Sandboxing in myKlaim

René Rydhof Hansen, Christian W. Probst, and Flemming Nielson*
Informatics and Mathematical Modelling
The Technical University of Denmark
2800 Kongens Lyngby, Denmark
email {rrh, probst,nielson}@imm.dtu.dk

Abstract

The uKlaim calculus is a process algebra designed to
study the programming of distributed systems consisting of
a number of locations each having their own tuple space
and collection of mobile processes. Previous work has ex-
plored how to incorporate a notion of capabilities to be en-
forced dynamically by means of a reference monitor. QOur
first contribution is to describe a sandboxing semantics for
the remote evaluation of mobile code; we then develop a
succinct flow logic for statically guaranteeing the properties
enforced by the reference monitor and hence for dispensing
with the overhead of a dynamic reference monitor. Our sec-
ond contribution is an extension of the calculus to interact
with an environment; here processes enter the system from
the environment and we develop an entry-condition that is
sufficient for ensuring that the resulting system continues to
guarantee the properties that would otherwise need to be
dynamically enforced by the reference monitor. We call the
resulting calculus myKlaim.

1 Introduction

Security is a key consideration when programming dis-
tributed systems and it is important to be able to make
the security considerations at a relevant level of abstrac-
tion. Finding an appropriate level of abstraction has mo-
tivated the development of a number of process algebras
including variations of the 7-calculus [6] and mobile ambi-
ents [2]. Security annotations and considerations have been
performed for most of these [1, 3].

In this paper we consider pKlaim [4], which belongs to
a group of process algebras focusing on the locations (or
nodes) in a distributed systems and taking the view that
each has a separate tuple space and collection of mobile

*This work has in part been supported by the EU research project
#016004, Software Engineering for Service-Oriented Overlay Computers.

processes. Communication takes the form of outputting or
inputting messages (tuples) from named locations and mo-
bility takes the form of remote evaluation of code.

Extensions to pKlaim have been developed for equip-
ping locations with security policies. As is customary in
access control the policies regulate how one principal (tra-
ditionally called the subject) may invoke resources belong-
ing to another principal (traditionally called the object): ac-
tions are supposed to be blocked by a reference monitor un-
less the corresponding capability is explicitly permitted by
a given capability. In the syntax of myKlaim this takes the
form [::("~7 for expressing the policy that allows all pro-
cesses located at [to perform actions permitted by 7 to the
(resources belonging to the) location I’

Sandboxing In pKlaim a remote evaluation of the form
| =["={m}] eval(Q)Ql’ intends to execute the process Q
at location I’ rather than the current location /. This will
be accepted by the reference monitor if the capability e for
remote evaluation is granted, i.e. if e € 7 and will lead to @
being evaluated at I’ using the policy currently in place at I’.

Our first contribution is to extend the primitive for re-
mote evaluation with the policy to be enforced on the re-
mote invocation. Hence the capability e now becomes e[d]
where § is the policy to be enforced. This corresponds
to evaluating @ in a sandbox located at I’ and is general
enough to allow different processes at the same location to
have different policies.

At the more technical level we then develop a succinct
flow logic for statically guaranteeing the properties en-
forced by the reference monitor. This means that for stati-
cally checked processes one may safely “turn off” the ref-
erence monitor and hence dispense with the overhead of a
dynamic reference monitor. The analysis is proved correct
with respect to the operational semantics using a subject-
reduction result.

Open Systems Systems written in myKlaim are essen-
tially closed: there is a fixed set of locations and a fixed

Localities
L == 1 locality
| u locality variable
Nets
N u= [:%P single node
| 1 {et) located tuple
| Ny N2 net composition
Processes
P == nil null process
| a.P action prefixing
| PP parallel composition
| A process invocation
Actions
a == out(t)Q/l output
| in(T)@¢ input
| read(T)Q(¢ read
| eval(P)Q@/ migration
| newloc(u:d) creation
| accept(d) admit external proc.

