Static Validation of Licence Conformance Policies

René Rydhof Hansen
Aalborg University
rrh@cs.aau.dk

Abstract

Policy conformance is a security property gaining im-
portance due to commercial interest like Digital Rights
Management. It is well known that static analysis can be
used to validate a number of more classical security poli-
cies, such as discretionary and mandatory access control
policies, as well as communication protocols using symmet-
ric and asymmetric cryptography. In this work we show how
to develop a Flow Logic for validating the conformance of
client software with respect to a licence conformance pol-
icy. Our approach is sufficiently flexible that it extends to
fully open systems that can admit new services on the fly.

1 Introduction

According to a study commissioned by the Motion Pic-
ture Association of America (MPAA), U.S. film studios
lost an estimated $6.1 billion in 2005 due to piracy. In-
ternet piracy alone was estimated to account for 38% of the
losses [3]. While such studies are notoriously difficult to
perform and the numbers fraught with uncertainty and con-
troversy, they do show that managing intellectual property
in the Internet age is a serious problem with huge finan-
cial consequences. Furthermore, with the growing interest
in service-oriented architectures and grid computing, where
the logical boundaries between individual computers are
even more blurred than today, the problems relating to Dig-
ital Rights Management (DRM), and policy enforcement in
general, are likely to grow in both numbers and complexity.

In this paper we show how static analysis can be used
as a step towards solving the licence conformance problem,
which can be seen as one of the most important issues in
policy enforcement. Checking a process for licence con-
formance means to verify whether it can be trusted to obey
restrictions imposed by a policy, e.g., that a certain informa-
tion may only be used or copied a certain number of times.

*This work was partially supported through the IST-2005-16004 In-
tegrated Project SENSORIA: Software Engineering for Service-Oriented
Overlay Computers.

Flemming Nielson Hanne Riis Nielson Christian W. Probst
Technical University of Denmark *
{nielson, riis,probst}@imm.dtu.dk

We call such information that is subject to a certain policy
managed information. We demonstrate how static analy-
sis can be used to solve the policy conformance problem
in general, by developing an analysis to check code for be-
ing conforming with a specific policy. The policy that we
exemplarily enforce prohibits both unauthorised copying of
managed information, and propagating managed informa-
tion to actors that are not licence conforming.

Our analysis is able to track linearity properties of man-
aged information. Linearity properties essentially guaran-
tee that for managed information no more than a specified
number of copies exist at any point in time, and that client
software will never attempt to copy or use any managed
information in an unauthorised manner, i.e., that the client
software is licence, and thereby policy, conforming.

We develop the static analysis for a variant of the Klaim
calculus [4] that provides a natural, high-level model for
distributed systems, e.g., service-oriented architectures and
grid computing, and serves as a good foundation for study-
ing different notions of security in such systems [5, 2]. The
analysis is developed as a staged Flow Logic specification,
leveraging a previously developed control-flow analysis for
Klaim [2], systematically extending it with linearity effects.

Many approaches to policy enforcement and static anal-
ysis require availability of the whole program or system at
“compile time”, thereby severely restricting the usefulness
of these techniques in real-world systems. These are usually
open systems, where parts of the system are only provided
at “run-time”, e.g., through plug-ins or dynamic downloads.
This is particularly true for service-oriented architectures
and grid computing, where a program may only be assem-
bled at run-time by composing a number of services. We
believe that the “whole program” requirement is anathema
to the idea of open and dynamic systems, and show how our
approach can be modularised to work in an open system and
thus dispense with the “whole program” requirement.

The rest of this paper is structured as follows. In the
next section we give a brief overview of the process calcu-
lus used as a formal model. In Section 3 we define what
it means for information to be managed securely during
execution of a system (at run-time). This is lifted to the

compile-time level in Section 4, which presents our main
contribution, the Flow Logic specification for a static anal-
ysis to enforce a licence conformance policy before exe-
cution. In Section 5 we extend our approach to deal with
open, dynamically changing systems. Finally, Section 6
concludes the paper.

2 Syntax and Semantics

The Klaim family of process calculi [1, 4], which forms
the basis for this work, is motivated by and designed around
the tuple space paradigm, in which a system consists of
distributed nodes that interact and communicate through
shared tuple spaces by asynchronously sending and receiv-
ing tuples. Remote evaluation of processes is used to model
mobility.

