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Abstract. We rationally reconstruct the core of the Coccinelle system,
used for automating and documenting collateral evolutions in Linux de-
vice drivers. A denotational semantics of the system’s underlying seman-
tic patch language (SmPL) is developed, and extended to include vari-
ables. The semantics is in essence a higher-order functional program and
so executable; but is inefficient and limited to straight-line source pro-
grams. A richer and more efficient SmPL version is defined, implemented
by compiling to the temporal logic CTL-V (CTL with existentially quan-
tified variables ranging over source code parameters and program points;
defined using the staging concept from partial evaluation). The compila-
tion is formally proven correct and a model check algorithm is outlined.

1 Introduction

A tedious, vital and frequently occurring software engineering job is to carry out
systematic updates to Device Driver code, often referred to as software evolu-
tion. Many necessary changes are due to collateral evolutions: updates to a given
driver that must be made as a consequence of current and substantial changes to
library modules that the driver depends on. A change in the API of an external
library procedure used by the given driver is a typical example; other common
examples include changes in function signatures and data structures used by the
driver. Finding all the places where collateral evolutions are needed and then
performing the actual update even in a single driver is a non-trivial problem.
Changes to accommodate a single library update may involve searching thou-
sands of files and performing hundreds of code changes. This problem needs an
automated solution, as it is too frequent and important to be left to inexpe-
rienced programmers with traditional text editing and update documentation.
See [2, 3, 5–8].

The Coccinelle approach has demonstrated considerable pragmatic value. Coc-
cinelle is an executable program transformer that has shown its utility, with sat-
isfactory efficiency and expressivity, for large real application problems including
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device driver code updates [17]. It develops and applies “Semantic Patch” nota-
tion, a concept that abstracts and generalises the practically well-established and
frequently used “patches” well-known to the Linux kernel community. Semantic
patches are described in the semantic patch language SmPL, a domain specific
language inspired by the patch notation. In comparison with the usual Linux
patches, SmPL is much more versatile and more firmly based in programming
language semantics.

Coccinelle has several major components, including ways of recognising soft-
ware patterns frequently occurring in source code (written in C or Java); means
for efficiently performing the needed pattern recognition using a variant of the
temporal logic CTL; and ways to transform the recognised code. See [17, 20] for
more details and a wide range of applications.

Analysis: updating source code. The problem is to make consistent changes
to a collection of source programs. An example is to change the way a central
function or procedure is called, e.g., to add an extra argument to its parameter
list. This requires changing both the function or procedure declaration, and all
calls to it.

To avoid struggling from the outset with semantic details of programming
languages such as C or Java we take a top-down approach to the problem of
updating source programs. Transformation semantics is developed in a language-
independent way, carefully side-stepping problems due to inessential but trou-
blesome idiosyncrasies sometimes found in real languages. This approach is able
to cope with real-world languages including C and Java [17, 20].

Linguistic tool: a transformation language, called SmPL in the Coccinelle
system. A SmPL transformation consists of source language patterns, identifying
the source language constructions to be changed; and insertions and deletions,
marking the changes to be made.

System tool: a transformation engine. This has two inputs: the source pro-
gram to be transformed, and the transformation. It produces as output an up-
dated source program. The developments of this paper are based on the following
assumptions supported by current practice:

1. We assume that the transformation only describes the part of the source pro-
gram to be changed, as most of the source program will remain unchanged.

2. Source program insertions or deletions are mainly order-preserving, so major
textual rearrangements are not needed.

3. There is a need for tokens with large value ranges, too large to be listed
explicitly. A typical example is an identifier, for instance a variable name, a
procedure name, or a constant.

It is essential that Coccinelle be automatic (run without human interaction)
and exhaustive (find all possible places to apply a transformation). Further,
the result of transformation should be predictable. Hence Coccinelle must also
have a minimally surprising semantics, e.g., one free from unexpected pattern
matches. As a corollary, Coccinelle must also detect inconsistent transformation
specifications that perform different transformations, if read in different ways.



Contribution of the paper. This “theory-practice border” paper formalises
an essential part of SmPL, thus providing a theoretical basis for what has already
proven to be a pragmatic success. It is intended to clarify just what it is that
semantic patches do (at least a subset of them), and to aid understanding some
of the implementational and design challenges that are being met within the
Coccinelle project.

