Bytecode 2005 Preliminary Version

Towards Verification of Well-Formed
Transactions in Java Card Bytecode

René Rydhof Hansen !

Informatics and Mathematical Modelling
Technical University Denmark
Kgs. Lyngby, Denmark

Igor A. Siveroni >

Department of Computing
Imperial College
London, UK

Abstract

Using transactions in Java Card bytecode programs can be rather tricky and re-
quires special attention from the programmer in order to work around some of the
limitations imposed and to avoid introducing serious run-time errors due to inap-
propriate use of transactions.

In this paper we present a novel analysis that combines control and data flow
analysis with an analysis that tracks active transactions in a Java Card bytecode
program. We formally prove the correctness of the analysis and show how it can be
used to solve the above problem of guaranteeing that transactions in a Java Card
bytecode program are well-formed and thus do not give rise to run-time errors.

Key words: Java Card bytecode, well-formed transactions, static
analysis, Flow Logic

1 Introduction

Smart cards are increasingly being used in applications that require a certain
amount of safety and security, such as electronic Metro tickets and electronic
wallets. Smart cards are also at the heart of every GSM mobile phone where
the so-called SIM (Subscriber Identity Module) cards are actually smart cards.

! Email: rrh@imm.dtu.dk
2 Email: siveroni@doc.ic.ac.uk
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

HANSEN, SIVERONI

The widespread deployment and often sensitive nature of smart card appli-
cations makes it imperative that the programs running on the smart cards
perform correctly.

Java Cards are a special type of smart card that has an on-card Java Card
Virtual Machine making it possible to develop programs for such smart cards
in a dialect of Java, called Java Card. Such programs are then compiled to a
dialect of Java bytecode called Java Card Virtual Machine Language (JCVML)
or Java Card bytecode. One particular problem for JCVML programs is the
use of transactions (a mechanism for ensuring atomic updates of variables).
JCVML does not allow transactions to be nested, i.e., there can be only one
open transaction at any given moment. Attempts at opening another trans-
action will result in a run-time error; this is also the result of attempting to
close a transaction when there is no open transaction. Due to the nature of
JCVML programs transactions may even be opened and closed in different
methods and depend on particular data flows in the program. This makes it
quite hard to actually ensure that transactions are indeed well-formed.

In this paper we show how previously developed control and data flow
analyses for a JCVML-like language called Carmel, a rational reconstruction
of JCVML with the same expressive power as JCVML but better suited for
formal methods, can be extended to also track transactions and ultimately
show that the transactions of a given program are indeed well-formed and
thus that the program will never give rise to a transaction related run-time
error.

Related work. In [7] it is shown how high-level safety and security properties
can be enforced in Java Card programs by automatically generating JML (Java
Modeling Language), cf. [1], annotations for the program. Well-formedness of
transactions is given as an example of a high-level property that can be verified
using this technique. We are not aware of any related work that targets Java
Card bytecode and the use of static analysis to solve this problem seems novel.

2 Well-Formed Transactions

The JCVML API provides access to a well-known and essential tool for en-
suring data and program integrity under the circumstances outlined namely
transactions. A transaction guarantees the atomicity of updates taking place
in the transaction, i.e., either all the updates are successful or none of them
are successful. However, resources on a smart card are rather limited, and as
a consequence JCVML transactions are not allowed to be nested, i.e., there
can be only one active transaction at a time: any attempt at beginning a new
transaction while another is already active will result in an exception being
thrown; similarly an exception will be thrown if an attempt at closing a trans-
action (either by committing or aborting it) is made when no transaction is
active. Finally, no transaction must be active when the program terminates.

2

HANSEN, SIVERONI

public void atomicWrapper(byte [], short) // TDy | TDy
{ V74
0: API.getTransactionDepth /7 {0} | {1}
1: if 1le 0 goto 4 /7 {0} | {1}
2: push 1 4 {1}
3: goto 5 /70 {1}
4: push 0 /7 {0} |0
5: store 3 /7 {0} | {1}
6: load 3 /7 {0} | {1}
7: if ne 0 goto 9 /7 {0} | {1}
8: API.beginTransaction /7 {0} |0
9: load O /7 {1} | {1}
10: load 1 /7 {1} | {1}
11: load 2 /7 {1} | {1}
12: invokevirtual dosomething(byte[], short) /7 {1} | {1}
13: load 3 /7 {1} | {1}
14: if ne 0 goto 16 /7 {1} | {1}
15: API.commitTransaction /7 {1} 10
16: return /7 {0} | {1}
+

Fig. 1. Carmel implementation of a wrapper method

If no transaction on any possible execution path in a given program violates
the above rules the transactions of the program are said to be well-formed.
The limitation imposed by the above transaction semantics leads to a defen-
sive programming style where it is explicitly checked if a transaction is in
progress before starting a new one and similarly checking that a transaction
is active before trying to close it. Furthermore, programmers often have to
“work around” the limitation of not being able to nest transactions and this
leads to a non-trivial control flow for transactions where a transaction may
be started in one method and committed (or aborted) in another, possibly
dependent upon whether or not the first method was invoked in a context
where a transaction was already in progress or not. These problems conspire
to make it very hard for a programmer to ensure that transactions are in-
deed well-formed since all possible program executions have to be taken into
account. Use of exceptions that may also open or close transactions further
complicates the situation. In Section 4 we develop a program analysis that
can be used to statically guarantee that all the transactions in a program are
well-formed.

