
 241

29. Method Combination

In this section we will primarily study method combination. Secondarily we will touch on a more specialized,
related problem called parameter variance.

29.1. Method Combination
Lecture 8 - slide 2

If two or more methods, of the same name, located different places in a class hierarchy, cooperate to solve
some problem we talk about method combination.

A typical (and minimal) scene is outlined in Figure 29.1. Class B is a subclass of A, and in both classes there
is a method named Op. Both Op methods have the same signature.

Figure 29.1 Class B is a subclass of class A

Overall, and in general, there are several ways for Op in class A and B to cooperate. We can, for instance,
imagine that whenever a B-object receives an Op message, both operations are called automatically. We can
also imagine that Op in class A is called explicitly by Op in class B, or the other way around.

Along the lines outlined above, we summarize two different method combination ideas. The first is known as
imperative method combination, and the second is known as declarative method combination.

 • Programmatic (imperative) control of the combination of Op methods
• Superclass controlled: The Op method in class A controls the activation of Op in class B
• Subclass controlled: The Op method in class B controls the activation of Op in class A
• Imperative method combination

• An overall (declarative) pattern controls the mutual cooperation among Op methods
• A.Op does not call B.Op - B.Op does not call A.Op.
• A separate abstraction controls how Op methods in different classes are combined
• Declarative method combination

Mainstream object-oriented programming languages, including C#, support imperative method combination.
Most of them support the variant that we call subclass-controlled, imperative method combination.

Beta [Kristensen87] is an example of programming language with superclass-controlled, imperative method
combination. CLOS [Steele90, Keene89] is one of the few examples of programming languages with
declarative method combination. (The interested reader can consult Chapter 28 of [Steele90] to learn much
more about declarative method combination in CLOS.)

 242

 C# supports subclass controlled, imperative method combination via use of the notation
base.Op(...)

The notion base.Op(...) has been discussed in Section 28.7 and it has been illustrated in Program 26.2
(line 17), Program 28.13 (line 20), and Program 28.14 (line 20).

29.2. Parameter Variance
Lecture 8 - slide 3

We will continue the discussion of the scene outlined in Figure 29.1, now refined in Figure 29.2 shown
below. The question is how the parameters of Op in class A and B vary in relation the variation of type A and
type B.

Figure 29.2 Class B is a subclass of class A, and T is a subclass of S.

In Program 29.1 we create an object of the specialized class B (in line 2), and we assign it to a variable of
static type A (line 5) This is possible due to polymorphism. In line 6 we send the Op message to the B object.
We assume that Op is virtual, and therefore we expect that Op in class B is called.

So far so good. The thing to notice is that Op takes a single parameter. If we pass an instance of class S to
B.Op we may be in deep trouble. A problem occur if B.Op applies some operation from class T on the S
object.

1
2
3
4
5
6
7

 A aref;
 B bref = new B();
 S sref = new S();

 aref = bref; // aref is of static type A and dynamic type B
 aref.Op(sref); // B.Op is called with an S-obje ct as parameter.
 // What if an operation from T i s activated on the S-object?

 Program 29.1 An illustration of the problems with
covariance.

In Program 29.2 (only on web) in the web-edition we show a complete C# program which illustrates the
problem.

The story told about the scene in Program 29.1 and Program 29.2 (only on web) turns out to be flawed in
relation to C#! I could have told you the reason, but I will not do so right away. You should rather take a
look at Exercise 8.1 and learn the lesson the hard way. (When access is granted to the exercise solutions, you
will be able to get my explanation).

 243

 It turns out that parameter variance is not really a relevant topic in C#...

29.3. Covariance and Contravariance
Lecture 8 - slide 4

The situation encountered in Figure 29.2 of Section 29.2 is called covariance, because the types S and T (as
occurring in the parameters of Op in class A and B) vary the same way as classes A and B. (The parameter type
T of Op in class B is a subclass of the parameter type S of Op in class A; The class B is a subclass of class A;
Therefore we say that T and S vary the same way as A and B.)

 • Covariance: The parameters S and T vary the same way as A and B

As a contrast, the situation in Figure 29.3 below is called contravariance, because - in this variant of the
scene - S and T vary in the opposite way as A and B. Please compare carefully Figure 29.2 with Figure 29.3.

 • Contravariance: The parameters S and T vary the opposite way as A and B

Figure 29.3 Class B is a subclass of class A, and the parameter class S is a
subclass of T.

As we will see in Exercise 8.1 the distinction between covariance and contravariance is less relevant in C#.
However, covariance and contravariance show up in other contexts of C#. See Section 42.6.

 Exercise 8.1. Parameter variance

First, be sure you understand the co-variance problem stated above. Why is it problematic to execute
aref.Op(sref) in the class Client?

The parameter variance problem, and the distinction between covariance and contravariance, is not really a
topic in C#. The program with the classes A/B/S/T on the previous page compiles and runs without
problems. Explain why!

 244

29.4. References

[Keene89] Sonya E. Keene, Object-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

[Steele90] Guy L. Steele, Common Lisp, the language, 2nd Edition. Digital Press, 1990.

[Kristensen87] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen and Kristen
Nygaard, "The BETA Programming Language". In Research Directions in Object-
Oriented Programming, The MIT Press, 1987. Bruce Shriver and Peter Wegner
(editors)

 245

30. Abstract Classes - Sealed Classes

This chapter is about abstract classes. At the end of the chapter we also touch on sealed classes. Relative to
our interests, sealed classes are less important than abstract classes.

30.1. Abstract Classes
Lecture 8 - slide 6

When we program in the object-oriented paradigm it is important to work out concepts as general as possible.
Programming at a general level promotes reusability (see Section 2.4).

In object-oriented programming languages we organize classes in hierarchies. The classes closest to the root
are the most general classes. Take, as an example, the bank account class hierarchy in Section 25.3, where
the class BankAccount is more general than CheckAccount , SavingsAccount , etc. It is worth noticing,
however, that we were able to fully implement all operations in the most general class, BankAccount . In the
rest of this chapter we will study even more general classes, for which we cannot (or will not) implement all
the operations. The non-implemented operations are stated as declarations of intent at the most general level.
These declarations of intent should be realized in less general subclasses.

 Abstract classes are used for concepts that we cannot or will not implement in full details

Here follows our definition of an abstract class and an abstract operation.

 An abstract class is a class with one or more abstract operations

An abstract operation is specially marked operation with a name and with formal parameters,
but without a body

An abstract class

 • may announce a number of abstract operations, which must be supplied in subclasses
• cannot be instantiated
• is intended to be completed/finished in a subclass

We will sometimes use the term concrete class for a class which is not abstract.

You should be aware that the definition of an abstract class, as given below, is not 100% accurate in relation
to C#. In C# a class can be abstract without announcing abstract operations. More about that in Section 30.2
below, where we discuss abstract classes in C#.

The fact that an abstract class cannot be instantiated is the most tangible, operational consequence of
working with abstract classes. Many OOP programmers tend to think of the abstract modifier as a mark, to
be associated with those classes, he or she does not wish to instantiate. Surely, this is a consequence, but it is
not the essential idea behind abstract classes.

 246

30.2. Abstract classes and abstract methods in C#
Lecture 8 - slide 7

We will first study an example of an abstract class. We pick an abstract stack. (This is indeed a very popular
example class in many contexts. We have tried to avoid it, but here it fits nicely).

The abstract class Stack , shown in Program 30.1, is remarkable of two reasons:

1. There is no data representation in the class (no instance variables).

2. There is a fully implemented operation in the class, despite the fact that the class has no data for the
operation to work on.

The blue parts of Program 30.1 are the abstract operations. These operations make up the classical stack
operations Push , Pop, and Top together with Full , Empty , and Size . (Notice that Top, Full , Empty and Size
are announced as properties, cf. Section 30.3). The abstract operations have signatures (method heads), but
no body blocks. In a real-life version of the program we would certainly have supplied documentation
comments with some additional explanations of the roles of the abstract operations in the class.

The purple part represents a fully implemented, "normal" method, called ToggleTop . This method swaps the
order of the two top-most elements of the stack (if available). Notice that ToggleTop can be implemented
solely in terms of the Push , Pop, Top and Size . In other words, it is not necessary for the implementation of
ToggleTop to know details of the concrete data representation of stacks.

 247

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

using System;

public abstract class Stack{

 abstract public void Push(Object el);

 abstract public void Pop();

 abstract public Object Top{
 get;}

 abstract public bool Full{
 get;}

 abstract public bool Empty{
 get;}

 abstract public int Size{
 get;}

 public void ToggleTop(){
 if (Size >= 2){
 Object topEl1 = Top; Pop();
 Object topEl2 = Top; Pop();
 Push(topEl1); Push(topEl2);
 }
 }

 public override String ToString(){
 return String.Format("Stack[{0}]", Size);
 }
}

 Program 30.1 An abstract class Stack - without data
representation - with a non-abstract ToggleTop method.

In Program 30.1 the method ToString is also an example of a fully implemented method, which relies on an
abstract method, namely Size .

It is left as an exercise to implement a non-abstract subclass of the abstract stack, see Exercise 8.3.

Let us state some more detailed - a perhaps slightly surprising - observations about abstract classes and
abstract operations. Each of them will be discussed below.

 • Abstract classes
• can be derived from a non-abstract class
• do not need not to have abstract members
• can have constructors

• Abstract methods
• are implicitly virtual

In relative rare situations an abstract class can inherit from a non-abstract class. Notice, however, that even
abstract classes inherit (at least implicitly) from class Object , which is a non-abstract class in C#. (In
principle, it would make good sense for the designers of C# to implement class Object as abstract class. But
they did not! We only rarely make instances of class Object).

 248

The next observation is about fully implemented classes, which we mark as being abstract. As discussed
above, the purpose of this marking is to prevent instantiation of the class.

You may ask if it makes sense to have constructors in a class which never is instantiated. The answer is yes,
because the data encapsulated in an abstract class A should be initialized when a concrete subclass of A is
instantiated. Due to the rules of constructor cooperation, see Section 28.4 and Section 28.5, a constructor of
class A will be activated. If no constructor is present in A, this falls back on the parameter-less default
constructor.

Finally, we observe that the abstract methods are implicitly virtual. This is natural, because such a method
has to be (re)defined in a subclass. In C# it is not allowed explicitly to write "virtual abstract " in front of
an abstract method. Let us also observe, that an abstract method M cannot be private. This is because M need
to be visible in the classes that override M.

 Exercise 8.2. Course and Project classes

In the earlier exercise about courses and projects (found in the lecture about classes) we programmed the
classes BooleanCourse , GradedCourse , and Project . Revise and reorganize your solution (or the model
solution) such that BooleanCourse and GradedCourse have a common abstract superclass called Course .

Be sure to implement the method Passed as an abstract method in class Course .

In the Main method (of the client class of Course and Project) you should demonstrate that both boolean
courses and graded courses can be referred to by variables of static type Course .

 Exercise 8.3. A specialization of Stack

On the slide to which this exercise belongs, we have shown an abstract class Stack .

It is noteworthy that the abstract Stack is programmed without any instance variables (that is, without any
data representation of the stack). Notice also that we have been able to program a single non-abstract
method ToggleTop , which uses the abstract methods Top, Pop, and Push .

Make a non-abstract specialization of Stack , and decide on a reasonable data representation of the stack.

In this exercise it is OK to ignore exception/error handling. You can, for instance, assume that the capacity
of the stack is unlimited; That popping an empty stack an empty stack does nothing; And that the top of an
empty stack returns the string "Not Possible". In a later lecture we will revisit this exercise in order to
introduce exception handling. Exception handling is relevant when we work on full or empty stacks.

Write a client of your stack class, and demonstrate the use of the inherited method ToggleTop . If you want,
you can also adapt my stack client class which is easily available to you in the web-edition of this material.

 249

30.3. Abstract Properties
Lecture 8 - slide 8

Properties were introduced in Chapter 18. Recall that properties allow us to get and set data of a class
through getter and setter abstractions. From an application point of view, properties are used in the same way
as variables - both on the left and right hand sides of assignments. Underneath, a property is realized as two
methods - one "getter" and one "setter".