Figure 1. Syntax for processes and actions.

set of policies. While new locations can be constructed and
extensions of myKlaim allow to modify the network topol-
ogy there is no direct account of accepting new code into the
system. Such actions might correspond to software updates
or downloading applets to the current security domain.

Our second contribution is the extension of myKlaim
with an accept primitive for allowing new code to enter.
Since our aim still is to dispense with the dynamic enforce-
ment of a reference monitor, we modify the operational se-
mantics such that the tests performed upon the code entering
are sufficient to guarantee the intended security policy.

2 The myKlaim Calculus

Process calculi of the Klaim family are centered around
modelling the tuple space paradigm in which a system is
comprised by a distributed set of nodes that communicate
by outputting and getting tuples from one or more shared
tuple spaces. Mobility is modelled through remote eval-
uation of processes. In this paper we consider a variant
of the puKlaim calculus [4] called the myKlaim calculus.
The myKlaim calculus incorporates a notion of sandbox-
ing and primitives for access control. In the basic tuple
space paradigm, tuple spaces are shared resources among
peers and thus no attempt is made to restrict or control ac-
cess to these. For the purpose of modelling service-oriented
architectures or other network structures that may include
mutually distrusting parties it is convenient to extend the

T == F|FT templates
F == f]|lz|lu template fields
t o= f]ft tuples
f o= ell|u tuple fields
et = ef|ef, et evaluated tuple
ef == V|I evaluated tuple field
e == V]x| ... expressions
Figure 2. Tuples and fields .
Ny || N2 Na || Ny
(N1[[N2) [N3 = Ni[[(N2]Ns)
1P = [:9(P]nil)
1294 = [:9P ifAS P
120 (P|Py) = 1:29P |10 Py

Figure 3. Structural congruence.

match(V,V) =¢e match(lz,V) = [V/z]

match(l,1) = € match(u, l") = [I' /u]

match(F,ef) = o1 match(T, et) = o9
match((F,T), (ef,et)) = 01 009

Figure 4. Tuple matching.

calculus with access control primitives. This is achieved by
adding a security policy to every node with a process and by
embedding a reference monitor into the operational seman-
tics of the calculus. The reference monitor controls every
execution step in order to ensure that the security policy is
not violated. In a later section we develop an analysis that
can statically guarantee that a program cannot possibly vio-
late the security policy. This result will allow us to remove
all the runtime checks performed by the reference monitor,
while preserving the security of the system. Security poli-
cies are formalised as capability lists, i.e., at every locality
(node) an associated set of capabilities defines which ac-
tions can be performed at that node and which other nodes
can be accessed:

m C Capability
0 € Policy =

{i,r,0,e[0],n}
Loc — P(Capability)

where i, r, 0, e, and n correspond to the actions in, read,
out, eval, and newloc, respectively.

Intuitively, a policy J for a location [determines what
processes located at [are allowed to do to other locations.
Note that the capability for performing an eval-action is as-
sociated with a security policy, 9, that specifies the security
policy of the sandbox that the remotely evaluated process is

match([T],et) = |RM =on =i € §(I)

[t] = et ’RM:on:>0€(5(l')

1% in(T)Ql P || (et) =y 1 22° Po ||l :mil 10 out(t)@l'.P |l P sy 10 P R4 20 p |12 {et)

LEN, = L'+ N

match([T],et) = o

’RM:on:>r€5(l’)

Lt Ny|| Ny ——w L' = Nj || N2

N =N L|_N1>—>RML/}_N2 NQEN’

1::° read(T)QI'.P || I :: (et) ——py | =:° P ||l :: (et)

|RM = on = ¢[3"] € (')

LFEN = L'FN

'¢ L |lI']=]u

& =4

77

10 eval(Q)Ql P || I' = P s L P12 P/ 07 Q

’RM:onénEcS(l)‘

LH1:° newloc(u: §').P sy LU{I'} 100 =000 P17 jy) |17 01/ pil

Figure 5. Reference monitor semantics for myKlaim in closed systems, i.e., without the accept-action.

executed in. Later in this section we discuss the sandboxing
in more detail.