In Figure 1 a Carmel method, called atomicWrapper, is shown to illustrate
both the concrete Carmel syntax and the problems regarding transactions dis-
cussed above. The example is taken from a demonstration applet, an electronic
purse called DeMoney, modified to fit our language. It was created by Trusted
Logic as part of the SecSafe project[8] and is specified in [5]. Note that we

3

HANSEN, SIVERONI

use ‘//’ to indicate program comments and that the comments in Figure 1
actually show the (partial) result of the above mentioned analysis and will be
explained in more detail in Section 5. Finally note that Carmel, like JCVML,
is a stack based language. The atomicWrapper method is intended to be used
as a “wrapper” for a method called dosomething (lines 9-12) guaranteeing
that dosomething is always invoked inside a transaction and thereby ensuring
the atomicity of the updates performed by that method. It illustrates the
problems discussed above: if the wrapper method, atomicWrapper, is invoked
inside an active transaction, then it must not start a new transaction; this
is handled by first obtaining the current transaction depth (line 0) and then
in lines 1-5 recording a “0” or a “1”, depending on the current transaction
depth, in local variable number “3” (the ‘le’ operator used in line 1 is Carmel’s
less then or equal, ‘<’, operator). Finally, the value of local variable “3” is
checked before beginning a transaction (lines 6-8 where the ne operator used
in line 7 is Carmel’s not equal, ‘#’, operator) and if a transaction was started
(in line 8) in this method then it should be committed in this method as well
(lines 13-15).

3 The Carmel Language

The full JCVML comprises more than 100 instructions and a comprehensive
APT implementing all sorts of helpful routines, including access to the vir-
tual machine’s transaction layer. Rather than specifying our analysis for the
JCVML we instead base our analysis and developments on the Carmel lan-
guage. The Carmel language is an abstraction of the JCVML: it abstracts
away most of the implementation oriented details, e.g., the constant pool,
while retaining the full expressive power of the JCVML, indeed there is a sim-
ple syntactic conversion from JCVML to Carmel. Syntax and semantics of
the Carmel language is defined and discussed in detail in [9,10]. For presen-
tation purposes we only include the instructions and features that are needed
to present the main insights.

The instruction set for Carmel includes instructions for stack manipulation,
local variables, object generation, field access, a simple conditional, throwing
an exception, and method invocation and return:

Instr ::= push ¢ | pop n | numop op | new o | invokevirtual m |
| return | getfield f |putfield f|if cmpOp goto pcy

| load x| store x| throw

In addition we include, from the API, instructions for accessing the transaction
functionality:

Instr ::= ... | API.beginTransaction | API.commitTransaction

| API.abortTransaction | API.getTransactionDepth
A Carmel program, P € Program, is defined to be the set of classes it declares:

4

HANSEN, SIVERONI

P.classes. Each class, 0 € Class, contains a set of methods, o.methods C
Method, and fields o.fields C Field. Each is comprised by an instruction for
each program counter, pc € Ny in the method, m.instructionAt(pc) € Instr.
For legibility we shall use a JCVML-like concrete syntax as shown in Figure 1.

3.1 Semantics

The semantics for Carmel is a straightforward, albeit involved, structural op-
erational semantics (SOS) and is described in detail in [9]. In this section we
introduce a simplified version of the Carmel semantics that is better suited for
investigating and presenting the problem at hand. The main simplification
is, maybe somewhat surprisingly, the removal of the actual underlying trans-
action mechanics: instead of defining a full-blown transactional semantics we
simply abstract the underlying transaction mechanism away and track only
the transaction depth in a special semantic component. It should be noted
that while this abstraction is very convenient for proof and presentation pur-
poses it does not make the problem any easier to solve and, consequently,
tracking the transaction depth is sufficient for our purposes.

A value is either a number or an object reference (a location): Val =
Num-+ObjRef. The global heap is then a map from object references to objects:
Heap = ObjRef — Object, where objects are simply maps from field names to
values: Object = Field — Val. Objects are instantiated from classes and we
use o.class to denote the class of an object 0 € Object. In JCVML only objects
of class Throwable can be used as exceptions, for simplicity we allow any class
to be used as an exception: Exception = Class. The operand stack is modelled
as a sequence of values: Stack = Val* and the local heap (for variables local to
a method) as a map from (local) variables to values: LocHeap = Var — Val.
Stack frames record the current transaction depth (can only be 0 or 1) and
the current method and program counter along with a local heap and an
operand stack. To facilitate our proofs we also annotate the current method
with the context, i.e., transaction depth in which it was originally invoked
(either 0 or 1). Thus an annotated method, (m,7,,), belongs to the domain
Method x {0, 1} and is written m™. The domain for stack frames is then given
by: Frame = {0, 1} x (Method x {0, 1}) x Ny x LocHeap x Stack. For exceptions
a special frame is defined: ExcFrame = {0, 1} x ObjRef x Method x Nj.