Properties can be abstract in the same way as methods. It means that we can announce a number of
properties which must be fully defined in subclasses. We will in Program 30.2 study an example of abstract
properties, namely in a Point class called AbstractPoint , which can be accessed both in a rectangular (x, y)
and a polar (r, a) way. r and a means radius and angle respectively. There is no data (variables) in class
AbstractPoint . We announce X, Y, R and A as abstract properties. These are emphasized using purple color.
All of these are announced as both getters and setters. Notice the get; set; syntax. We could alternatively
announce these as only getters, or as only setters. We notice that the syntax of abstract properties is similar to
the syntax used for automatic properties, see Section 18.3.

Following the abstract properties comes three noteworthy methods Move, Rotate and ToString . They are
shown in blue. They all use make heavy use the abstract properties. The assignment X += dx in Move, for
instance, expands to X = X + dx . It first uses the getter of the X property on the right hand side of the
assignment. Next, it uses the X setter on the left hand side. In Program 30.2 we only know that the X getter
and the X setter exist. The actual implementation details will be found in a subclass.

In the web-edition of this material, we show a version of class AbstractPoint with four additional protected,
static methods which are useful for the implementation of the subclasses.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

using System;

abstract public class AbstractPoint {

 public enum PointRepresentation {Polar, Rectangul ar}

 // We have not yet decided on the data representation of Point

 public abstract double X {
 get ;
 set ;
 }

 public abstract double Y {
 get ;
 set ;
 }

 public abstract double R {
 get ;
 set ;
 }

 public abstract double A {
 get ;
 set ;
 }

 public void Move(double dx, double dy){
 X += dx; Y += dy;
 }

 250

33
34
35
36
37
38
39
40
41

 public void Rotate(double angle){
 A += angle;
 }

 public override string ToString(){
 return "(" + X + ", " + Y + ")" + " " + "[r:" + R + ", a:" + A + "] ";
 }

}

 Program 30.2 The abstract class Point with four abstract
properties.

In Program 30.3 we see a subclass of AbstractPoint . It is called Point . It happens to represent points the
polar way. But this is an internal (private) detail of class Point .

Class Point is a non-abstract class, and therefore we program a constructor, which is emphasized in black.
The constructor is a little unconventional, because the first parameter allows us to specify if parameter two
and three means x, y or radius , angle . It is desirable if this could be done more elegantly. (It can! Use of
static factory methods, see Section 16.4, is better). Notice that PointRepresentation is an enumeration type
defined in line 5 of Program 30.2.

Emphasized in purple we show the actual implementation of the X and Y properties. Let us look at X. The
getter of X is called whenever X is used as a right-hand side value. It calculates the x-coordinate of a point
from the radius and the angle. The setter of X is called when X is used in left-hand side context, such as X = e.
The value of expression e is bound to the pseudo variable value. The setter calculates new radius and angle
values which are assigned to the instance variables of class Point .

Emphasized in blue we show the implementation of the R and A properties. These are trivial compared to the
X and Y properties, because we happen to represent points in the polar way.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

using System;

public class Point: AbstractPoint {

 // Polar representation of points:
 private double radius, angle; // radiu s, angle

 // Point constructor:
 public Point(PointRepresentation pr, double n1, double n2){
 if (pr == PointRepresentation.Polar){
 radius = n1; angle = n2;
 }
 else if (pr == PointRepresentation.Rectangular){
 radius = RadiusGivenXy(n1, n2);
 angle = AngleGivenXy(n1, n2);
 } else {
 throw new Exception("Should not happen");
 }
 }

 public override double X {
 get {
 return XGivenRadiusAngle(radius, angle);}
 set {
 double yBefore = YGivenRadiusAngle(radius, angle);
 angle = AngleGivenXy(value, yBefore);
 radius = RadiusGivenXy(value, yBefore);
 }

 251

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

 }

 public override double Y {
 get {
 return YGivenRadiusAngle(radius, angle);}
 set {
 double xBefore = XGivenRadiusAngle(radius, angle);
 angle = AngleGivenXy(xBefore, value);
 radius = RadiusGivenXy(xBefore, value);
 }
 }

 public override double R {
 get {
 return radius;}
 set {
 radius = value;}
 }

 public override double A {
 get {
 return angle;}
 set {
 angle = value;}
 }

}

 Program 30.3 A non-abstract specialization of class Point
(with private polar representation).

In the web-edition we show a client of AbstractPoint and Point , which is similar to Program 11.3 from
Section 11.6. It shows how to manipulate instances of class Point via its abstract interface.

Let us summarize what we have learned from the examples in Program 30.2, Program 30.3, and Program
30.4 (only on web). First and foremost, we have seen an abstract class in which we are able to implement
useful functionality (Move, Rotate , and ToString) at a high level of abstraction. The implementation details
in the mentioned methods rely on abstract properties, which are implemented in subclasses. We have also
seen a sample subclass that implements the four abstract properties.

30.4. Sealed Classes and Sealed Methods
Lecture 8 - slide 9

We will now briefly, as the very last part of this chapter, describe sealed classes and sealed methods.

 A sealed class C prevents the use of C as base class of other classes

 • Sealed classes
• Cannot be inherited by other classes

• Sealed methods
• Cannot be redefined and overridden in a subclass
• The modifier sealed must be used together with override

 252

Sealed classes are related to static classes, see Section 11.12, in the sense that none of them can be
subclassed. However, static classes are more restrictive because a static class cannot have instance members,
a static class cannot be used as a type, and a static class cannot be instantiated. Sealed classes and methods
correspond to final classes and final methods in Java.

In some sense, abstract and sealed classes represent opposite concepts. At least this holds in the following
sense: A sealed class cannot be subclassed; An abstract class must be subclassed in order to be useful.

If a class is abstract it does not make sense that it is sealed. And the other way around, if a class is sealed it
does not make sense that it, in addition, is abstract. Notice that it does not make sense either to have virtual
methods in a sealed class.

A sealed class is not required to have sealed methods. Moreover, a class with a sealed method does not itself
need to be sealed.

Finally, notice, that in C# a method cannot be sealed without also being overridden. Thus, the sealed
modifier always occurs as an "extra modifier" of override. The intention of sealed methods is to prevent
further overriding of virtual methods.

 253

31. Interfaces
Interfaces form a natural continuation of abstract classes, as discussed in Chapter 30. In this chapter we will
first introduce the interface concept. Then follows an example, which illustrates the power of interfaces.
Finally, we review the use of interfaces in the C# libraries.

31.1. Interfaces
Lecture 8 - slide 11

An interface announces a number of operations in terms of their signatures (names and parameters). An
interface does not implement any of the announced operations. An interface only declares an intent, which
eventually will be realized by a class or a struct.

A class or struct can implement an arbitrary number of interfaces. Inheritance of multiple classes may be
problematic in case the same variable or (fully defined) operation is inherited from several superclasses, see
Section 27.5. Inheritance of the same intent from multiple interfaces is less problematic. In a nutshell, this
explains one of the reasons behind having interfaces in C# and Java, instead of having multiple class-
inheritance, like in for instance C++ and Eiffel.

An interface can inherit an arbitrary number of other interfaces. This makes it convenient to organize a small
set of inter-dependent operations in a single interfaces, which then can be combined (per inheritance) with
several other interfaces, classes or structs.

An interface corresponds to a class where all operations are abstract, and where no variables are declared. In
Section 30.1 we argued that abstract classes are useful as general, high-level program contributions. This is
therefore also the case for interfaces.

 An interface describes signatures of operations, but it does not implement any of them

Here follows the most important characteristics of interfaces:

 • Classes and structs can implement one or more interfaces
• An interface can be used as a type, just like classes

• Variables and parameters can be declared of interface types
• Interfaces can be organized in multiple inheritance hierarchies

Let us dwell on the observation that an interface serves as a type. We already know that classes and structs
can be used as types. It means that we can have variables and parameters declared as class or struct types.
The observation from above states that interfaces can be used the same way. Thus, it is possible to declare
variables and parameters of an interface type. But wait a moment! It is not possible to instantiate an interface.
So which values can be assigned to variables of an interface type? The answer is that objects or values of
class of struct types, which implement the interface, can be assigned to variables of the interface type. This
gives a considerable flexibility in the type system, because arbitrary types in this way can be made
compatible, by letting them implement the same interface(s). We will see an example of that in Section 31.3.

 254

 Exercise 8.4. The interface ITaxable

For the purpose of this exercise you are given a couple of very simple classes called Bus and House . Class
Bus specializes the class Vehicle . Class House specializes the class FixedProperty . The mentioned
classes can easily be accessed from the web-edition of the material..

First in this exercise, program an interface ITaxable with a parameterless operation TaxValue . The
operation should return a decimal number.

Next, program variations of class House and class Bus which implement the interface ITaxable . Feel free
to invent the concrete taxation of houses and busses. Notice that both class House and Bus have a
superclass, namely FixedProperty and Vehicle , respectively. Therefore it is essential that taxation is
introduced via an interface.

Demonstrate that taxable house objects and taxable bus objects can be used together as objects of type
ITaxable .

31.2. Interfaces in C#
Lecture 8 - slide 12

Let us now be more specific about interfaces in C#. The operations, described in a C# interface, can be
methods, properties, indexers, or events.

 Both classes, structs and interfaces can implement one or more interfaces

Interfaces can contain signatures of methods, properties, indexers, and events

The syntax involved in definition of C# interfaces is summarized in Syntax 31.1. The first few lines describe
the structure of an interface as such. The remaining part of Syntax 31.1 outlines the descriptions of interface
methods, properties, indexers and events respectively.

modifiers interface interface-name : base-interfaces {
 method-descriptions
 property-descriptions
 indexer-descriptions
 event-descriptions
}

return-type method-name (formal-parameter-list);

return-type property-name {
 get;
 set;
}

return-type this[formal-parameter-list]{
 get;
 set;
}

 255

event delegate-type event-name ;

 Syntax 31.1 The syntax of a C# interface, together with the syntaxes of method, property, indexer, and event
descriptions in an interface

31.3. Examples of Interfaces
Lecture 8 - slide 13

Earlier in this material we have programmed dice and playing cards, see Program 10.1 and Program 12.7. Do
the concepts behind these classes have something in common? Well - they are both used in a wide variety of
games. This observation causes us to define an interface, IGameObject , which is intended to capture some
common properties of dice, playing cards, and other similar types. Both class Die and class Card should
implement the interface IGameObject .

As a matter of C# coding style, all interfaces start with a capital 'I' letter. This convention makes it obvious if
a type is defined by an interface. This naming convention is convenient in C#, because classes and interface
occur together in the inheritance clause of a class. (Both the superclass and the interfaces occur after a colon,
the class first, cf. Syntax 28.1). In this respect, C# is different from Java. In Java, interfaces and classes are
marked with the keywords extends and implements respectively in the inheritance clause of a class.

 Two or more unrelated classes can be used together if they implement the same interface

1
2
3
4
5
6
7
8
9
10
11
12

public enum GameObjectMedium {Paper, Plastic, Elect ronic}

public interface IGameObject{

 int GameValue{
 get;
 }

 GameObjectMedium Medium{
 get;
 }
}

 Program 31.1 The interface IGameObject.

The IGameObject interface in Program 31.1 prescribes two named properties: GameValue and Medium. Thus,
classes that implement the IGameObject must define these two properties. Notice, however, that no semantic
constraints on GameValue or Medium are supplied. (It means that no meaning is prescribed). Thus, classes that
implement the interface IGameObject are, in principle, free to supply arbitrary bodies of GameValue and
Medium. This can be seen as a weakness. In Chapter 50 we will see how to remedy this by specifying the
semantics of operations in terms of preconditions and postconditions.

Notice also that there are no visibility modifiers of the operations GameValue and Medium in the interface
shown above. All operations are implicitly public.

Below, in Program 31.2, we show a version of class Die , which implements the interface IGameObject . In
line 3 it is stated that class Die implements the interface. The actual implementations of the two operations
are shown in the bottom part of Program 31.2 (from line 33 to 44). Most interesting, the GameValue of a die
is the current number of eyes.