The process calculus used here, like other members of
the Klaim family, consists of three layers: nets, processes,
and actions. Nets specify the overall structure of a sys-
tem, including where processes and tuple spaces are lo-
cated. Processes are the actors in this system and execute
by performing actions. The syntax for all these components
is specified in Figure 1. A net consists of processes or tuples
located at a location [, or a composition of two nets. Pro-
cesses can be composed from three base elements—action
prefixing, parallel composition, or the invocation of a pro-
cess declaration. The actual building blocks of processes
are the actions: out (in and read) actions allow to out-
put (input) tuples to (from) another location’s tuple space;
while the in action deletes the read tuple, the read action
is non-destructive. The eval action models mobility by al-
lowing to send a process to another location, where it will
be evaluated, and the newloc action allows to create new
locations, e.g., to model private tuple spaces. To these stan-
dard Klaim actions we add the use action to model the use
of data, e.g., documents.

Having introduced the syntax of the calculus, we look
at how to define tuples used for communication. As shown
in Figure 2, we distinguish between tuples and evaluated
tuples. An evaluated tuple is a sequence of values, and can
be stored in tuple spaces. In contrast, tuples are allowed to
contain variables and are used to compose data to be com-
municated. Note that for succinctness we use localities to
represent both actual localities and data values.

When inputting tuples from tuple spaces, processes need
to select, which tuple to read or input. This filtering is per-
formed by means of femplates T that are similar to tuples,
but can also contain input variables and self-references (ex-
plained below), denoted !u and self, respectively. We shall
assume throughout that templates are well-formed in the
sense that they do not contain both u and !u for the same
locality variable u. The matching proceeds by comparing a
template component-wise with an evaluated tuple.

Localities

=1 locality
| self self
| wu locality variable
Nets
N == [P process
| 1 (et) located tuple
| Np|| N2 net composition
Processes
P == nil nil process
| a.P action prefixing
| PP parallel composition
| A process invocation
Actions
a == out(t)@/ output
| in(T)Q¢ input
| read(7)@¢ read
| eval(P)@¢ migration
| mnewloc(u) creation
| use(u) use data
Process Declaration
D == AZ2P process declaration

Figure 1. Syntax for the Klaim calculus.

t ow= L]t tuples

et == 1|l et evaluated tuple
T == F | FT templates

F o= (]|l template fields

Figure 2. Syntax for tuples and templates.

For space reasons we do neither present the semantics
of the pattern matching nor the Klaim calculus, but refer
to [1, 4]. Here we only discuss the extension of Klaim
with a notion of self that enables self-reference in remote-
evaluated code. To realise this, we introduce the function
(-); : (Loc U {self}) x Loc — Loc that is used to evaluate
locations in the semantics relative to the location [where a
process is executed: If (¢), is invoked at location [it evalu-
ates to [if ¢/ = self, and to ¢ otherwise. We trivially extend
the (-); function from working on single locations to work-
ing on templates with all location variables substituted by
concrete locations, by defining it to act as the identity on
input variables. Similarly, we extend it to sequences in a
component-wise manner.

3 Dynamic Policy Conformance

In order to use the Klaim calculus for modelling systems
with policy conformance issues, we must first define what

it means to obey to or to violate a policy. In this work, we
exemplarily look at policies that restrict the use and repli-
cation of information. In the following we give a definition
of what it means for information to be copied and used in
an unauthorised manner, and formalise the notion of infor-
mation that is managed securely, i.e., in such a way that no
unauthorised copying or use takes place. This constitutes
that the data is used conforming to our policy.

Since we use locations for modelling both data, e.g., doc-
uments, and actual locations, e.g., hosts, it is convenient to
identify a subset of managed locations, L C Loc, represent-
ing everything that must be tracked for licence conformance
purposes. Additionally we may want to model locations that
are free as to how they handle managed locations. There-
fore we identify a subset of privileged locations, P C Loc.

A minor technical complication is that we use Loc to
denote the set of location constants as used in the seman-
tics, and Loc to denote a set of canonical location constants.
Each location constant [€ Loc can be mapped to a canon-
ical location constant [€ Loc, and similarly each location
variable u € LocVar can be mapped to a canonical location
constant € Loc (essentially saying that Loc = LocVar).
This machinery is needed because the location constants
can be created dynamically in the semantics.