With the semantic domains in place we can now specify the semantic con-
figurations and the reduction rules. Configurations are either running con-
figurations or final configurations: Conf = RunConf 4 FinConf. The running
configurations are of the form: (H, F :: SF) where H € Heap, SF € Frame”,
and F' = (r,m™ pc, L,S) € Frame, meaning that the program is currently
executing the instruction at program counter pc in method m with local heap
L and operand stack S and the method was invoked in transaction depth 7,,,
or ' = (1, locx, mx,pcx) € ExcFrame meaning that an exception has been
thrown, in method my at program counter pcy, with locx pointing to the

5

HANSEN, SIVERONI

exception object. If 7 = 1 then the instruction is executed within an active
transaction and if 7 = 0 no transaction is in progress at the current instruc-
tion (note that this may of course be different from the transition depth in
which the method was invoked: 7,,). Final configurations are of the form
(H, T, (Ret v)) indicating that a program has terminated in transaction depth
7 and with return value v (and v = L if no return value is present). This leads
to reduction rules of the following form for a given program, P € Program:
P+ C = (' for C,C" € Conf. Figure 2 shows the semantic rules for a few
interesting instructions, the full semantics can be found in [9]. The semantics
for the (full) transaction API is shown in Figure 3.

In the reduction rule for invokevirtual (method invocation) we must take
care to handle dynamic dispatch correctly. This is done as in JCVML by using
a function, methodLookup, to represent the class hierarchy. It takes a method
identifier, m’, and a class, o.class, as parameters and returns the method, m,,,
that implements the body of m/, i.e., the latest definition of m’ in the class
hierarchy. In the same rule, note that a reference to the object is passed to
the object itself in local variable number 0. A final thing to note is that run-
time errors caused by transactions that are not well-formed are modelled as
stuck configurations. For lack of space only return-instructions that actually
return a value are shown. Note that two cases must be handled: one for
“normal” method return and one for program termination, i.e., executing a
return-instruction on an empty call stack.

For the throw instruction we use the findHandler function (cf. [9] for a
definition and explanation) to check if a local handler exists for the exception
being thrown; if not a special exception frame is put on top of the call stack.
This is a slight deviation from the official JCVM to facilitate the SOS definition
of the semantics and the proof of correctness of the analysis.

The main thing to note in the semantics for the API is that beginning a
transaction (API.beginTransaction) will only succeed if the current trans-
action depth is 0, i.e., no other transaction is in progress. Similarly, com-
mitting or aborting a transaction, using instruction API.commitTransaction
or API.abortTransaction respectively, only succeeds if a transaction is cur-
rently active. This implies that API.beginTransaction should only be ex-
ecuted in a context where the current transaction depth is zero and the in-
structions API.commitTransaction and API.abortTransaction should only
be executed if the current transaction depth is one. This is formalised in Def-
inition 3.2 below. It should be clear from the above and the discussion in the
previous section that it can be very hard, if not impossible, for a programmer
to manually inspect a program and guarantee that for all possible execution
paths all transactions will always be well-formed.

To conclude the semantics, we need to define initial configurations. Carmel
programs, like JCVML applets, can have multiple entry-points. For simplicity,
and without loss of generality, we assume that each class, o, has exactly one
entry point, denoted m,, taking exactly one parameter, a (self-)reference to

6

HANSEN, SIVERONI

m.instructionAt(pc) = push ¢
P+ (H,(r,m™, pe,L,S):: SF) = (H,(t,m™,pc+1,L,c:: S) : SF)

m.instructionAt(pc) = pop
PE(H,(r,m™ pc,L,c::S):: SF)y= (H,(tr,m™ pc+1,L,S) :: SF)

m.instructionAt(pc) = invokevirtual m/'A
S =1 ity i loc i So A my = methodLookup(m/, o.class) A
o= H(loc) NL' = [0+ loc,1 = v1,...,|m'| = vj]
P+ (H,(r,m™ pc,L,S):: SF)y = (H,(T,m},0,L' €) :: (r,m™ pe, L,S) :: SF)

m.instructionAt(pc) = return
P+ (H(r',m'™ pd, L' v: 8" (r,m™ pec,L,S):: SF) =
(H,(t",m™ pc+1,L,v:8S):: SF)

m.instructionAt(pc) = return
Pt (H,(r,m™ pc,L,v::S):e) = (H,T, (Ret v))

m.instructionAt(pc) = throw
Fo { (t,m™ pco, L, S) if findHandler(m, pc, H(locx).class) = pco
| (1, locx,m,pc) if findHandler(m,pc, H(locx).class) = L
PF(H,(r,m™ pc,L,locx :: S):: SF)y = (H, F :: SF)

Fig. 2. Semantic Rules (excerpt)

m.instructionAt(pc) = API.getTransactionDepth
P+ (H,(r,m™, pe,L,S):: SF) = (H,(tr,m™,pc+1,L,7::S) :: SF)

m.instructionAt(pc) = API.beginTransaction
P+ (H,(0,m™ pc,L,S):: SF) = (H,(1,m™ ,pc+1,L,S) :: SF)

m.instructionAt(pc) = API.commitTransaction
P+ (H,(1,m™ pc,L,S):: SF) = (H,(0,m™ ,pc+1,L,S) :: SF)

m.instructionAt(pc) = API.abortTransaction

P+ (H,(1,m™ pe,L,S):: SF) = (H,(0,m™,pc+1,L,S) :: SF)

Fig. 3. Semantic Rules for the transaction API

the calling object (denoted loc,):

Definition 3.1 (Initial Configurations) If P € Program then C' is an ini-
tial configuration if and only if C = (H,(0,m2,0,[0 — loc,],€) :: €) and
H(loc,).class = o, for o € P.classes and m, the entry point of o.