Like pKlaim, the myKlaim calculus comprises three
parts: nets, processes, and actions. Nets give the overall
structure in which tuple spaces and processes are located.
Processes execute by performing actions. The syntax is
shown in Fig. 1 and Fig. 2. The main difference in syntax
compared to [4] is that we add an accept action for admit-
ting a new process to enter a system.

Processes can be either the nil-process doing nothing,
or a process that executes an action a, or indeed a parallel
composition of subprocesses. Finally, a process can be an
“invocation” of a process place-holder variable (used for re-
cursion). The out-action outputs a tuple into a tuple space
at a specific locality; the in and read actions input a tu-
ple from a specific tuple space, either removing it or leav-
ing it in place respectively; the eval-action remotely evalu-
ates a process at a specified locality (subject to sandboxing);
newloc creates a new locality; and accept injects a pro-
cess from the environment.

Next, we define and briefly discuss the reference moni-
tor semantics of the myKlaim calculus for closed systems,
i.e., without the accept action. The semantics of the accept
primitive will be introduced in Section 5 as part of open sys-
tems. Since the semantics is very similar to the semantics
for pKlaim, we do not go into details with the “standard”
parts of the semantics, but refer to [4].

The reference monitor semantics for myKlaim is ob-
tained directly from the operational semantics of uKlaim
by adding a reference monitor. As explained in the intro-
duction, the reference monitor can either be turned on or
off; the current state is indicated as a subscript on the se-
mantic arrow, i.e., the RM annotation on >——,,. If the ref-
erence monitor is active, then all actions are checked against
the relevant security policy before being allowed to execute;
in the semantics the checks are displayed in boxes. Fig. 3

and Fig. 4 show the structural congruence of nets and pro-
cesses and the rules for matching tuples, respectively. These
are used in Fig. 5 to define the semantic reduction rules of
myKlaim.

Sandboxing is modelled by allowing a single locality to
have several different security policies and thereby allowing
processes at the same node to execute in separate and differ-
ent security environments. The only visible change relative
to the uKlaim semantics is in the rule for remote evaluation
of processes: the eval-action.

2.1 An Example

We will use an example similar to subscribing online
publications from [4]. In our scenario we have a publisher
P that owns two locations—the publisher’s reading room [p
and a shelf [g. P stores all its publications in /g and users
are only allowed to access the data in [g while they are in
the reading room [p. The typical reader R will evaluate a
process at the reading room [p. This process will read a pa-
per from the shelf and “use” it in some way. As an example,
reader R; defined by

Ry £ eval(read(“paperl”, Ipl)@Q[g.use pl)@Qlp

sends a process to the reading room, which will get the
paper with the tag paperl from the shelf and use it. This
should be fine with the publisher, as long as the use of the
paper does not include the out action. A reader Ry, defined
by

R, 2 eval(read(“paper2”, |p2)@Qls.out(p2)Qig,)Qlp
should be prohibited by the publisher from entering the

reading room, as it reads the data of the paper labeled pa-
per2 from the shelf and forwards it to its own location /g, .

G =i e

GV, T: Voo W, iff 6= T
G LT Voo W, iff 6 T
cEia, T Voo W, iff 6= T
G uT: Vo Wy iff 6= T:

6=, T Voo W, iff 6= T
6=, T VoW, iff 61T

Vo> Wy AV, E Vi A prjs (
Vo Wo AV, C Vi Aprj, (W)

Voo Vs iff {et € Vollet| =i—1} C V4

Ve W, /\{etEV|prJ(

Vo W, /\{etEV|prJ(

Vo W, /\{etGV|prJ (et) &(x)}
Vo W, /\{eteV|prJ((u)}

Figure 6. Abstract tuple matching.