Our main contribution is to rationally reconstruct the core of Coccinelle’s se-
mantic patch language SmPL, concisely and understandably clarifying a number
of points in the core semantics. Our semantics compactly and explicitly describes
a practical system, and has been implemented as a functional program.

Coccinelle has shown the utility of the temporal logic CTL [10] as an interme-
diate language to implement SmPL. (As with compiler intermediate languages,
users need not know of or be aware of CTL.) In this paper we build a theoretical
bridge, proving formally that the natural pattern-matching way to read SmPL
patterns is equivalent to its CTL implementation.

Expressivity and efficiency of the SmPL patterns of [17] are quite satisfactory
in practice. The notation is useful for working software engineers, as it does
not require knowing temporal logic such as CTL formulas; or concepts from
regular expressions, semantics, finite automata theory, or Prolog. Further, SmPL
patterns are much more local than patterns in [11–14], with less emphasis on
computational futures and pasts.
Related work. Directly related work on software updating includes [4, 11–14,
16–18] by university groups at Nantes (Muller, Padioleau, . . . ), Copenhagen
(Lawall, Hansen, Jones, . . . ); Oxford (De Moor, Lacey,. . . ); and Stony Brook
(Liu, Stoller,. . . ). Papers [4, 16] apply regular expressions to program transfor-
mation. Paper [17] is a practice-oriented description of Coccinelle’s semantic
patches; and [11–14] apply CTL to program transformation. Compared with [11,
13, 15, 19], the focus of Coccinelle is not compiler optimisation, but software up-
dating. Coccinelle is intentionally not semantics-preserving, in contrast to com-
piler or program transformer works such as [11, 14, 15]. The reason: Coccinelle
may be used to change program functionality, or to fix or to detect bugs.

Papers [11, 13] use notation C ⇒ C′ if φ where C is a pattern, C′ is a re-
placement for C, and the enabling condition for applying the rewrite is given by
a formula φ expressed in the temporal logic CTL-FV. Here φ may refer to the
computational past or future, relative to the occurrence of C.

For reasons of efficiency and usability by a broad software engineering com-
munity, Coccinelle does not require familiarity with the sometimes rather subtle
nuances of temporal logic. Instead, Coccinelle uses patterns with variables and
the “...” operator (explained later) to localise transformation sites.

In our experience, enabling conditions for program transformation seem more
naturally expressed using Coccinelle patterns than by using general CTL formu-
las φ. In principle SmPL may be less expressive than CTL, e.g., it’s not clear
how to express conditions for some classical compiler optimisations such as con-
stant propagation or live variables. However, if desired, such effects can easily
be achieved by using Coccinelle’s general scripting framework, discussed in [20].



The Stratego transformation system [1] is less semantics- based than [11, 14,
15] but more powerful as a rewriting engine, allowing separation of the rewrite
rules from strategies for their application.

Structure of the paper. The data of a program transformer is a source pro-
gram. A Core-SmPL transformation maps a source program into a target pro-
gram. Its semantics is first written in the style of denotational semantics or
functional programming. For simplicity, a source programs is initially just a
linear sequence of abstract syntax trees, each attributes such as syntactic type,
lexical infomation (e.g., a procedure name or constant value), or application of
a value operator (e.g., +, - or assignment).

A more general and realistic source program is a control flow graph or CFG: a
finite directed graph with program control points as nodes, and whose branching
expresses control flow transfers: control divergence, convergence, and loops.

The initial Core-SmPL semantics is extended to such source programs in a
perhaps unexpected way: the temporal logic CTL is used as an intermediate
language, invisible to the user. This use of CTL is formally proven equivalent to
the denotational semantics for programs with linear structure.

A semantic extension is to add pattern (meta-)variables to Core-SmPL, sig-
nificantly extending its expressivity. The full paper [9] has more details, proofs,
and a model checking algorithm for the extended CTL-V.

2 Core-SmPL: A Core Language for Semantic Patches

In this section we introduce Core-SmPL, a rational reconstruction of the core of
SmPL, and show how it can be used to search for code patterns and to transform
programs. In the terminology of the Coccinelle project such specifications are
called semantic patches which is also the name we adopt in the following.

Syntax of source and target programs. We begin with a “linear source program”
as a working abstraction of “source program”. Later, it will be extended to
include not just linear sequencing, but an arbitrary control flow graph or CFG
with tests, divergence, convergence and loops.

