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Abstract. By definition, an insider has better access, is more trusted,
and has better information about internal procedures, high-value tar-
gets, and potential weak spots in the security, than an outsider. Con-
sequently, an insider attack has the potential to cause significant, even
catastrophic, damage to the targeted organisation. While the problem is
well recognised in the security community as well as in law-enforcement
and intelligence communities, the main resort still is to audit log files
after the fact. There has been little research into developing models, au-
tomated tools, and techniques for analysing and solving (parts of) the
problem.

In this paper we first develop a formal model of systems, that can de-
scribe real-world scenarios. These high-level models are then mapped to
acKlaim, a process algebra with support for access control, that is used
to study and analyse properties of the modelled systems. Our analysis of
processes identifies which actions may be performed by whom, at which
locations, accessing which data. This allows to compute a superset of
audit results—before an incident occurs.

1 Introduction

One of the toughest and most insidious problems in information security, and in-
deed in security in general, is that of protecting against attacks from an insider.
By definition, an insider has better access, is more trusted, and has better infor-
mation about internal procedures, high-value targets, and potential weak spots
in the security. Consequently, an insider attack has the potential to cause signif-
icant, even catastrophic, damage to the targeted I'T-infrastructure. The problem
is well recognised in the security community as well as in law-enforcement and
intelligence communities, cf. [1,14,6]. In spite of this there has been relatively
little focused research into developing models, automated tools, and techniques
for analysing and solving (parts of) the problem. The main measure taken still
is to audit log files after an insider incident has occurred [9].

In this paper we develop a formal model that allows to formally define a
notion of insider attacks and thereby enables to study systems and analyse
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the potential consequences of such an attack. Formal modelling and analysis
is increasingly important in a modern computing environment with widely dis-
tributed systems, computing grids, and service-oriented architectures, where the
line between insider and outsider is more blurred than ever.

With this in mind we have developed a formal model in two parts: an abstract
high-level system model based on graphs and a process calculus, called acKlaim,
providing a formal semantics for the abstract model . As the name suggests, the
acKlaim calculus belongs to the Klaim family of process calculi [10] that are
all designed around the tuple-space paradigm, making them ideally suited for
modelling distributed systems like the interact/cooperate and service-oriented
architectures. Specifically, acKlaim is an extension of the uKlaim calculus with
access-control primitives. In addition to this formal model we also show how tech-
niques from static program analysis can be applied to automatically compute a
sound estimate, i.e., an over-approximation, of the potential consequences of an
insider attack. This result has two immediate applications—on the one hand it
can be used in designing access controls and assigning security clearances in such
a way as to minimise the damage an insider can do. On the other hand, it can
direct the auditing process after an insider attack has occurred, by identifying
before the incident which events should be monitored. The important contribu-
tion is to separate the actual threat and attack from reachability. Once we have
identified, which places an insider can reach, we can easily put existing models
and formalisms on top of our model.

The rest of the paper is structured as follows. In the remainder of this sec-
tion the terms insider and insider threat are defined. Section 2 introduces our
abstract system model and an example system, and Section 3 defines acKlaim,
the process calculus we use to analyse these systems. The analysis itself is intro-
duced in Section 4, followed by a discussion of related work (Section 5). Section 6
concludes our paper and gives an outlook and future work.

1.1 The Insider Problem

Recently, the insider problem has attracted interest by both researchers and
agencies. However, most of the work is on detecting insider attacks, modelling
the threat itself, and assessing the threat. This section gives an overview of
existing work.

Bishop [1] introduces different definitions of the insider threat found in liter-
ature. The RAND report [14] defines the problem as “malevolent actions by an
already trusted person with access to sensitive information and information sys-
tems”, and the insider is defined as “someone with access, privilege, or knowledge
of information systems and services”. Bishop also cites Patzakis [13] to define
the insider as “anyone operating inside the security perimeter”, thereby con-
trasting it from outside attacks like denial-of-service attacks, which originate
from outside the perimeter. Bishop then moves on to define the terms insider
and insider threat:

Definition 1. (Insider, Insider threat). An insider with respect to rules R is a
user who may take an action that would violate some set of rules R in the security



policy, were the user not trusted. The insider is trusted to take the action only
when appropriate, as determined by the insider’s discretion.

The insider threat is the threat that an insider may abuse his discretion by
taking actions that would violate the security policy when such actions are not
warranted.

