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Abstract. Java Card is a variant of Java designed for use in smart
cards and other systems with limited resources. Applets running on a
smart card are protected from each other by the applet firewall, allowing
communication only through shared objects. Security can be breached if
a reference to a shared object is leaked to a hostile applet.
In this paper we develop a Control Flow Analysis for a small language
based on Java Card, which will guarantee that sensitive object references
can not be leaked to a particular (attack) applet. The analysis is used as
a basis for formulating a hardest attacker that will expand the guarantee
to cover all possible attackers.

1 Introduction

The Java Card platform is a multi-applet platform, meaning that a given Java
Card may contain and execute several different applets from several different,
possibly competing, vendors. In order for an applet to protect sensitive data from
other, malicious, applets the Java Card platform implements an applet firewall to
separate applets from each other by disallowing all communication, e.g., method
invocation or field access, between applets. However, for certain applications,
e.g., loyalty applets (applets implementing a customer loyalty scheme), it is de-
sirable to allow (limited) communication between applets. Such communication
is possible through the use of shared objects which allows an object with a ref-
erence to a shared object to invoke methods in the shared object. The problem
with this approach is that it allows any object with such a reference to access the
shared object. Thus it is necessary to ensure that certain objects references are
not leaked to untrusted (attacker) applets. In [1] a static analysis is presented
that for a given set of applets determines if a reference has been leaked. Such
an approach works well provided the entire program is known a priori, which
is not always possible because the Java Card framework allows dynamic load-
ing of applets and therefore it is, in general, impossible to know the context in
which an applet may run. This is a fundamental problem of any solution based
on whole-program analysis. In this paper we solve the problem by developing
a so-called hardest attacker, based on a control flow analysis [2] and inspired
by the work on firewall validation in the ambient calculus [3]. By analysing a
program in conjunction with the hardest attacker we can guarantee that object
references are never leaked to any attacker, even if downloaded dynamically.
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For presentation purposes we develop our solution for a small bytecode lan-
guage based on the Java Card Virtual Machine Language (JCVML). We have
chosen to work at the level of the virtual machine because it is at this level
applets are actually loaded onto the card. It also has the added advantage that
there is no need to trust a compiler to not insert malicious code. This helps
reducing the size of the trusted computing base. The remainder of the paper
is structured as follows. Section 2 introduces the target language, Section 3 for-
malises the notion of leaking references. Section 4 presents the underlying control
flow analysis and discusses a number of theoretical properties of the analysis.
Finally in Section 5 the hardest attacker is described and discussed. Section 6
concludes and discusses future work.

2 The Carmel0 Language

Carmel0 is an abstraction of the Java Card Virtual Machine Language (JCVML).
It abstracts away some of the implementation details, e.g., the constant pool,
and all the features that are not essential to our development, e.g., static fields
and static methods. The language is a subset of Carmel which is itself a rational
reconstruction of the JCVML that retains the full expressive power of JCVML.
See [4] for a specification and discussion of the full Carmel language.

The instruction set for Carmel0 includes instructions for stack manipulation,
local variables, object generation, field access, a simple conditional, and method
invocation and return:

Instr ::= push c | pop n | numop op | load x | store x | new σ | return
| getfield f | putfield f | if cmpOp goto pc0 | invokevirtual m

A Carmel0 program, P ∈ Program, is then defined to be the set of classes it
defines: P.classes. Each class, σ ∈ Class, contains a set of methods, σ.methods,
and each method, m ∈ Method, comprises a number of instance fields, m.fields ⊆
P(Field), and an instruction for each program counter, pc ∈ N0 in the method,
m.instructionAt(pc) ∈ Instr. For two programs P and Q such that P.classes ∩
Q.classes = ∅ we shall write P |Q for the obvious composition (concatenation)
of the two programs.

We shall use a JCVML-like syntax for our examples, as shown in Figure 1.
The example is a simplified version of a typical situation in Java Card applica-
tions: two applets (classes) wish to communicate (in the form of a method invo-
cation from Alice to Bob). The method invocation is set up in Alice.m Alice
by first loading a reference to the object of the method to be invoked (line 0)
which has been passed as a parameter to m Alice into local variable number
1, and then the actual parameters are loaded from local variable 1 (line 1), in
this case it is a (self-)reference to Alice, which by convention can be found in
local variable 0. Finally the method is invoked (line 2). Note that the method
to be invoked is identified by its class name, method name, and type signature
(hence the Object in line 2 of Alice.m Alice). The semantics is formalised in
Section 2.1.
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In real JCVML applets method invocation is the only form of communication
that is allowed to cross the firewall boundary and only if the right object reference
is known (in the example Alice must have a reference to Bob). As mentioned
earlier, this can lead to problems if references are leaked. In the example program
Alice wishes to communicate with Bob but also wants to make sure that Bob
does not leak the Alice-reference to anyone else. In Section 3 we formalise the
notion of leaking references.

class Alice { class Bob {
void m_Alice(Bob) { Object cache;
0: load 1
1: load 0 void m_Bob() {
2: invokevirtual Bob.update(Object) 0: return
3: return }

} void update(Object) {
/* ... */ 0: load 0

} 1: load 1
2: putfield Bob.cache
/* ... */
3: return

}
}

Fig. 1. Example Carmel0 Program PAB

2.1 Semantics for Carmel0

The semantics for Carmel0 is a straightforward small step semantics, based on
the corresponding semantics for full Carmel [4]. We briefly discuss the semantic
domains before specifying the reduction rules.

