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Abstract. Information flow security provides a strong notion of end-
to-end security in computing systems. However sometimes the policies
for information flow security are limited in their expressive power, hence
complicating the matter of specifying policies even for simple systems.
These limitations often become apparent in contexts where confidential
information is released under specific conditions.

We present a novel policy language for expressing permissible informa-
tion flow under expressive constraints on the execution traces for pro-
grams. Based on the policy language we propose a security condition
shown to be a generalized intransitive non-interference condition. Fur-
thermore a flow-logic based static analysis is presented and shown capa-
ble of guaranteeing the security of programs analysed.

1 Introduction

The number of computing devices with built-in networking capability has ex-
perienced an explosive growth over the last decade. These devices range from
the highly mobile to the deeply embedded and it has become standard for such
devices to be “network aware” or even “network dependent” in the sense that
these devices can use a wide variety of networking technologies to connect to
almost any kind of computer network. Consequently modern software is often
expected to utilise resources and services available over the network for added
functionality and user collaboration. In such an environment where devices rou-
tinely contain highly sensitive or private information and where information flow
is complex and often unpredictable it is very challenging to maintain the con-
fidentiality of sensitive information. Predictably it is even more challenging to
obtain formal guarantees or to formally verify that a given device or system
does not leak confidential information. The problem is further exacerbated by
the often complicated and ever changing security requirements of users. Exam-
ples include a user’s medical records that should be inaccessible unless the user
is at a hospital, or personal financial information that may be accessed by a
bank or a financial advisor but not by the tax authorities except during a tax
audit. The above examples expose one of the major drawbacks of traditional
approaches to secure information flow, namely the lack of support for dynamic
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and flexible security policies. Even formulating, let alone formalising, an infor-
mation flow policy for such diverse uses and changing requirements seems to be
an insurmountable problem for the traditional approaches where lattice-based
policies are formalised and enforced by non-interference. This has recently led re-
searchers to look for better and more appropriate ways of specifying information
flow policies and their concomitant notions of secure information flow, incorpo-
rating concepts such as downgrading (or declassification), delimited release, and
non-disclosure.

In this paper we develop a novel notion of locality-based security policies
in conjunction with a strong security condition for such policies: History-based
Release. The locality-based security policies are powerful and flexible enough
to be used in systems with a high degree of network connectivity and network
based computing such as those described above. In this paper we model such
systems in the pKlaim calculus, which is based on the tuple space paradigm,
making it uniquely suited for our purposes. In addition we define what we believe
to be the first tuple-centric notion of non-interference and show how History-
based Release is a strict generalisation. Finally we construct a static analysis for
processes modelled in pKlaim and demonstrate how it can be used to formally
verify automatically that a given system is secure with respect to a given locality-
based security policy. Such an analysis is an invaluable tool, both when designing
and when implementing a complex system, and can be used to obtain security
guarantees that are essential for critical systems.

2 The puKlaim Calculus

The Klaim family of process calculi were designed around the notion of a tuple
space. In this paradigm systems are composed of a set of nodes distributed at
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various localities. The nodes communicate by sending and receiving tuples to
and from various tuple spaces based at different localities. Mobility in the Klaim
calculi is modelled by remote evaluation of processes. In the standard tuple space
model a tuple space is a resource shared among peers and therefore no attempt
is made to restrict or control access to these.

The pKlaim calculus [8] comprises three parts: nets, processes, and actions.
Nets give the overall structure in which tuple spaces and processes are located.
Processes execute by performing actions. The syntax is shown in Fig. 1. Processes
execute by performing an action, a, or by “invocation” of a process place-holder
variable. The latter is used for iteration and recursion. Processes can be com-
posed in parallel and finally a process can be the nil-process representing the
inactive process. The following actions can be performed by a process. The out-
action outputs a tuple into a tuple space at a specific locality; the in and read
actions input a tuple from a specific tuple space and either remove it or leave it
in place respectively; the eval-action remotely evaluates a process at a specified
locality; and newloc creates a new locality.

The semantics for pKlaim, shown in Fig. 4, is a straightforward operational
semantics and we shall not go into further detail here but refer instead to [8]. As
is common for process calculi the semantics incorporates a structural congruence,
see Fig. 2. In Fig. 3 the semantics for tuple matching, as used in the rules for the
in- and read-actions, is shown. We assume the existence of a semantic function
for evaluating tuples denoted as [].