Note that initially no transactions are open. For ease of reference, we define

P.entry to be the set of entry points for the program P. We can now formally
define the notion of well-formedness:

Definition 3.2 (Well-Formedness) Let Cy be an initial configuration of
P € Program and let C; € Conf such that P = Cy =* C; then the trans-

7

HANSEN, SIVERONI

actions of P are said to be well-formed if and only if for all configurations

Cy = (H,(r,m™ pc, L, S) :: SF) the following holds:
(i) m.instructionAt(pc) = API.beginTransaction = 7 =0
(ii) m.instructionAt(pc) = API.commitTransaction = 7 =1

(iii) m.instructionAt(pc) = API.abortTransaction = 7 =1

and for all configurations Cy = (H, 7, (Ret v)) it is the case that 7 = 0.

4 Control, Data, and Transaction Flow Analysis

In this section we present a combined control, data, and transaction flow
analysis that can be used to verify that a program uses transactions in a
well-formed manner. The analysis is based on previously developed control
and data flow analyses (see [4,3] for a full discussion); these analyses are then
extended with an analysis to track active transactions, we call this a transac-
tion flow analysis. The transaction flow analysis (TFA) tracks (a conservative
approximation of) the possible transaction depth for every instruction in the
program. We have found that in order to obtain the precision needed for
our purposes it is necessary for the TFA to be a context dependent analysis
(see [6]) where the contexts are taken to be the transaction depth in which a
given method was invoked; thus there are only two possible contexts, namely
zero and one, which greatly limits the increase in complexity that usually
follows from adding contexts to an analysis.

4.1 Abstract Domains

The abstract domain for numbers reflects the fact that we need to track con-
stants but not computations involving constants since any use of a manipu-
lated or computed value for transaction depths would be very hard to verify
(both manually and automatically) and should be regarded as highly suspect:
Num = Z". We shall write INT for the top-element of Z .

For object references we follow the “usual” approach, called class object
graphs in [11], and abstract object references into their corresponding class:
ObjRef = Class. If more precision is needed an abstraction based on the textual
object graphs of [11] could be used instead. However, for typical Java Card
programs the former is quite acceptable since very few classes are instanti-
ated more than once. In the interest of legibility we shall write (Ref o) for
o € ObjRef. The domain for abstract exceptions is the same as for classes:
Exception = ObjRef. A value is either a number or an object reference; this
is easily modelled directly as: Num + ObjRef and we shall then use sets of
these values as our abstract values: Val = P(Num + ObjRef). As discussed
above, the analysis is context dependent with transaction depths (at method

invocation) as context: Context = {0, 1}.
We follow the approach of Freund and Mitchell, cf. [2], and keep track of

8

HANSEN, SIVERONI

the local heap and operand stack (and transaction depth) for each instruction
and every context; this makes the analysis of local heaps, operand stacks,
and transaction depths flow sensitive (intra-procedurally) which is necessary
for tracking changes in the transaction depth and analysing the cases where
transaction depths are checked before starting or ending a transaction. Since
an instruction is uniquely determined by a method and a program counter we
introduce the notion of addresses for convenience: Addr = Method x Ny. The
local heap is then modelled as a map, for every context and address, from
(local) variables to abstract values: LocHeap = Context — Addr — Var — Val.
Stacks are modelled as sequences of abstract values (again one for each context
and instruction): Stack = Context — Addr — (Val')T. Abstract heaps are also
modelled in a straightforward way as maps from object references to abstract
objects: Heap = Context — ObjRef — Object. Abstract objects are maps
from fields to abstract values: Object = Field — Val. To track exceptions that
are not handled locally an exception cache is needed: ExcCache = Context —
Method — P(Exception). Finally, to track the transaction depth for each
instruction, we use the following: Trans = Context — Addr — P({0,1}).

4.2 Flow Logic Specification

The Flow Logic framework is a specification oriented (rather than implemen-
tation oriented) approach to program analysis. Instead of detailing how an
analysis is to be carried out the framework is used to specify what it means
for an analysis result to be an acceptable, or correct, analysis of a program.
This separation makes it very convenient to specify analyses in the framework
and often gives rise to (relatively) clear and succinct specifications.

The judgements for our control, data, and transaction analysis take the
following form (]:I, L, S’,E,Tb) E (mo,pcy) : instr meaning that the (pro-
posed) analysis, (H,L, S, E,TD), is a correct approximation of the instruc-
tion instr located in method m at program counter pc, where H e Heap,
L € LocHeap, S € Stack, F € ExcCache, and TD € Trans. Later in this
section we show how to lift this to cover entire programs and take initial con-
figurations into account. In Figures 4, 5, and 6 an excerpt of the Flow Logic
specification is shown, the full specification can be found in [4,3]. Note that
to enhance the legibility of the Flow Logic specification we use linebreaks and
indentation rather than explicitly writing out all the conjunction operators.
Due to space considerations we only discuss a few instructions in detail. For a
full discussion of the control flow and data flow aspects of the analysis see [4,3].
In the interest of both legibility and succinctness we introduce the shorthand
notation: Tb{gjl}(m,pc) to mean T Do(m, pc) U T Dy (m, pc).