Ensuring that a managed location is not used or copied
improperly is essentially a matter of counting how many
copies of a given managed location there are in the system
of interest. To this end we inductively define functions for
counting the number of actual occurrences of managed lo-
cations in a net, process, template, or field: CE, ck ’l, Cé’l,
and lef L respectively. The counting function, which we
omit for space reasons, is mostly a straightforward defini-
tion that counts the actual occurrences of a given locality in
the semantics. The only noteworthy case is for the use ac-
tion, where the counting function takes the point-wise maxi-
mum of the counts of the argument to the use action and the
continuation process, respectively. In this way the counting
function will count multiple use-actions as only a single
use of the actual document used, which is the intended se-
mantics.

Before formalising the notion of securely managed in-
formation we first need to be able to refer to the location at
which a particular action is taken. Based on the semantics
of Klaim, every semantic step in a net, i.e., a step of the
form L H N — L’ = N’ must be derived from an action
step, i.e., astep of the foom L - [:: a.P — L'+ 1 :: P.
We say that the former semantic step (the net step) is rooted
at location . We can now define the notion of a securely
managed step. This notion captures the property that copy-
ing a managed resource must not take place at a managed
location, i.e., every semantic step taken at a managed loca-
tion must preserve (or at least not increase) the total number
of managed locations. Consequently, we call a semantic

step L F N — L' I N’ rooted at location [a securely
managed step if | € L implies that C5(N') C C5(N).
Intuitively a step is managed securely if it does not give
rise to an overall increase in the number of managed enti-
ties, i.e., an action performed by a process at a managed lo-
cation must not create additional managed entities. The no-
tion of a securely managed step is easily extended to cover
securely managed sequences of semantic steps. Finally, a
system model that can perform only securely managed se-
quences is said to be policy conforming. In the next section,
we show how to guarantee this property by static analysis.

4 Static Policy Conformance

We shall say that a location constant is managed in a
linear manner if the number of occurrences of it never in-
creases during the execution of a net. We therefore demand
that the number of occurrences of elements from the set £
of managed locations never increases due to actions per-
formed at L, i.e., in a securely managed step in the sense of
the previous section.

4.1 Static Licence Conformance for Nets

In order to formalise these ideas we shall use analysis
judgements that take the following form for nets V:

(T,6,L) =x N : 0 & 7,

The intention is that when true, the components T, 0,0, L,
v, and v correctly capture not only the behaviour of the net
N, but also the behaviour of all the nets it may evolve into.
The information captured by the approximation is given by
the following components:

e 7 ¢ Loc — P(R*) is an abstract tuple space; it
keeps a record of all tuples (of location constants) that
may at some point reside in the tuple space of a given
location constant.

e 0 € LocVar — P(Loc) is an abstract environment,
it keeps a record of all location constants that a given
location variable might at some point be bound to.

e 0 € Loc x Loc — P(Actions) is the action effect; it
records all the actions that may have been performed
during the evolution of the net; the first component of
the argument is the location where the action was ini-
tiated and the second component of the argument is
the location where the action had effect and the result
of the mapping is a subset of Actions = {o0,i,7,e,n}
recording which actions actually were performed. The
domain of action effects is indeed a complete lattice
equipped with the ordering = defined in a point-wise
manner from the subset ordering on Actions, and we
write L! for its least upper bound operation.

(T,6,L)=xl=P:o&ky,y
iff (7,6,L)H{}P o0&y,
(T,6,L) L (et): 0& 7,1
it (el 70
(TO'»C)):NN1HN2 Q&%?/f
iff (Ij,cr,ﬁ) Ev Nior &y,
(T,&,C) |:N N2 L 02 &7271#2
o1UeaEo

MmO Ey
PY1Uyy Cop

Figure 3. Analysis of static licence confor-
mance for nets.

e L C Loc is the set of canonical location constants
that we want to ensure are managed in a linear manner
(managed locations).

e v € LocVar — N U {oo} is a counting environment;
for each location variable it will record an upper bound
on the number of times one of the localities bound to it
has been used. Here we use oo to record that it was not
possible for the analysis to determine an upper bound
on the number of uses of the location variable.

e ¢ C L is an error component; it records a subset of lo-
cations from £ where the linearity requirement might
have been violated.

The aim of the analysis is to ensure an empty error
component; this motivates defining that the net N satisfies
static licence conformance with respect to L, if there exist
T,6,0,~ such that (T, 6, L) =y N : 0 & 0, 0.