Semantically we define an execution trace as the sequence of locations where

1
processes are executed when evaluating the processes. Hence we write L - N —
L' = N’ when evaluating one step of a process located at the location . Clearly
the execution originates from an action being evaluated at the process space of

location I. For the transitive reflexive closure we write L - N »—* L' - N’ where
w € {2 is a string of locations.

3 Policies for Security

To protect confidentiality within a system, it is important to control how in-
formation flows so that secret information is prevented from being released on
unintended channels. The allowed flow of information in a system is specified in
a security policy. In this section we present a policy language based on graphs.
Here vertices represent security domains, describing the resources available in the
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net. A security domain is related to sets of resources available in the considered
system.

This model allows for the granularity of the mapping from resources to se-
curity domains to be very fine-grained. For example we can introduce a security
domain for each location. For improved precision we could partition the usage of
a location into lifetime periods and introduce a domain for each, hence having
more than one security domain for each location in the net. This would allow
us to abstract from e.g. reuse of limited resources in the implementation. For
further discussion of this see [23].

In our setting the tuple spaces are our resources, hence the localities are
related to security domains. This allows us to reason about groups of localities
together, as well as singling out specific localities and isolate these in their own
security domains. The security policies therefore focus on the information flow
between intended domains of localities. Consequently we assume that locations
can be uniquely mapped to security domains.

Definition 1. (Security Domains) For a given net we have a mapping from
localities L to security domains V

oL =V

We write [ for the security domain of the location [.

Edges specify permitted flows of information. Information flow between re-
sources can be restricted subject to fulfillment of constraints with respect to
certain events taking place prior to the flow. Formally we propose the following
definition of security polices.



Definition 2. (Locality-based security policies) A security policy is a labelled
graph G = (V, ), consisting of a set of vertices V' representing security domains
and a total function X mapping pairs of vertices to labels A : V x V. — A. We
define G to be the set of policies. The structure, A, of labels is defined below.

In a flow graph the set of vertices V' represent security domains. A security
domain indicates the usage of a resource in the system. The edges in the flow
graph describe the allowed information flow between resources. Hence an edge
from the vertex for security domain v; to the vertex for security domain v
indicates that information is allowed to flow between the resources in these
domains subject to the label attached to the edge.

The edges in the flow graph are described by the function A : V. x V' — A.

We write v; 3, vy for an edge from vertex v; to ws constrained by § € A,
i.e. A(v1,v2) = §. Information flow might be constrained by certain obligations
that the system must fulfill before the flow can take place. Here we describe a
novel constraint language that allows the security policy to be specific about
intransitive information flows in the flow graph. Constraints are specified in the
following syntax ¢ € A:

d n=true | false |v |6y -2 | S A2 |1 VI |07

A constraint may be trivially true or false. The constraint v enforces that flows
occur at specific locations, thus that the flow is only permitted at locations that
is part of the security domain v (i.e. I = v). The constraint d; -d2 enforces that the
flow is only allowed to occur if events described in d; precedes events described
in d;. Common logical operators A and V are available to compose constraints.
Finally Kleene’s star * allows the policies to express cyclic behaviour.

We might omit the constraint, writing v; ~ vs for v; "5 vs. Similarly we
might omit an edge in a flow graph indicating that the constraint can never be

fulfilled, i.c. v "5° vs.

Ezample 1. To illustrate the usage of flow graphs as security policies we here
discuss the three examples given in Figure 5. The first flow graph (a) allows a
flow from v; to vy and vs to v3 but not from v to vs. That is neither directly nor
through vs! In this manner the intransitive and temporal nature of the policies
allow us to have constraints on the order of information flows.

The second flow graph (b) allows the flow from v; to ve, v2 to vz and from
vy to vy as well. The flow can be directly from v; to vz or through wvs. If we
wish to restrict the flow to go through v, it could be done as in flow graph (c).
We assume that [ and [’ map to security domains that no other locations are
mapped to. Hence the last flow graph (c) restricts the flows between the security
domains to certain locations. This ensures that for information to flow from v
to vz both locations need to participate. [

To give intuition to the above example policies we relate them back to the
personal finance scenario mentioned in the introduction. In the following we let
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v1, V2, and vy denote the user, the user’s financial advisor, and the tax author-
ities respectively. The first policy (Figure 5(a)) states that the user’s financial
information may be accessed by the financial advisor but mot by the tax au-
thorities while still allowing the financial advisor to send (other) information to
the tax authorities. The second policy (Figure 5(b)) then states that the user’s
financial information may be accessed both by the financial advisor and by the
tax authorities; this may be necessary during a tax audit. Finally the policy
shown in (Figure 5(c)) defines a situation where the user’s financial information
may be accessed by both the financial advisor and the tax authorities but only
through the financial advisor; this security policy ensures that the financial ad-
visor can review all relevant information from the user before the tax authorities
gain access to it.