 256

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

using System;

public class Die : IGameObject {
 private int numberOfEyes;
 private Random randomNumberSupplier;
 private readonly int maxNumberOfEyes;

 public Die (): this(6){}

 public Die (int maxNumberOfEyes){
 randomNumberSupplier =
 new Random(unchecked((int)DateTime.Now.Ticks));
 this.maxNumberOfEyes = maxNumberOfEyes;
 numberOfEyes = NewTossHowManyEyes();
 }

 public void Toss (){
 numberOfEyes = NewTossHowManyEyes();
 }

 private int NewTossHowManyEyes (){
 return randomNumberSupplier.Next(1,maxNumberOfE yes + 1);
 }

 public int NumberOfEyes() {
 return numberOfEyes;
 }

 public override String ToString(){
 return String.Format("Die[{0}]: {1}", maxNumber OfEyes, numberOfEyes);
 }

 public int GameValue{
 get{
 return numberOfEyes;
 }
 }

 public GameObjectMedium Medium{
 get{
 return
 GameObjectMedium.Plastic;
 }
 }

}

 Program 31.2 The class Die which implements
IGameObject.

In Program 31.3 we show a version of class Card , which implements our interface. The GameValue of a card
is, quite naturally, the card value.

1
2
3
4
5
6
7
8
9
10
11

using System;

public class Card : IGameObject{
 public enum CardSuite { spades, hearts, clubs, di amonds };
 public enum CardValue { two = 2, three = 3, four = 4, five = 5,
 six = 6, seven = 7, eight = 8, nine = 9,
 ten = 10, jack = 11, quee n = 12, king = 13,
 ace = 14 };

 private CardSuite suite;
 private CardValue value;

 257

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

 public Card(CardSuite suite, CardValue value){
 this.suite = suite;
 this.value = value;
 }

 public CardSuite Suite{
 get { return this.suite; }
 }

 public CardValue Value{
 get { return this.value; }
 }

 public override String ToString(){
 return String.Format("Suite:{0}, Value:{1}", su ite, value);
 }

 public int GameValue{
 get { return (int)(this.value); }
 }

 public GameObjectMedium Medium{
 get{
 return GameObjectMedium.Paper;
 }
 }
}

 Program 31.3 The class Card which implements
IGameObject.

Below, in Program 31.4 we have written a program that works on game objects of type IGameObject . In
order to be concrete - and somewhat realistic - we make an IGameObject array with three die objecs and
three card objects. In the bottom part of the program we exercise the common operations of dice and playing
cards, as prescribed by the interface IGameObject . The output of the program is shown in Listing 31.5.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

using System;
using System.Collections.Generic;

class Client{

 public static void Main(){

 Die d1 = new Die(),
 d2 = new Die(10),
 d3 = new Die(18);

 Card c1 = new Card(Card.CardSuite.spades, Card .CardValue.queen),
 c2 = new Card(Card.CardSuite.clubs, Card. CardValue.four),
 c3 = new Card(Card.CardSuite.diamonds, Ca rd.CardValue.ace);

 IGameObject[] gameObjects = {d1, d2, d3, c1, c2, c3};

 foreach(IGameObject gao in gameObjects){
 Console.WriteLine("{0}: {1} {2}",
 gao, gao.GameValue, gao.Medium);
 }
 }
}

 Program 31.4 A sample Client program of Die and Card.
1 Die[6]: 5: 5 Plastic

 258

2
3
4
5
6

Die[10]: 9: 9 Plastic
Die[18]: 15: 15 Plastic
Suite:spades, Value:queen: 12 Paper
Suite:clubs, Value:four: 4 Paper
Suite:diamonds, Value:ace: 14 Paper

 Listing 31.5 Output from the sample Client program of Die and
Card.

Above, both Die (see Program 31.2) and Card (see Program 31.3) are classes. We have in Exercise 4.2
noticed that it would be natural to implement the type Card as a struct, because a playing card - in contrast to
a die - is immutable. The client class shown in Program 31.4 will survive if we program Card as a struct, and
it will produce the same output as shown in Listing 31.5. Recall in this context that interfaces in C# are
reference types, see Section 13.3. When a variable of static type IGameObject is assigned to a value of struct
type Card , the card value is boxed. Boxing is described in Section 14.8.

In the example above, where both the types Die and Card are implemented as classes, IGameObject could as
well have been implemented as an abstract superclass. This is the theme in Exercise 8.5.

 Exercise 8.5. An abstract GameObject class

On the slide, to which this exercise belongs, we have written an interface IGameObject which is
implemented by both class Die and class Card .

Restructure this program such that class Die and class Card both inherit an abstract class GameObject . You
should write the class GameObject .

The client program should survive this restructuring. (You may, however, need to change the name of the
type IGameObject to GameObject). Compile and run the given client program with your classes.

31.4. Interfaces from the C# Libraries
Lecture 8 - slide 14

 The C# library contains a number of important interfaces which are used frequently in many C#
programs

In this section we will discuss some important interfaces from the C# libraries. First, we give an itemized
overview, and in the sections following this one more details will be provided.

 • IComparable
• An interface that prescribes a CompareTo method
• Used to support general sorting and searching methods

• IEnumerable
• An interface that prescribes a method for accessing an enumerator

• IEnumerator
• An interface that prescribes methods for traversal of data collections
• Supports the underlying machinery of the foreach control structure

• IDisposable

 259

• An interface that prescribes a Dispose method
• Used for deletion of resources that cannot be deleted by the garbage collector
• Supports the C# using control structure

• ICloneable
• An interface that prescribes a Clone method

• IFormattable
• An interface that prescribes an extended ToString method

IComparable is touched on in Section 31.5, primarily via an exercise. In Section 31.6 we focus on the
interfaces IEnumerable and IEnumerator and their roles in the realization of foreach loops. Type
parameterized versions of these interfaces are discussed in Section 45.2. The interfaces IDisposable is
discussed in the context of IO in Section 37.5. ICloneable is discussed in a later chapter, see Section 32.7.

All the interfaces mentioned above can be thought of as flavors that can be added to many different classes.

31.5. Sample use of IComparable
Lecture 8 - slide 15

 Object of classes that implement IComparable can be sorted by a method such as Array.Sort

In many contexts it is important to be able to state that two objects or values, say x and y of a particular type
T, can be compared to each other. Thus, we may be curious to know if x < y, y < x, or if x = y. But what does
x < y, y > x, and x = y mean if, for instance type T is BankAccount or a Die ?

The way we approach this problem is to arrange that the type T (a class or a struct) implements the interface
IComparable . In that way, the implementation of T must include the method CompareTo , which can be used
in the following way:

 x.CompareTo(y)

In the tradition of, for instance, the string comparison function strcmp in the C standard library string.h the
expression x.CompareTo(y) returns a negative integer result if x is considered less than y, a positive integer if
x is considered greater than y, and integer zero if x and y are considered to be equal.

The interface IComparable is reproduced in Program 31.6. This shows you how simple it is. Don't use this or
a similar definition. Use the interface IComparable as predefined in the System namespace.

1
2
3
4
5

using System;

public interface IComparable{
 int CompareTo(Object other);
}

 Program 31.6 A reproduction of the interface
IComparable.

 260

The parameter of CompareTo is of type Object . This is irritating because we will almost certainly want the
parameter to be of the same type as the class, which implements Icomparable . When you solve Exercise 8.6
you will experience this.

There is actually two versions of the interface IComparable in the C# libraries. The one similar to Program
31.6 and a type parameterized version, which constrains the parameter of the CompareTo method to a given
type T. We have more say about these two interfaces in Section 42.8.

It is also worthwhile to point out the interface IEquatable , which simply prescribes an Equals method. The
interface IEqualityComparer is a cousin interface which in addition to Equals also prescribes GetHashCode .
In some sense IEquatable and IEqualityComparer are more fundamental than IComparable . It turns out
that IEquatable only exists as a type parameterized (generic) interface.

 Exercise 8.6. Comparable Dice

In this exercise we will arrange that two dice can be compared to each other. The result of
die1.CompareTo(die2) is an integer. If the integer is negative, die1 is considered less than die2 ; If zero,
die1 is considered equal to die2 ; And if positive, die1 is considered greater than die2 . When two dice
can be compared to each other, it is possible sort an array of dice with the standard Sort method in C#.

Program a version of class Die which implements the interface System.IComparable .

Consult the documentation of the (overloaded) static method System.Array.Sort and locate the Sort
method which relies on IComparable elements.

Make an array of dice and sort them by use of the Sort method.

31.6. Sample use of IEnumerator and IEnumerable
Lecture 8 - slide 16

In this section we will study the interfaces called IEnumerator and IEnumerable . The interface
IEnumerator is central to the design pattern called Iterator, which we will discuss in the context of
collections, see Section 48.1. As already mentioned above, the interface IEnumerator also prescribes the
operations behind the foreach control structure.

1
2
3
4
5
6
7
8
9
10
11

using System;

public interface IEnumerator{
 Object Current{
 get;
 }

 bool MoveNext();

 void Reset();
}

 Program 31.7 A reproduction of the interface
IEnumerator.

 261

We have reproduced IEnumerator from the System.Collections namespace in Program 31.7. The
operations Current , MoveNext , and Reset are used to traverse a collection of data. Hidden behind the
interface should be some simple bookkeeping which allows us to keep track of the current element, and
which element is next. You can think of this as a cursor, which step by step is moved through the collection.
The property Current returns the element pointed out by the cursor. The method MoveNext advances the
cursor, and it returns true if it has been possible to move the cursor. The method Reset moves the cursor to
the first element, and it resets the bookkeeping variables.

You are not allowed to modify the collection while it is traversed via a C# enumerator. Notice, in particular,
that you are not allowed to delete the element obtained by Current during a traversal. In that respect, C#
enumerators are more limited than the Iterator counterpart in Java which allows for exactly one deletion
for each movement in the collection. It can also be argued that the IEnumerator interface is too narrow. It
would be nice to have a boolean HasNext property. It could also be worthwhile to have an extended
enumerator with a MovePrevious operation.

Like it was the case for the interface Comparable , as discussed in Section 31.5, there is also a type
parameterized version of IEnumerator . See Section 45.2 for additional details.

1
2
3
4
5

using System.Collections;

public interface IEnumerable{
 IEnumerator GetEnumerator();
}

 Program 31.8 A reproduction of the interface
IEnumerable.

The IEnumerable interface, as reproduced in Program 31.8, only prescribes a single method called
GetEnumerator . This method is intended to return an object (value), the class (struct) of which implements
the IEnumerator interface. Thus, if a type implements the IEnumerable interface, it can deliver an
iterator/enumerator object via use of the operation GetEnumerator .

As mentioned above, the foreach control structure is implemented by means of enumerators. The foreach
form

 foreach(ElementType e in collection) statement

is roughly equivalent with

 IEnumerator en = collection.GetEnumerator();
 while (en.MoveNext()){
 ElementType e = (ElementType) en.Current();
 statement;
 }

The type of the collection is assumed to implement the interface IEnumerable. Additional fine details should
be taken into consideration. Please consult section 15.8.4 of the C# Language Specification [ECMA-334] or
[Hejlsberg06] for the full story.

We will now present a realistic example that uses IEnumerator and IEnumerable . We return to the
Interval type, which we first met when we discussed overloaded operators in Section 21.3. The original
Interval struct appeared in Program 21.3. Recall that an interval, such as [5 - 10] is different from [10 -5].
The former represents the sequence 5, 6, 7, 8, 9, 10 while the latter represents 10, 9, 8, 7, 6, 5. In the version
we show in Program 31.9 we have elided the operators from Program 21.3.

 262

The enumerator functionality is programmed in a private, local class called IntervalEnumerator , starting at
line 39. This class implements the interface IEnumerator . The class IntervalEnumerator has a reference to
the surrounding interval. (The reference to the surrounding object is provided via the constructor in line 44
and 68). It also has the instance variable idx , which represents of the cursor. Per convention, the value -1
represents an interval which has been reset. The property Current is now able to calculate and return a value
from the interval. Notice that we have to distinguish between rising and falling intervals in the conditional
expression in line 50-52. Both MoveNext and Reset are easy to understand if you have followed the details
until this point.