The definition of the judgement (7,6) =y N : p is
given by the inference system of Figure 3. As is usual in
Flow Logic we perform a component-wise definition. In
the rule for composition of nets we combine the effect con-
tributions from the two subnets using the least upper bound
operator and insist that it is included in the action effect
of the combined construct. The counting environments are
equipped with a partial ordering C defined by v; T 7, if
and only if Vu : v1(u) < v2(u) where < is the comparison
operator on N extended so that n < oo foralln € NU{oo}.
We shall write vy, @ 2 for the counting environment with
(71 ® v2)(u) = y1(u) + y2(u) for all u; here + is the ad-
dition operator on N extended to N U {oo} in the obvious
manner. In the case of located tuples we make use of an
auxiliary function (-)2 : LocU {self} U LocVar — P(Loc)
for mapping locations ¢ into the set of canonical locations
that they denote. This is straightforward for location con-
stants. In the case of self we need to supply the set, A, of

(T,6,L) EX nil : o & 7,9
iff AZP

(T,6,L) =M P: o0&y,
(T,6,L) E} P Pro&y,
iff (7:,076) EA P o &y,
(1,6, L) =2 Py : 03 & 7o, 0
01U Ep
1Dy Ey
PrUPs SO

Figure 4. Analysis of licence conformance for
processes (part 1).

canonical location constants that self can stand for, and fi-
nally in the case of location variables we make use of the
abstract environment, . This operation is extended to tu-
ples t by taking the cartesian product of all components; in
the case of evaluated tuples et we have (et)2 = {et}.

4.2 Static Licence Conformance for Pro-
cesses and Actions

The rules make use of the auxiliary judgement for pro-
cesses (1,6,L) =D P - o & v, defined in Figure 4 and
Figure 5; the new component is:

e A € P(Loc) is the set of canonical location constants
where the process of interest might be encountered
during execution.

Because of the treatment of recursive declarations (Fig-
ure 4) the definition does not constitute a traditional induc-
tive definition. To ensure that we obtain the desired judge-
ment we therefore insist on a co-inductive interpretation. As
follows from Tarski’s fixpoint theorem the inductive and co-
inductive interpretation coincide if the inference system is
defined compositionally in the syntax of nets and processes;
in our case the rule for unfolding of recursive constants is
the only offending rule.

For action prefixes (Figure 5) we make use of a number
of auxiliary notations that will be explained in the follow-
ing. The context information captured in A is only modified
in the rule for eval(P’)@¢ where it is updated to be the

canonical location constants that £ might denote, i.e., (£)2.

g
To more easily express that the appropriate record of ac-
tions is captured by the effect component ¢ we shall be us-

ing the notation

(X — C] Loc x Loc — P(Actions)
- = - C if (leg) eX
(X = Cllh, k) = { () otherwise

(T,6,L) =D out(t)QLP : 0 & 7, 1)
iff ()5 C T((0)3)

AP &y)

F(u) N L DAY (w) > 1} C o
(T,6,L) EX use(u).P: o &, 1)
iff (7,6,L) EMNP:o &+, 4
o0 Co
YTy
max(I'7,7") v

Figure 5. Analysis of licence conformance for
processes (part 2): Action prefixes for se-
lected actions.

where [; denotes the canonical location constant where the
action might be initiated, 15 denotes the canonical location
constant where the action might have effect, and C' usually
is a singleton set. In the case of out, in, read and eval
we choose X = A x (€)%, so we record the location of the
process in the first component and the location effected in
the second component. In the case of newloc(u) we use
the canonical location variable w to indicate the point where
the action has effect.

Since most of the rules need to take effect for any ele-
ment in some set Y of canonical location constants, it is fre-
quently necessary to write logical formulae using universal
and existential quantifiers. The resulting formulae tend to
clutter the understanding of the more subtle features of the
Flow Logic specification, and we have therefore decided to
introduce two combinators so as to reduce the explicit use
of quantifiers. The notations are formally defined by:

VY] = Uyey ¥ = {z|WeY :zeV(y)}
PY) = Nyey ¥y) = {2|VWeY:zeV(y)}

It is worth pointing out that this allows to use them in inclu-
sions and that they can be expanded away using the follow-
ing tautologies:

VY]CX <= WyeY:¥()CX
XCUY) <= VyeY:XCU(y)

As an example, in the rule for out(t)@/ the premise ()4 C
T{(¢)2) expresses that all the values that t may evaluate to
are included in all the tuple spaces that could be associated
with the location /.