A system is given by a net N and a security policy G together with a mapping
- and might be written N subject to (G, :). However, as the G and : components
are clear from context we choose not to incorporate the policies in the syntax of
pKlaim.

3.1 Semantics of constraints

In this subsection we present the semantics of our security policy language. The
semantics is given as a translation to regular expressions over execution traces.
The intuition is that if an execution trace is in the language of the regular
expression derived by the semantics, then the constraint is fulfilled.

The main idea behind the locality-based security policies is that they specify
constraints that must be fulfilled rather than the total behaviour of the system.
This result in succinct policies. Therefore the semantics of constraints is based
on an understanding of fulfilment of a constraint whenever an execution trace
produces the locations specified. Hence if a trace that fulfills a constraint is
preceded or succeeded by other traces the constraint remains fulfilled.

The true constraint is always fulfilled and hence is translated to the regu-
lar expression L * accepting all execution traces. Similarly the constraint false
cannot be fulfilled for any trace, and hence the generated language is (). The
constraint v gives the language L* - {l |l =v} - L* as we wish to allow the flow
only for executions taking place at [. The constraint d; - J» indicates that the
trace w can be split into w; and wy, where w; must be in the language of §;, and
respectively wy must be in the language of d2. The constraints for §; A §, and
01 V 62 are straightforward. One obvious definition of [ *] is [0] *; however this
choice would invalidate Lemma 1 below. Consequently, it is natural to define
[0*]=L~*-[6]* - L* as then Lemma 1 continues to hold.

The semantics of the security policy language are given in Figure 6.
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Lemma 1. The semantical interpretation of constraint 6 does not change by
preceding or succeeding it by other traces Y6 : [0] = L*-[6] - L*

We define an ordering of constraints as the relation <AC A x A, i.e. we say
that ¢ is a restriction of ¢’ if (4,0") €<, normally we write 6 < 0.

Definition 3. We say that a constraint § is a restriction of §', written 6 <A ¢’

if we have [d] C [¢].
Similarly we define a restriction relation between flow graphs.

Definition 4. We say that a flow graph G = (V,\) is a restriction of G' =
(V' X)), written G < G' if we have that

V=V" A Yor,vs : Mvr,v2) <a XN (v1,02)

4 Security Condition

To determine whether a program is secure or not, we need some condition for
security. In this section we therefore present our definition of secure nets. The
intuition is similar to that of non-interference, however we aim to generalize
the traditional non-interference condition to permit release of confidential infor-
mation, based on constraints on the history of the execution and it’s present
location. We call this condition History-based Release.

4.1 Security Condition

Before we formalize the main security condition we need to formalize what an
attacker can observe. Consider an attacker that has access to a subset V of the
tuplespaces that are available in the net under consideration. We formalize the
observable part of a net by nullifying the tuple spaces that the attacker cannot
observe.

Definition 5. (V-observable) The V-observable part of a net N written Ny, is

(l:P)ly=1=P .
(1:: (et))]y = {l i (et) ifleV

2 nal otherwise
(N1 [| N2)ly = Nily || N2y



Furthermore we assume that the attacker has knowledge of all the processes
that exist in the net, and hence can reason about the absence of a tuple at a
given location. Similar to the probabilistic attacker in [25] it is feasible to assume
that two tuple spaces can be compared on all tuples. Thus for two nets /N7 and
N, an attacker that observes at security domain V can compare the observable
parts of the nets as Ni|y ~ Naly.

Definition 6. (Observable equivalence) Two nets N1 and No are observably
equivalent Ny ~ No iff

f(et) | Ny = (- N[ Lz et) [ )} = §(et)) | No= (-~ [[ Tz (et) [ ---) }
where we write {-} for a multi-set.