Definition 1. A ground term is a tree structure built from operators. A linear
source program is a sequence of ground terms. Syntax is straightforward:

S ::= G1G2 · · ·Gn A program is a sequence of ground terms
G ::= op(G1, . . . , Gk) k = arity(op) : Op.’s with right numbers of arguments.

A ground term is a variable-free tree structure built by operators from leaves.
Technically a leaf is a 0-ary operator, and may be: a programming language con-
stant; a name, e.g., a program variable or a function name; or a keyword without
arguments. Nonleaf operators have positive arities, i.e., 1 or more arguments. Ex-
ample nonleaf operators include +, -, := (assignment) or if. For compactness
in presentation and examples, we write sequences (inputs to and outputs from
our program transformer) without separators, and in infix notation.



A table that summarises the operators and arities used in the examples:3

Operator a b c d e f { } distance rate time step + * :=
Arity 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2

Symbols from a fixed alphabet such as a, b, c, . . . , step above are a special case:
operators with arity 0. A program with only 0- ary operators is a string over a
finite alphabet, as studied for decades in formal language and automata theory.

In real programming languages such as C or Java, the terms are subclassified
into syntactic categories such as expression, command, or function declaration;
but such distinctions will not be needed in this paper. (Such a classification
would be called a grammar in compiler terminology, or a signature in algebra.)

Definition 2. A general source program, or CFG, is a binary relation → on a
finite set of control states (i.e., program points), each labelled by a ground term.

The concrete syntax used for semantic patches in the Cocinelle system is sim-
ilar to but extends the notation used by the patch program to specify a program
transformation. This patch notation is the de facto standard for communicating
proposed changes and updates among the Linux Kernel developers.

P ::= ε Pattern that matches the empty sequence of terms
| EP A match for E followed by a match for P

E ::= T Pattern that matches a term T
| (P1

′|′ P2) Match P1 or P2

| ... Match a sequence of zero, one, or more arbitrary terms
| −T Delete one T : match it, but do not copy it to the output
| +T Insert T in the output sequence (no matching occurs)

T ::= x A term is like a ground term, but may contain variables
| op(T1, . . . , Tk) k = arity(op): Must have the right numbers of arguments.

x ::= variable A pattern variable

Figure 1: Syntax of Core-SmPL semantic patches

The pattern “...” matches any sequence of terms. This common pattern
may be familiar from the patch notation used in the output of the diff utility.
The variables appearing in a term T not to be confused with source or target
program variables; they are pattern variables used for matching, essentially the
variables or parameters used in [13, 11, 4, 16].

Some Core-SmPL semantics examples. T [[P ]](in) is the set of target programs
that can be obtained by applying pattern P to transform source program in. In
general, T [[P ]](in) = {out1, out2, . . . , outn} means that pattern P can transform
source program in into any one target program in the set {out1, out2, . . . , outn}.
3 Braces {, } delimit groups of (well-nested!) commands or statements.



Examples with only 0-ary operators and no pattern variables. A special case
of a source or target program is a string of symbols (i.e., 0-ary operators)
over a finite alphabet A. The first example recognises strings over an alpha-
bet A ⊇ {a, b}. The pattern ...abab... matches strings that contain abab as
a substring. Viewed as a string transformer, pattern ...abab... computes the
identity transformation on strings that contain abab as a substring. It yields the
empty set if applied to strings of other forms.

The pattern ...a-ba-b+e+f... also matches source program strings con-
taining abab, but the target string is constructed by deleting the two matched
b’s from the source, and inserting symbols e,f just after the matched part abab.

Examples: T [[Pattern]] (Source- program) = set of transformed programs.

1. T [[...abab...]] (abcd) = ∅
2. T [[...abab...]] (cababababd) = {cababababd}
3. T [[...a-ba-b+e+f...]] (cababd) = {caaefd}
4. T [[...a-ba-b+e+f...]] (cababgababd) = {caaefgaaefd}
5. T [[...a-ba-b+e+f...]] (cababababd) = {caaefababd, cabaaefabd,

cababaaefd}

Discussion. For software updating it is important that all matches are detected
(e.g., if a function’s calling mode is to be changed it is vital that all calls be
changed to the new format). Example 1 does not match, so the semantics yields
the empty set on input abcd. Example 2 has three matches in all, but no trans-
formation occurs due to the absence of + or -. Thus the output is a singleton set,
containing only the input sequence. Example 3 removes two b’s and adds ef. In
Example 4 two patterns abab are discovered; for each, two b’s are removed, and
ef is added. In examples 3 and 4 all matches are found and the transformation
results are well-defined since unique.