The method GetEnumerator (line 67-69), which is prescribed by the interface, IEnumerable (see line 4), just
returns an instance of the private class IntervalEnumerator discussed above. Notice that we in line 68 pass
this (the current instance of the Interval) to the IntervalEnumerator object.

We show how to make simple traversals of intervals in Program 31.10.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

using System;
using System.Collections;

public struct Interval: IEnumerable{

 private readonly int from, to;

 public Interval(int from, int to){
 this.from = from;
 this.to = to;
 }

 public int From{
 get {return from;}
 }

 public int To{
 get {return to;}
 }

 public int Length{
 get {return Math.Abs(to - from) + 1;}
 }

 public int this[int i]{
 get {if (from <= to){
 if (i >= 0 && i <= Math.Abs(from-to))
 return from + i;
 else throw new Exception("Error"); }
 else if (from > to){
 if (i >= 0 && i <= Math.Abs(from-to))
 return from - i;
 else throw new Exception("Error"); }
 else throw new Exception("Should not happe n"); }
 }

 // Overloaded operators have been hidden in this version

 private class IntervalEnumerator: IEnumerator{

 private readonly Interval interval;
 private int idx;

 public IntervalEnumerator (Interval i){
 this.interval = i;
 idx = -1; // position enumerator outside range

 263

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

 }

 public Object Current{
 get {return (interval.From < interval.To) ?
 interval.From + idx :
 interval.From - idx;}
 }

 public bool MoveNext (){
 if (idx < Math.Abs(interval.To - interval.From))
 {idx++; return true;}
 else
 {return false;}
 }

 public void Reset(){
 idx = -1;
 }
 }

 public IEnumerator GetEnumerator (){
 return new IntervalEnumerator(this);
 }

}

 Program 31.9 IEnumerator in the type Interval.

While we are here, we will discuss the nested, local class IntervalEnumerator of class Interval a little
more careful. Why is it necessary to pass a reference to the enclosing Interval in line 68? Or, in other
words, why can't we access the from and to Interval instance variables in line 6 from the nested class? The
reason is that an IntervalEnumerator object is not a 'subobject' of an Interval object. An
IntervalEnumerator object is not really part of the enclosing Interval object. The IntervalEnumerator
can, however, access (both public and private) class variables (static variables) of class Interval .

We could as well have placed the class IntervalEnumerator outside the class Interval , simply as a sibling
class of Interval . But class IntervalEnumerator would just pollute the enclosing namespace. The
IntervalEnumerator is only relevant inside the interval. Therefore we place it as a member of class
Interval . By making it private we, furthermore, prevent clients of class Interval to access it.

Nested classes are, in general, a more advanced topic. It has, in part, something to do with scoping rules in
relation to the outer classes, and in relation to superclasses. Java is more sophisticated than C# in its support
of nested classes. In java, an inner class I in the surrounding class C is a nested class for which instances of I
is connected to (is part of) a particular instance of C. See also our discussion of Java in relation to C# in
Section 7.3.

1
2
3
4
5
6
7
8
9
10
11
12
13

using System;
using System.Collections;

public class app {

 public static void Main(){

 Interval iv1 = new Interval(14,17);

 foreach(int k in iv1){
 Console.Write("{0,4}", k);
 }
 Console.WriteLine();

 264

14
15
16
17
18
19
20
21
22

 IEnumerator e = iv1.GetEnumerator();
 while (e.MoveNext()){
 Console.Write("{0,4}", (int)e.Current);
 }
 Console.WriteLine();
 }

}

 Program 31.10 Iteration with and without foreach based on the
enumerator.

31.7. Sample use of IFormattable
Lecture 8 - slide 17

The IFormattable interface prescribes a ToString method of two parameters. As such, the ToString
method of IFormattable is different from the well-known ToString method of class Object , which is
parameterless, see Section 28.3. Both methods produce a text string. The new ToString method is used
when we need more control of the textual result.

Here follows a reproduction of IFormattable from the System namespace.

1
2
3
4
5

using System;

public interface IFormattable{
 string ToString(string format, IFormatProvider fo rmatProvider);
}

 Program 31.11 A reproduction of the interface
IFormattable.

We can characterize the ToString method in the following way:

 • The first parameter is typically a single letter formatting string, and the other is an
IFormatProvider

• The IformatProvider can provide culture sensible information.
• ToString from Object typically calls ToString(null, null)

The first parameter of ToString is typically a string with a single character. For simple types as well as
DateTime , a number of predefined formatting strings are defined. We have seen an example in Section 6.10.
For the types we program we can define our own formatting letters. This is known as custom formatting.
Below, in Program 31.12 we will show how to program custom formatting of a playing card struct.

The second parameter of ToString is of type IFormatProvider , which is another interface from the System
namespace. An object of type IFormatProvider typically provides culture sensible formatting information.
For simple types and for DateTime , a format provider represents details such as the currency symbol, the
decimal point symbol, or time-related formatting symbols. If the second parameter is null , the object bound
to CultureInfo.CurrentCulture should be used as the default format provider.

 265

Below we show how to program custom formatting of struct Card , which we first met in the context of
structs in Section 14.3. Notice that struct Card implements Iformattable . The details in the two Tostring
methods should be easy to understand.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

using System;

public enum CardSuite:byte
 {Spades, Hearts, Clubs, Diamonds };
public enum CardValue: byte
 {Ace = 1, Two = 2, Three = 3, Four = 4, F ive = 5,
 Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten = 10,
 Jack = 11, Queen = 12, King = 13};

public struct Card: IFormattable{
 private CardSuite suite;
 private CardValue value;

 public Card(CardSuite suite, CardValue value){
 this.suite = suite;
 this.value = value;
 }

 // Card methods and properties here...

 public System.Drawing.Color Color (){
 System.Drawing.Color result;
 if (suite == CardSuite.Spades || suite == CardSu ite.Clubs)
 result = System.Drawing.Color.Black;
 else
 result = System.Drawing.Color.Red;
 return result;
 }

 public override String ToString(){
 return this.ToString(null, null);
 }

 public String ToString(string format, IFormatProv ider fp){
 if (format == null || format == "G" || format == "L")
 return String.Format("Card Suite: {0}, Valu e: {1}, Color: {2}",
 suite, value, Color() .ToString());

 else if (format == "S")
 return String.Format("Card {0}: {1}", suite , (int)value);

 else if (format == "V")
 return String.Format("Card value: {0}", val ue);

 else throw new FormatException(
 String.Format("Invalid format: {0}", format));
 }

}

 Program 31.12 The struct Card that implements
IFormattable.

In Program 31.13 we show how to make use of custom formatting of playing card objects. The resulting
output can be seen in Listing 31.14.

 266

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

using System;

class CardClient{

 public static void Main(){
 Card c1 = new Card(CardSuite.Hearts, CardValue. Eight),
 c2 = new Card(CardSuite.Diamonds, CardValu e.King);

 Console.WriteLine("c1 is a {0}", c1);
 Console.WriteLine("c1 is a {0:S}", c1); Console.WriteLine();

 Console.WriteLine("c2 is a {0:S}", c2);
 Console.WriteLine("c2 is a {0:L}", c2);
 Console.WriteLine("c2 is a {0:V}", c2);

 }

}

 Program 31.13 A client of Card which applies formatting of
cards.

1
2
3
4
5
6

c1 is a Card Suite: Hearts, Value: Eight, Color: Co lor [Red]
c1 is a Card Hearts: 8

c2 is a Card Diamonds: 13
c2 is a Card Suite: Diamonds, Value: King, Color: C olor [Red]
c2 is a Card value: King

 Listing 31.14 Output from the client program.

31.8. Explicit Interface Member Implementations
Lecture 8 - slide 18

Interfaces give rise to multiple inheritance, and therefore we need to be able to deal with the challenges of
multiple inheritance. These have already been discussed in Section 27.5.

The problems, as well as the C# solution, can be summarized in the following way:

 If a member of an interface collides with a member of a class, the member of the interface can
be implemented as an explicit interface member

Explicit interface members can also be used to implement several interfaces with colliding
members

The programs shown below illustrate the problem and the solution. The class Card , in Program 31.15 has a
Value property. The interface IGameObject in Program 31.16 also prescribes a Value property. (It is similar
to the interface of Program 31.1 which we have encountered earlier in this chapter). When class Card
implements IGameObject in Program 31.17 the new version of class Card will need to distinguish between
its own Value property and the Value property it implements because of the interface IGameObject . How
can this be done?

 267

The solution to the problem is called explicit interface member implementation. In line 30-32 of Program
31.17, emphasized in purple, we use the IgameObject.Value syntax to make it clear that here we
implement the Value property from IGameObject . This is an explicit interface implementation.

In the client classes of class Card we need access to both Value operations. In order to access the explicit
interface implementation of Value from the Card variable cs (declared in line 6) we need to cast cs to the
interface IGameObject . This is illustrated in line 14 of Program 31.18. The output of Program 31.18 in
Listing 31.19 reveals that everything works as expected.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

using System;

public class Card{
 public enum CardSuite { spades, hearts, clubs, di amonds };
 public enum CardValue { two = 2, three = 3, four = 4, five = 5,
 six = 6, seven = 7, eight = 8, nine = 9,
 ten = 10, jack = 11, quee n = 12, king = 13,
 ace = 14 };

 private CardSuite suite;
 private CardValue value;

 public Card(CardSuite suite, CardValue value){
 this.suite = suite;
 this.value = value;
 }

 public CardSuite Suite{
 get { return this.suite; }
 }

 public CardValue Value{
 get { return this.value; }
 }

 public override String ToString(){
 return String.Format("Suite:{0}, Value:{1}", su ite, value);
 }
}

 Program 31.15 The class Playing card with a property
Value.

1
2
3
4
5
6
7
8
9
10
11
12

public enum GameObjectMedium {Paper, Plastic, Elect ronic}

public interface IGameObject{

 int Value{
 get;
 }

 GameObjectMedium Medium{
 get;
 }
}

 Program 31.16 The Interface IGameObject with a conflicting
Value property.

 268

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

using System;

public class Card: IGameObject{
 public enum CardSuite { spades, hearts, clubs, di amonds };
 public enum CardValue { two = 2, three = 3, four = 4, five = 5,
 six = 6, seven = 7, eight = 8, nine = 9,
 ten = 10, jack = 11, quee n = 12, king = 13,
 ace = 14 };

 private CardSuite suite;
 private CardValue value;

 public Card(CardSuite suite, CardValue value){
 this.suite = suite;
 this.value = value;
 }

 public CardSuite Suite{
 get { return this.suite; }
 }

 public CardValue Value{
 get { return this.value; }
 }

 public override String ToString(){
 return String.Format("Suite:{0}, Value:{1}", su ite, value);
 }

 int IGameObject.Value{
 get { return (int)(this.value); }
 }

 public GameObjectMedium Medium{
 get{
 return GameObjectMedium.Paper;
 }
 }
}

 Program 31.17 A class Card which implements
IGameObject.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

using System;

class Client{

 public static void Main(){
 Card cs =
 new Card(Card.CardSuite.spades, Card.CardVal ue.queen);

 // Use of Value from Card
 Console.WriteLine(cs.Value);

 // Must cast to use the implementation of
 // Value from IGameObject
 Console.WriteLine(((IGameObject)cs).Value);
 }
}

 Program 31.18 Sample use of class Card in a Client
class.

 269

1
2

queen
12

 Listing 31.19 Output of Card Client.

In some situations, an explicit interface implementation can also be used to "hide" an operation that we are
forced to implement because the interface requests it. We will meet an example in Section 45.14, where we
want to make it difficult to use the Add operation on a linked list. Another example is presented in the context
of dictionaries in Section 46.3.

31.9. References

[Hejlsberg06] Anders Hejlsberg, Scott Wiltamuth and Peter Golde, The C# Programming Language.
Addison-Wesley, 2006.

[Ecma-334] "The C# Language Specification", June 2005. ECMA-334.