We define the function V : P(V) x G x 2 — P(V) for extending a set
of security domains with the domains that are permitted to interfere with the
observed domains due to the fulfillment of constraints by the execution trace w.
The resulting set of security domains describe the permutted information flows
during the execution.

Definition 7. For a security policy G and a execution trace w an observer atV
can observe the localities

VIV,G,w) =V U{v; |va €V Aw E [A(v1,v2)]}

A less restrictive policy, V will never reduce the observable part of the net.
This allows us to establish the following fact.

Fact 1. If G <G then V(V,G,w) CV(V,G",w).

We consider a program secure if in no execution trace, neither a single step
nor a series of steps, will an attacker observing the system at the level of a set
of security domains V be able to observe a difference at any locality, when all
resources permitted to interfere with the locality is observably equivalent before
the evaluation. We formalize the condition as a bisimulation over execution traces
on nets.

Definition 8. (Bisimulation) A (G,V)-bisimulation is a symmetric relation R
on (the process part of ) nets whenever

Lik N S I F N A
LiF Nilg R La F Ny A
Nilvw,cw) ~ Nalvw,c.w)

then there exists N3, L and w' such that
Ly b Ny 5o L F N A
Ly F N{lp R LLF Njlg A
Nily ~ N3y



We use the fact that the observable part of a net projected on an empty set
of security domains L F Nlg gives the process part of the net. The reason why
we define the bisimulation in this way is to focus on the executable part and not
the memory part.

The bisimulation follows the approach of Sabelfeld and Sands [22] in utiliz-
ing a resetting of the state between subtraces. This follows from modelling the
attacker’s ability to modify tuple spaces concurrently with the execution. Fur-
thermore it accomodates the dynamically changing nature of the security policies
due to the fulfillment of constraints, as seen in [13]. The definition is transitive
but not reflexive. That the definition is not reflexive follows from observing that
the net [ :: in(lz)Qly.out(x)Qly, is not self-similar whenever information is not
permitted to flow from Iy to .

Fact 2. If G < G' and R is a (G,V)-bisimulation then R is also a (G',V)-
bisimulation.

Definition 9. A G-bisimulation is a relation R such that for all V, R is a
(G, V)-bisimulation. Denote the largest G-bisimulation ~¢.

Now we can define the security condition as a net being bisimilar to itself.

Definition 10. (History-based Release) A net N is secure wrt. the security pol-
icy G if and only if we have N ~g N.

Ezample 2. In the following we will consider a number of example programs that
illustrate the strength of History-based Release. First consider the program

[::in(lz)Ql; .out(z)Ql,

which reads a tuple from /; and writes it to ls. With the policy 1 s Iy, the
program is secure, while changing the policy to 1 fvle> ls makes the program
insecure. The reason that the second program is insecure is because the bisimu-
lation forces us to consider all possible traces, so even if the above program was
modified to execute a process on [’ concurrently with the one on [, the result
would be the same. This corresponds to intransitive non-interference [14] (or
lezically scoped flows according to [2]).

History-based Release goes beyond lexically scoped flows as the policy might
constrain the history of a process. This is illustrated by the following example.
Consider the security policy in Fig. 5(c) and assume that [; = vy, [ = v2 and
l3 = v3, for which the program

I in(lz)@Ql.out(z)@Qly || ' :: in(ly)Qly.out(y)Ql3
is secure. On the other hand the program
[ :in(lz)Ql.out(z)@ly || I':in(ly)@l.out(y)Ql;

is insecure because the process at I’ might evaluate prior to the process at [. m



Example 3. Another concern is the handling of indirect flows. Consider the pro-
gram
[ ::in(a)Qly.in(b)@Ql

and an attacker observing whether the tuple b is removed from location Iy or
not. Based on this the attacker will know if the process was capable of removing
the tuple a from location [;. Therefore History-based Release allows the program

!
«ff\f; l5 . This is due to the fact that

l
for the policy i ~~=1[2 , but not for [1
information can be observed by the attacker through the absence of a tuple in a
tuple space. [

Ezample 4. Finally we wish to look at an example program that is insecure in
the traditional setting where lattices are used as security policies. Consider the
program

[ ::in(lz)Qly.out(z)Ql;.read(ly)@l; .out(y)Ql,

which is secure for the policy in Fig. 5(a) when |} = vi, [ = v2 and l3 = vs.
This is because evaluating the program does not result in information flowing
from [; to I3. =

4.2 Consistency of History-based Release

In this subsection we argue the consistency of the definition of History-based Re-
lease. In particular we will discuss two of the principles presented by Sabelfeld
and Sands in [21]. In the following we consider declassification to refer to con-
straints that are not trivially evaluated to true or false.