Example 5 is problematic as three patterns abab are discovered, two of them
overlapping. As a result there are in all three possible transformed programs. The
Coccinelle system only transforms in case n = 1 in output {out1, out2, . . . , outn},
i.e., the effect of the transformation must be uniquely defined.

Examples with pattern variables and k-ary operators. Pattern variables are used
to “remember” bits and pieces of the source program and, as it later will be seen,
to match positions in the input program. Pattern variables are needed to express
realistic source language patterns that contain possibly unbounded data such as
function names, parameter names or constants. The Core-SmPL semantic patch
notation allows (meta-) variables whose values come from such ranges, and allow
testing the source program for equality of such values.

The source language term distance := rate * time can be matched with
pattern x := y * z by an environment that binds pattern variables x, y, z to
corresponding bits of the source program, e.g.

env = [x 7→ distance, y 7→ rate, z 7→ time]



T [[x := y*z]](distance := rate * time) = {distance := rate*time}
T [[x := x+y]](distance := distance + step) = {distance := distance + step}
T [[x := x*y]](distance := rate * time) = ∅

(the empty set, since distance 6= rate)

3 Core-SmPL: Executable Transformation Semantics
(without pattern variables)

We formalise the meaning of semantic patches by a directly executable semantics
for Core-SmPL. This resembles a matcher for regular expressions over strings
of terms, extended with tree transformation and variable bindings. We first de-
velop the semantics for a simplified source language where there are no pattern
variables, and a program is simply a string of ground terms, e.g., symbols. We
will later generalise to allow variables in patterns, and programs with control
transfers such as conditionals and loops.

The Core-SmPL semantic patch semantics is built by adding a transformation
component to a string matcher written in continuation-passing style. Its input
is a finite term string in from the set GroundTerm∗, the set of finite strings
of ground terms. Its output is the set of all outputs corresponding to in: a set
out ⊆ GroundTerm∗. The set out is empty if in does not match the pattern.

In the domain definitions of Figure 2 c is a continuation and a pattern mean-
ing is an input-output transformation defined using continuation transformers.

in ∈ In = GroundTerm∗ out ∈ Out = 2GroundTerm∗

c ∈ Cont = In → Out
T [[ ]] : P → Cont
P[[ ]] : P → Cont → Cont
E [[ ]] : E → Cont → Cont

Figure 2: Semantic value domains

Figure 3 contains evaluation rules in a continuation- passing style denota-
tional semantics. This formulation enables a natural and straightforward for-
malisation of searches for all possible matches for a given pattern. In addition,
such a formulation lends itself to implementation in a functional language and
indeed we have made such a prototype implementation.

Nonterminal P stands for “pattern” and G stands for any ground term. To
avoid ambiguity we use ML-like notations to write inputs to and outputs from
our program transformer: the empty sequence is represented as [], and G :: in
represents the result of putting ground term G at the start of input string in.

– I starts the transformation, with an initial continuation c0 that will copy any
input that may remain.

– II and III resemble a regular expression matcher, expressed using continua-
tion semantics (it’s easy to add a rule for P ∗ in a way similar to “...”).



– III checks to see that the first ground term in the input sequence is G. If
so, continuation c is applied to the remaining input, and G is added to each
output term sequence. If not, no output is produced.

– IV. Deletion works just as E [[G]] c in in group II, except that term G is
not added to the output sequence. Insertion: term G is added to the output
sequence. (No matching is done.)

I :
T [[P ]] = P[[P ]] c0 where c0 in = {in}

II : Sequences of things
P[[ε]] c in = (c in)
P[[ E P ]] c = E [[E]] (P[[P ]] c)

III : Single things
E [[G]] c [] = ∅
E [[G]] c (G′ :: in) = if G = G′ then {G :: out | out ∈ (c in)} else ∅

E [[ P1 | P2 ]] c in = (P[[P1]] c in) ∪ (P[[P2]] c in)

E [[...]] c in = (c in) ∪ {G :: out |G :: in ′ = in and out ∈ (E [[...]] c in ′)}

IV : Deletion, insertion
E [[−G]] c [] = {}
E [[−G]] c (G :: in) = if G = G′ then (c in) else ∅
E [[+G]] c in = {G :: out | out ∈ (c in)}

Figure 3: Semantic evaluation rules

4 A practically better approach: compiling SmPL to CTL

The semantics above explains the meanings of SmPL patterns, and can be ex-
ecuted. However Figure 3 applies only to abstract syntax trees, as is usual in
denotational semantics. In effect, it makes the unrealistic assumption that a
source program is one long ground term sequence.