A value is either a number or an object reference (a location): Val =
Num+ObjRef. The (global) heap is then a map from object references to objects:
Heap = ObjRef → Object, where objects are simply maps from field names to
values: Object = Field → Val. The operand stack is modelled as a sequence of
values: Stack = Val∗ and the local heap (for a methods local variables) is then
modelled as a map from (local) variables to values: LocHeap = Var → Val. Stack
frames record the current method and program counter along with a local heap
and an operand stack: Frames = Method × N0 × LocHeap × Stack

With the semantics domains we can now specify the semantic configurations
and the reduction rules. The configurations are on the form: 〈H, F :: SF 〉 where
H ∈ Heap, SF ∈ Frames∗, and F = 〈m, pc, L, S〉 ∈ Frames, meaning that the
program is currently executing the instruction at program counter pc in method
m with local heap L and operand stack S. This leads to reduction rules of
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the following form for a given program, P ∈ Program: P � 〈H, F :: SF 〉 =⇒
〈H ′, F ′ :: SF ′〉. In Figure 2 a few reduction rules are shown; for lack of space
we only show the most interesting rules, the remaining rules are either trivial
or obvious. In the reduction rule for invokevirtual (method invocation) we
must take care to handle dynamic dispatch correctly. This is done as in JCVML
by using a function, methodLookup, to represent the class hierarchy. It takes a
method identifier, m′, and a class, o.class, as parameters and returns the method,
mv, that implements the body of m′, i.e., the latest definition of m′ in the class
hierarchy. In the same rule, note that a pointer to the object is passed to the
object itself in local variable number 0.

m.instructionAt(pc) = push c

P � 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, c :: S〉 :: SF 〉
m.instructionAt(pc) = load x

P � 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, L(x) :: S〉 :: SF 〉
m.instructionAt(pc) = new σ∧

loc /∈ dom(H) ∧ H ′ = H[loc �→ o] ∧ o = newObject(σ)
P � 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H ′, 〈m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = putfield f∧
H ′ = H[loc �→ o′] ∧ o′ = H(loc)[f �→ v]

P � 〈H, 〈m, pc, L, v :: loc :: S〉 :: SF 〉 =⇒ 〈H ′, 〈m, pc + 1, L, S〉 :: SF 〉
m.instructionAt(pc) = invokevirtual m′∧

S = v1 :: · · · :: v|m′| :: loc :: S0 ∧ mv = methodLookup(m′, o.class)∧
o = H(loc) ∧ L′ = L[0 �→ loc, 1 �→ v1, . . . , |m′| �→ v|m′|]

P � 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈mv, 0, L′, ε〉 :: 〈m, pc, L, S〉 :: SF 〉

Fig. 2. Semantic rules (excerpt)

In order to complete our discussion of the semantics, we need to define the
initial configurations for a given program. In the JCVML applet execution is
initiated by the run-time environment when the host sends the appropriate
commands for installing and selecting an applet. The run-time environment
then sets up an initial configuration with the appropriate method, applet in-
stance, and parameters. We simplify this model by assuming that for a given
program, P ∈ Program, there exists an instance for each of the programs classes,
σ ∈ P.classes, with a corresponding object reference, locσ, pointing to that in-
stance, and a single entry point, mσ.

In JCVML communication across the firewall boundary can only take place
through so-called shared objects: When a JCVML applet wishes to communicate
with another applet, it first has to obtain an object reference to such a shared
object (if one exists) set up by the applet it wishes to communicate with. The
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shared objects can be thought of as an access control mechanism where holders
of a reference to a shared object are allowed to communicate with that object.
References to shared objects are obtained by executing a trivial, if tedious, proto-
col involving the run-time system to make the actual transfer across the firewall.
While there are no real technical difficulties in modelling this, it does not add
any particular insights and instead we choose a simpler model: Any allowed
sharing is set up at initialisation time. Thus, when defining a program we must
also define what sharing is allowed to take place in that program. Formally we
must define a function, sharing : Program × Class → Class∗, that for each class
in a program returns a list of classes (applets) it is allowed to access. During ini-
tialisation the shared references of a class are then passed to the corresponding
entry point as in a method invocation (including a self-reference to the class in
question) to the local variables of the entry point. Taking all of the above into
account we can now define initial configurations for Carmel0 programs:

Definition 1 (Initial Configurations). If P ∈ Program then C is an initial
configuration if and only if σ ∈ P.classes, P.sharing(σ) = σ1 :: · · · :: σn, σi ∈
P.classes, and C = 〈H, 〈mσ, 0, [0 
→ locσ, 1 
→ locσ1 , . . . , n 
→ locσn ], ε〉 :: ε〉

3 Leaking References

Intuitively we say that a class, τ , has been “leaked” to another class, σ, if there is
an object of class σ or a method invocation in an object of class σ that contains,
either in an instance field or in the local heap or on the operand stack, a reference
to τ . In order to formalise this intuition, we shall write v � S for operand stacks
S ∈ Stack if S = v1 :: · · · :: vn and ∃i : v = vi. A similar notation is adopted for
local heaps, L ∈ LocHeap: we write v � L if ∃x ∈ dom(L) : L(x) = v. We are
now ready to formally define when a class has been leaked:

Definition 2 (Leaked). Given a configuration, 〈H, SF 〉 a class τ is said to
be leaked to class σ in 〈H, SF 〉, written 〈H, SF 〉 � τ � σ, iff ∃locτ∃locσ∃f :
(H(locτ ).class = τ ∧ H(locσ).class = σ ∧ H(locσ).f = locτ ) or ∃locτ

∃〈m, pc, L, S〉 ∈ SF : H(locτ ).class = τ ∧ m.class = σ ∧ (locτ � S ∨ locτ � L).

In order to be really useful, it is not enough to consider only single configurations.
We therefore extend the notion of “leaked” to cover entire programs:

Definition 3 (Leaked). A class τ is leaked to σ in program P , written P �
τ � σ, if and only if there exists C0 and C such that C0 is an initial configuration
of P and P � C0 =⇒∗ C such that C � τ � σ.

We shall write P � τ �� σ to mean that class τ is not leaked to class σ in P .
As an example, consider the program in Figure 1 extended with the program

in Figure 3, i.e., PAB |PM , and let PABM denote the entire program. Let us
further assume that both Alice and Mallet are allowed to communicate with
Bob, i.e., PABM .sharing(Alice) = PABM .sharing(Mallet) = {Bob} Then, by
executing the program it is easy to see that PABM � Alice � Mallet, and
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class Mallet {
void m_Mallet(Bob) {
0: load 1
1: getfield Bob.cache
2: return

}
}

Fig. 3. “Malicious” program PM .

class Charlie {
void m_Charlie(Bob) {
0: load 1
1: invokevirtual Bob.m_Bob()
2: return

}
}

Fig. 4. “Innocuous” program PC .

therefore Alice can be attacked by Mallet, simply because Bob “caches” the
reference from Alice. Consider on the other hand the program PABC = PAB |PC
obtained by extending program PAB with the program in Figure 4. It should be
intuitively clear that Alice is not leaked to Charlie in PABC , because Charlie
does not access fields in Bob that it is not supposed to. However in order to prove
that we must try all possible executions of the program. In the following section
we develop a control flow analysis capable of computing a conservative estimate
of all possible executions. This is then used to prove that PABC � Alice ��
Charlie. In [1] a conceptually similar approach is taken, for a slightly different
subset of JCVML, with a special focus on the initial sharing and the firewall;
to simplify presentation and analysis a three-address representation/conversion
of JCVML is used and relevant API calls, in particular those for exchanging
references to shared objects, are modelled as instructions. The approach in [1]
is essentially a whole-program approach and thus the problem of dynamically
downloaded applets is not considered.

4 Control Flow Analysis for Carmel0

In this section we describe a control flow analysis for Carmel0. The analysis
is quite similar, in spirit, to the analysis developed in [5]. However, in antic-
ipation of our intended use of the analysis, we develop a somewhat simpler
(less precise) analysis, although with the added feature that it is parameterised
on two equivalence relations: one on (object) classes, ≡C⊆ Class × Class, and
one on methods, ≡M⊆ Method × Method. We let [·]C : Class → Class/≡C

and
[·]M : Method → Method/≡M

denote the corresponding characteristic maps, that
map a class or method respectively to its equivalence class. The reason for in-
troducing these equivalence relations into the analysis is mainly that they allow
us to partition the infinite number of names (for classes and methods) into a
finite number of partitions and thereby enabling us to generate a finite Hardest
Attacker (cf. Section 5 for more details). Furthermore, the partitioning can be
used to “fine tune” the precision of the analysis: by choosing fewer equivalence
classes the less precise (and less costly) the analysis and vice versa. Next we
define the abstract domains for the analysis.
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4.1 Abstract Domains

The abstract domains are simplified versions of the concrete domains used in
the semantics. The simplification consists of removing information that is not
pertinent to the analysis. Our abstract domain for representing object references
in the analysis is similar to the notion of class object graphs from [6], thus object
references should be modelled as classes. However, we have to take the equiv-
alence relation over classes into consideration and therefore define an abstract
object reference to be an equivalence class: ÔbjRef = Class/≡C