Conservativity: Security for programs with no declassification is equivalent to
non-interference.

Limiting all constraints on edges in the flow graphs to only being of the
simple form true, false or v gives us intransitive non-interference. Removing all
non-trivial constraints (i.e. only having the constraints true and false) results
in traditional non-interference.

Monotonicity of release: Adding further declassifications to a secure program
cannot render it insecure.

Adding declassifications to a program coresponds to making our security
policies less restrictive. Hence we aim to show that a program will be secure for
any policy at least as restrictive as the original policy, for which it can be shown
secure.

Lemma 2. (Monotonicity) If G < G’ then N; ~g Ny = N; =g N,.

Proof: It follows from Fact 1 that (N1|vv,ar.w) ~ N2lvw,arw)) = (Nlvv,c.w)
~ Naly(v,Gw))- The Lemma follows from Fact 2 and observing that to show
Ny =g Na we have either Ni|yw,grw) ~ Nalvv,grw), in which case we can
reuse the proof for N1 ~¢ Ns, or otherwise the result holds trivially. [
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5 Security Analysis

In this section we present an approach for verifying systems fulfillment of confi-
dentiality wrt. History-based Release specified in a security policy. The analyses
are given in the Flow Logic framework [18]. Hence the security guarantee is static
and performed prior to the deployment of the system considered.

The analyses are based on the approach of Kemmerer [12]. Thus we analyse a
system in two steps. First in Section 5.1 we identify the local dependencies; this
is done by modifying a control flow analysis by introducing a novel component
for the synchronization of events allowing it to track implicit flows. Second in
Section 5.2 we describe a closure condition of the local dependencies to find
the global dependencies. These two steps are independent of the security policy
given for the considered system, and only related to the program analysed. The
final step is the comparison of the security policy and the flow graph extracted
from the program and in Section 5.3 we argue that the security enforced by our
approach is History-based Release.

5.1 Local Dependencies

The local dependencies are identified by a control flow analysis. In fact we mod-
ify the analysis presented in [10] by introducing a novel component for capturing
synchronizations performed in Klaim processes. Hence we will only briefly de-
scribe the other components, before focusing on the extension. The analysis for
the net N is handled by judgements of the form

(T,6,C)EN :G

The component 7' : L — P(t) is an abstract mapping that associates a location
or location variable with the set of tuples that might be present at the tuple
space. The component ¢ : T'— P(t) is an abstract mapping holding all possible
bindings of a variable or locality variable (or a pattern of these) that might be
introduced during execution. Furthermore we introduce the abstract mapping
C : Lab — P(L) that associates the label of an action to the set of localities
that the process has previously synchronized with during its execution. The
labels of actions are introduced below. Finally we collect an abstract flow graph
in the component G:L— P(L x L) for describing the flow between tuple spaces

and the location at which the process was executed. We write [ 55 1" when a flow
from [ to I' occurs at I".



=Y

Eie:Vob Ve iff {et €Vo|let|=i—1}C V4

EV,T: Voo We iff 61 T:VebWe A {eteVo | prji(et) =

E LT Voo We iff 6 T : Ve W, {et€V°|pr]l(et) I}C Ve
()

QP

& A

GEix,T:VorWe iff 6Fii T:VasWe A {et € Vo |prii(et) = 6(x)} CVa
GEiwT:VorWe iff 61 T:VarWe A {et € Vo |prji(et) = 6(w)} CVa
GE 2, T: Voo We iff 6Ei T:VarWe A Vo EVa A prjs(We) E ()
o u,T: Voo We iff 651 T:VarWe A Vo EVa A prji(We) E 6(u)

Fig. 8. Abstract tuple matching.

An indirect flow can occur by synchronizing with a tuple space before syn-
chronizing with another, as the attacker might observe the absence of the second
synchronization. For tracking these flows we label the actions in a program. We
define the function E : P — P(Lab) as the fixpoint of the exposed set of la-
bels. This allows us to track which actions have been executed prior to the one
considered at present. The function is presented in Fig. 7(a).