 270

 271

32. Patterns and Techniques

This chapter is the last one in our second lecture about inheritance. The chapter is about patterns and
programming techniques related to inheritance. Similar chapters appeared in Chapter 16 and Chapter 24 for
classes/objects and for operations respectively.

32.1. The Composite design pattern
Lecture 8 - slide 20

The Composite design pattern, which we are about to study, is probably the most frequently occurring GOF
design pattern at all. Most real-life programs that we write benefit from it. Recall from Section 16.2 that the
GOF design patterns are the ones described in the original design pattern book [Gamma96].

A Composite deals with hierarchical structures of objects. In more practical terms, the pattern deals with
tree-tructures whose nodes are objects. The main idea behind the pattern is to provide a uniform interface to
both leaves and inner nodes in the tree.

From a client point of view, it is easy to operate on the nodes of a Composite. The reason is that all
participating objects share the interface provided by the abstract Component class.

Figure 32.1 A template of the class structure in the Composite design pattern.

In Figure 32.1 we show the three classes that - at the principled level - make up a Composite: The abstract
class Component and its two subclasses Leaf and Composite . The important things to notice are:

• The diagram in Figure 32.1 is a class diagram, not an object diagram.

• Clients access both Leaf nodes and Composite nodes (inner nodes in the tree) via the interface
provided by the abstract class Component .

• The Composite (inner) node aggregates one or more Components , either Leaf nodes or (recursively)
other Composite nodes. This makes up the tree structure. It is important the you are able to grasp the
idea that the aggregation in Figure 32.1 gives rise to a recursive tree structure of objects.

In the following sections we will study an example of a composite design pattern which allows us to
represent songs of notes and pauses. In appendix Section 58.3 we discuss another example, involving a
sequence of numbers and the type Interval .

 The tree structure may be non-mutable and built via constructors

Alternatively, the tree structure may be mutable, and built via Add and Remove operations

 272

32.2. A Composite Example: Music Elements
Lecture 8 - slide 21

The example in this section stems from the mini project programming (MIP) exam of January 2008 [mip-
jan-08]. Imagine that we are interested in a representation of music in terms of notes and pauses. Such a
representation can - in a natural way - be described as a Composite, see Figure 32.2. In this composite
structure, both a Note and a Pause are MusicElements . A SequentialMusicElement consists of a number of
MusicElements , such as Note s, Pause s, and other MusicElement s. The immediate constituents of a
SequentialMusicElement are played sequentially, one after the other. A ParallelMusicElement is
composed similar to SequentialMusicElement . The immediate constituents of a ParallelMusicElement
are played at the same time, however.

Figure 32.2 The class diagram of Music Elements

As we will see in Program 32.3 a Note is characterized by a duration, value, volume, and instrument. A
Pause is characterized by a duration. As such, it may make sense to have a common superclass of Note and
Pause . In the same way, it may be considered to have a common superclass of SequentialMusicElement
and ParallelMusicElement which captures their common aggregation of MusicElements .

A number of different operations can be applied uniformly on all MusicElement s: Play , Transpose ,
TimeStretch , NewInstrument , Fade , etc. Below, in Program 32.3 we program the operations Linearize ,
Duration , and Transpose . The Linearize operations transforms a music element to a sequence of lower-
level objects which represent MIDI events. A sequence of MIDI events can be played on most computers. In
this way, Linearize becomes the indirect Play operation.

32.3. An application of Music Elements
Lecture 8 - slide 22

As we already realized in Section 32.1 the objects in a Composite are organized in a tree structure. In Figure
32.3 we show an example of a SequentialMusicElement . When we play the SequentialMusicElement in
Figure 32.3 we will first hear note N1. After N1 comes a pause P followed by the notes N2 and N3.
Following N3 we will hear N4, N5 and N6 which are all played simultaneously. As such, N4-N6 may form a
musical chord. In the web edition of the material we link to a MIDI file of a structure similar to Figure 32.3
[midi-sample].

 273

Figure 32.3 A possible tree of objects which represent various music elements.
Nodes named Ni are Note instances, and the node named P is a Pause instance

Below, in Program 32.1 we show a program that creates a SequentialMusicElement similar to the tree-
structure drawn in Figure 32.3 The program relies on the auxiliary class Song. The class Song and another
supporting class TimedNote are available to interested readers [song-and-timednote-classes]. Using these two
classes it is easy to generate MIDI files from MusicElement objects.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

public class Application{

 public static void Main(){

 MusicElement someMusic =
 SequentialMusicElement.MakeSequentialMusicElem ent(
 SequentialMusicElement.MakeSequentialMusicEl ement(
 new Note(60, 480),
 new Pause(480),
 new Note(64, 480),
 new Note(60, 480)),
 ParallelMusicElement.MakeParallelMusicElemen t(
 new Note(60, 960),
 new Note(64, 960),
 new Note(67, 960)
));

 Song aSong = new Song(someMusic.Linearize(0));
 aSong.WriteStandardMidiFile("song.mid");
 }
}

 Program 32.1 An application of some MusicElement
objects.

32.4. Implementation of MusicElement classes
Lecture 8 - slide 23

In this section we show an implementation of the MusicElement classes of Figure 32.2. The classes give rise
to non-mutable objects, along the lines of the discussion in Section 12.5.

We start by showing the abstract class MusicElement , see Program 32.2. It announces the property Duration ,
the method Transpose , and the method Linearize . Other of the mentioned music-related operations are not
included here. As you probably expect, Duration returns the total length of a MusicElement . Transpose
changes the value (the pitch) of a MusicElement . Linearize transforms a MusicElement to an array of
(lower-level) TimeNote objects [song-and-timednote-classes].

 274

1
2
3
4
5
6
7
8
9
10

public abstract class MusicElement{

 public abstract int Duration{
 get;
 }

 public abstract MusicElement Transpose(int levels);

 public abstract TimedNote[] Linearize(int startTi me);
}

 Program 32.2 The abstract class MusicElement.

The class Note is shown next, see Program 32.3. Note encapsulates the note value, duration, volume, and
instrument (see line 5-8). Following two constructors, we see the property Duration which simply returns
the value of the instance variable duration . The method Linearize carries out the transformation of the
Note to a singular array of TimedNote . The Transpose method adds to the value of the Note . The shown
activation of ByteBetween enforces that the value is between 0 and 127.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

using System;

public class Note: MusicElement{

 private byte value;
 private int duration;
 private byte volume;
 private Instrument instrument;

 public Note(byte value, int duration, byte volume ,
 Instrument instrument){
 this.value = value;
 this.duration = duration;
 this.volume = volume;
 this.instrument = instrument;
 }

 public Note(byte value, int duration):
 this(value, duration, 64, Instrument.Piano){
 }

 public override int Duration{
 get{
 return duration;
 }
 }

 public override TimedNote[] Linearize(int startTi me){
 TimedNote[] result = new TimedNote[1];
 result[0] = new TimedNote(startTime, value, dur ation, volume,
 instrument);
 return result;
 }

 public override MusicElement Transpose(int levels){
 return new Note(Util.ByteBetween(value + level s, 0, 127),
 duration, volume, instrument);
 }
}

 Program 32.3 The class Note.

The class Pause shown in Program 32.4 is almost trivial.

 275

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

using System;

public class Pause: MusicElement{

 private int duration;

 public Pause(int duration){
 this.duration = duration;
 }

 public override int Duration{
 get{
 return duration;
 }
 }

 public override TimedNote[] Linearize(int startTi me){
 return new TimedNote[0];
 }

 public override MusicElement Transpose(int levels){
 return new Pause(this.Duration);
 }
}

 Program 32.4 The class Pause.

The class SequentialMusicElement represents the sequence of MusicElement s as a list of type List<T> .
Besides the constructor, SequentialMusicElement offers a factory method for convenient creation of an
instance. Factory methods have been discussed in Section 16.4. Program 32.1 shows how the factory method
can be applied. Duration adds the duration of the MusicElement parts together. Notice that this may cause
recursive addition. Likewise, Transpose carries out recursive transpositions of the MusicElement parts.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using System;
using System.Collections.Generic;

public class SequentialMusicElement: MusicElement{
 private List<MusicElement> elements;

 public SequentialMusicElement(MusicElement[] elem ents){
 this.elements = new List<MusicElement>(elements);
 }

 // Factory method:
 public static MusicElement
 MakeSequentialMusicElement(params MusicElement[] elements){
 return new SequentialMusicElement(elements);
 }

 public override TimedNote[] Linearize(int startTi me){
 int time = startTime;
 List<TimedNote> result = new List<TimedNote>();

 foreach(MusicElement me in elements){
 result.AddRange(me.Linearize(time));
 time = time + me.Duration;
 }

 return result.ToArray();
 }

 public override int Duration{
 get{

 276

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

 int result = 0;

 foreach(MusicElement me in elements){
 result += me.Duration;
 }

 return result;
 }
 }

 public override MusicElement Transpose(int levels){
 List<MusicElement> transposedElements = new Lis t<MusicElement>();

 foreach(MusicElement me in elements)
 transposedElements.Add(me.Transpose(levels));

 return new SequentialMusicElement(transposedEle ments.ToArray());
 }
}

 Program 32.5 The class SequentialMusicElement.

The class ParallelMusicElement resembles SequentialMusicElement a lot. Notice, however, the different
implementation of Duration in line 29-39.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

using System;
using System.Collections.Generic;

public class ParallelMusicElement: MusicElement{
 private List<MusicElement> elements;

 public ParallelMusicElement(MusicElement[] elemen ts){
 this.elements = new List<MusicElement>(elements);
 }

 // Factory method:
 public static MusicElement
 MakeParallelMusicElement(params MusicElement[] elements){
 return new ParallelMusicElement(elements);
 }

 public override TimedNote[] Linearize(int startTi me){
 int time = startTime;
 List<TimedNote> result = new List<TimedNote>();

 foreach(MusicElement me in elements){
 result.AddRange(me.Linearize(time));
 time = startTime;
 }

 return result.ToArray();
 }

 public override int Duration{
 get{
 int result = 0;

 foreach(MusicElement me in elements){
 result = Math.Max(result, me.Duration);
 }

 return result;
 }

 277

39
40
41
42
43
44
45
46
47
48
49

 }

 public override MusicElement Transpose(int levels){
 List<MusicElement> transposedElements = new Lis t<MusicElement>();

 foreach(MusicElement me in elements)
 transposedElements.Add(me.Transpose(levels));

 return new ParallelMusicElement(transposedEleme nts.ToArray());
 }
}

 Program 32.6 The class ParallelMusicElement.

This completes our discussion of the MusicElement composite. The important things to pick up from the
example are:

1. The tree structure of objects defined by the subclasses of MusicElement .

2. The uniform interface of music-related operations provided to clients of MusicElement .

As stressed in Section 32.1 these are the primary merits of Composite.

In Section 58.3 of the appendix we present an additional and similar example of a composite which involves
an Interval . Interval is the type we encountered in Section 21.3 when we discussed operator overloading.

32.5. A Composite Example: A GUI
Lecture 8 - slide 27

We will study yet another example of a Composite design pattern. A graphical user interface (GUI) is
composed of a number of forms, such as buttons and textboxes. The classes behind these forms make up a
Composite design pattern.

Figure 32.4 A Form (Window) with two buttons, a textbox, and a panel.

We construct the simple GUI depicted in Figure 32.4. The actual hierarchy of objects involved are shown in
Figure 32.5. Thus, the GUI is composed of three buttons (yellow, green, and blue) and two textboxes (white
and grey). The blue button and the grey textbox are aggregated into a so-called panel (which has red
background in Figure 32.4).

 278

Figure 32.5 The tree of objects behind the graphical user interface. These
objects represents a composite design pattern in an executing program.

The Form class hierarchy of .NET and C# is very large. A small extract is shown in Figure 32.6. Apart from
class Component , all classes are from the namespace System.Windows.Forms .