In order to en-
hance readability we write [Ref σ]C , rather than just [σ]C , for abstract object
references. Following the semantics values are taken to be either numerical val-
ues or object references: AbsVal = {INT} + ÔbjRef and abstract values to be
sets of such values: V̂al = P(AbsVal). Since we are only interested in control
flow analysis we do not try to track actual values (data flow analysis). Objects
are modelled simply as an abstract value representing the (union of the val-
ues of all the) fields of the object: Ôbject = V̂al. Addresses consist of a (fully
qualified) method and a program counter, making them unique in a program:
Addr = Method × N0. The local heap tracks the values contained in the local
variables of a given method: ̂LocHeap = Method/≡M

→ V̂al. The operand stack
is represented in a similar manner: for each method we track the set of values
possibly on the stack: Ŝtack = Method/≡M

→ V̂al. Finally we model the global
heap as a map from object references to objects: Ĥeap = ÔbjRef → Ôbject.

4.2 Flow Logic Specification

An analysis is specified in the Flow Logic framework [7] by defining what it means
for a proposed analysis result to be correct with respect to the analysed program.
Thereby separating the specification of the analysis from the implementation of
the analysis, making it easy to construct new analyses.

The judgements of our Flow Logic specification will have the following general
form: (Ĥ, L̂, Ŝ) |= addr : instr where Ĥ ∈ Ĥeap, L̂ ∈ ̂LocHeap, Ŝ ∈ Ŝtack,
addr ∈ Addr, and instr ∈ Instr. Intuitively the above judgement can be read as:
(Ĥ, L̂, Ŝ) is a correct analysis of the instruction instr found at address addr.

The full Flow Logic specification is given in Figure 5. We shall only explain
a few of the judgements in detail. First the judgement for the new instruction.
In the semantics two things happen: a new location is allocated in the heap,
and a reference to the newly created object is placed on top of the stack. In
the analysis only the last step is modelled: {[Ref σ]C} ⊆ Ŝ([m0]M ). This is
because in the analysis objects are abstracted into the union of values stored
in the objects instance fields, and since a newly created object has no values
stored in its fields (we do not model static initialisation) it is essentially empty.
Modelling that in the analysis we would write: ∅ ⊆ Ĥ([Ref σ]C) which trivially
holds and thus does not contribute to the analysis. Note that the specification for
the pop-instruction is trivially true. This is because the operand stack is (over-
)approximated simply as the set of values that could possibly be on the stack
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(Ĥ, L̂, Ŝ) |= (m0, pc0) : new σ iff {[Ref σ]C} ⊆ Ŝ([m0]M )
(Ĥ, L̂, Ŝ) |= (m0, pc0) : load x iff L̂([m0]M ) ⊆ Ŝ([m0]M )
(Ĥ, L̂, Ŝ) |= (m0, pc0) : store x iff Ŝ([m0]M ) ⊆ L̂([m0]M )
(Ĥ, L̂, Ŝ) |= (m0, pc0) : push c iff {INT} ⊆ Ŝ([m0]M )
(Ĥ, L̂, Ŝ) |= (m0, pc0) : pop n iff true
(Ĥ, L̂, Ŝ) |= (m0, pc0) : numop iff true
(Ĥ, L̂, Ŝ) |= (m0, pc0) : if cmpOp goto pc iff true
(Ĥ, L̂, Ŝ) |= (m0, pc0) : getfield f iff ∀[Ref σ]C ∈ Ŝ([m0]M ) :

Ĥ([Ref σ]C) ⊆ Ŝ([m0]M )
(Ĥ, L̂, Ŝ) |= (m0, pc0) : putfield f iff ∀[Ref σ]C ∈ Ŝ([m0]M ) :

Ŝ([m0]M ) ⊆ Ĥ([Ref σ]C)
(Ĥ, L̂, Ŝ) |= (m0, pc0) : return iff true
(Ĥ, L̂, Ŝ) |= (m0, pc0) : invokevirtual m

iff ∀[Ref σ]C ∈ Ŝ([m0]M ) :
∀[mv]M ∈ methodLookup/≡(m, [Ref σ]C)

Ŝ([m0]M ) ⊆ L̂([mv]M )
[mv]M .returnVal ⇒ Ŝ([mv]M ) ⊆ Ŝ([m0]M )