Obviously, these definitions are expressive in that they connect actors in a
system and their actions to the rules of the security policy. On the other hand,
they are rather vague, since in a given system it is usually hard to identify
vulnerabilities that might occur based on an insider taking unwarranted actions.

In the rest of the paper we will use Bishop’s definitions to analyse abstractions
of real systems for potential attacks by insiders. To do so, in the next section we
define the abstract model of systems, actors, data, and policies.

2 Modelling Systems

This section introduces our abstract model of systems, which we will analyse
in Section 4 to identify potential insider threats. Our system model is at a level
that is high enough to allow easy modelling of real-world systems. The system
model naturally maps to an abstraction using the process calculus acKlaim (Sec-
tion 3). Here it is essential that our model is detailed enough to allow expressive
analysis results. The abstraction is based on a system consisting of locations
and actors. While locations are static, actors can move around in the system. To
support these movements, locations can be connected by directed edges, which
define freedoms of movements of actors. This section first motivates the choice
of our abstraction by an example, and thereafter formally defines the elements.

2.1 Example System

In Figure 1 we show our running example system inspired by [1]. It models part
of an environment with physical locations (a server/printer room with a waste-
basket, a user office, and a janitor’s workshop connected through a hallway),
and network locations (two computers connected by a network, and a printer
connected to one of them). The access to the server/printer room and the user
office is restricted by a cipher lock, and additional by use of a physical master
key. The actors in this system are a user and a janitor.

Following Bishop’s argumentation, the janitor might pose an insider threat
to this system, since he is able to access the server room and pick up printouts
from the printer or the wastebasket. We assume a security policy, which allows
the janitor access to the server room only in case of fire.

2.2 System Definition

We start with defining the notion of an infrastructure, which consists of a set of
locations and connections:
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Fig. 1. The example system used to illustrate our approach. The user can use the
network connection to print some potentially confidential data in the server/printer
room. Depending on the configuration on the cipher locks, the janitor might or might
not be able to pick up that print out.

Definition 2. (Infrastructure, Locations, Connections). An infrastructure is a
directed graph (Loc, Con), where Loc is a set of nodes representing locations, and
Con C Loc x Loc is a set of directed connections between locations. ng € Loc is
reachable from ng € Loc, if there is a path m = ng,ny,n9, -, ng, with k < 1,
ng = ns, np =ng, and ¥0 <i <k —1:n; € Loc A (n;,n;41) € Con.

Next, we define actors, which can move in systems by following edges between
nodes, and data, which actors can produce, pickup, or read. In the example
setting, actors would be the user, the janitor, or processes on the computers,
whereas data for example would be a printout generated by a program. Usually,
actors can only move in a certain domain. In the example system, the user and
the janitor can move in the physical locations, but they can only access, e.g.,
the printer and the waste basket to take items out of them. This is modelled by
nodes falling in different domains.

Definition 3. (Actors, Domains).Let T = (Loc, Con) be an infrastructure, Actors
be a set. An actor « € Actors is an entity that can move in Z. Let Dom be a set
of unique domain identifiers. Then D : Loc — Dom defines the domain d for a
node n, and D~' defines all the nodes that are in a domain.

Definition 4. (Data). Let T = (Loc,Con) be an infrastructure, Data be a set
of data items, and o« € Actors an actor. A data item d € Data represents data
available in the system. Data can be stored at both locations and actors, and
K : (Actors U Loc) — P(Data) maps an actor or a location to the set of data
stored at it.
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Fig. 2. Abstraction for the example system from Figure 1. The different kinds of arrows
indicate how connections can be accessed. The solid lines, e.g., are accessible by actors
modelling persons, the dashed lines by processes executing on the network. The dotted
lines are special in that they express possible actions of actors.

Finally, we need to model how actors can obtain the right to access locations
and data, and how these can decide whether to allow or to deny the access.
We associate actors with a set of capabilities, and locations and data with a
set of restrictions. Both restrictions and capabilities can be used to restrain the
mobility of actors, by requiring, e.g., a certain key to enter a location, or allowing
access only for certain actors or from certain locations. In the example, the code
stored in the cipher locks is a restriction, and an actor’s knowledge of that code
is a capability. Similarly, data items can have access restrictions based on the
security classification of the user or based on encryption.

