclass in the integer sequéaaposite design pattern, which we presented in Program
32.23, can now be reduced to a single method, whias avisitor object as parameter. The method is
usually calledaceept .

public abstract class IntSequence {
public abstract int Accept(Visitor v);

}
Program 32.30 The abstract class IntSequence.

The idea behind theccept method is to delegate the responsibility of aipaldr traversal to a given
Visitor object. In the classtinterval , shown below in Program 32.31, we see Meaépt passes the

294

current object (thentinterval object) to the visitor. This is done in line 1helsame happens Aacept
of IntSingular ~ (line 14 of Program 32.32) andAacept of IntCompSeq (line 19 of Program 32.33).

public class Intinterval: IntSequence{
private int from, to;

public Intinterval(int from, int to){
this.from = from;
this.to = to;

}

public int From{
get{return from;}

}

public int To{
get{return to;}

public override int Accept(Visitor v){
return v.Visit(this);

}
}

Program 32.31 Theclass Intinterval.

public class IntSingular: IntSequence{
private int it;

public IntSingular(int it){
this.it = it;
}

public int Thelnt{
get{return it;}

public override int Accept(Visitor v){
return v.Visit(this);

}
}

Program 32.32 Theclass IntSingular.

295

public class IntCompSeq: IntSequence{
private IntSequence s1, s2; // Binary sequence:

public IntCompSeq(IntSequence s1, IntSequence s2)
this.s1 = s1;
this.s2 = s2;

}

public IntSequence First{
get{return s1;}

public IntSequence Second{
get{return s2;}

public override int Accept(Visitor v){
return v.Visit(this);
}
}

Exactly two subsequences.

{

Program 32.33 The class IntCompSeq.

It is now time to program the visitor classes (thesses that implement thiaitor interface of Program

32.29).

Thevisit methods on intervals and singulars (the leafeéncomposite tree) just extract information from
the passed tree node. Thus, Wi methods extract information from the objects ti@t the essential
information (this is the objects that provide tfiveept methods). Th&isit methods on the inner tree nodes
(of typeintCompSeq) are more interesting. They calicept methods on subtrees of the inner tree node.
This is highlighted with blue color in Program 32,.®rogram 32.35, and Program 32.36.

public class MinVisitor: Visitor{
public int Visit (Intinterval iv){
return Math.Min(iv.From, iv.To);

}

public int Visit (IntSingular iv){
return iv.Thelnt;

}
public int Visit (IntCompSeq iv){

return Math. M n(iv. First. Accept(this),
i v. Second. Accept (this));

Program 32.34 The class MinVisitor.

296

public class MaxVisitor: Visitor{
public int Visit (Intinterval iv){
return Math.Max(iv.From, iv.To);

}

public int Visit (IntSingular iv){
return iv.Thelnt;

}
public int Visit (IntCompSeq iv){
return Mat h. Max(iv. First. Accept(this),
i v. Second. Accept (this));
}
}

Program 32.35 The class MaxVisitor.

public class SumVisitor: Visitor{
public int Visit (Intinterval iv){
int res = 0;
int lower = Math.Min(iv.From,iv.To),
upper = Math.Max(iv.From,iv.To);

for (int i = lower; i <= upper; i++)
res +=i;
return res;

}

public int Visit (IntSingular iv){
return iv.Thelnt;

}
public int Visit (IntCompSeq iv){
return (iv.First.Accept(this) +
i v. Second. Accept (this));
}
}

Program 32.36 The class SumVisitor.

As it appears, eackecept method in the€Composite calls avisit method in avisitor class, which in turn
may call one or moraccept methods on a composite constituents. This leaiglicect recursion in
betweemccept methods andlisit methods. Compared with the natural object-oriestddtion, which
usegdirect recursion, this is more complicated to understand.

The indirect recursion, pointed out above, may alsoanderstood as a simulationdotible dispatching.

First, we dispatch on thésitor ~ object and next we dispatch on an object fronttraposite tree structure.
Most object-oriented programming language onlyvedlaingle dispatching - corresponding to message
passing via a virtual method. This can be generdlismultiple dispatching, where the dynamic type of
several objects determine which method to activete. object-oriented part of Common Lisp - CLOS
[Keene89] - supports multiple dispatching.

In Program 32.37 we show a client program withraedger sequence composite structure (line 7-18eth
visitors (line 16-18), and sample activations etttraversals (highlighted in line 21, 22, and Z8g output
of the program is shown in Listing 32.38 (only oabj.

297

using System;
class SeqApp {
public static void Main(){

IntSequence isq =
new IntCompSeq(
new IntCompSeq(
new Intinterval(3,5), new IntSingular -7)),
new IntCompSeq(
new Intinterval(12,7), new IntCompSeq

new Intl nterval(18,-18),
new Intl nterval(3,5)
N

Visitor min = new MinVisitor();
Visitor max = new Max\Visitor();
Visitor sum = new SumVisitor();

Console.WriteLine("Min: {0} Max: {1}", i sq. Accept (m n),
i sq. Accept (max));

/I Alternative activation of Visit methods:

/I Console.WriteLine("Min: {0} Max: {1}", min.Visi t((IntCompSeq)isq),
I max.Visi t((IntCompSeq)isq));
Console.WriteLine("Sum: {0}", i sg. Accept (sum);
}
}

Program 32.37 A sample application of IntSequences and
visitors.

32.16. Visitors - Pros and Cons

Lecture 8 - slide 41

As it is already clear from our explanation\d&itor in Section 32.15 there are both advantages and
disadvantages of this design pattern.

We summarize the consequence¥isitor in the following items:

« A new kind of traversal can be added without afferthe classes of tHeomposite

- A Visitor encapsulates all methods related to a particrdsetsal

- State related to a traversal can - in a natural \Weeyrepresented in thésitor

« Ifanew class is added to tBemposite all Visitor classes are affected

« The indirect recursion that involvescept and thevisit methods is more complex than the
direct recursion in the natural object-orientedisoh

Visitor is frequently used for processing of abstractayirees in compilation tools

In case you are going to study compilers implengtiie object-oriented way, you will most likely
encounteiisitors for such tasks as type checking and code generatio

298

32.17. References

[Keene89] Sonya E. Keen@pject-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

[Gamma96] E. Gamma, R. Helm, R. Johnson and Jsidés Design Patterns. Elements of
Reusable Object-oriented Software. Addison Wesley, 1996.

[Midi-sample] The generated MIDI file
http://www.cs.aau.dk/~normark/oop-csharp/midi/samd.

[Mip-jan-08] MIP Exam January 2008 (In Danish)
http://www.cs.aau.dk/~normark/oop-07/html/mip-jadi@pgave.html

[Song-and- The auxiliary classes TimedNote and Song

timednote-classes] http://www.cs.aau.dk/~normark/oop-07/html/mip-jad'@sharp/mip.cs

[Factory-method] Wikipedia: Design pattern: Factbtgthod
http://en.wikipedia.org/wiki/Factory _method

[Abstract-factory] Wikipedia: Design pattern: Alestt Factory
http://en.wikipedia.org/wiki/Abstract factory

299

300