Fig. 5. Flow Logic specification

anytime during execution of the program and therefore pop has no effect in the
analysis. Similarly for the if, numop, and return instructions. A prerequisite for
analysing the invokevirtual instruction is a model of the dynamic dispatch, i.e.,
we need an abstract version of the methodLookup function, taking the equivalence
classes on methods and classes into account: methodLookup/≡(m, [Ref σ]C) =
{[mv]M |mv = methodLookup(m, Ref σ′), Ref σ′ ∈ [Ref σ]C}. This is not the
only possible choice, but fits the purpose well and is trivially sound. However,
this definition introduces a minor problem with methods that return a value:
In order to determine if a given method returns a value it is enough to check if
the methods return type is different from void (m.returnType �= void). Taking
equivalence classes into account, we have to approximate this by saying that the
equivalence class of a method returns a value if any one of the methods in the
equivalence class returns a value, thus [m]M .returnVal = true if ∃m′ ∈ [m]M :
m.returnType �= void and [m]M .returnVal = false otherwise. The predicate
defines a sound approximation, since it will compute an over-approximation
of the possible flows. With these auxiliary predicates in place, the Flow Logic
judgement for the invokevirtual instruction is straightforward. We first locate
any object references on top of the stack: ∀[Ref σ]C ∈ Ŝ([m0]M ). The object
references found are used to lookup the method to execute, modelled by a set of
method equivalence classes: ∀[mv]M ∈ methodLookup/≡(m, [Ref σ]C). The next
step is then to transfer any arguments from the operand stack of the invoking
method to the local variables of the invoked method: Ŝ([m0]M ) ⊆ L̂([mv]M ).
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Finally, if the method returns a value we make sure to copy that back to the
invoking method: [mv]M .returnVal ⇒ Ŝ([mv]M ) ⊆ Ŝ([m0]M ). The remainder
of the judgements are created by following similar reasoning. Having specified
how to analyse individual instructions, we lift this to cover entire programs in a
straightforward way based on initial configurations in the semantics:

(Ĥ, L̂, Ŝ) |= P iff
∀(m, pc) ∈ P.addresses :

m.instructionAt(pc) = instr ⇒ (Ĥ, L̂, Ŝ) |= (m, pc) : instr
∀σ ∈ P.classes : [Ref σ]C ∈ L̂([mσ]M )
P.sharing(σ) = σ1 :: · · · :: σn ⇒ {[Ref σ1]C , . . . , [Ref σn]C} ⊆ L̂([mσ]M )

4.3 Theoretical Properties

In order to show the semantic soundness of the control flow analysis, we follow the
approach of [8,5] and define representation functions for all the concrete domains.
Intuitively a representation function maps a concrete semantics object, e.g., an
integer, to its abstract representation in the corresponding abstract domain. In
the case of integers this abstract representation is simply a token, INT, leading
to the following representation function: βNum(n) = {INT}.

The notion of a location or an object reference only makes sense relative to
a given heap, thus the representation function for locations is parameterised on
the particular heap to use: βH

ObjRef(loc) = {[Ref σ]C} if H(loc).class = σ. Com-
bining the above two representation functions, that cover all of the basic values
in a Carmel0 program, we obtain a representation function for basic values:
βH

Val(v) = βNum(v) if v ∈ Num and βH
Val(v) = βObjRef(v) if v ∈ ObjRef. Objects

are represented simply as the “union” of all the values in all the objects fields, giv-
ing rise to the following representation function βH

Object(o) =
⋃

f∈dom(o) βH
Val(o.f ).

Finally we can define a representation function for heaps such that all objects
of the same class are merged:

βHeap(H)([Ref σ]C) =
⋃

loc ∈ dom(H)
βH
Val(loc) = [Ref σ]C

βH
Object(H(loc))

The last step is to relate concrete semantic configurations to their abstract equiv-
alents: 〈H, SF 〉 R̂Conf (Ĥ, L̂, Ŝ) iff βHeap(H) � Ĥ ∧ SF R̂H

Frames (L̂, Ŝ) where

(〈m1, pc1, L1, S1〉 :: · · · :: 〈mn, pcn, Ln, Sn〉) R̂H

Frames (L̂, Ŝ) iff ∀i ∈ {1, . . . , n} :
βLocHeap(Li) � L̂([mi]M ) ∧ βStack(Si) � Ŝ([mi]M ). We are now in a position to
state and prove that the control flow analysis is semantically sound. Following
the tradition of Flow Logic specifications this is done by establishing a subject
reduction property for the analysis, i.e., that the analysis is invariant under se-
mantic reduction; this is very similar to the approach taken for type and effect
systems. Below we take =⇒∗ to mean the reflexive and transitive closure of =⇒:
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Theorem 1 (Soundness). If P ∈ Program, C0 is an initial configuration of
P , C0 =⇒∗ C and (Ĥ, L̂, Ŝ) |= P , then C R̂Conf (Ĥ, L̂, Ŝ) ∧ (C =⇒ C ′) ⇒
C ′ R̂Conf (Ĥ, L̂, Ŝ)

Proof. By case-inspection using a technical lemma establishing that the call-
stack is well-formed.