Definition 5. (Capabilities and Restrictions). Let T = (Loc, Con) be an infras-
tructure, Actors be a set of actors, and Data be a set of data items. Cap is a
set of capabilities and Res is a set of restrictions. For each restriction r € Res,
the checker @, : Cap — {true, false} checks whether the capability matches the
restriction or not. C : Actors — P(Cap) maps each actor to a set of capabilities,
and R : (Loc U Data) — P(Res) maps each location and data item to a set of
restrictions.

Figure 2 shows the modelling for the example system from Figure 1. Locations
are the rooms and cipher locks (circles), and the computers, the printer, and the
wastebasket (squares). The different kinds of arrows indicate how connections
can be accessed. The solid lines, e.g., are accessible by actors modelling persons,
the dashed lines by processes executing on the network. The dotted lines are
special in that they express possible actions of actors. An actor at the server
location, e.g., can access the wastebasket. Finally, we combine the above elements
to a system:



Definition 6. (System). Let T = (Loc, Con) be an infrastructure, Actors a set
of actors in I, Data a set of data items, Cap a set of capabilities, Res a set
of restrictions, C : Actors — P(Cap) and R : (Loc U Data) — P(Res) maps
from actors and location and data, respectively, to restrictions and capabilities,
respectively, and for each restriction r, let @, : Cap — {true,false} be a checker.
Then we call S = (Z,Actors, Data,C, R, P) a system.

3 The acKlaim Calculus

In this section we present the process calculus that provides the formal underpin-
ning for the system model presented in the previous section. The calculus, called
acKlaim, belongs to the Klaim family of process calculi [10]; it is a variation of
the pKlaim calculus enhanced with access control primitives and equipped with
a reference monitor semantics (inspired by [8]) that ensures compliance with the
system’s access policy. In addition to providing a convenient and well-understood
formal framework, the use of a process calculus also enables us to apply a range
of tools and techniques originally developed in a programming language con-
text. In particular it facilitates the use of static analysis to compute a sound
approximation of the consequences of an insider attack.

3.1 Access Policies

We start by defining the access policies that are enforced by the reference mon-
itor. Access policies come in three varieties: access can be granted based on the
location it is coming from, based on the actor that is performing the access, or
based on the knowledge of the secret, e.g., a key in (a)symmetric encryption. In
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Fig. 3. The abstracted example system from Figure 2, extended with policy annota-
tions. There are two actors, janitor J and user U, who, e.g., have different access rights
to the user office and the server room.




the above system model (Definition 5), these are modelled by capabilities and
restrictions.

m C AccMode = {i,r,0,e,n}
k C Keys = {unique key identifiers}
0 € Policy = (Loc U Name U Keys U {*}) — P(AccMode)

The access modes i,r,0,e,n correspond to destructively read a tuple, non-de-
structively read a tuple, output a tuple, remote evaluation, and create new location
respectively. These modes reflect the underlying reference monitor semantics and
are explained in detail below. The special element x allows to specify a set of
access modes that are allowed by default. The separation of location and names
is artificial in that both sets simply contain unique identifiers. They are separated
to stress the distinction between locations as part of the infrastructure and actors
that are moving around in the infrastructure.

The elements of the domain Keys are keys used, e.g., for symmetric or asym-
metric encryption. We assume that each key uniquely maps to the method used
to check it (a checker @,.).

Intuitively, every locality in the system defines an access policy that specifies
how other localities and actors are allowed to access and interact with it. This
approach affords fine-grained control for individual localities over both who is
allowed access and how. Semantically the access control model is formalised by a
reference monitor embedded in the operational semantics for the calculus. The
reference monitor verifies that every access to a locality is in accordance with
that locality’s access policy.

We use the function grantto decide whether an actor n at location | knowing
keys k should be allowed to perform an action a on the location I’ (Figure 4).

grant : Names x Loc x Keys X AccMode x Loc — {true, false}

true ifaedy(n)vVaed ()VvIkek:acdi(k)

’ —
grant(n, I, 5,0, ') = {false otherwise

l=t 3(1,1') € Con : grant(n,l, k,e,l') A(Z,n, k) = (I',t)
(Z,n, k) = (I,t) (Z,n, k) = (I,t)

grant(n,l, k,a,t) A (Z,n,k) > (1,t)
<I7 n7 I{/> ~ (l7t7 a)

Fig. 4. Function grant (upper part) checks whether an actor n at location ! knowing
keys k should be allowed to perform an action a on the location I’ based on the location
it is at, its name, or a key it knows. The judgement > (lower part) decides whether an
actor n at location s can reach location ¢ based on the edges present in the infrastructure
Z, by testing (Z,n, k) > (s,t). Finally, the judgement ~~ uses grant and judgement >
to test whether n is allowed to execute action a at location t.