In original pKlaim calculus, the only capability granted
by the publisher to other localities in the system is to do
an eval on the reading room [p. Thus, the capabilities as-
signed to the different locations in the system would be

L, c:llm—{hle—{el] Ry
Ip :lls={rH nil ||
ls :: (“paperl”, data)

| g, ::ltrelshle={ell Ry |

(“paper2”, dataz)|- - -

We use * to abbreviate that a process running at a location
[is allowed to perform all actions at [. The setting above
allows both R; as well as R» to evaluate a process at the
reading room [p (capability [p — {e}), and once their pro-
cess is executed at [p, they can read papers from the shelf
lg due to capability Ig — {r}. However, to impose the
publishers requirement, that processes running in the read-
ing room [p should not be able to perform the out action,
the original pKlaim calculus will, as part of the static infer-
ence system, rewrite processes and mark those actions that
can not be checked statically. In the example this is neces-
sary, since the reading room might dynamically acquire the
capability | — {o}, which would allow processes running
at [p to communicate with location [. So the network that
eventually will be executed contains processes defined by

Ry 2 eval(read(“paperl”, Ipl)@Qig.use pl)Qlp
Ry 2 eval(read(“paper2”, Ip2)Qlg.out(p2)Qig,)Qlp

The operational semantics of pKlaim will check for the
read and out actions that the location that they are exe-
cuted at actually has the capability to do so. In the example
the read will be allowed, but the out action will cause a
stall. In contrast, the myKlaim version of the above system

olf:t] = olfl ol oll] = {3
slvl = {v} olul = &(u)
glz] = o(x)

Figure 7. Extension of 5 to templates.

is specified by

iy = (e (elis— ()N Ry |
g (e (elis—)N R, |

IR,
lRr,
Ip U nil ||l :: (“paperl”, data;)

(“paper2”, datas)|- - -

The operational semantics will ensure that the processes
evaluated at [p by Ry and R, respectively are executed
in a sandbox that only has the capabilities specified for the
eval action. After executing both eval actions, the system
evolves to

I, =ltm—shle=fells={r}t} pi |

I, =ltre—shle=fells={r}H pil || 1p =0 nil |

Ip ::Ils={rH read(“paperl”, Ipl)@lg.use pl ||

Ip ::Ils—={rH read(“paper2”, Ip2)Qls. out(pQ)@lR2 |

lg :: (“paperl”, dataq)|(“paper2”, datas)| - -

Obviously, this system is going to violate the capability
specification, since the process reading “paper2” will per-
form an out action. The next section introduces an analysis
that statically analyses systems and finds these properties.

3 The Analysis

In this section we specify a static control flow analysis
for the myKlaim calculus described in the previous section.
The information is collected in three main components:

e Tisa “global” component recording for each location
the set of tuples that can reside in the tuple space be-
longing to that location;

e 7 is a “global” component recording for each name
the set of names it may be bound to (and in the case of
constants this will just be the constant itself);

e O is a “local” that in the case of processes records all
actions performed by the process and in the case of
nets only those actions not explicitly allowed by the
policies governing the processes in the net.

In a later section we show how the analysis can be used to
statically guarantee that no runtime violations of the refer-
ence monitor can occur in a given net.

(T,6) =19 PO ifft (T,6) =M P/ Ao\ {(a, 1)) a s} CO

(T,6) =xl:(et): 0 iff (et) € T(|1])

(T,6) =x (Ny || No): 0 iff (T,6) =y Ny : 0 A (T,

6) Ex Ny : 0" NO' U C 0

(T,6) =L nil : & iff true

(T,6)=LP | Py: O iff (T,6) =L P AN(T,6) ELPy 0" AND' LY CO

(T,6)ELA: 0 iff (T,6)ELP:0 ifAZ2P

(T,6) =L a.P:0 iff (T,6)EL P AT, 6)E a:0"NOUD' Cd

(T,6) =L out(t)@r : & itf VI'ea(0): 6[t] CT(I')A{o} x&(¢) CO

(T,6) =L in(T)@¢ : & iff VI'eo(l): 6= T:TU)oWoA{i} x6()Cd

(T,6) EL read(T)Q0: 9 iff VI €6(l): 6 =1 T :T(1")>Wa A{r} x6(0) Cd

(T,6) |, eval(Q)@t : itf VI'e () (T,6) =L Q: 9 AV(a,n) € d : ({e[n— {a}]} x 65(£)) C
(T,6) =L newloc(u:4):0 iff {n}x{I} COA{|u]} Cé(lu))

Figure 8. Flow logic specification for control flow analysis of myKlaim.