Since our analysis is a context dependent analysis, where context is the
transaction depth in which the current method (denoted myg) was invoked,
the specification for all instructions are prefixed with a Vd € TAD{OJ} (mo, 0)
to ensure that all possible contexts in which the current method was invoked

9

HANSEN, SIVERONI

(H,L,S,E,TD) [= (mg,pco) : API.getTransactionDepth
iff Vo S TD{(),l}(mo,O)ZATD(;(mo,pC()) # 0=
Ds(mo, pco) E TDs(mo, pco + 1))
V&' € TDs(mo,peo) = {8'} = Ss(mo, peo) & Ss(mo, peo + 1)

i’5(m07p00) E [A/LS(mOvpCO + 1)

(H,L,S,E,TD) = (mo,pco) : API.beginTransaction
iff Vo e Tb{ojl}(mo,0):Tb5(m0,p00) 7é 0 =
{1} € TDs(mo, pco + 1)
S5, pco) S, pea + 1)
Ls(mo, pco) E Ls(mo,pco + 1)

(H,L,S,E,TD) E (mo,pco) : API.commitTransaction
iff Voe TAD{OA’l}(mO,O):Tbg(mo,pco) £0 =
{0} € T'Ds(mo,pco + 1)
?5(m0,p00) C S&(mO,pCO +1)
Ls(mo,pco) E Ls(mo, pco + 1)

Fig. 4. Excerpt of Flow Logic for transaction API

are taken into account. This abstract context is then used as an index for the
abstract domains operated over and is written as a sub-script, e.g., the J in
S.

With the above in mind the API.getTransactionDepth instruction can
now be analysed (as shown in Figure 4). First we must ensure that the in-
struction is analysed in all the possible contexts that the current method has
been called in, but we only continue with the analysis if the current instruc-
tion is actually executed in such a context. This is expressed as the following
condition imposed by all instructions: Vd € TAD{OJ} (mog, 0): Tbg(mo,pco) # 0.
Note that all instructions that are reachable in a given context, §, will have a
Tbg(mo, pco) # 0; thus the premise of the above implication can be seen as a
simple reachability test that enhances the precision of the analysis by ignoring
instructions and contexts that are unreachable. Now analysing the effect of
the instruction is straightforward: since this instruction does not alter the
transaction depth, the current (abstract) transaction depth is simply copied
forward. In symbols: Tbg(mo, pcg) C Tb(g(mo, pco + 1). Next the value of
the current abstract transaction depth is put on top of the stack for the next
instruction: V&' € TDs(mo, peo) = {0'} =2 Ss(mo, peo) E Ss(mo, peo + 1) where
C is the point-wise extension of C to finite sequences of abstract values. Fi-
nally, since no local variables were modified they are simply copied onto the
next instruction: ﬁg(mo,pco) C ﬁg(mo,pco + 1). Here C is the point-wise
extension of C to maps in the domain Var — Val. The specification for the
API .beginTransaction is quite similar except that here the transaction depth
is changed; after the instruction has been executed the transaction depth is
certain to be one: {1} C T'Ds(mg,pco + 1). The analysis of the remaining

10

HANSEN, SIVERONI

transaction instructions is similar, and we shall not go into further details
here.

The Flow Logic specification for the invokevirtual instruction (see Fig-
ure 5) consists mainly of formulae for moving actual parameters to the invoked
method and making sure to copy the return value back closely mimicking the
way the concrete semantics operates. We shall not go into further detail with
that aspect of the analysis here, merely refer to [4]. For our purposes in this
paper the first interesting thing to note about the analysis of invokevirtual
is how the current abstract context is copied to the invoked method as a
base context: Vo' € TDgs(mg,pco) : {6’} C TDg(m,,0) where m, is the
invoked method found by searching the class hierarchy taking overloading
into account. Note that ¢’ is used both as a value and as an index. The
second thing to note is how the context, i.e. the value of the transaction
depth, of the invoked method is written back to the invoking method upon
return: T Dg (m,, END,,,) € TDs(mg, pco + 1). Here (m,, END,,,) is a spe-
cial “end-address” for the method “m,” used in a manner similar to “exit”
nodes in control flow graphs. Note that since the invoked method may change
the transaction depth we simply use the context returned from the invoked
method and ignore the context at the point of invocation. In addition to
the normal flow of control associated with method invocation, we must also
ensure that any exceptions thrown but not handled in the invoked method
are re-thrown in the invoking method. To this end the HANDLE predicate is
defined:

HANDLE ;. ¢ 5 7p,) (Ref ox), Tx, (m, pc)) =
findHandler(m,pc,0x) = L =
((Ref ox),Tx) € Es(m)
findHandler(m,pc,ox) = pcx =
{(Ref ox)} C Ss(m, pex)
Lé(mapg) C Lé(mapCX)
Tx CTDs(m,pcx)

The predicate uses the findHandler function to check if a given exception has
a local handler. If no local handler exists the exception and the transaction
depths, T'x, are saved in the cache; if a handler is found the stack, local heap,
and transaction depths are copied forward to the handler.

The throw instruction (see Figure 5) simply throws an exception based on
the object reference(s) found on top of the stack using the HANDLE predicate
defined above.