When analysing an action we must use C to find the locations that it syn-
chronizes with. The reason is that these might block further execution, if their
templates can not be matched anything available at the location. Hence if the
attacker can observe the result of an action that follows the one considered he
will learn of the existence (or absence) of the tuples matched. Therefore for all
input or read actions the condition Vip € E(P) : C(1) U6(¢) C C(up) must be
fulfilled, where ¢ is the label of the considered action, &(¢) is the set of locations
synchronized with and P is the remaining part of the process.

All local information flows must be found in G. Hence whenever an action
results in a flow of information we check that it is in G. There are two actions that
result in flow of information. Clearly the out action will output information to
the specified location, and whether or not this happens will give away whether
previous synchronizations were successful or not. Similarly the in action will
remove a tuple from the specified location, hence we ensure that a flow is recorded
in G. We do so by emposing the condition [C/(¢) AN 6(0)] C G, where ¢ is the
label of the action considered and () is the set of influenced locations.

The rest of the components of the analysis are the same as in [10]. The analy-
sis is specified in Fig. 9. In Fig. 7(b) we extend the component ¢ for application
on templates and in Fig. 8 the analysis of abstract tuple matching is presented.

5.2 Global Dependencies

The analysis of global dependencies are inspired by the approach of Kemmerer
[12]. This approach utilizes a transitive closure of the local dependencies. In our
setting the local dependencies were identified by the control flow analysis pre-
sented above. However as we wish to take execution traces into account, we need
to extend the closure, so that the edges are labelled with regular expressions.
The goal of the closure will be to guarantee that the language of regular ex-
pressions connected to an edge does indeed accept all the executions traces in
which the information flow happens. Therefore a correct closure must guarantee
that the resulting labelled graph has an edge from a node ng to another node
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ny, whenever there exists a path possibly through other nodes in the local flow
graph. Furthermore the labels in the resulting graph must accept a language
that is a superset of all the languages in the local flow graphs.

Definition 11. A correct closure H of the flow graph G’, written G

defined as G<H iff

Vnorl%mrl%---r’@nkeé:ats:ll---

N

Ik € [(] A no ~Lsny €7

1 1 I A . i A
where ng = nqy V= - S ny, € G means Vi :ni_1 —> n; € G.

One algorithm that can be used to compute the least A such that G
the Pigeonhole Principle presented in [11].
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5.3 Static Security

We are confident that the static analyses presented above compute a flow graph
H for which the analyzed net comply with History-based Release.

Conjecture 1. If (T,&,C’) EN:G and G<H then N ~y N.

In fact the analyses ensure that the analyzed net comply with History-based
Release for any policy that is at least as restrictive as .

Corollary 1. If (T,6,C)EN: G, G<H and H <G then N ~g N.
Proof: Follows from Lemma 2 and Conjecture 1. [

6 Related Work

Traditionally policies for information flow security have been of the form of secu-
rity lattices [1,6] where an underlying hierarchical structure on the principals in
the system is assumed and reflected in the security lattice. Hence the principals
are tied to security levels and an ordering of security levels indicate what infor-
mation is observable to a principal. Security lattices have found a widespread
usage in language-based approaches to information flow security, see e.g. [24, 20].

In this paper we base our security policies on labelled graphs, i.e. without
assigning an underlying ordering. Due to the lack of underlying ordering the
expressiveness of the policies is increased, allowing for simplified specification of
security policies for systems. One example is systems that let a principal act on
resources in different security domains without causing a flow of information in
between. The expressiveness gained is due to the transitive nature of the ordering
in a lattice. Graphs have previously been used as information flow policies in [23].
Furthermore these policies relate back to resource matrices applied for e.g. covert
channel identification [12,15].

Clearly the translation of a policy specified as a lattice to a labelled graph is
straightforward. For each security level a security domain is introduced. Edges
(labelled true) are added between security domains according to the ordering of
the corresponding security levels.

The Decentralized Label Model by Myers and Liskov [17,16] is a framework
for security policies that allows owners of information to specify who is permitted
to read that information. The basis model is still a lattice and does not provide
expressiveness similar to what is presented in this paper.

6.1 Semantical security conditions

The goal of specifying whether a system complies with what is stated in an
information flow policy has been formally stated as non-interference [5,7]. In-
formally non-interference states that for all input to a system, that varies only
on information not observable to the attacker, the resulting output will only vary
on information not observable to the attacker. We showed in Section 4.2 that
History-based Release generalises non-interference.