We define the analysis using the Flow Logic framework,
cf. [11], that takes a specification oriented approach to de-
termining whether or not a given analysis estimate T,6,0
correctly describes all configurations reachable from a
given initial net. More concretely, we will be defining
judgements for the main syntactic categories in question for
axiomatising (i.e. determining the truth of falsity) whether
or not the analysis estimate T,6,0is acceptable in the sense
that its correctness can be proved with respect to the opera-
tional semantics (see Theorem 1 below). Since the form of
the correctness result is a subject reduction result this means
that analysis estimates may be “too large”. The next step
therefore is to use standard techniques (not covered here but
see e.g. [10]) for turning the specification into a form where
“the least” acceptable analysis estimate can be computed in
polynomial time.

Before we continue with a more detailed explanation of
the analysis specification we first discuss a technical issue,
namely how to handle the dynamic creation of locations.
Since unique new locations can be generated during pro-
gram execution, the analysis would have to keep track of
a potentially infinite number of locations. To overcome
this and maintain the tractability of the analysis, we define
so-called canonical names that essentially divide all con-
crete location names and location variables into equivalence
classes in such a way that all (new) location names gener-
ated at the same program point belong to the same equiv-
alence class and thus share the same canonical name. The
canonical name (equivalence class) of a location or location
variable, ¢, is written |¢]. To reduce notational clutter, we
shall make use of a unique representative for each equiva-

lence class and thereby dispense with the |- | notation when-
ever possible. In order to avoid possible inconsistencies in
the security policy for two locations with the same canoni-
cal name we shall only consider policies that are compati-
ble with the choice of canonical names; we say that a pol-
icy is compatible with the canonical names if and only if
[¢1] = [£2] = 0(¢1) = 6(f2). This definition entails
that the policy assigns the exact same set of capabilities to
all locations with the same canonical name. Throughout
this paper we tacitly assume that policies are compatible
with the chosen canonical names.

For the control flow analysis of myKlaim we shall
shortly explain the separate judgements for nets (T',5) =y
N : 9, processes (T',) =L P : @ and actions (T,5) = a :
0. The definition (Fig. 8) makes use of the auxiliary judge-
ment for pattern matching & |=; T : V, > W, defined in
Fig. 6 and the extension of & to templates defined in Fig. 7.
It is important to note that free variables in the right hand
sides of a Flow Logic specification are implicitly existen-
tially quantified. The judgement for nets (7,6) =y N : 9
proceeds in a syntax-directed manner and checks the ac-
ceptability of T, 6 on all components. In the case of J ob-
tained from processes we make sure to remove all actions
explicitly permitted by the policy of the relevant location.
This takes the form of ensuring that 0 contains a certain set
(rather than being equal to a certain set) in keeping with
the general methodology explained above. The judgement
for processes (1',6) =L P : O also proceeds in a mainly
syntax-directed manner, except for the need to unfold recur-
sive processes. This does not invalidate our axiomatisation,
as in general we take a co-inductive rather than inductive

interpretation of a Flow Logic specification (see [11]). The
judgement for actions (7',6) . a : & records the tuples
being output into the relevant tuple space, obtains the tuples
being input using the judgement for matching, and records
the actions performed in 0. The judgement for matching
o= T: Vo > W. traverses the template in a forward di-
rection (starting at index ¢ that is supposed not to exceed
the length of T") and then in a backward direction (stop-
ping at index 7). In the forward direction the tuples in v,
are tested against the relevant component of the template 7’
and only tuples satisfying the requirements are carried for-
ward. In the backward direction the tuples in W. are those
that passed all requirements and the values in the relevant
component are used for defining the names (of the form !z
or !u) to be matched in that component. We can now for-
mulate the semantic soundness of the analysis as a subject
reduction result:

Theorem 1 (Subject Reduction). If (T,6) =y N : 0 and
Lt N> L' b N then (T,6) =y N’ : .