Since transaction depths should only ever be stored and loaded and never
used in computations (to facilitate verification of the correct use of trans-
actions depths) a simple constant tracking analysis is sufficient although it
can trivially be replaced with a more precise data flow analysis should the
need arise. The simplicity of the present data flow analysis is most evi-
dent in the analysis of arithmetic operations (see Figure 6) since all oper-

11

HANSEN, SIVERONI

(H,L,S,E,TD) | (mg,pcy) : invokevirtual m
iff Ve Tb{(),l}(mo,()):Tb(s(mo,pCo) #0 =
Ay Ay e B X<1S'5(m0,p00) :
V(Ref o) € B :
my, = methodLookup(m, o)
Vo' e Tbg(mo,pc()) :
{6'} € TDy (my,0)
{(Ref 0)} =2 Ay zz -+ i Ay © Ly (my, 0)[0..]m]
TD(;/ (mv, ENDmv) - TD5(m0,pCO + 1)
Y((Ref 0x),Tx) € Es(my) :
HANDLE ;. 5, 7p5) (Ref 0x), T, (mo, peo))
A _<aSs(my, ENDyy,) ¢
A XC Sg(mo,pC() +1)
Ls(mo,peo) T Ls(mo, peo + 1)

(H,L,S,E,TD) |= (mg, pco) : throw
iff V6§ € TDyg13(mo,0): TDs(mo, pco) # 0 =
B :: X <Ss(mo, peo) :
V(Ref ox) € B :
HANDLE(IZ(;,S(;E(;,TI)(;)((Ref ox),TDs(mg, pco), (mo, pco))

Fig. 5. Flow Logic for method invocation and exception throwing

ations result in INT, the top element of Num, being pushed onto the stack:
{INT} :: X & S5(mq, pco + 1).

Conditionals are more interesting, here we define two abstract comparison
predicates indicating whether the true and/or false branch may be taken:

5n\d<CTnpOpaA’417"42) =
(INT € A; U Ay) V (3Ing € A1ang € Ay : empOp(ng, na))

This is another example of exploiting a reachability property to enhance the
precision of the analysis.
We can now lift the analysis to cover whole programs. Here we must make
sure that initial configurations are taken into account:
(H,L,5,E,TD) =P iff
V(m,pc) € P.addresses :
m.instructionAt(pc) = instr = (H,L,S,E,TD) = (m,pc) : instr
Vo € P.classes: (Ref o) € Ly(m,,0) A {0} C TDy(m,,0)

4.8 Semantic Correctness

In order to prove the semantic correctness of the analysis we take an approach
similar to that of [6] and define representation functions for all semantic ob-
jects and a correctness relation between program configurations. We then
show that the analysis preserves these under evaluation by establishing a sub-

12

HANSEN, SIVERONI

(H,L,S,E,TD) | (mg,pcy) : numop op
iff V6 e Tb{oyl}(mg,()):Tbg(mo,pCO) #0 =
A A X<1A§5(mo,pco) :
{INT} :: X C Ss(mo,pco+ 1)
Ls(mo, peo) E Ls(mo, peo + 1)
T'Ds(mo, pco) € TDg(mo, peo + 1)

(ﬁ,]i, S, E,Tb) E (mo,pco) : if empOp goto pc
iff V6 e Tb{O,l}(mOvp): Tbg(mo,pCO) #0 =
Aq i Ay i X < S5(mo, peg)
@(cmpOp,Al,Ag) =
S&(mmpco) c S&(moypc)
Ls(mo,pco) E Ls(mo, pe)
T Ds(mg, pco) € T Ds(mo, pc)
m(—\cmpOp,Al,Ag) =
S5(mo7p00) c Sa(moap% +1)
Ls(mo,pco) E Ls(mo, pco + 1)
T Ds(mg, pco) € T Ds(mo, pco + 1)

Fig. 6. Excerpt of Flow Logic for arithmetic operations and conditionals

ject reduction property for the analysis.

Since we do simple constant tracking, numbers are simply represented
as themselves: fOxum(n) = {n}. In the analysis specification any arithmetic
operation on numbers result in INT. Locations only make sense relative to a
given heap, so the representation function for locations requires the relevant
heap as an additional parameter: if H(loc).class = o then 35 . (loc) =
{(Ref 0)}. A value in Carmel is either a number or a location, thus the
representation function for values: Gyum(v) for v € Num and 35,g.c(v) for
v € ObjRef. Abstract objects are simply considered as maps from fields to
abstract values: 5. (0)(f) = B{(0.f). Heaps map locations to objects.
Since all objects of the same class are represented as the same abstract object,
the representation function for heaps has to find all objects of a given class
and then use the (least upper bound of the) representation of these objects:

Bttcap(H) (Ref o) = I_l ﬁ(l){bject(H(loc))
loc € dom(H)
B (loc) = (Ref o)

Abstract stacks are sequences of abstract values leading to a straightfor-
ward representation function for stacks: B (vy = -+ 1 w,) = B (v1)
- B (v,). Local heaps have a similarly simple representation function:
B p1eap (L) () = BIL, (L ().