It also suffers efficiency problems: matching as above is essentially “top-
down”, repeatedly checking the same goals in slightly different contexts due to
non-linear uses of argument c. Pattern expression matching can be complex and
time-consuming, especially if universal path quantification is used (see [4, 16]).

Because of these and other problems, Coccinelle instead uses instead a two-
step approach: SmPL patterns are translated into the temporal logic CTL. This
happens “under the hood”: users need not know anything about CTL, model
checking, etc. We will argue the equivalence of the denotational semantics with
the more indirect CTL-based version after a quick review of CTL.



CTL is defined in terms of transition systems: directed graphs able naturally
to express program control flow graphs (CFGs) with flow divergence, conver-
gence and loops. Compiling into CTL thereby also allows a smooth extension to
program control flow graphs, an extension done less systematically in [4, 16].

An immediate advantage is performance: model checkers are known to be
fast, with a well-developed theory and practice. Since model checking is done
bottom-up, repeated computation is avoided. A further advantage is that the
interaction between universal and existential quantification over paths is well-
defined in temporal logic, e.g., it does not in principle require extra work to
generalise to patterns with alternating path quantifiers.

A final advantage is flexibility: the same CTL language can be used as an
intermediate language with different translation schemes. This makes it easier
to adapt the Coccinelle approach to applications other than updating and trans-
formation, e.g., bug finding [20].

In the remainder of this paper we mainly focus in using CTL model checking
to search for program patterns rather than program transformation. This is
motivated by the way Coccinelle works: first model checking is used to find all the
relevant program points and then the transformations are performed afterwards.
This has proven to be a simple way to avoid ambiguous transformations. It
also has the practical advantage that it is significantly simpler to formulate
the correctness statements without the transformation component. Extension of
CTL (e.g., with transformation operators ‘+’ and ‘−’ giving judgements of the
form M, s |= φ →M′) will be described in a subsequent publication.

Compiling SmPL into CTL. We now translate SmPL into CTL instead of exe-
cuting. To save space we do not repeat the standard semantics of CTL but refer
instead to [10]. We will prove that the Core-SmPL semantics of Section 3 is a
symbolic composition of this transformation semantics with the CTL semantics.
For now we use classical CTL without variables, so the T appearing below is an
atomic proposition in AP : a ground term as in Definition 2. We show later how
to allow variables in CTL terms, an idea also used in [13, 11]. To simplify the
correctness formulation, we do not here account for transformation by + or -.

Compilation is defined in Figure 4 using functions Tctl : P → CTL, Pctl[[ ]] :
P → K → CTL and Ectl[[ ]] : E → K → CTL (note that the CTL and K
are also used as types in the figure). Data structure k ∈ K is related to the
continuation functions of the executable semantics of Section 3. For pragmatic
reasons, the K data structure distinguishes between two kinds of continuations,
denoted tail and after, representing respectively continuations that are final
and continuations that need further work. We defer detailed explanation to [9].

Correctness of the compilation to CTL. We now argue the translation correct by
relating the executable semantics of Section 3 to CTL satisfaction of a translated
term. As we only consider patterns P without + or −, the net semantic effect of
T [[P ]] in is to transform input in into either {in} or ∅. To state correctness we
first define a link between input sequences and transition systems.



k : K = tail | after CTL

Tctl[[P ]] = Pctl[[P ]] tail

Pctl[[ε]] tail = true

Pctl[[ε]] (after φ) = φ

Pctl[[E P ]]k = Ectl[[E]](after(Pctl[[P ]]k))

Ectl[[G]] tail = G ground term G regarded as atomic prop.
Ectl[[G]] (after φ) = G ∧AXφ

Ectl[[P1 | P2]]k = (Pctl[[P1]]k) ∨ (Pctl[[P2]]k)

Ectl[[...]] tail = AF exit end of the input (exit is in Definition 3)
Ectl[[...]] (after φ) = AF φ all future states must satisfy φ

Figure 4: Translation from SmPL into CTL

Definition 3. Let in = G1G2 . . . Gn be a linear source program: a sequence of
ground terms. The corresponding transition system (Figure 5) is denoted în. This
has states 1, 2, . . . , n, n+1 with labels L(1) = {G1}, . . . , L(n) = {Gn}, L(n+1) =
{exit} and transitions {1 → 2, . . . , n → n + 1, n + 1 → n + 1}.

cin = ONMLHIJK1 // ONMLHIJK2 // . . . // ONMLHIJKn // ONMLHIJKn + 1

��

G1 G2 · · · Gn exit

Figure 5: Model for a linear string as source program

Theorem 1. For any linear source program in and pattern P without +,− or
variables, we have T [[P ]] in = {in} if and only if în , 1 |= Tctl[[P ]].