Proof. (Sketch) By induction on the structure of L - N >
— i L' B N’ and using auxiliary results for the other
judgements. O

3.1 Analysing the Example

Since our example does not make use of any newloc’s
to create new locations, we can simply define the equiva-
lence classes for canonical names to contain only the lo-
cations itself. This allows us to proceed with the example
while conveniently ignoring canonical names. Note that se-
curity policies are always compatible with this choice.

We now apply the analysis defined above to the example
from Section 2.1. The analysis starts at

(T,6) =y Ig, 1P Ry || 1R, =172l Ry - 0

We have left out the nil process running at [p as well as
the location [g, since it only contains tuples that are used
to initialize 7". The analysis then breaks up the net into the
single components running in parallel and starts analyzing
reader [,: (T,6) |=x L, =Um—Uhir=lells={r R,
0, which is equivalent to analyzing the process Ry

(T,6)):]Z,Rleval(read(“paperl”, Ipl)@lg.use pl1)@lp :

Since using pl will not perform any actions, we ignore it
for the rest of this section. Analyzing the eval action is
equivalent to

(T,5) i eval(read(“paperl”, Ipl)@Qlg)Qip : O1A
V(a,n) € 0y : {e[n— {a}]} x {lp} C O
which requires to check the evaluated read action at the
only possible target location [p:
(T,6) =L read(“paperl”, Ip1)@lg : OyA
& =1 (“paperl”,Ipl) : T(ls) > We A{(r,ls)} C 04

Now we need to match the tuple (“paperl”,!pl) against
T(ls), which contains the tuples located at Lg, namely
{(“paperl”, data,), (“paper2”, datas),--- }. The abstract
matching defined in Fig. 6 first selects all the tuples match-
ing “paper1” from 7'(ls), which later is bound to p1. This
results in data; being stored in &(pl). Having finished
the evaluation of the read action we can now propagate
the computed information upwards. This results in 9; =
{(r,1s)} as result of analyzing the read and 0 = {(e[ls —
{r}],lp)} as result of analyzing the eval. This captures
that R; performs a read action at the reading room [p.
On the top level, the analysis uses this information to com-
pute the 0. Using the initial set of capabilities for R,
lr, — {*},lp — {e[ls — {r}]}, this results in & = 0.
Since on the net level the 0 is an error component, this re-
sult indicates that R, does not perform an action that would
violate any capabilities. Analyzing the process R, is al-
most analogous—with the exception of the out action. An-
alyzing the initial read action results in 05 = {(r,ls)}
and datas T 6(p2). Analyzing the out action is equiv-
alent to (T,6) =" out(p2)@lg, : 05 which results
in 6[t] € T(lr,) A {(0,lr,)} C 5. This represents
the transfer of datas to the tuple space of [, as result
of the out action. The sets {(o0,lr,)} and {(r,ls)} are
then propagated to the eval action, where they result in
Jg = {(e[ls — {’r’}],lp)7 (6[lR2 — {0}],lp)} This result
is used in analysing the initial judgement for the network

(T,6) =™ Ry : 9 A 96\{(a,1)|a € 5(1)} C 0y

Since the initial set of capabilities for Ry is lp, +—
{x},lp — {e[ls — {r}]} this results in I3 = {(e[lr, —
{0}],1p)}. In the next section we will use exactly this prop-
erty of @ # () to identify nets that perform unsecure opera-
tions. This will be used to define which nets are acceptable.

4 Secure Nets

Informally a net, IV, is said to be dynamically secure if
and only if no execution sequence starting from N can lead
to a runtime violation of the reference monitor. This can be
formalised as follows:

Definition 2 (Dynamic Security). A net N (using locali-
ties L) is dynamically secure if and only if for all L, N
and L', N’ such that L - N =——%; L' = N’ we have
LEN s> L'+ N

Thus for a secure net it does not matter whether the ref-
erence monitor is activated or not.