There are two Composites in Figure 32.6. The first one is (object) rooted by class Form, which may
aggregate an arbitrary number of Windows form objects. The class Form represents a window. The class
Control is the superclass of GUI elements that displays information on the screen. There are approximate 25
immediate and direct subclasses of class Control . In reality the classes TextBox , Button , and Panel are all
indirect subclasses of Control .

The other Composite is, symmetrically, (object) rooted by Panel , which like Form may aggregate an
arbitrary number of Form objects. Class Pane is intended for grouping of a collection of controls.

Figure 32.6 An extract of the Windows Form classes for GUI building. We see
two Composites among these classes.

Below, in Figure 32.6 we show how to construct the form object tree shown in Figure 32.5, which gives rise
to the GUI of Figure 32.4. We program a class which we name Window. Our Window class inherits from class
Form. Thus, our Window is a Form. Shown in blue we highlight instantiation of GUI elements. Shown in
purple we highlight the actual construction of the tree structure of Figure 32.5. The Controls property of a
Form, referred in line 60 - 67, give access to a collection of controls, of type ControlCollection .

As it appears in line 23 and 31, we also add a couple of event handlers, programmed as private methods from
line 70 - 83. We have discussed event handlers in Chapter 23. The associated event handlers just
acknowledge when we click on of the three buttons of the GUI.

1
2
3
4
5
6
7
8
9
10
11

using System;
using System.Windows.Forms;
using System.Drawing;

// In System:
// public delegate void EventHandler (Object sender , EventArgs e)

public class Window : Form{

 Button b1, b2, paBt;
 Panel pa;

 279

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

 TextBox tb, paTb;

 // Constructor
 public Window (){
 this.Size=new Size(150,300);

 b1 = new Button();
 b1.Text="Click Me";
 b1.Size=new Size(100,25);
 b1.Location = new Point(25,25);
 b1.BackColor = Color.Yellow;
 b1.Click += ClickHandler;
 // Alternatively:
 // b1.Click+=new Even tHandler(ClickHandler);
 b2 = new Button();
 b2.Text="Erase";
 b2.Size=new Size(100,25);
 b2.Location = new Point(25,55);
 b2.BackColor=Color.Green;
 b2.Click += EraseHandler;
 // Alternatively:
 // b2.Click+=new Even tHandler(EraseHandler);
 tb = new TextBox();
 tb.Location = new Point(25,100);
 tb.Size=new Size(100,25);
 tb.BackColor=Color.White;
 tb.ReadOnly=true;
 tb.RightToLeft=RightToLeft.Yes;

 pa = new Panel();
 pa.Location = new Point(25,150);
 pa.Size=new Size(100, 75);
 pa.BackColor=Color.Red;

 paBt = new Button();
 paBt.Text="A";
 paBt.Location = new Point(10,10);
 paBt.Size=new Size(25,25);
 paBt.BackColor=Color.Blue;
 paBt.Click += PanelButtonClickHandler;

 paTb = new TextBox();
 paTb.Location = new Point(10,40);
 paTb.Size=new Size(50,25);
 paTb.BackColor=Color.Gray;
 paTb.ReadOnly=true;
 paTb.RightToLeft=RightToLeft.Yes;

 this.Controls.Add(b1);
 this.Controls.Add(b2);
 this.Controls.Add(tb);

 pa.Controls.Add(paBt);
 pa.Controls.Add(paTb);

 this.Controls.Add(pa);
 }

 // Eventhandler:
 private void ClickHandler(object obj, EventArgs e a) {
 tb.Text = "You clicked me";
 }

 // Eventhandler:
 private void PanelButtonClickHandler(object obj, EventArgs ea) {

 280

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 paTb.Text += "A";
 }

 // Eventhandler:
 private void EraseHandler(object obj, EventArgs e a) {
 tb.Text = "";
 }

}

class ButtonTest{

 public static void Main(){
 Window win = new Window();
 Application.Run(win);
 }

}

 Program 32.7 A program that builds a sample composite
graphical user interface.

32.6. Cloning
Lecture 8 - slide 30

We briefly discussed copying of objects in Section 13.4 of the lecture about classes and objects. In this
section we will continue this discussion. First we will distinguish between different types of object copying.
Later, in Section 32.7, we will see how to enable the pre-existing MemberwiseClone operation to client
classes.

Instead of the word "copy" we often use the word "clone":

 Cloning creates a copy of an existing object

There are different kinds of cloning, distinguished by the copying depth:

 • Shallow cloning:
• Instance variables of value type: Copied bit-by-bit
• Instance variables of reference types:

• The reference is copied
• The object pointed at by the reference is not copied

• Deep cloning:
• Like shallow cloning
• But objects referred by references are copied recursively

Shallow cloning is the variant supported by the MemberwiseClone operation in Section 32.7. Only a single
object is copied.

Deep cloning copies a network of objects, and it may, in general, involve many objects.

 281

Recall that cloning is only relevant for instances of classes, for which reference semantics apply (see Chapter
13). Values of structs obey value semantics, and as such struct values are (shallow) copied by assignments
and by parameter passing. See Chapter 14 for additional details.

32.7. Cloning in C#
Lecture 8 - slide 31

Shallow cloning is supported "internally" by any object in a C# program execution. The reason is that any
object inherit from class Object in which the protected method MemberwiseClone implements shallow
cloning. (See Section 28.3 for an overview of the methods in class Object). Recall from Section 27.3 that a
protected method of a class C is visible in C and in the subclasses of c, but not in clients of C.

In this section we will see how we can unleash the protected MemberwiseClone operation as a public
operation of an arbitrary class.

Below, in Program 32.8 we show how to implement a cloneable Point class. First, notice that Point
implements the interface ICloneable , which prescribes a single method called Clone . We have already in
Section 31.4 seen ICloneable in the context of other flavoring interfaces from the C# libraries. The public
method Clone of class Point , shown in purple, delegates its work to the protected method
MemberwiseClone . In other words, our Clone methods send a MemberwiseClone message to the current
Point object. MemberWiseClone makes the bitwise, shallow copy of the point, and it returns it. Notice that
from a static point of view, the returned object is of type Object . As we will see below, this will typically
imply a need to cast the returned object to a Point .

Although a Clone method typically delegates its work to MemberwiseClone , it is not necessary to do so.
Clone may, alternatively, use a constructor and appropriate object mutations in order to produce the copy,
which makes sense for the class in question (which is class Point in the example shown below).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

using System;

public class Point: ICloneable {
 private double x, y;

 public Point(double x, double y){
 this.x = x; this.y = y;
 }

 public double X {
 get {return x;}
 set {x = value;}
 }

 public double Y {
 get {return y;}
 set {y = value;}
 }

 public Point move(double dx, double dy){
 Point result = (Point)MemberwiseClone(); // cloning from within Point is OK.
 result.x = x + dx;
 result.y = y + dy;
 return result;
 }

 282

27
28
29
30
31
32
33
34
35
36

 // public Clone method that delegates the work of
 // the protected method MemberwiseClone();
 public Object Clone(){
 return MemberwiseClone();
 }

 public override string ToString(){
 return "Point: " + "(" + x + "," + y + ")" + ". ";
 }
}

 Program 32.8 A cloneable class Point.

In Program 32.9 we show how a client of class Point uses the implemented Clone operation. Notice the
casting, and notice that the subexpression p1.Clone() is evaluated before the casting. (A possible
misconception would be that (Point)p1 is evaluated first). The evaluation order is due to the precedence of
the cast operator in relation to the precedence of the dot operator, see Table 6.1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

using System;

public class Application{

 public static void Main(){
 Point p1 = new Point(1.1, 2.2),
 p2, p3;

 p2 = (Point)p1.Clone(); // First p1.Clone(), then cast to Point.
 p3 = p1.move(3.3, 4.4);
 Console.WriteLine("{0} {1} {2}", p1, p2, p3);
 }

}

 Program 32.9 A sample client of class Point.

It may be tempting to circumvent the ICloneable interface, the implementation of our own clone operation,
and delegation to MemberwiseClone . This temptation is illustrated in Program 32.10. The compiler will find
out, and it tells that we cannot just call MemberwiseClone , because it is not a public operation.

Why make life so difficult? Why not support shallow copying of all objects in an easy way, by making
MemberwiseClone public in class Object? The reason is that the designers of the programming language (C#,
and Java as well) have decided that the programmer of a class should make an explicit decision about which
objects should be cloneable.

There are almost certainly some classes for which we do not want copying of instances, singletons (see
Section 16.3) for instance. There are also some classes in which we do not want the standard bitwise
copying provided by MemberwiseClone . Such classes should behave like Program 32.8 shown above, but
instead of delegating the cloning to MemberwiseClone , the copy operation should be programmed in the
Clone method to suit the desired copying semantics.

1
2
3
4
5
6
7
8

using System;

public class Application{

 public static void Main(){
 Point p1 = new Point(1.1, 2.2),
 p2, p3;

 283

9
10
11
12
13
14
15
16
17
18

 p2 = (Point)p1.MemberwiseClone();
 // Compile-time error.
 // Cannot access protected member 'object.Memberwis eClone()'
 // via a qualifier of type 'Point'

 p3 = p1.move(3.3, 4.4);
 Console.WriteLine("{0} {1} {2}", p1, p2, p3);
 }

}

 Program 32.10 Illegal cloning with MemberwiseClone.

32.8. Cloning versus use of copy constructors
Lecture 8 - slide 32

In Section 32.7 we found out that cloning of class instances - on purpose - is rather cumbersome in C#.
Therefore we have earlier recommended the use of copy constructors as an alternative means. See Section
12.5 for details and for an example.

In this section we will evaluate and exemplify the power of copying by cloning (as in Section 32.7) relative
to copying by use of copy constructors.

In a nutshell, the insight can be summarized in this way:

 Cloning with obj.Clone() is more powerful than use of copy constructors, because
obj.Clone() may exploit polymorphism and dynamic binding

In order to illustrate the differences between cloning (by use of the clone method) and copying (by use of a
copy constructor) we will again use the class Point . Below, in Section 32.7 we show a version similar to
Program 32.8 but now with an additional copy constructor (line 12 - 14).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

using System;
using System.Drawing;

public class Point: ICloneable {
 protected double x, y;

 public Point(double x, double y){
 this.x = x; this.y = y;
 }

 // Copy constructor
 public Point(Point p){
 this.x = p.x; this.y = p.y;
 }

 public virtual double X {
 get {return x;}
 set {x = value;}
 }

 public virtual double Y {
 get {return y;}
 set {y = value;}

 284

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

 }

 public virtual Point move(double dx, double dy){
 Point result = (Point)MemberwiseClone(); // cl oning from within Point is OK.
 result.x = x + dx;
 result.y = y + dy;
 return result;
 }

 // public Clone method that delegates the work of
 // the protected method MemberwiseClone();
 public virtual Object Clone(){
 return MemberwiseClone();
 }

 public override string ToString(){
 return "Point: " + "(" + x + "," + y + ")" + ". ";
 }
}

 Program 32.11 A cloneable class Point.

We also show a subclass of Point called ColorPoint , see Program 32.12. It adds a color instance variable
to the instance variables inherited from class Point , and it has its own copy constructor in line 10 - 13.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

public class ColorPoint: Point{
 protected Color color;

 public ColorPoint(double x, double y, Color c):
 base(x,y){
 this.color = c;
 }

 // Copy constructor
 public ColorPoint(ColorPoint cp):
 base(cp.x,cp.y){
 this.color = cp.color;
 }

 // Clone method is inherited

 public override string ToString(){
 return "ColorPoint: " + "(" + x + "," + y + ")" + ":" + color;
 }
}

 Program 32.12 A cloneable class ColorPoint.

In the Color and ColorPoint client program, shown below in Program 32.13, you should focus on the list
pointList , as declared in line 14. We add two Point objects and two ColorPoint objects to pointList in
line 17 - 20. Next, in the foreach loop starting at line 23 we clone each of the four points in the list, and we
add the cloned points to the initially empty list clonedPointList . The elements in clonedPointList are
printed at the end of the program. The output - see Listing 32.14 - reveals that the cloning is successful. We
end up having two Point instances and two ColorPoint instances in clonedPointList .