A definition aids stating a sufficiently strong induction hypothesis:

Definition 4. Relation c ≈ k holds if k = tail and ∀in (c(in) = {in}), or if
k = after φ and ∀in ( c(in) = {in} if and only if în, 1 |= φ ).

We prove this by structural induction on P . The desired result follows by struc-
tural induction on P,E, using the definitions of P,Pctl, E , Ectl and the following.
See the full paper [9] for detailed proof.

Theorem 2. If c ≈ k it holds that ∀P. ( P[[P ]] c ≈ after(Pctl[[P ]] k) ) and
∀E. ( E [[E]] c ≈ after(Ectl[[E]] k) ).



Relating regular expressions and CTL. A natural question: can the translation
be extended to allow an arbitrary regular expression in place of P? Alas, there
seems to be no natural way to translate a general regular pattern P ∗ into CTL.

5 Semantics of Core-SmPL with pattern variables

We now enrich Core-SmPL, extending the language of patterns to include pattern
variables (essentially the parameters of [16, 4] or meta-variables of [11, 12, 14]).
An environment parameter holds the values bound to pattern variables.

In = GroundTerm∗ Out = 2GroundTerm∗

c : Cont = Env → In → Out (c is a continuation)
T [[ ]] : P → In → Out P[[ ]] : P → Cont → Cont E [[ ]] : E → Cont → Cont

Figure 6: Semantic value domains for Core-SmPL with variables

The input to a Core-SmPL semantic patch is still a finite sequence in =
G1G2 . . . Gn ∈ GroundTerm∗ of ground terms Gi ∈ GroundTerm, and the
matcher output is a set of such sequences: a set out ⊆ GroundTerm∗, empty if in
does not match the pattern. Pattern semantics has to be extended, though, to in-
clude bindings of pattern variables. Operations on environments: env(T ) denotes
the result of replacing every pattern variable x in T by env(x). env(T ) is defined
only if every env(x) is defined. Updating the environment env with env ′ is de-
noted by env [env ′], i.e., env [env ′](x) = env ′(x) if x ∈ dom(env ′) and env [env ′] =
env(x) otherwise. (Note that dom(env[env ′]) = dom(env) ∪ dom(env ′).)

Further (as in Prolog), MGU (T1, T2) denotes the most general unifier of
T1, T2. Notation: MGU (T1, T2) equals “some env” where env is the most general
unifier env if it exists, else MGU (T1, T2) equals “fail”. For SmPL, T1 may contain
pattern variables, but T2 will always be a ground term. Here GroundTerm∗ and
Term∗ mean any finite sequence of ground terms and terms respectively.

– I starts, with empty variable environment env0 and initial continuation c0.
– II is just as before except for the extra environment parameter.
– III yields the empty output set on empty input. Otherwise, the first input

ground term G is matched against pattern T (after applying the current
environment to instantiate its pattern variables). If matching succeeds with
env ′, new bindings found in env ′ are added to the current environment env .
An example: pattern x:=x+y is successfully matched against program input
di := di + st to give new environment bindings [x 7→ di, y 7→ st]:

E [[x:=x+y]] c [] (di := di + st)::in =
{(di := di + st)::out | out ∈ c[x 7→ di, y 7→ st]}

– IV. Deletion and insertion are as for Core-SmPL, except the environment is
applied to term T as in II.



An implementation. These rules have been implemented in a functional program-
ming language, and gave the expected outputs on all this paper’s examples. See
the full paper [9] for details.