Since the control flow analysis specified in the previous
section computes an over-approximation of all the possible
flows in a myKlaim program, it can be be used to statically
check whether a given program is secure or not. This is
formalised below as static security:

RM = off = (T,6) =Y Q: 000 C {(a, 1)) |a € &' 1)}

~ Q ’
(T,6),L+1::° accept(d').P = L' F1:° P||1:° Q

(T,6) =L accept(d) : & iff true

Figure 9. The upper rule specifies the semantics of the accept-action. It interacts with the environ-
ment and receives a process that is executed in a sandbox unless the reference monitor is turned
off in which case the new process must pass a static test based on the control flow analysis. The
lower part is the flow-logic specification for analysing the action.

Deﬁpition 3 (Static Security). A net, N, is statically secure
if (T,6) Ey N :9and 0 = 0.

It is then easy to show that static security is sufficient for
also guaranteeing dynamic security:

Theorem 4. A net that is statically secure is also dynami-
cally secure.

Proof. (sketch) Follows from subject reduction and inspec-
tion of the reference monitor rules. [

As a consequence, any myKlaim program that has been
shown to be statically secure will never (attempt to) violate
the reference monitor, and therefore all the runtime check-
ing done by the reference monitor can be dispensed with.
In addition to better performance this also provides a higher
degree of assurance, since a statically secure program is
known to never violate the security policy—in any possi-
ble execution possible. In contrast, a reference monitor will
only detect an attempted security violation when it is at-
tempted.

5 Open Systems

In the preceding sections we have focused on myKlaim
in a closed system scenario, i.e., where all processes in the
system are known a priori. For highly dynamic network
structures, such as grid or service-oriented architectures,
that are continuously adapting to meet rapidly changing re-
quirements, it is impossible to analyse the entire system as
a whole, since the system is constantly changing and evolv-
ing. In this section we show how to extend the previous
results to also cover open systems where processes can be
added to the system dynamically through a special accept-
action. This special action interfaces with the environment
and accepts a process from the environment that is subse-
quently inserted and executed in a sandbox at the accept-
ing node. Incorporating this change of underlying world-
view or paradigm into the formal developments of the pre-
vious sections is relatively simple and straightforward since

those developments were constructed in anticipation of this
change.

First we need to specify the semantics of the accept-
action as shown in Fig. 9. The action accepts a process
@ from the environment (represented by the annotation on

the semantic arrow: >£>RM). If the reference monitor is
enabled, the new process is simply placed in a sandbox
where it is allowed to run with the policy specified with
the accept-action. If the reference monitor is disabled, the
new code is analysed and allowed to run if it complies with
the given security policy.

Next, the analysis must be extended to cope with the
accept-action, but this is trivial, since the actual analysis
of the process accepted from the environment is handled in
the semantics. In Fig. 9 also the Flow Logic specification
for actions is extended to handle the accept-action. It is
now trivial to prove that the extended analysis retains the
subject reduction property:

Theorem 5. Theorem I extends to the new setting.

Finally, the security property guaranteed by the analysis
(as formalised by Theorem 4) also carries over to the ex-
tended setting:

Theorem 6. Theorem 4 extends to the new setting.

With the above results we the semantics can model open
systems, while ensuring the security of the system either
through sandboxing or by analysing the incoming process
in a Just-in-Time (JIT) manner and verifying that it cannot
possibly violate the given security policy. This flexibility is
essential for modelling and verifying highly distributed and
dynamic systems.

5.1 The Example Revisited

Using the results in this section we can now lift the re-
striction on the example that all processes, including all po-
tential readers, must be known beforehand. Instead we can
simply let the publisher use an accept-action that specifies

a suitable policy, e.g., [ls — 7] specifying that any accepted
processes can only read papers from the shelf and nothing
else:

Ip = accept([ls +— r]).nil ||
ls :: (papery, data1)|(papersy, datas)| - - -

Now the readers can be defined without an explicit eval-
action:

i
Ry

read(“paperl”, !p1)Qig.use pl
read(“paper2”, !p2)Qlg.out(p2)Qlg,

> e

Furthermore, neither of these need to be analysed along
with the publisher (the reading room and the shelf), instead
this will take place if and when they are accepted into the
publishers system. If reader R} enters the system it evolves
nto

Ip =0 nil || ip =:Ils=rT RY ||
ls :: (papery, datay)|{papersy, datas)| - - -

For R, if the reference monitor is turned on, the system
behaves similarly to above, i.e., R} is executed in a sand-
box of its own. If however the reference monitor is turned
off, the process will first be analysed, revealing that it may
perform an out-action, which is in violation of the security
policy. Therefore the process will not be allowed in at all.
This demonstrates the flexibility inherent in our approach:
the reference monitor can be turned on and off depending
on current requirements and the actual situation.