While the above theorem establishes the semantic correctness for the analysis,
it may not be entirely obvious how this is useful in the current setting. We
therefore state a corollary below that follows as a trivial consequence of the
above Theorem, showing that it is sufficient to check the analysis result in order
to guarantee that no object references can be leaked:

Corollary 1. Let P ∈ Program, (Ĥ, L̂, Ŝ) |= P . Assuming that [Ref τ ]C /∈
Ĥ([Ref σ]C) and for all [mv]M s.t. [Ref σ]C ∈ [mv]M .class implies [Ref τ ]C /∈
(Ŝ([mv]M ) ∪ L̂([mv]M )) then P � τ �� σ.

Note that the requirements above follow those of Definition 3 quite closely. This
gives us a very convenient way to verify that there are no leaks in a given program
by simply analysing the program and applying Corollary 1. The problem with
this approach is of course that it requires access to the entire program which
is not realistic in situations where users and third-party vendors are allowed to
download applets onto a Java Card after it has been issued, as is the case for
instance with newer mobile phones. In Section 5 we show how the analysis can
be used to give strong security guarantees in precisely such situations.

Returning to the example programs PABM and PABC we wish to use the anal-
ysis to examine if Alice is leaked to Mallet and/or Charlie respectively. For
simplicity we define the equivalence relations such that each class and method
is in an equivalence class by itself. Analysing the programs, as described in
Section 1, we find (ĤABM , L̂ABM , ŜABM ) and (ĤABC , L̂ABC , ŜABC ) such that
(ĤABM , L̂ABM , ŜABM ) |= PABM and also (ĤABC , L̂ABC , ŜABC ) |= PABC re-
spectively. Below the analysis results for the classes Mallet and Charlie are
shown. We elide the corresponding results for Alice and Bob since they are of
little consequence here.

ŜABM ([Mallet.m Mallet]M ) = {[Ref Alice]C , [Ref Bob]C , [Ref Mallet]C}
L̂ABM ([Mallet.m Mallet]M ) = {[Ref Bob]C , [Ref Mallet]C}

ĤABM ([Ref Mallet]C) = ∅
ŜABC ([Charlie.m Charlie]M ) = {[Ref Bob]C , [Ref Charlie]C}
L̂ABC ([Charlie.m Charlie]M ) = {[Ref Bob]C , [Ref Charlie]C}

ĤABC ([Ref Charlie]C) = ∅

As can be seen from the results: [Ref Alice]C ∈ ŜABM ([Mallet.m Mallet]M )
thus we can deduce that possibly PABM � Alice � Mallet which is consistent
with our earlier observations. On the other hand, using the results for PABC
with Corollary 1, we conclude that PABC � Alice �� Charlie.
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4.4 From Specification to Constraint Generator

While the high-level Flow Logic style, used above for the control flow logic, is
very useful for specification of analyses and for proving correctness of analyses,
it may be less obvious how to actually implement such a specification. Below we
show how the Flow Logic specification can be turned into a constraint genera-
tor, generating constraints over the Alternation-free Least Fixed-Point (ALFP)
logic, cf. [9]. This enables us to use the Succinct Solver to solve the generated
constraints efficiently, cf. [9]. Furthermore, as we shall see in Section 5, the for-
mulation of the analysis in terms of ALFP constraints is essential in achieving
the goal of this paper: the development of a “Hardest Attacker” for verifying
that programs do not leak object references.

It is actually trivial to convert the Flow Logic specification into a constraint
generator, because the formulae in the specification are really just ALFP for-
mulae, written in a slightly different notation for legibility (cf. [9]), over the
universe formed by our semantic domains. Thus the translation amounts to a
simple change of notation and below we therefore show only one example clause:

G[[(m0, pc0) : putfield f ]] = ∀[Ref σ]C ∈ Ŝ([m0]M ) :
Ŝ([m0]M ) ⊆ Ĥ([Ref σ]C)

The following lifts the constraint generator to cover programs:

G[[P ]] =
∧

(m, pc) ∈ P.addresses,
m.instructionAt(pc) = instr

G[[(m, pc) : instr]]

∧
∧

σ∈P.classes

[Ref σ]C ∈ L̂([mσ]M )

∧
∧

P.sharing(σ)=σ1::···::σn

{[Ref σ1]C , . . . , [Ref σn]C} ⊆ L̂([mσ]M )

The next lemma establishes the correctness of the constraint generator

Lemma 1. Let P ∈ Program, then (Ĥ, L̂, Ŝ) |= P iff (Ĥ, L̂, Ŝ) |=ALFP G[[P ]].

Finally, we can show that the solutions to the analysis constitute a Moore fam-
ily, i.e., that the intersection of a set of acceptable analyses is also an acceptable
analysis. This actually follows from Proposition 1 in [9] which establishes a gen-
eral Moore family result for solutions to ALFP formulae1. Using that result in
combination with the above we obtain the following

Corollary 2. The set of acceptable analyses for a given program, P , is a Moore
family: ∀X: X ⊆ {(Ĥ, L̂, Ŝ)| (Ĥ, L̂, Ŝ) |= P} ⇒ (�X) |= P .