1
2
3
4
5
6

using System;
using System.Drawing;
using System.Collections.Generic;

public class Application{

 285

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

 public static void Main(){
 Point p1 = new Point(1.1, 2.2),
 p2 = new Point(3.3, 4.4);

 ColorPoint cp1 = new ColorPoint(5.5, 6.6, Color .Red),
 cp2 = new ColorPoint(7.7, 8.8, Color .Blue);

 List<Point> pointList = new List<Point>(),
 clonedPointList = new List<Point>() ;

 pointList.Add(p1);
 pointList.Add(cp1);
 pointList.Add(p2);
 pointList.Add(cp2);

 // Clone the points in pointList and add them to cl onedPointList:
 foreach(Point p in pointList){
 clonedPointList.Add((Point)(p.Clone()));
 }

 foreach(Point p in clonedPointList)
 Console.WriteLine("{0}", p);

 }
}

 Program 32.13 Polymorphic Cloning of Points.
1
2
3
4

Point: (1,1,2,2).
ColorPoint: (5,5,6,6):Color [Red]
Point: (3,3,4,4).
ColorPoint: (7,7,8,8):Color [Blue]

 Listing 32.14 Output of both polymorphic and non-
polymorphic cloning.

Let us now attempt to replicate the functionality of Program 32.13 with use of copy constructors, see
Program 32.15. The attempt, shown in Program 32.15 in line 24 - 26 fails, because the activation of the copy
constructors deliver Point objects, even if a ColorPoint object is passed as input. Instead we must perform
explicit type dispatch, as shown in line 29-34. Clearly, constructors cannot exhibit virtual behavior.

The solution in Program 32.13 based on the Point and ColorPoint classes in Program 32.11 and Program
32.12 works because the Clone method in Program 32.11 (line 35 - 37) is inherited by ColorPoint . As
already explained, the inherited method delegates its work to MemberwiseClone , which always copies its
receiver. Thus, if MemberwiseClone is activated on a ColorPoint object it copies a ColorPoint object.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

using System;
using System.Drawing;
using System.Collections.Generic;

public class Application{

 public static void Main(){
 Point p1 = new Point(1.1, 2.2),
 p2 = new Point(3.3, 4.4);

 ColorPoint cp1 = new ColorPoint(5.5, 6.6, Color .Red),
 cp2 = new ColorPoint(7.7, 8.8, Color .Blue);

 List<Point> pointList = new List<Point>(),
 clonedPointList = new List<Point>() ;

 286

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 pointList.Add(p1);
 pointList.Add(cp1);
 pointList.Add(p2);
 pointList.Add(cp2);

// Cannot copy ColorPoint objects with copy constructor of Point.
// Compiles and runs, but gives wrong result.
// foreach(Point p in pointList){
// clonedPointList.Add(new Point(p));
// }

 // Explicit type dispatch:
 foreach(Point p in pointList){
 if (p is ColorPoint)
 clonedPointList.Add(new ColorPoint((ColorPoint)p));
 else if (p is Point)
 clonedPointList.Add(new Point(p));
 }

 foreach(Point p in clonedPointList)
 Console.WriteLine("{0}", p);

 }
}

 Program 32.15 Non-polymorphic Cloning of Points - with use
of copy constructors.

32.9. The fragile base class problem
Lecture 8 - slide 33

As the next part of this Pattern and Techniques chapter we will study the so-called fragile base class problem.

The problem can be summarized in this way:

 If all methods are virtual it is possible to introduce erroneous dynamic bindings

This can happen if a new method in a superclass is given the same name as a dangerous method
in a subclass

The program in Program 32.16 is a principled ABC example. B is a subclass of A, and B has a dangerous
method M2. As a dangerous method, clients of class B must be fully aware that M2 is called, because it can
have serious consequences. (A possible serious consequence may be to erase the entire harddisk). As
illustrated in the Client class, M2 can only be activated on a B object.

1
2
3
4
5
6
7
8
9
10
11

// Original program. No problems.

using System;

class A {

 public void M1(){
 Console.WriteLine("Method 1");
 }
}

 287

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

class B: A {

 public void M2(){
 Console.WriteLine(" Dangerous Method 2");
 }
}

class Client{

 public static void Main(){
 A a = new B();
 B b = new B();

 a.M1(); // Nothing dangerous expected
// a.M2(); // Compile-time error
 // 'A' does not contain a definition f or 'M2'
 b.M2(); // Expects dangerous operation
 }
}

 Program 32.16 The initial program.

Let us now assume that we replace class A with a new version with the following changes:

1. A new virtual method M2 is added to A.

2. The existing method M1 in A now calls M2

This is shown in Program 32.17.

We will, in addition, assume that all involved methods (M1 and M2) are virtual, and that M2 in B overrides M2
in A. In C# this is not a natural assumption, but in Java this is the default semantics (and the only possible
semantics).

It is purely accidental that the new method in class A has the same name as the dangerous method M2 in class
B.

In the Client class in Program 32.17 a.M1() will - unexpectedly - call the dangerous method M2 in class B,
because the variable a has dynamic type B. Similarly, a.M2() calls M2 in B. The programmer, who wrote class
A, expected that the expression a.M1() would call the sibling method M2 in class A! This could come as an
unpleasant surprise.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// Dangerous program.
// M2 is virtual in A and overridden in B.
// Compiles and runs
// Default Java semantics.

using System;

// New version of A
class A {

 public void M1(){
 Console.WriteLine("Method 1");
 this.M2();
 }

 // New method in this version.
 // Same name as the dangerous operation in subcla ss B

 288

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

 public virtual void M2(){
 Console.WriteLine("M2 in new version of A");
 }

}

class B: A {

 public override void M2(){
 Console.WriteLine("Dangerous Method 2");
 }
}

class Client{

 public static void Main(){
 A a = new B();
 B b = new B();

 a.M1(); // Nothing dangerous expected
 // Will, however, call the dangerous o peration
 // because M2 is virtual.

 a.M2(); // Makes sense when M2 exists in class A.
 // Calls the dangerous method

 b.M2(); // Calls the dangerous method.
 // This is expected, however.
 }
}

 Program 32.17 The revised version with method A.M2 being
virtual.

1
2
3
4

Method 1
Dangerous Method 2
Dangerous Method 2
Dangerous Method 2

 Listing 32.18 Output of revised program.

If we, in C#, just add the M2 method to class A, and change M1 such that it calls M2, as shown in Program
32.19 (only on web) it is not possible to compile class B. The problem is that we have a method, named M2 in
both class A and B. This is the problem that we have discussed in Section 28.9. The programmer should
decide if M2 in B should be declared as new, or if it should override M2 from class A. In the latter case, M2 in
A must be declared as virtual.

If you want additional details about the fragile base class problem, the web-version of the paper contains two
additional variants of Program 32.17.

The fragile base class problem illustrates a danger of using virtual methods (dynamic binding) all over the
place. In rare situations, as the one constructed in Program 32.17, it may lead to dangerous results. To
summarize, the problem arises if a method in a subclass is unintentionally called instead of a method in a
superclass. In C#, both the superclass and the subclass must specify if dynamic binding should take place. In
the superclass the involved method must be virtual, and in the subclass the method must use the override
modifier. Alternatively, we may opt for static binding, as in Program 32.20. As illustrated by Program 32.19
the C# programmer is likely to get a warning in case he or she approaches the fragile base class problem.

 289

32.10. Factory design patterns
Lecture 8 - slide 34

Instantiation of classes is done by the new operator (see Section 6.7) in cooperation with a constructor (see
Section 12.4). Imagine that we need numerous instances of class C in a large program. This would lead to a
situation where there appears may expressions of the form new C(...) in the program. Why can this be
considered as a problem?

One problem with many occurrences of new C(...) is if we - eventually - would like to instantiate another
class, say a subclass of C. In this situation we would prefer to make one change at a single place in the
program, instead of a spread of changes throughout the program.

Another problem may occur if we need two or more constructors which we cannot easily distinguish by the
formal parameters of the constructors. We have seen examples of such situations in Section 16.4.

As yet another problem, we may wish to introduce good names for object instantiations, beyond the
possibilities of constructors.

Various uses of factory methods can be seen as solutions to the problems pointed out above. We will
distinguish between the following variations of factory methods:

 • Factory methods implemented with class methods (static methods) in C, or in another class
• The design pattern Factory Method which handles instantiation in instance methods of client

subclasses
• Relies on instance methods in class hierarchies with virtual methods

• The design pattern Abstract Factory which is good for instantiation of product families
• Relies on instance methods in class hierarchies with virtual methods

As already pointed out, we have seen examples of static factory methods in Section 16.4. We will discuss the
design pattern Factory Method below, in Section 32.11. In the current version of the material we do not
discuss Abstract Factory.

32.11. The design pattern Factory Method
Lecture 8 - slide 35

The Factory Method design pattern relies on virtual instance methods in a class hierarchy that take care of
class instantiation. The Factory Method scene is shown diagrammatically in Figure 32.7 and
programmatically in Program 32.22.

The problem is how to facilitate instantiation of different types of Product s (line 3-13 in Program 32.22) in
SomeOperation (line 20) of class Creator .

The Factory Method solution is to carry out the instantiation in overridden virtual methods in subclasses of
class Creator . The actual instantiations take place in line 26 and 32 of Program 32.22. In SomeOperation ,
the highlighted call this.FactoryMethod() will either cause instantiation of ConcreteProduct_1 or
ConcreteProduct_2 , depending on the dynamic type of the creator.

 290

 Subclasses of Creator decide which Product to instantiate

Figure 32.7 A template of the class structure in the Factory Method design
pattern.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

using System;

public abstract class Product{
 public Product(){}
}

public class ConcreteProduct_1: Product{
 public ConcreteProduct_1(){}
}

public class ConcreteProduct_2: Product{
 public ConcreteProduct_2(){}
}

public abstract class Creator{
 public abstract Product FactoryMethod();

 public void SomeOperation(){
 Product product = FactoryMethod();
 }
}

public class ConcreteCreator_1: Creator{
 public override Product FactoryMethod(){
 return new ConcreteProduct_1();
 }
}

public class ConcreteCreator_2: Creator{
 public override Product FactoryMethod(){
 return new ConcreteProduct_2();
 }
}

 Program 32.22 Illustration of Factory Method in C#.

Factory Method calls for a quite complicated scene of parallel class hierarchies. The key mechanism behind
the pattern is the activation of a virtual method from a fully defined, non-abstract method in the (abstract)
class Creator . In many contexts, Factory Method will be too complicated to set up. If, however, the major
parts of the class hierarchies already have been established, the use of Factory Method allows for flexible
variations of Product instantiations.

 291

32.12. The Visitor design pattern
Lecture 8 - slide 37

The Visitor design pattern is typically connected to the Composite design pattern, which we have discussed
in Section 32.1. Recall that a Composite gives rise to a tree of objects, all of which expose a uniform client
interface. The Visitor design pattern is about a particular organization of the operations that visit each node
in such a tree.

Relative to the Composite class diagram, shown in Figure 32.1, we will discuss two different organizations
of the tree visiting operations:

 • The natural object-oriented solution:
• One method per operation per Component class

• The Visitor solution
• All methods that pertain to a given operation are refactored and encapsulated in its own

class

The natural object-oriented solution, mentioned first, is the solution that falls out of the Composite design
pattern. We will illustrate it in the context of the IntSequence Composite in Section 32.13.

The Visitor solution is an alternative - and more complicated - organization which keeps all operations of a
given traversal together. This is the solution of the Visitor design pattern. It will be exemplified in Section
32.15.

32.13. Natural object-oriented IntSequence traversals
Lecture 8 - slide 38

We have studied the integer sequence composite in appendix Section 58.3. The class diagram of this
particular Composite is shown in Figure 58.1. Please recapitulate the essence of the integer sequence idea
from there.

We will now discuss three different operations which need to visit each object in a integer sequence tree,
such as the seven nodes of the tree shown in Figure 58.2. The operations are Max, Min , and Sum. Min and Max
find the smallest/largest number in the tree respectively. Sum adds all numbers in the tree together.