6 Related Work

In [4] access control policies are studied for closed sys-
tems modelled in the basic pKlaim-calculus, cf. [7], and a
type system is developed for guaranteeing that the security
policies are not violated. There is no support for open sys-
tems or sandboxing. Further studies of access control in
variants of the Klaim calculus can be found in [9, 8].

The concept of sandboxing, in which an untrusted pro-
cess is allowed to execute in a restricted environment, and
variations over this concept, goes back at least to systems
research in the early 1970’s. The Java virtual machine,
cf. [5], provides a recent example of sandboxing.

In [12] sandboxing and security in code mobility is stud-
ied in the context of the higher-order 7-calculus. Here the
approach taken is to show that the security provided by in-
terface types can also be achieved at runtime by using a suit-
able filtering operator. Furthermore, filter based security is
shown to reject fewer safe programs than the corresponding
statically typed approach. In contrast, our approach to open
systems and code mobility allows the security manager of a
system to determine whether the reference monitor should
be turned on or off on a case by case basis.

7 Conclusion

In this paper we have developed the myKlaim calculus, a
variant of the pKlaim calculus, that is useful for modelling
sandboxing and open systems. Furthermore we have speci-
fied a control flow analysis for the calculus that can be used
to verify that no processes violate the given security policy.
Both the analysis and the formal results were extended to
cover the full calculus for open systems by using the control
flow analysis to perform a just-in-time analysis of incoming
code for possible violations of security.

References

[1] M. Bugliesi and G. Castagna. Secure safe ambients. In
Proc. of the ACM Symposium on Principles of programming
languages, pages 222-235, 2001.

[2] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical
Computer Science (TCS), 240(1):177-213, 2000.

[3] P. Degano, F. Levi, and C. Bodei. Safe ambients: Control
flow analysis and security. In Proc. of Asian Computing Sci-
ence Conference on Advances in Computing Science, pages
199-214. Springer-Verlag, 2000.

[4] Gorla and Pugliese. Resource access and mobility control
with dynamic privileges acquisition. In ICALP: Annual In-
ternational Colloquium on Automata, Languages and Pro-
gramming, 2003.

[5] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication. Addison Wesley, second edition edition, 1999.

[6] R. Milner. Communicating and Mobile Systems: the -
calculus. Cambridge University Press, 1999.

[7]1 R. D. Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Ker-
nel Language for Agents Interaction and Mobility. IEEE
Transactions on Software Engineering, 24(5):315-330, May
1998.

[8] R. D. Nicola, G. Ferrari, and R. Pugliese. Types as Specifi-
cations of Access Policies. In Secure Internet Programming:
Security Issues for Distributed and Mobile Objects, volume
1603 of Lecture Notes in Computer Science, pages 117-146.
Springer Verlag, 1999.

[9] R.D. Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types
for Access Control. Theoretical Comput. Sci., 240(1):215-
254, 2000.

[10] E. Nielson, H. R. Nielson, and H. Seidl. A Succinct Solver
for ALFP. Nordic Journal of Computing, 2002(9):335-372,
2002.

[11] H. R. Nielson and F. Nielson. Flow Logic: a multi-
paradigmatic approach to static analysis. In The Essence
of Computation: Complexity, Analysis, Transformation, vol-
ume 2566 of Lecture Notes in Computer Science, pages 223—
244. Springer Verlag, 2002.

[12] J. L. Vivas and N. Yoshida. Dynamic channel screening in
the higher order pi-calculus. MCS technical report, Univer-
sity of Leicester, May 2002.