In the rules for prefixing we need to count the occur-
rences of the various location variables. We write ' for
the counting environment that maps the location variable
u € LocVar U {self} to the number of times it occurs free
inT:

I (u) =k if uoccurs k times in T

We use this operation to add up the number of occurrences
of the location variables in the rule for out(¢)@¢: clearly
if u occurs in ¢ then this represents a use of the location
constant bound to u.

In the cases of in(7")@¢ and read(7")@¢ we shall also
make sure that the contributions of F? are added to those of
the continuation. Surely this only accounts for uses of loca-
tion variables bound in the context; as a result of the match-
ing the location parameters of bn(7") = {u |!u occurs in T'}
will get bound: These location variables are of no inter-
est outside their scope so we shall use the notation v\
to stand for the mapping that is as ~, except that all lo-
cation variables of U have count 0. Hence the rules use
(7' @& T'2)\bn(r) T 7 to express that these location vari-
ables are of no interest outside their scope. For in(7)@¢
and read(7")@/ it is of interest whether the action is per-
formed at a managed location. If A N £ # (), then it is of
interest whether any of the location variables in the template
(bn(T)) can be bound to a managed location (6(u) N £ #
(), and how often they are used. In the case of read(T)@Q¢
no use is allowed, so the rule contains the premise:

ANL# D= {uebn(T)]|(u)NL # DAY (u) >0} C

For in(7T")@¢ it will be allowed, provided that it only occurs
once and hence we get the condition

ANL #0 = {uebn(T) | 6(u)NL # DAY (u) > 1} C o

ensuring that if one of the locations of £ indeed is used for
the input then the location parameters cannot be rebound in
the continuation. For use(u) we mimic the operation of the
counting function defined in Section 3 and take the point-
wise maximum of the argument to use and the counting
environment for the continuation.

It may be worth pointing out, that the analysis only
checks for violation of the security policy in the rules for
in and read, and not in the rule for out. Even though the
security policy demands that a managed entity cannot both
be output and retained for subsequent use, it is not necessary
to make any checks in the rule for out, because the neces-
sary caution has already been taken care of when binding
any offending variable in out to some in or read.

{et € U|mi(et) € ()2 A let| =i} CW

GEMUDW

{et € Ullet| =i} CW

mi(W) € 6(uw)

6 EMu U W

{et € U|mi(et) € ()2 A let| >i} CV &|:§\+1T:V>W

[

6EMLT U W

{etcUllet| >i} CV M T: VW m(W)Cé(u)

6 EMu, T:UsW

Figure 6. Analysis of pattern matching: 6 |=* 7' : U > W.

4.3 Pattern Matching

In the rules for in(7")@¢ and read(T")@¢ we make use
of an auxiliary judgement for performing the pattern match-
ing of tuples against a given pattern. It is given by &):f‘ T:
UsW, and expresses that matching should start at position
7 in the template 7T". Furthermore, U contains the set of tu-
ples that we are matching against, and W will then contain
the tuples from U that successfully match 7" from position ¢
and onwards. At the same time & will record the appropri-
ate bindings that need to be performed. The judgement is
defined in Figure 6. Here 7;(et) denotes the :’th component
of the tuple et, and ﬂ,(V) is the component-wise extension
of the operation to sets of tuples.

The judgement is used in the rules for in(7)@Q¢ and
read(7)@/ in Figure 5 to ensure that the matching may
succeed. The set of tuples of interest are those of the tuple
space of £, that is, T[(£)2]. Actually, the analysis could be
made more precise by only requiring that the analysis result
holds for the continuation of the process in the case where
W # (), since otherwise the matching is guaranteed not to
be successful.

4.4 Properties of Static Licence Confor-
mance

The theoretical foundation of our approach based on pro-
cess algebras and Flow Logic [7], allows us to formalise
consistency of the analysis as a subject-reduction theorem.
Overall correctness of the analysis is formalised as an ad-
equacy result that details the semantic consequences of the
static property. Finally, existence of best analysis estimates
is formalised as a Moore-family result.

Theorpm 1 (Subject Reduction). If Ly :7\71 — Lo F Ny
and (T,6,L) Ex N1 : 0 & 0,0, then (T',6,L) =x N2 :
0&0,0.

Proof. Note that it makes sense to use 0 throughout because
any variables becoming free by executing a binding in in or
read are immediately substituted away.