The implication of the Moore family result is that for every program there exists
an acceptable analysis, �∅, and there always exists a smallest, i.e., best, accept-
able analysis, �{(Ĥ, L̂, Ŝ)| (Ĥ, L̂, Ŝ) |= P}. The Succinct Solver [9] will efficiently
1 Since we do not use negation at all in our ALFP constraints, the stratification

conditions on negation for Proposition 1 in [9] hold vacuously.
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compute the smallest solution for a given set of ALFP constraints. A näıve and
unoptimised implementation of the analysis and constraint generator presented
in this paper gives rise to a worst case time complexity on the order of O(n5),
where n is the size of the program being analysed. This can be brought down to
O(n4) in a fairly straightforward manner and we conjecture that through careful
analysis and optimisation this can even be lowered to O(n3).

5 The Hardest Attacker

In this section we present a solution to the problem posed in the previous section:
How to guarantee that a given applet does not leak object references, regardless
of what other (malicious) applets run in the same environment. In the previous
section, we showed that a simple control flow analysis can be used to guaran-
tee that a specific program in a specific environment does not leak references.
However, this is not enough to deal with the problem of applets loaded after
the analysis is done. Therefore a different approach is needed. We follow the ap-
proach of [3,10] and identify a hardest attacker with respect to the control flow
analysis specified earlier. A hardest attacker is an attacker with the property
that it is no less “effective” than any other attacker and therefore, if the hardest
attacker cannot execute a successful attack then no other attacker can. The key
to making it work is that we only need to find a hardest attacker as seen from
the perspective of the control flow analysis, rather than try and give a finite
characterisation of all the infinitely many attackers, which may not be possible
in general.

The idea behind our particular hardest attacker is that (modulo names) only
finitely many “types” of constraints are generated, all specifically determined by
the Flow Logic. Therefore it is possible to specify a finite set of constraints, in
such a way that any constraints generated by another program will be contained
within the constraints of the hardest attacker. Here we rely on the equivalence
relations on classes and methods in order to deal with the (possibly infinitely
many) names an attacker may use. Since the constraints generated depend only
on the equivalence classes of names and not on the actual names used, we can
simply select equivalence relations that partition the names into a finite number
of equivalence classes.

Given a program, P , that we wish to protect, we shall call the classes and
methods defined in P that should not be shared for private classes and methods;
classes that are allowed to be shared with other programs are called sharable
(P.sharable denotes the set of sharable classes in P ). Any other class or method is
called public. We then define equivalence relations, called the discrete equivalence
relations for P , on classes (methods) that map all private and sharable classes
(methods) to an equivalence class of its own and all public classes (methods)
to •C (•M ). A program that only defines and creates public classes, objects,
and methods is called a public program. The set of public programs is denoted
Program•. For convenience we parameterise the set of public programs on the
(sharable) classes a public program has initial knowledge of (through sharing):
let I ⊆ Class, we then write ProgramI

• to denote the set of public programs with
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access to the classes in I, i.e., ∀Q ∈ ProgramI
• : ∀σ ∈ Q.classes : Q.sharing(σ) ⊆

I.
Finally, we need to abstract the method names used in method invocation

instructions. In general this can be done by using static inheritance instead of
dynamic dispatch, i.e., syntactically duplicating inherited methods. For our use,
however, it is sufficient to compute a conservative approximation of the abstract
method lookup, denoted ̂methodLookup/≡, used in the control flow analysis:

̂methodLookup/≡([Ref σ]C) =
{⋃

m∈P.methods methodLookup/≡(m, [Ref σ]C) if [Ref σ]C �= •C

{•M} otherwise
(1)

The above is sound and sufficient for the case where public programs are down-
loaded to run with our private program. Thus the public program can inherit
from the private program, but not the other way around. Note that inheritance
is not, as such, related to leaking references and is only mentioned here because
we wish to model dynamic dispatch rather than use static inheritance.

We can now specify the hardest attacker (HA) as a constraint that contains
all the constraints that the analysis can possibly give rise to:

Definition 4 (Hardest Attacker). The Hardest Attacker with respect to the
discrete equivalence relation for P , written HP , is defined as the following con-
straint

HP = {•C} ⊆ Ŝ(•M ) ∧ L̂(•M ) ⊆ Ŝ(•M ) ∧ Ŝ(•M ) ⊆ L̂(•M ) ∧ {INT} ⊆ Ŝ(•M )∧
∀[Ref σ]C ∈ Ŝ(•M ) : Ĥ([Ref σ]C) ⊆ Ŝ(•M )∧
∀[Ref σ]C ∈ Ŝ(•M ) : Ŝ(•M ) ⊆ Ĥ([Ref σ]C)∧
∀σ ∈ P.sharable : {[Ref σ]C} ⊆ L̂(•M )∧
∀[Ref σ]C ∈ Ŝ(•M ) :