I : T [[P ]] = P[[P ]] c0 env0 where dom(env0) = ∅ and
c0 env in = {in}

II : Sequences of things
P[[ε]] c env in = c(in)
P[[ E P ]] c = E [[E]] (P[[P ]] c)

III : Single things
E [[T ]] c env [] = {}
E [[T ]] c env (G :: in) = case MGU (env T, G) of

fail : {}
some env ′ : {G :: out | out ∈ (c env [env ′] in)}

E [[ P1 | P2 ]] c env in = (P[[P1]] c env in) ∪ (P[[P2]] c env in)

E [[...]] c env in = (c in) ∪
{G :: out |G :: in ′ = in and out ∈ (E [[...]] c env in ′)}

IV : Deletion, insertion
E [[−T ]] c env [] = {}
E [[−T ]] c env (G :: in) = case MGU (env T, G) of

fail : {}
some env ′ : c env [env ′] in

E [[+T ]] c env in = {(env T ) :: out | out ∈ (c env in)}

Figure 7: Semantic evaluation rules with variables

6 Semantics of CTL-V with pattern variables

The Coccinelle implementation translates SmPL patterns with variables into
CTL-V: a CTL extension with quantified variables ranging over fragments from
the source program’s CFG. The correctness argument of Section 4 was expressed
in terms of classical, variable-free, CTL, so some changes are necessary to express
correctness of the more general SmPL with pattern variables.

CTL-V = Staged CTL with quantifiers, a variant intended to be especially suit-
able for program manipulation. One extension over classical CTL is (as in Def-
inition 2) to allow atomic propositions ap to have full tree-structured terms as
values. The idea is to extend traditional models by allowing a state to be deco-
rated with pieces of source program information, e.g., possibly unbounded data
such as function names, parameter names or constants.

These are referred to using pattern variables so only a term’s top-level syn-
tactic structure need be expressed: a CTL-V atomic proposition may be an
arbitrary term, with or without variables. This generalises an approach seen in



[13, 12, 11]. (Variables used in a similar way are called parameters in [4, 16].)
We generalise a bit to allow explicit quantification, with existential quantifiers
appearing anywhere in a formula.

CTL-V syntax and its satisfaction relation. For brevity we just show how CTL-V
pattern recognition works, and omit details of how the language and algorithms
are extended to carry out program transformation. The development is intended
only to clarify the CTL-V semantics, and does not at all account for efficiency
issues (e.g., as done in the Coccinelle system).

Definition 5. Let x range over Var, a set of variables4. A CTL-V formula is
anything generated by the following context-free grammar, where ap ∈ AP may
be a term containing variables:

φ ::= ap | ¬φ | φ ∧ φ | φ ∨ φ | AXφ | AFφ | A(φUφ) | EXφ | ∃xφ

By Definition 2 the CFG of a source program P is a binary relation → on states,
each labelled by a single ground term G. A pattern-variable value will typically
be a fragment of the source program P to be analysed. The set of all possible
values is thus the set of all subterms of P , and so a finite set. We will henceforth
denote this set by Val = {v1, . . . , vm}.

Before starting with CTL-V-satisfaction and model checking, we need pre-
cisely to define the working of substitutions that bind pattern variables. A sub-
stitution binds the free variables of a CTL-V-formula φ to values in Val . A term
atomic proposition T is true iff T can be unified with G.

Definition 6. The set of free variables fv(φ) of CTL-V formula φ is defined as
expected. A formula φ is closed if fv(φ) = ∅. A substitution is a partial function
θ : FinSet(Var) → Val mapping a finite set of CTL-variables to values.

Definition 7. The satisfaction relation M, s |=θ φ for CTL-V is defined induc-
tively in Figure 8. (M is elided for brevity.)

s |=θ T iff some θ = MGU (T, v) where L(s) = {v}
s |=θ ¬φ iff not s |=θ φ
s |=θ φ1 ∧ φ2 iff s |=θ φ1 and s |=θ φ2

s |=θ φ1 ∨ φ2 iff s |=θ φ1 or s |=θ φ2

s |=θ AXφ iff ∀σ ∈ P(s) . σ[1] |=θ φ
s |=θ EXφ iff ∃σ ∈ P(s) . σ[1] |=θ φ
s |=θ A(φ1Uφ2) iff ∀σ ∈ P(s) . ∃j ≥ 0 .