=1 locality N =10 [P single node
| u locality variable | 1::0 (et) located tuple
| Ni|| N2 net composition
P ::=nil  null process a ::= out (t) Q¢ output
| a.P  action prefixing | in(T)@¢ input
| P1| P, parallel composition | read (T)@¢ read
| A process invocation | eval(P)@¢ migration
| newloc(u™ : §) creation
Fig. 5. Syntax of nets, processes, and actions.
T:=F|FT templates et :=ef | ef,et evaluated tuple
F = f|lz|'u template fields ef ==V |1 evaluated tuple field
ta=f|f,t tuples ex=V|xz| ... expressions

fuo=elllu tuple fields

Fig. 6. Syntax for tuples and templates.

Additionally, access policies can be defined for every data item. In this case,
only the subset {i,r} of access modes can be used for name- or location based
specification, as well as keys specifying how the data item has been encrypted.

3.2 Syntax and Semantics

The Klaim family of calculi, including acKlaim, are motivated by and designed
around the tuple space paradigm in which a system consists of a set of distributed
nodes that interact and communicate through shared tuple spaces by reading
and writing tuples. Remote evaluation of processes is used to model mobility.

The acKlaim calculus, like other members of the Klaim family, consists of
three layers: nets, processes, and actions. Nets give the overall structure where
tuple spaces and processes are located; processes execute by performing actions.
The syntax is shown in Figure 5 and Figure 6. The main difference to standard
Klaim calculi is, that processes are annotated with a name, in order to allow
modelling of actors moving in a system, and a set of keys to model the capabilities
they have.

The semantics for acKlaim (Figure 7) is specified as a small step operational
semantics and follows the semantics of uKlaim quite closely. A process is either
comprised of subprocesses composed in parallel, an action (or a sequence of ac-
tions) to be executed, the nil-process, i.e., the process that does nothing, or it can
be a recursive invocation through a place-holder variable explicitly defined by
equation. The out action outputs a tuple to the specified tuple space; the in and
read actions read a tuple from the specified tuple space in a destructive/non-
destructive manner, respectively. When reading from a tuple space, using either
the in or the read action, only tuples that match the input template (see Fig-
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Fig. 7. Operational semantics for acKlaim. The semantics is annotated with the spatial
structure 7 of the underlying physical system. We omit the structure wherever it is clear
from context or is not needed. The boxes contain the reference monitor functionality,
that uses the structure Z to verify that an intended action is allowable.

match(V, V) =€ match(lz, V) = [V/z] match(l,1) = ¢ match(lu,l’) = [I'/u]

match(F, ef ) = o1 match (7T, et) = o2
match((F,T), (ef, et)) = o1 002

Fig. 8. Semantics for template matching.

ure 6) are read. This pattern matching is formalised in Figure 8. The eval action
implements remote process evaluation, and the newloc action creates a new lo-
cation, subject to a specified access policy. While locations representing physical
structures usually would be static in our system view, newloc can be used to
model, e.g., the spawning of processes in computer systems. Note that the se-
mantic rule for the newloc action is restricted through the use of canonical
names; these give a convenient way for the control flow analysis (cf. Section 4)
to handle the potentially infinite number of localities arising from unbounded
use of newloc. These will be explained in detail in Section 4. As is common for
process calculi, the operational semantics is defined with respect to a built-in
structural congruence on nets and processes. This simplifies presentation and
reasoning about processes. The congruence is shown in Figure 9.

In addition to the features of the standard semantics of pKlaim, we add the
spatial structure of the system to the semantics of acKlaim. This structure is



used to limit how access to other locations is granted. The system component
S is, among others, represented by a graph 7 as specified in Definition 6. The
reference monitor passes Z to the judgement > (Figure 4) to check whether there
is a path from a process’s current location and the target location of the action.
The reference monitor is formalised as additional premises of the reduction rules,
shown as boxes in Figure 7.