With the representation functions in place for the basic semantic domains,
we can now lift these definitions to stack frames and semantic configurations.
For this we use correctness relations that specify when a stack frame or seman-

13

HANSEN, SIVERONI

tics configuration is correctly represented in an analysis. First stack frames:

~H A A A~ ~
(r,m™ pc, L, S) Revame (L, S, TD) iff 7€ TD, (m,pc)A
ﬁ[ﬁ)cHeap(‘L) E LTm(m7pc>/\
ﬁg{ack(s) E S’Fm(m’pc)
In essence the above correctness relations simply states that the abstract rep-
resentation of the semantic objects in the state frame should be contained in
the analysis. The only thing to note is the use of the transaction depth in
which the current method was called (the 7, annotation on the method m)
as a context for the analysis, e.g., S, (m,pc). This is extended to cover the
entire call stack (a sequence of stack frames) taking care to handle exception
frames correctly by propagating exceptions that are not handled locally:
~H A~ A A
~H ~ A A
Vie{2,....,n}: F; Ryame (L, S, TD)A
T SH 5o 0
Fl = <7'1,m1 l,pCl,Ll,Sl> = F1 RF‘rame (L,S,TD)/\
Fy = (7x, locx, mx,pex) = (B8 met(H (locx).class), {Tx}) € Es(mx)

The correctness relation for an a running configuration is defined as follows:

<H7 SF) ﬁRunConf (: -i/ S E)) iff ﬁHeap(H) E H/\
SF ﬁf&“ames (ij? g? Tb)
Final configurations are particularly simple to handle:
<H7 T, <Ret U>> 7%'FinConf (ga .i/, ga E) Tb) iff ﬁHeap(H> E -H
The above is combined to the following definition for full configurations:
C Reons (H.1. 8. 5.TD) iff

C € RunConf = C ﬁRunConf (I:I, j;, 37 E? Tb)

C € FinConf = C ﬁFinConf (I:I, IA/, g, E,Tb)
We are now in a position to state and prove that the analysis specification is
semantically correct. This is done by establishing a subject reduction property

for the analysis, i.e., by proving that the analysis result is invariant under
execution:

Theorem 4.1 (Soundness) If P € Program with Cy as an initial configu-
ration, and A = P such that P - Cy =* Cy and P + C; = Cy then
C) Reont A implies Cy Reont A.

Proof. By induction on the length of the evaluation sequence combined with
case analysis and using a technical lemma establishing that the call-stack is
well-formed.]

14

HANSEN, SIVERONI

5 Verifying Well-Formedness

In this section we show how the analysis discussed in the previous section can
be used to statically verify that the transactions in a Carmel program are
indeed well-formed. Below we define a property of a program and an analysis
of that program describing how the analysis can be used to guarantee that a
program has well-formed transactions:

Definition 5.1 (Static Well-Formedness) A program, P, is said to have
statically well-formed transactions with respect to A = (H, L, S, E,TD) if and
only if A= P and for instr = m.instructionAt(pc) the following holds:

(i) instr = API.beginTransaction = Tb{o,l}(m,pc) C {0}
(ii) instr = API.commitTransactionTAD{O,l}(m,pc) C {1}
(iii) instr = API.abortTransaction = Tb{m}(m,pc) C {1}

)

(iv) forallm, € P.entry and pc € PC then m,.instructionAt(pc) = return =
TD{O,I}(mowpc) - {O}

Note that since a program can only terminate by throwing an (uncaught) ex-
ception or by executing a return instruction in the initial entry point. There-
fore it is sufficient to check that all return-instructions of all entry points can
only be executed when no transaction is active. A more precise alternative
would be to extend the analysis context for entry points to show whether or
not an entry point was invoked from the system or from inside the program. In
the latter case no special requirements are made on the return-instructions.

The following theorem shows that if the above property holds of a program
and an analysis of that program then the program does indeed have well-
formed transactions:

Theorem 5.2 Let P € Program and A |= P and let P have statically well-
formed transactions with respect to A, then P has well-formed transactions.

Proof. Follows immediately from Theorem 4.1 and Definition 3.2 and 5.1. m

We illustrate the use of static well-formedness by applying it to the wrapper
method shown in Figure 1 and discussed in Section 2. Figure 7 shows an entry
point method (cf. Def. 3.1), called m_Alice, that invokes the wrapper method
in different contexts, i.e., both inside an active transaction (lines 4-9) and out-
side any transaction (lines 0-3). The right-hand columns (in the comments)
of the example programs in Figures 1 and 7 show the result of using a proto-
type implementation of the analysis on the program consisting of the methods
atomicWrapper, m_Alice, and dosomething (not shown); it is assumed that
dosomething does not use any of the transaction API instructions, and thus
that it does not affect the result of the transaction flow analysis. In order for
the program to have well-formed transactions we need to check four instruc-
tions, two in atomicWrapper: line 8 and 15, and two in m_Alice: line 4 and 9.