The proof is by induction on the inference using a few
auxiliary results, listed below.

The analysis result is invariant under the structural con-
gruence; that is, if Ny = N then (T, 6,L) v Ny o
0 & 7,1 if and only if (T,&[,) Ev N o &y, 0.

The analysis of matching is correct; that is, if
match((T);, et) = 0,1 € A, et € U,and 6 =3 T : UsW,
then et € W and Vu € dom(0) : o(u) € &(u). O

Tpeorem 2 (Adequacy). If L1 W Ny — Lo F N> and
(T,6,L) Ex N1 : 0& 0,0, then the step is securely man-
aged.

Proof. The proof is by inspection of Figure 4 and Figure 5.
O

Theorem 3 (Moore Family). For all nets N, the set

Y=A{(T,6,0,L,7¢) | (T,6,L) =x N : 0 & 7,9}
is a Moore Family; i.e, VY C Y : 1Y €).

Proof. Due to the co-inductive definition of (7,5, L) |=y
N : 0 & 7,4 (see Figure 4) the formal proof proceeds by
co-induction; we refer to the proof of [6, Theorem 3.13] for
a detailed explanation. O

4.5 Example: On-line Movie Distribution

We now illustrate how the analysis works by briefly dis-
cussing a small example. The example is an excerpt of a
larger example concerned with modelling an on-line movie
distribution business. The excerpt, shown in Figure 7, mod-
els a situation where the movie distributor (represented by

1 iPod:: out(“f2”, iPod)@dist.

2 in(“2”, | filmipoq)@self.

3 use(ﬁlmipod).

4 out(“f2”| filmipoa)@Qfilesrv.

5 use(filmipoa)-

6 dist:: D 2 in(!namyeq, luser)@self.

7 read(namyeq, | filmreq)@shelf.

8 out(namyeq, filmreq) Quser.

9 D

shelf: (“f17,film 1)|(“f2”,£film 2)|---[(“n”,film n)

11 filesrv:: nil

—_
(=]

Figure 7. Specification for the example sys-
tem. Variables are set in italic, while location
constants are set in regular font. For read-
ability, trailing nil processes and the || con-
structors are omitted.

the location dist), wants to make sure that a given cus-
tomer’s video iPod! (represented by location iPod) is con-
figured to be licence conforming, i.e., configured to disal-
low unauthorised copying, before they allow the customer
to download and watch movies on that device. In addition
to the already mentioned locations, the example comprises
further two locations: one representing the movie distribu-
tor’s film database (location dist), and one representing a
fileserver on the customer’s intranet (location filesrv).

The full result of analysing the example is shown in Fig-
ure 8 and Figure 9. We shall not go into detail with the full
result here. Instead we focus on the subset of the result that
has direct bearing on the example.

In order to check for licence conformance it is sufficient
to check the error component of the analysis, denoted
in Figure 9. Of particular interest is the error component
for location iPod: It indicates that there is a potential for
a licence violation in the iPod’s configuration. A closer ex-
amination of the result reveals that the film requested by
the customer may be used up to two times (lines 3 and 4)
which is a violation of the licence. Therefore it cannot be
established that the customer’s device is licence conform-
ing, and consequently no movies may be downloaded onto
that particular device until it is properly reconfigured (and
re-validated).

5 Open Systems

As mentioned in the introduction, the increased adop-
tion and widespread use of network-based computing, such
as grid computing and service-oriented architectures, poses
a major challenge for current approaches to policy enforce-

IThis could be any device for watching movies, e.g., a dedicated home
theatre or a personal computer.

1] Q) v T s]

iPod | { (427, film2)} || namre | { ‘2" }
dist | { (“f2”,iPod)} user | { iPod}
shelf | { (“f1”,film1), filmypeq | {£ilm_2}
<“f ”, film,2>} filmipod { film_2 }
filesrv | { (film2) }

effects from dist |
(dist,dist) — {i}
(dist, shelf) — {r}
(dist, iPod) — {0}

effects from iPod [
(iPod,dist) — {0}
(iPod, iPod) — {4}
(iPod, filesrv) — {o}

Figure 8. Analysis results for abstract tuple
spaces, environments, and the effect.