Below we show the Min , Max, and Sum operations in four classes IntSequence , IntSingular , IntInterval ,
and IntComposite . All of the operation need to traverse the tree structure. Inner nodes in the composite tree
are represented as instances of the class IntCompSeq , as shown in Program 32.26. The operations Min , Max,
and Sum are implemented recursively in this class. A Composite is a recursive data structure which in a
natural way calls for recursive processing. All this is archetypical for a composite structure.

1
2
3
4
5

public abstract class IntSequence {
 public abstract int Min {get;}
 public abstract int Max {get;}
 public abstract int Sum();
}

 Program 32.23 The abstract class IntSequence.

 292

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

public class IntInterval: IntSequence{

 private int from, to;

 public IntInterval(int from, int to){
 this.from = from;
 this.to = to;
 }

 public int From{
 get{return from;}
 }

 public int To{
 get{return to;}
 }

 public override int Min{
 get {return Math.Min(from,to);}
 }

 public override int Max{
 get {return Math.Max(from,to);}
 }

 public override int Sum(){
 int res = 0;
 int lower = Math.Min(from,to),
 upper = Math.Max(from,to);

 for (int i = lower; i <= upper; i++)
 res += i;
 return res;
 }
}

 Program 32.24 The class IntInterval.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

public class IntSingular: IntSequence{

 private int it;

 public IntSingular(int it){
 this.it = it;
 }

 public int TheInt{
 get{return it;}
 }

 public override int Min{
 get {return it;}
 }

 public override int Max{
 get {return it;}
 }

 public override int Sum(){
 return it;
 }
}

 Program 32.25 The class IntSingular.

 293

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

public class IntCompSeq: IntSequence{

 private IntSequence s1, s2; // Binary sequence: Exactly two subsequences.

 public IntCompSeq(IntSequence s1, IntSequence s2) {
 this.s1 = s1;
 this.s2 = s2;
 }

 public IntSequence First{
 get{return s1;}
 }

 public IntSequence Second{
 get{return s2;}
 }

 public override int Min{
 get {return Math.Min(s1.Min, s2.Min);}
 }

 public override int Max{
 get {return Math.Max(s1.Max, s2.Max);}
 }

 public override int Sum(){
 return s1.Sum() + s2.Sum();
 }
}

 Program 32.26 The class IntCompSeq.

In the web version of the material we show an integer sequence client which traverses a composite tree
structure of integer sequences with use of the operations Min , Max, and Sum, see Program 32.27 (only on web).
In Listing 32.28 (only on web) we also show the program output.

The programming of Min , Max, and Sum in the integer sequence classes, as shown above, is natural object-
oriented programming of the traversals. Each of the four involved classes has a Min , Max, and a Sum operation.
The operations are located in the immediate neighborhood of the data on which they rely. Everything is fine.

But the solution shown in this section is not a Visitor. In the next section we will discuss and motivate the
transition from the natural object-oriented solution to a visitor. After that we will reorganize Min , Max and
Sum as visitors.

32.14. Towards a Visitor solution
Lecture 8 - slide 39

Before we study Visitors for integer sequence traversals we will discuss the transition from the natural
object-oriented traversal to the Visitor design pattern.

The main idea of Visitor is to organize all methods that take part in a particular traversal, in a single Visitor
class. In our example from Section 32.13 it means that we will have MinVisitor , MaxVisitor , and
SumVisitor class. All of these classes share a common Visitor interface.

 294

The following steps are involved the transition from natural object-oriented visiting to the Visitor design
pattern:

 • A Visitor interface and three concrete Visitor classes are defined
• The Intsequence classes are refactored - the traversal methods are moved to the visitor classes
• Accept methods are defined in the IntSequence classes. Accept takes a Visitor as parameter
• Accept passes this to the visitor, which in turn may activate Accept on components

From the web-version of the material we provide an SVG-animation that illustrates the transition.

 Try the accompanying SVG animation

In the following section we will study an example. In the slipstream of the example we will explain and
discuss additional details. The pros and cons of the Visitor solution are summarized in Section 32.16.

32.15. A Visitor example: IntSequence
Lecture 8 - slide 40

Let us now reorganize the integer sequence traversals from Section 32.13 to a Visitor.

We provide three different traversals: find minimum, find maximum, and calculate sum. This will give rise
to three different visitor objects: a minimum visitor, a maximum visitor, and a sum visitor of types
MinVisitor , MaxVisitor , and SumVisitor respectively. The three classes implement a common Visitor
interface. Each of the visitors will have VisitIntInterval , VisitSingular , and VisitCompSeq methods.
As a naming issue, we chose to use the name Visit for all of them. This choice relies on method overloading.
With these considerations we are able to understand the Visitor interface shown in Program 32.29.

1
2
3
4
5

public interface Visitor{
 int Visit (IntInterval iv);
 int Visit (IntSingular iv);
 int Visit (IntCompSeq iv);
}

 Program 32.29 The Visitor Interface.

The abstract superclass in the integer sequence Composite design pattern, which we presented in Program
32.23, can now be reduced to a single method, which takes a Visitor object as parameter. The method is
usually called Accept .

1
2
3

public abstract class IntSequence {
 public abstract int Accept(Visitor v);
}

 Program 32.30 The abstract class IntSequence.

The idea behind the Accept method is to delegate the responsibility of a particular traversal to a given
Visitor object. In the class IntInterval , shown below in Program 32.31, we see that Accept passes the

 295

current object (the IntInterval object) to the visitor. This is done in line 19. The same happens in Accept
of IntSingular (line 14 of Program 32.32) and in Accept of IntCompSeq (line 19 of Program 32.33).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

public class IntInterval: IntSequence{

 private int from, to;

 public IntInterval(int from, int to){
 this.from = from;
 this.to = to;
 }

 public int From{
 get{return from;}
 }

 public int To{
 get{return to;}
 }

 public override int Accept(Visitor v){
 return v.Visit(this);
 }
}

 Program 32.31 The class IntInterval.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public class IntSingular: IntSequence{

 private int it;

 public IntSingular(int it){
 this.it = it;
 }

 public int TheInt{
 get{return it;}
 }

 public override int Accept(Visitor v){
 return v.Visit(this);
 }
}

 Program 32.32 The class IntSingular.

 296

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

public class IntCompSeq: IntSequence{

 private IntSequence s1, s2; // Binary sequence: Exactly two subsequences.

 public IntCompSeq(IntSequence s1, IntSequence s2) {
 this.s1 = s1;
 this.s2 = s2;
 }

 public IntSequence First{
 get{return s1;}
 }

 public IntSequence Second{
 get{return s2;}
 }

 public override int Accept(Visitor v){
 return v.Visit(this);
 }
}

 Program 32.33 The class IntCompSeq.

It is now time to program the visitor classes (the classes that implement the Visitor interface of Program
32.29).

The Visit methods on intervals and singulars (the leafs in the composite tree) just extract information from
the passed tree node. Thus, the Visit methods extract information from the objects that hold the essential
information (this is the objects that provide the Accept methods). The Visit methods on the inner tree nodes
(of type IntCompSeq) are more interesting. They call Accept methods on subtrees of the inner tree node.
This is highlighted with blue color in Program 32.34, Program 32.35, and Program 32.36.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

public class MinVisitor: Visitor{
 public int Visit (IntInterval iv){
 return Math.Min(iv.From, iv.To);
 }

 public int Visit (IntSingular iv){
 return iv.TheInt;
 }

 public int Visit (IntCompSeq iv){
 return Math.Min(iv.First.Accept(this),
 iv.Second.Accept(this));
 }
}

 Program 32.34 The class MinVisitor.

 297

1
2
3
4
5
6
7
8
9
10
11
12
13
14

public class MaxVisitor: Visitor{
 public int Visit (IntInterval iv){
 return Math.Max(iv.From, iv.To);
 }

 public int Visit (IntSingular iv){
 return iv.TheInt;
 }

 public int Visit (IntCompSeq iv){
 return Math.Max(iv.First.Accept(this),
 iv.Second.Accept(this));
 }
}

 Program 32.35 The class MaxVisitor.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

public class SumVisitor: Visitor{
 public int Visit (IntInterval iv){
 int res = 0;
 int lower = Math.Min(iv.From,iv.To),
 upper = Math.Max(iv.From,iv.To);

 for (int i = lower; i <= upper; i++)
 res += i;
 return res;
 }

 public int Visit (IntSingular iv){
 return iv.TheInt;
 }

 public int Visit (IntCompSeq iv){
 return (iv.First.Accept(this) +
 iv.Second.Accept(this));
 }
}

 Program 32.36 The class SumVisitor.

As it appears, each Accept method in the Composite calls a Visit method in a Visitor class, which in turn
may call one or more Accept methods on a composite constituents. This leads to indirect recursion in
between Accept methods and Visit methods. Compared with the natural object-oriented solution, which
uses direct recursion, this is more complicated to understand.

The indirect recursion, pointed out above, may also be understood as a simulation of double dispatching.
First, we dispatch on the Visitor object and next we dispatch on an object from the composite tree structure.
Most object-oriented programming language only allows single dispatching - corresponding to message
passing via a virtual method. This can be generalized to multiple dispatching, where the dynamic type of
several objects determine which method to activate. The object-oriented part of Common Lisp - CLOS
[Keene89] - supports multiple dispatching.

In Program 32.37 we show a client program with an integer sequence composite structure (line 7-15), three
visitors (line 16-18), and sample activations of tree traversals (highlighted in line 21, 22, and 28). The output
of the program is shown in Listing 32.38 (only on web).

 298

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using System;

class SeqApp {

 public static void Main(){

 IntSequence isq =
 new IntCompSeq(
 new IntCompSeq(
 new IntInterval(3,5), new IntSingular (-7)),
 new IntCompSeq(
 new IntInterval(12,7), new IntCompSeq (
 new IntI nterval(18,-18),
 new IntI nterval(3,5)
)));
 Visitor min = new MinVisitor();
 Visitor max = new MaxVisitor();
 Visitor sum = new SumVisitor();

 Console.WriteLine("Min: {0} Max: {1}", isq.Accept(min),
 isq.Accept(max));

// Alternative activation of Visit methods:
// Console.WriteLine("Min: {0} Max: {1}", min.Visi t((IntCompSeq)isq),
// max.Visi t((IntCompSeq)isq));

 Console.WriteLine("Sum: {0}", isq.Accept(sum));
 }
}

 Program 32.37 A sample application of IntSequences and
visitors.

32.16. Visitors - Pros and Cons
Lecture 8 - slide 41

As it is already clear from our explanation of Visitor in Section 32.15 there are both advantages and
disadvantages of this design pattern.

We summarize the consequences of Visitor in the following items:

 • A new kind of traversal can be added without affecting the classes of the Composite
• A Visitor encapsulates all methods related to a particular traversal
• State related to a traversal can - in a natural way - be represented in the Visitor
• If a new class is added to the Composite all Visitor classes are affected
• The indirect recursion that involves Accept and the Visit methods is more complex than the

direct recursion in the natural object-oriented solution

 Visitor is frequently used for processing of abstract syntax trees in compilation tools

In case you are going to study compilers implemented the object-oriented way, you will most likely
encounter Visitors for such tasks as type checking and code generation.

 299

32.17. References

[Keene89] Sonya E. Keene, Object-Oriented Programming in Common Lisp. Addison-Wesley
Publishing Company, 1989.

[Gamma96] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Addison Wesley, 1996.

[Midi-sample] The generated MIDI file
http://www.cs.aau.dk/~normark/oop-csharp/midi/song.mid

[Mip-jan-08] MIP Exam January 2008 (In Danish)
http://www.cs.aau.dk/~normark/oop-07/html/mip-jan-08/opgave.html

[Song-and-
timednote-classes]

The auxiliary classes TimedNote and Song
http://www.cs.aau.dk/~normark/oop-07/html/mip-jan-08/c-sharp/mip.cs

[Factory-method] Wikipedia: Design pattern: Factory Method
http://en.wikipedia.org/wiki/Factory_method

[Abstract-factory] Wikipedia: Design pattern: Abstract Factory
http://en.wikipedia.org/wiki/Abstract factory

 300