3.3 The Example Revisited

We now use acKlaim to model the system as specified in Figure 3, resulting in
the acKlaim program in Figure 10. The system property we are most interested
in is the spatial structure of the system, therefore most locations run either the
nil process or have an empty tuple space, if their location does not allow any
actor to execute processes at them. The user’s office and the janitor’s workshop
contain process variables, that can be used to plug in and analyse arbitrary
processes for these actors.

4 Analysing the System Abstraction

In this section we describe several analyses that we perform on the infrastruc-
ture underlying a system as well as on possible actors in the system. The first
analysis (Section 4.1) determines, which locations in a system an actor with
name n and keys k can reach from location [—either directly or by performing
an action on them. With respect to an insider threat this allows to determine
which locations an insider can reach and which data he can potentially access.

Ni|[ N2 = N2 || N4 (N1 [ N2) || Ns = N1 [|(N2 || Ns)
10 [P = 20 [(P | mil)] ()

1:° [A)R) =128 [P ifA2 P

19 [(Py] Pg)]<"’”> =1:° [P1}<"’“> I 220 [P2}<"’”>

Fig. 9. Structural congruence on nets and processes.

HALL ::*~° nil | USR == U | JAN == ||
CLuysg 'Y~ nil | PC1 ::(Umedre) pjp |
CLggy :V7®7~¢) nil | SRV ::*~® nil | WASTE ::(SRV=her) ()

pPQ2 (POlmeUmeiro) pj] || PRT o (SRV—inPO2=0) ()

Fig. 10. The example system translated into acKlaim. The two process variables .J and
U can be instantiated to hold actual process definitions. The system property we are
most interested in is the spatial structure of the system, therefore most locations run
either the nil process or have an empty tuple space, if their location does not allow
any actor to execute processes at them



This analysis can be compared to a before-the-fact system analysis to identify
possible vulnerabilities and actions that an audit should check for.

The second analysis (Section 4.2) is a control-flow analysis of actors in a
system. It determines, which locations a specific process may reach, which actions
it may execute, and which data it may read. This can be compared to an after-
the-fact audit of log files.

4.1 Attack Points

In identifying potential insider attacks in a system, it is important to understand,
which locations in the system an insider can actually reach. This reachability
problem comes in two variations—first we analyse the system locally for a specific
actor located at a specific location. Then, we put this information together to
identify all system-wide locations in the system that an actor possibly can reach.
Finally, the result of the reachability analyses can be used in computing which
data an actor may access on system locations, by evaluating which actions he
can execute from the locations he can reach.

Given that this analysis is very similar to a reachability analysis, we only
sketch how it works. Figure 11 shows the pseudo code specification for both
reachability analyses and the global data analysis, parametrised in the system
structure, the name n of the actor, and the set of keys x that the actor knows.

For the example system from Figure 3, the analysis finds out, that the an
actor with name J and an empty set of keys can reach the location SRV and
can therefore execute the read action on both the waste basket and the printer,

checkloc : Names x Loc x Keys x (Con x Loc) — P(Loc)
for all (1,1") € Con
if (Z,n,k) = (I,I') V grant(n,l, x,e,l")
return {I'} U checkloc(n, !, k,T)

checksys : Names x Keys x (Con x Loc) — P(Loc)
checksys(n, £, T) = |J;¢| o checkloc(n, I, s, 7)

checkdata : Names x Keys x (Con x Loc) — P(AccMode x Loc)

checkdata(n, £, 7) = U, ceneertoc(n.ix,7)1(@: 1)|3a €AccMode, (1,1) € Con :
grant(n,l, K, a,l’)}

Fig. 11. Analysing a given system for attack points. The local analysis (upper part)
takes a name n, a location | and a key set k, and returns the set of all locations
that n could possibly reach using x. The system-wide analysis (middle part) puts these
together to obtain the global view, by executing the local analysis on all locations in the
system. Finally, the data analysis uses the system-wide analysis to compute at which
locations the actor may invoke which actions, allowing to identify which data he may
possibly access. A local data-analysis similar to the upper part is defined analogous.



possibly accessing confidential data printed or trashed. While this is obvious for
the simplistic example system, those properties are usually not easily spotted in
complex systems.

4.2 Control-flow Analysis

While the reachability analysis defined in the previous section is easily computed
and verified, it also is highly imprecise in that it does not take into account
the actual actions executed in an attack. As described before, the reachability
analysis can be used in identifying vulnerable locations that might have to be
put under special scrutiny.