[line/action H Yi [Y4]
[iPod]
1 out iPod — 1 filmipoa
2 in 0 | filmipoa
3 use Sfilmipoa — 2 1]

4 out ﬁlmipgd — 2 @

5 use filmipog — 1 1]

- nil 0 0
[dist]
6 in 0 1]

7 | read NaMreqg — 1 [

naMypeq — 1
8 out filmipeg > 1 0
9 D 0 0

Figure 9. Analysis results for the counting en-
vironment and the error component. The line
numbers refer to the code in Figure 7.

ment and static analysis. The main challenge lies in the fact
that parts of the system may be provided through plug-ins
or dynamic downloads and so are only available during ex-
ecution of the system, i.e., at “run-time”. In the following
we extend our approach to also cover such open systems.

Being based on the Klaim calculus, our calculus already
has primitives for creating new locations and for roaming
(by means of eval) the net. To fully model an open en-
vironment we add a new primitive, accept, that accepts a
new process from the environment and makes it part of the
Trusted Computing Base. To make this safe we must ensure
that only processes that satisfy the imposed security policy
are admitted into the system. The semantics of the accept
primitive is given by

(1,6,£) =" Q: 0& 0,0
LtE1l: accept.P — Lt1l:P|l:Q

The above semantic rule formalises that a new process
can only be accepted at a given location [, if it is indeed stat-

ically correct (in the sense of the adequacy result) with re-
spect to the “global” analysis information T, o, L, o, guar-
anteeing the conformance of the Trusted Computing Base to
the security policy. In effect, we ensure that the operational
semantics works as a reference monitor that verifies that
newly admitted processes satisfies the security policy. Since
the reference monitor implements all necessary checks, the
actual analysis of the accept action is then rather trivial:

(T, 6,L) =N accept.P: o & v, v
iff (T,6,L) = Pro&y, ¢

We state without proof that the formal correctness re-
sults, as expressed in Theorems 1, 2, and 3 for the analy-
sis of closed systems, carry over. This shows the power of
our approach, first used in [2], for enforcing the security of
open systems by relying on the reference monitor to make
the appropriate checks when the Trusted Computing Base
is enlarged.

6 Conclusion

We have shown how to use static analysis to guarantee
the enforcement of a licence conformance policy. This is
achieved by using a static analysis to validate that client
code conforms to the security policy, using the correctness
theorems to ensure that validated code can be considered
part of the Trusted Computing Base.

Technically, the development consists of developing a
Flow Logic for tracking the control flow as well as access
operations executed by the code. Semantic correctness is
established by means of a subject-reduction result and an
adequacy result; finally, the existence of best solutions is
guaranteed by a Moore family result. The linearity compo-
nent of the analysis ensures that selected entities are indeed
managed in a linear manner. The analysis, as well as the
accompanying counting function only count certain direct
uses of the entities subject to a licence-conformance policy.
In the terminology of information flow, we are dealing with
direct flows but do not consider indirect flows.

References

[1] L. Bettini, V. Bono, R. D. Nicola, G. L. Ferrari, D. Gorla,
M. Loreti, E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri.
The klaim project: Theory and practice. In C. Priami, editor,
Global Computing, volume 2874 of Lecture Notes in Com-
puter Science, pages 88—150. Springer, 2003.

[2] R. R. Hansen, C. W. Probst, and F. Nielson. Sandboxing in
myKlaim. In The First International Conference on Availabil-
ity, Reliability and Security, ARES’06, Vienna, Austria, Apr.
2006. IEEE Computer Society.

[3] LEK Consulting. 2005 piracy data summary. Available
fromhttp://www.mpaa.org/2006_05_031eksumm.
pdf, last visited January, 2007.

[4] R.D. Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel
Language for Agents Interaction and Mobility. IEEE Trans-
actions on Software Engineering, 24(5):315-330, May 1998.

[5] R. D. Nicola, G. Ferrari, R. Pugliese, and B. Venneri.
Types for Access Control. Theoretical Computer Science,
240(1):215-254, 2000.

[6] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Pro-
gram Analysis. Springer Verlag, Berlin, Germany, second edi-
tion, 2005.

[71 H. R. Nielson and F. Nielson. Flow logic: A multi-
paradigmatic approach to static analysis. In T. £. Mogensen,
D. A. Schmidt, and I. H. Sudborough, editors, The Essence of
Computation, Complexity, Analysis, Transformation. Essays
Dedicated to Neil D. Jones [on occasion of his 60th birth-
day], volume 2566 of Lecture Notes in Computer Science,
pages 223-244. Springer, 2002.