15

HANSEN, SIVERONI

public void m_Alice(Alice) // TDy | TD,
{ /7
0: load r O /7 {0} |0
1: push s 41 /7 {0} |0
2: push s 1 /7 {0} |0
3: invokevirtual atomicWrapper(byte[], short) // {0} |0
4: API.beginTransaction /7 {0} |0
5: load r O {1 10
6: push s 41 /7 {1 |0
7: push s 1 /7 {1} |0
8: invokevirtual atomicWrapper(byte, [], short) // {1} |0
9: API.commitTransaction /7 {1} |0
10: return /7 {0} |0
}

Fig. 7. Invoking atomicWrapper in different contexts

From the analysis results it is easily seen that

T Dy(atomicWrapper,8) U T Dy (atomicWirapper,8) = {0}U C {0}
TDy(m_Alice,4) UTD;(mAlice,4) = {0} U C {0}
T'Dy(atomicWrapper, 15) U T'D; (atomicWrapper, 15) = {1} U0 C {1}
TDy(m_Alice,9) UTD;(mAlice,9) ={1}ub C {1}
TDy(m_Alice, 10) UTD;(m_Alice, 10) = {0} U0 C {0}

and thus that the transactions are indeed well-formed. It is also instructive
to look at line 12 of atomicWrapper, which is the instruction that invokes the
wrapped method dosomething: TAD{OJ}(atomicWrapper, 12) = {1}, indicat-
ing that no matter what context atomicWrapper itself is invoked in it will
ensure that dosomething is always invoked inside an active transaction and
thus it is guaranteed that all updates in dosomething are performed atomi-
cally.

6 Conclusion

In this paper we have shown, and formally proved correct, a novel program
analysis for guaranteeing that transactions in a Java Card bytecode program
are well-formed. We believe that this will be very valuable to programmers
since the analysis can be completely automated and gives good feedback as to
where possible violations may occur.

By increasing the precision of the data flow component it is relatively
straightforward to extend the analysis to cover situations where deeper nest-
ing levels are allowed. A number of other interesting features relating to
transactions, e.g., no exceptions in a transaction and no pin verification in-

16

HANSEN, SIVERONI

side a transaction (see [7]), can easily be checked by simple extensions of the
analysis described in this paper. This is left for future work.

A small experimental prototype has been implemented. Running time, for
small examples similar in size to the example in this paper, is on the order
of a few seconds. Future work includes implementing a proper prototype for
benchmarking purposes.

Acknowledgement

The authors would like to thank Mikael Buchholtz and Flemming Nielson for
reading and commenting on early drafts of the paper.

References

[1] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and FErik Poll. An
overview of JML tools and applications. International Journal on Software
Tools for Technoogy Transfer (STTT). To appear. Preprint available at
ftp://ftp.cs.iastate.edu/pub/leavens/JML/sttt04.pdf.

[2] Stephen N. Freund and John C. Mitchell. A Type System for Object
Initialization in the Java Bytecode Language. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA’98,
pages 310-328, Vancouver, British Columbia, Canada, 1998. ACM Press.

[3] René Rydhof Hansen.
Extending the Flow Logic for Carmel. SECSAFE-IMM-003-1.0. Available from
http://www.doc.ic.ac.uk/ siveroni/secsafe/docs/, 2002.

[4] René Rydhof Hansen. Flow Logic for Carmel. SECSAFE-IMM-001-1.5.
Available from http://www.doc.ic.ac.uk/ siveroni/secsafe/docs/, 2002.

[5] Renaud Marlet and Cédric Mesnil. Demoney: A Demonstrative Electronic
Purse — Card Specification. SECSAFE-TL-007 (version 0.8). Available from

http://www.doc.ic.ac.uk/ siveroni/secsafe/docs/, November 2002.

[6] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer Verlag, 1999.

[7] Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman, and Jean-
Louis Lanet. Enforcing High-Level Security Properties for Applets. In J.-J.
Quisquater, P. Paradinas, Y. Deswarte, and A.A. El Kalam, editors, Proc. of
Smart Card Research and Advanced Application Conference, Cardis’04, pages
1-16. Kluwer, 2004.

[8] Igor Siveroni. SecSafe. Web page:
http://www.doc.ic.ac.uk/"siveroni/secsafe/, 2003.

17

ftp://ftp.cs.iastate.edu/pub/leavens/JML/sttt04.pdf
http://www.doc.ic.ac.uk/~siveroni/secsafe/docs/
http://www.doc.ic.ac.uk/~siveroni/secsafe/docs/
http://www.doc.ic.ac.uk/~siveroni/secsafe/docs/
http://www.doc.ic.ac.uk/~siveroni/secsafe/

HANSEN, SIVERONI

[9] Igor Siveroni. Operational Semantics of the Java Card Virtual Machine.
Journal of Logic and Algebraic Programming, 58(1-2):3-25, January—March
2004. Special issue on Formal Methods for Smart Cards.

[10] Igor ~ Siveroni and Chris Hankin. A Proposal for the
JCVMLe Operational Semantics. SECSAFE-ICSTM-001-2.2. Available from
http://www.doc.ic.ac.uk/"siveroni/secsafe/docs/, October 2001.

[11] Jan Vitek, R. Nigel Horspool, and James S. Uhl. Compile-Time Analysis of
Object-Oriented Programs. In Proc. International Conference on Compiler
Construction, CC’92, volume 641 of Lecture Notes in Computer Science.
Springer Verlag, 1992.

18

http://www.doc.ic.ac.uk/~siveroni/secsafe/docs/

	Introduction
	Well-Formed Transactions
	The Carmel Language
	Semantics

	Control, Data, and Transaction Flow Analysis
	Abstract Domains
	Flow Logic Specification
	Semantic Correctness

	Verifying Well-Formedness
	Conclusion
	Acknowledgement
	References