∀[mv]M ∈ ̂methodLookup/≡([Ref σ]C)
Ŝ(•M ) ⊆ L̂([mv]M )
[mv]M .returnVal ⇒ Ŝ([mv]M ) ⊆ Ŝ(•M )

The Lemma below is the formal statement of the fact that the HA as defined
actually generates (or contains) all the constraints that can possibly be generated
from a program with initial knowledge of public classes and methods only:

Lemma 2. Let P ∈ Program and I ⊆ P.sharable then ∀Q ∈ ProgramI
• :

(Ĥ, L̂, Ŝ) |=ALFP HP ⇒ (Ĥ, L̂, Ŝ) |=ALFP G[[Q]].

This leads to the following observation:

Lemma 3. Let P ∈ Program, I ⊆ P.sharable, and assume (Ĥ, L̂, Ŝ) |=ALFP

G[[P ]] ∧ HP , then ∀Q ∈ ProgramI
• : (Ĥ, L̂, Ŝ) |=ALFP G[[P ]] ∧ G[[Q]].

We can now state and prove the main Theorem for hardest attackers:

Theorem 2. For P ∈ Program and I ⊆ P.sharable assume (Ĥ, L̂, Ŝ) |=ALFP

G[[P ]] ∧ HP , then ∀Q ∈ ProgramI
• : (Ĥ, L̂, Ŝ) |= (P |Q).

Proof. Follows from Lemmas 1 and 3, and a technical lemma regarding program
composition.
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Below we state a corollary showing explicitly how this can be used to validate
that a program does not leak any private knowledge. However, the above theorem
is of a more general nature since any property that can be validated using only
an analysis result is amenable to the Hardest Attacker approach.

Corollary 3. Let P ∈ Program, I ⊆ P.sharable, such that (Ĥ, L̂, Ŝ) |=ALFP

G[[P ]] ∧ HP and assume that [Ref τ ]C /∈ Ĥ([Ref σ]C) and for all [mv]M s.t.
[Ref σ]C ∈ [mv]M .class implies [Ref τ ]C /∈ (Ŝ([mv]M ) ∪ L̂([mv]M )) then ∀Q ∈
ProgramI

• : (P |Q) � τ �� σ

In other words: If no leaks can be detected in the result of analysing a program,
P , in conjunction with the Hardest Attacker, then P will never leak to any
public program Q.

In the following we apply the Hardest Attacker approach to the examples
shown earlier. For program PAB the discrete equivalence relations are easily com-
puted: the classes Alice and Bob are in their own respective equivalence classes,
denoted [Ref Alice]C and [Ref Bob]C . Similarly for methods: every method de-
fined in Alice of Bob is mapped to its own equivalence class.

The abstract method lookup is computed as specified by (1):

̂methodLookup/≡(x) =





{[Alice.m Alice]M} if x = [Ref Alice]C
{[Bob.m Bob]M , [Bob.update]M} if x = [Ref Bob]C
{•M} otherwise

The next step is to generate constraints according to Theorem 2 and solving
them: G[[PAB ]] ∧ HPAB

. From the small excerpt of the result, shown below, it
follows that the requirements of Corollary 1 do not hold, since a reference to
Alice potentially can be leaked, and thus the program is (potentially) not se-
cure: {[Ref Alice]C} ⊂ Ŝ(•M ), {[Ref Alice]C} ⊂ L̂(•M ), {[Ref Alice]C} ⊂
Ĥ(•C). Figure 6 shows a version of the program where the security flaw has
been removed. Applying the same techniques as above, we obtain the follow-
ing result: (Ŝ(•M ) ∪ L̂(•M ) ∪ Ĥ(•C)) ∩ {[Ref Alice]C} = ∅. Thus, by Corol-
lary 3, we conclude that for all I ⊆ PAB′ .sharable: ∀Q ∈ ProgramI

• : ∀σ ∈

class Alice { class Bob {
void m_Alice(Bob) { void m_Bob() {
0: load 1 0: return
1: load 0 }
2: invokevirtual Bob.update(Object) void update(Object) {
3: return /* ... */

} 0: return
/* ... */ }

} }

Fig. 6. Program PAB′ : a corrected version of PAB
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Q.classes: (PAB′ |Q) � Alice �� σ and therefore that program PAB′ does not
leak a reference to Alice to any public program.

6 Conclusions and Future Work

In this paper we have presented a method for verifying that applets do not leak
sensitive object references to any attack-applet. The hardest attacker approach
makes it possible to assure security of sensitive applets even when dynamic
loading of applets is allowed. Our approach is not confined to checking for leaking
references. Any property that can be verified by using the analysis result alone
are amenable to the hardest attacker as described in Section 5. Investigating
precisely what properties can be expressed this way is left for future work; as is
extending the analysis to include more advanced features.
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