In this section we specify a static control flow analysis for the acKlaim calcu-
lus. The control flow analysis computes a conservative approximation of all the
possible flows into and out of all the tuple spaces in the system. The analysis
is specified in the Flow Logic framework [11], which is a specification-oriented
framework that allows “rapid development” of analyses. An analysis is specified
through a number of judgements that each determine whether or not a particular
analysis estimate correctly describes all configurations that are reachable from
the initial state. Concretely we define three judgements: for nets, processes, and
actions respectively. The definitions are shown in Figure 12.

Information is collected by the analysis in two components: T and 6. The
former records for every tuple space (an over-approximation of) the set of tuples
possibly located in that tuple space at any point in time. The latter component
tracks the possible values that variables may be bound to during execution, i.e.,
this component acts as an abstract environment.

We briefly mention a technical issue before continuing with specification of
the analysis: the handling of dynamic creation of locations. In order to avoid hav-
ing the analysis keep track of a potentially infinite number of locations we define

(T,6,7) ox 10 [P)7F) it (T,6,7) ™" p

(T,6,7) [=x 1 2 (et) iff  (et) e T(|1))

(T,6,7) =x N1 || Na iff (T,6,7) =x N A(T,6,7) Ex No

(T,6,7) EL™" nil iff  true

(T,6,7) EL™ Py | P iff (T,6,7) =5"" P A(T,6,T) ES™" Py

(T,6,7) L™ A iff (T7,6,7) L™ P  ifAZP

(T,6,T) =™ a.P it (17,6,7) =" an(T,6,T) EL"" P

(T,6,7) EL™" out (t) @ iff Viea): (Z,n,k) ~ (I,1,0) = &[t] € T())
(T,6,7) EY™" in (T) @ iff Vied): (Z,n, k)~ (IL,Li)=6 T:T(1)> W)
(T,6,7) EY™" read (T) Q¢ iff Vies(l'): ((T,n,k) ~ (I,l,x) =6 =1 T :T(1)> W)
(T,6,7) ELY™" eval (Q) @/ iff Viea): ((T,n,k)~ (I,i,e)= (T,6,7) E™" Q)
(T,6,7) =™ newloc(u™ : 6) iff {|u]} C&(|u))

Fig. 12. Flow Logic specification for control flow analysis of acKlaim.
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Fig. 13. Flow Logic specification for pattern match analysis.

and use so-called canonical names that divides all concrete location names and
location variables into equivalence classes in such a way that all (new) location
names generated at the same program point belong to the same equivalence class
and thus share the same canonical name. The canonical name (equivalence class)
of a location or location variable, ¢, is written [£]. In the interest of legibility
we use a unique representative for each equivalence class and thereby dispense
with the |- | notation whenever possible. We avoid possible inconsistencies in the
security policy for two locations with the same canonical names we only con-
sider policies that are compatible with the choice of canonical names; a policy
is compatible if and only if |¢1]| = [¢2| = 6(¢1) = d(¢2). This implies that the
policy assigns the exact same set of capabilities to all locations with the same
canonical name. Throughout this paper we assume that policies are compatible
with the chosen canonical names.

A separate Flow Logic specification, shown in Figure 13, is developed in order
to track the pattern matching performed by both the input actions.

Having specified the analysis it remains to be shown that the information
computed by the analysis is correct. In the Flow Logic framework this is usually
done by establishing a subject reduction property for the analysis:

Theorem 1 (Subject Reduction). If (T,6,T) l=x N and L+ N =, L -
N’ then (T,6,T) Ex N'.

Proof. (Sketch) By induction on the structure of L F N >—_ L' b N’ and
using auxiliary results for the other judgements.

Now we return to the abstract system model for our example (Figure 10).
To analyse it, we replace the two process variables J and U with processes as
specified in Figure 14. The janitor process J moves from the janitor’s workshop
location JAN to the server room SRV where he picks up a the review for the in-
sider paper from the printer (in ("review”,”insiderpaper”,!r) @QPRT). The user
U prints the review from PC1 via the print server PC2. The two interesting
locations for the control-flow analysis are JAN and USR, where processes J
and U are plugged in, respectively. When analysing U, the analysis starts by
analysing eval (out( -)@PRT)@PC2, resulting in an analysis of the action
out (("review”, insiderpaper”, "accept”)) @PRT. As specified in Figure 12, this
results in the tuple ("review”,”insiderpaper”, ”accept”) being stored in T(PRT)