[∀k . 0 ≤ k < j ⇒ σ[k] |=θ φ1] ∧ σ[j] |=θ φ2

s |=θ AFφ iff ∀σ ∈ P(s) . ∃j ≥ 0 . σ[j] |=θ φ
s |=θ ∃xφ iff s |=θ[x7→v1] φ or . . . or s |=θ[x7→vm]

Figure 8: CTL-V satisfaction relation

4 These are names of pattern variables, not program variables.



Staging. The “silver bullets” of this approach: pattern (meta-)variables, quan-
tification, and the use of two stages. The term “staging” comes from partial
evaluation and refers to the binding times, i.e., the times at which various things
are specified or computed. A key point is that source program-dependent values
such as identifiers, although unbounded if one consider arbitrary programs, have
a bounded finite value range for any one source program. Hence V al is a
finite value set for the program about to be transformed.

Mapping CTL-V to CTL. Recall that Val = {v1, . . . , vm} and consider the
following mapping from CTL-V to CTL:

[[T ]]θ = θ(T ) [[φ ∧ φ′]]θ = [[φ]]θ ∧ [[φ′]]θ [[¬φ]]θ = ¬([[φ]]θ)
[[∃xφ]]θ = [[φ]]θ[x 7→ v1] ∨ . . . ∨ [[φ]]θ[x 7→ vm]

The following theorems establish the correctness of the above mapping and de-
cidability of CTL-V model checking respectively:
Theorem 3. For any M, s and θ that closes φ: M, s |= [[φ]]θ iff M, s |=θ φ.

Theorem 4. It is decidable, given Kripke model M = (S,→, L), state s ∈ S,
substitution θ and CTL-V formula φ, whether M, s |=θ φ.

In [9] we show a model check algorithm for CTL-V that works because of staging
and the corollary finiteness of Val. It sidesteps some tricky algorithmic problems
involved in an efficient way to implement ¬φ,∃φ, as was necessary in [13, 16]
(and is also done in Coccinelle).

7 Relation to the Coccinelle System

We have made a rational reconstruction of the core of the Coccinelle system. We
now briefly review how the real Coccinelle system differs from, and extends, our
reconstruction. The most important difference: this paper does not cover the full
semantic patch language (SmPL) implemented by Coccinelle.

Other differences are mainly concerned with implementation and issues relat-
ing to the underlying models, such as nesting of program structures and matching
balanced braces. These particular issues are handled by adding a special atomic
proposition, called Paren(x). The Paren(x) proposition is true at some state if
the variable x equals the current nesting level of program braces. This makes it
possible to constrain searches to specific function definition bodies or program
block structures, e.g., to skip over the “then” branch of a conditional.

Efficiency issues. The Coccinelle system implements a number of optimisations
in order to obtain acceptable execution times. These include use of constructive
negation for a more efficient implementation of ∃ than in Definition 7; reducing
the scope of quantifiers; and a number of low-level implementation techniques.
Constructive negation directly encodes “negative information” about variable
bindings, i.e., recording that a given variable must not be bound to a certain
value. Reducing the scope of quantifiers has the effect of reducing the size and
number of environments that have to be propagated by the algorithm.

In practise these optimisations have had a profound effect on execution times.



Transformation after model checking. In order to perform program transforma-
tions based on successful matches obtained by model checking, the Coccinelle
system adds so-called witness trees to the CTL-V semantics. These record the
variable bindings (substitutions) that led to successful matches. To do trans-
formation some such structure is needed, to record variable bindings that are
removed from a substitution when a quantified variable is bound to a value.

8 Conclusion

The Coccinelle system is a well-established program transformer currently being
used by practitioners to automate and document collateral evolutions in Linux
device drivers. We presented a compact, precise and self-contained semantics of
Core-SmPL, in essence a rational reconstruction of the heart of the system. This
gives it a solid foundation, one that motivates the structure of the Coccinelle
framework, and justifies it theoretically.

Technically: we defined the semantics using continuation-passing style de-
notational semantics; made a prototype implementation in Haskell; translated
SmPL to a novel implementation language (the temporal logic CTL); and for-
mally proved the translation faithful to the denotational semantics. Partial eval-
uation’s “staging” concept was used to define CTL-V, a CTL extension with ex-
istentially quantified variables that range over program points and source code
parameters. This led to a more complex but practically more expressive and
useful version of Core-SmPL. In the full paper [9] a model checking algorithm
for CTL-V is outlined and exemplified on a string matching problem.

These results show a pleasing relation between theory and practice, and give
descriptions of a complex working practical system. The descriptions are compact
and (we hope) comprehensible to outsiders without previous experience with
Coccinelle. Ideally, the insights gained here will be of benefit and perhaps even
a guide to others with similar goals.
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