Non-Disclosure by Matos and Boudol [14] proposes extending the syntax of a
ML-like calculus with specific constructs for loosening the security policy. These
constructs have the form

flow A < B in M

where M is an expression and A and B are security levels. The construct ex-
tends the security relation to permit information to flow from A to B in M and
thereby permits disclosure of confidential information in lexically scoped parts
of programs. The policies presented in this paper allow for flows to be scoped
within a specified location, i.e. locations tied with a security domain. Clearly by
introducing a security domain tied to a fresh location for each flow construct and
constraining the information flow to only happen in execution traces containing
the security domain we get scoped flows. Finally due to the transitive nature
of underlying lattice structure in [14], we need to perform a transitive closure
on the resulting graph to achieve the same effect in our policies. In this manner
the Non-Disclosure property can be seen as a specialisation of the History-based
Release property. Obviously the Non-Disclosure property does not have the ex-
pressiveness to handle constraints on execution traces.

Intransitive non-interference. Goguen and Meseguer [7] generalised non-interfer-
ence to intransitive non-interference while observing that information flows
might be permitted when properly filtered at specified security levels. The prop-
erty was further investigated in [9, 19] and adapted to a language-based setting
by Mantel and Sands [13]. Mantel and Sands [13] formalise intransitive non-
interference so that two goals are achieved. First the place in the program where
information flow is limited through a syntactical extension of the language. Sec-
ond the security level where information flows through is specified through an
extension of the security lattice by an intransitive component.

History-based Release incorporates these concerns. The place in the program
where information flow is guaranteed in the same way as described above for
the non-disclosure property. Furthermore the locality-based security policies are
intransitive due to being based on graphs rather than lattices.

Non-interference until by Chong and Myers [3, 4] propose adding conditions to
security policies based on lattices. This is done by introducing a special anno-
tated flow into the security policies of the form £y ~> - - - ~% £}, which states that
information can be gradually downgraded along with the fulfilment of the con-
ditions c1, ..., cg. It is straightforward to represent the downgrading condition
with History-based Release.

However, observe that once the conditions are fulfilled, information can flow
directly from £, to any of the security levels £1, ..., £). Therefore non-interference
until does not provide the intransitive guarantees of History-based Release. An-
other point is the temporal constraints that History-based Release enforce on
execution traces. Non-interference until provides simple temporal guarantees,
namely that conditions are fulfilled prior to downgrading, however neither the
order of the fulfilment nor the conditions allow for temporal constraints.



Flow Locks. Recently Broberg and Sands [2] introduced the novel concept of
flow locks as a framework for dynamic information flow policies. The policies
are specified in syntactical constructs introduced in an ML-like calculus. The
constructs are utilised in the opening and closing of flow locks, these locks are
used in constraining the information flows in the policies. The policies have the
form {o; = A;;...;0, = A,} and are annotated to declarations of variables
in the programs. These policies correspond to ours, where a policy needs to
specify where information might flow globally during execution and is hence not
transitively closed. The major difference is that our policies can include temporal
constraints which cannot be expressed in the flow locks policies.

Another major difference between [2] and the present paper is the intuition
behind the security condition. In the flow lock setting information can flow to
security levels as specified in the policies, as long as necessary locks are opened
beforehand. This differs from our definition in not being tied to the actual flow
of information. E.g. once a lock is open information can flow from several levels
and several times. Furthermore flow locks have no way of observing if a lock has
been closed and opened again between two flows. In our setting the constraints
on the execution trace must be fulfilled for every single flow, hence it is not
sufficient that another process is executed at the right location, just before or
after considered flow.

7 Conclusion

We have presented a novel concept of locality-based security policies for infor-
mation flow security. These policies are based on labelled graphs and we have
illustrated how this allows for a simpler specification of certain policies. Fur-
thermore we have presented the History-based Release condition that formalise
how temporal conditions and intransitive information flow are captured in the
security policies.

A static analysis is presented as a mechanism for verification of systems.
The analysis is divided into three parts. Since the first part is the only syntax-
directed part and as it is independent of the security policy for the given system
it can freely be exchanged. Hence allowing us to analyse other process calculi
or even programming languages. Future investigation might consider possibili-
ties of adapting History-based Release to hardware description languages where
locations could be mapped to blocks in structural specifications.
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