J £ eval (in (("review”, ”insiderpaper”, Ir)) @QPRT) @SRV

U £ eval (eval (out (("review”,”insiderpaper”, ”accept”)) @QPRT) @PC2) @QPC1
Fig. 14. Processes for the janitor and the user analysed in the abstract system model
from Figure 10.

representing the fact that the user started a print job at the print server, and
the resulting document ended up in the printer. The analysis of J results in
analysing in (("review”,”insiderpaper”, !r)) @QPRT, which tries to read a tuple
matching the first two components from the tuple space at locations PRT'. Since
that is available after U has been analysed?, the local variable  contains the
string "accept”, even though the janitor might not be authorised to access this
data. Note that for sake of simplicity we do not have added security classifi-
cations to our model, but any mechanism could easily be added on top of the

model and the analysis.

5 Related Work

Recently, insiders and the insider threat [14,15,3,2] have attracted increased
attention due to the potential damage an insider can cause. Bishop [1] gives an
overview of different definitions and provides unified definition, which is the basis
for our work. By separating the reachability analysis from the actual threat, we
are able to easily model other definitions of the insider threat, or insiders that
are more capable.

While the aforementioned papers discuss the insider problem, only very little
work can be found on the static analysis of system models with respect to a
potential insider threat. Chinchani et al. [4] describe a modelling methodology
which captures several aspects of the insider threat. Their model is also based
on graphs, but the main purpose of their approach is to reveal possible attack
strategies of an insider. They do so by modelling the system as a key challenge
graph, where nodes represent physical entities that store some information or
capability. Protections like, e.g., the cipher locks in our example, are modelled as
key challenges. For legitimate accesses these challenges incur no costs, while for
illegitimate accesses they incur a higher cost representing the necessary “work”
to guess or derive the key. The difference to our approach is that they start
with a set of target nodes and compute an attack that compromises these nodes.
However, it is mostly unclear how the cost of breaking a key challenge is deter-
mined. We are currently working on incorporating probabilities into our model
to express the likelihood of a certain capability being acquired by a malicious
insider. It might be interesting to incorporate this into Chinchani’s approach
and to execute our analysis on their graphs to compare these two approaches.
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In a more general setting, fault trees have been used for analysing for system
failures [7]. However, these have not been used to model attacks, but to compute
the chance of combinations of faults to occur. Beside these, graphs have been used
in different settings to analyse attacks on networks. Examples include privilege
graphs [5,12] and attack graphs [16]. The major difference to our work is the
level of detail in modelling static and dynamic properties of the system, and
the ability to analyse the dynamic behaviour of actors moving in the abstract
system.

6 Conclusion and Future Work

One of the most insidious problems in information security is that of protecting
against attacks from an insider. Even though the problem is well recognised in
the security community as well as in law-enforcement and intelligence communi-
ties, there has been relatively little focused research into developing models and
techniques for analysing and solving (parts of) the problem. The main measure
taken still is to audit log files after an insider incident has occurred.

We have presented a formal model that allows to formally define a notion of
insider attacks and thereby enables to study systems and analyse the potential
consequences of such an attack. Formal modelling and analysis is increasingly
important in a modern computing environment with widely distributed systems,
computing grids, and service-oriented architectures, where the line between in-
sider and outsider is more blurred than ever.

The two components of our model—an abstract high-level system model
based on graphs and the process calculus acKlaim—are expressive enough to al-
low easy modelling of real-world systems, and detailed enough to allow expressive
analysis results. On the system model, we use reachability analysis to identify
possible vulnerabilities and actions that an audit should check for, by comput-
ing locations that actors in the system can reach and/or access—independent of
the actual actions they perform. On the abstract acKlaim model we perform a
control-flow analysis of specific processes/actors to determine which locations a
specific process may reach, which actions it may execute, and which data it may
read. This can be compared to an after-the-fact audit of log files. To the best
of our knowledge this is the first attempt in applying static analysis techniques
to tackle the insider problem, and to support and pre-compute possible audit
results. By separating the actual threat and attack from reachability, we can
easily put existing models and formalisms on top of our model.

We are currently working on extensions of this model to malicious insiders,
who try to obtain keys as part of their actions in a system, and to further extend
both the system model and the precision and granularity of our analyses.
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