
ARTICLE IN PRESS

Information and Computation xxx (2010) xxx–xxx

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Hybrid logical analyses of the ambient calculus

Thomas Bolander a,∗, René Rydhof Hansenb

a Informatics and Mathematical Modelling, Technical University of Denmark, Denmark
b Department of Computer Science, Aalborg University, Denmark

A R T I C L E I N F O A B S T R A C T

Article history:

Received 18 March 2008

Revised 17 January 2009

Available online xxxx

Keywords:

Hybrid logic

Static analysis

Mobile Ambients

In this paper, hybrid logic is used to formulate three control flow analyses forMobile Ambi-

ents, a process calculus designed for modelling mobility. We show that hybrid logic is very

well-suited to express the semantic structure of the ambient calculus and how features

of hybrid logic can be exploited to reduce the “administrative overhead” of the analysis

specification and thus simplify it. Finally,weuseHyLoTab, a fully automated theoremprover

for hybrid logic, both as a convenient platform for a prototype implementation as well as

to formally prove the correctness of the analysis.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

With the increased, and increasing, focusonmakingsecureandreliable systemsalsocomesan increasedneed foradvanced

tools and techniques that canverify important security and reliability properties of a system in all phases of design,modelling,

and implementation. In recent years various forms of static analysis have gained popularity as basis for verification tools, in

part because static analysis can be fully automated and in part because of the ability of static analysis to scale to even the

largest systems. There has also been a growing interest in applying static analysis techniques to the verification of more or

less formal systemmodels, e.g., models formulated as UML diagrams or process calculi, to verify relevant safety and security

properties before starting the actual implementation.

The primary goal of this paper is to demonstrate that hybrid logics can be applied successfully to the area of static analysis

and function as a cornerstone throughout all phases of specification, validation, and implementation of a static analysis. We

do this by using hybrid logics to develop three increasingly precise analyses of theMobile Ambients process calculus [1]. The

ambient calculus was originally designed with modelling of high mobility distributed systems in mind.

The three analyses we develop are specified in the style of the Flow Logic approach to static analysis [2] and are partly

inspired by the Flow Logic based analysis of the ambient calculus described in [3] (see Section 3 for more details). One of the

major advantages of rooting our analyses firmly in hybrid logics, is that it enables us to use the HyLoTab theorem prover for

hybrid logics [4] for proving the correctness of the analyses. Furthermore, by exploiting the model generation capabilities of

HyLoTabwealso automatically obtain prototype implementations of the analyses directly from their respective specifications.

In addition to the obvious convenience of getting an implementation for free, it also obviates the need for manually proving

the correctness of the implementation.

We further argue that hybrid logics are particularly well-suited for specifying analyses for the ambient calculus because

the binary relational structure of models for hybrid logic formulae is similar to the structures underlying the semantics

of Mobile Ambients. This leads to analysis specifications that are compact, straightforward, and to a large extent derived

directly from the semantics. A further technical advantage is that nominals, intrinsic to hybrid logics, provides a convenient

∗
Corresponding author. Fax: +45 45 88 26 73.

Email addresses: tb@imm.dtu.dk (T. Bolander), rrh@cs.aau.dk (R.R. Hansen).

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2009.01.006

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic

ARTICLE IN PRESS

2 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Fig. 1. Ambient syntax.

way to represent names, occurring in the ambient calculus, in the analysis. Thereby avoiding additional technical complexity

otherwise necessary to handle names.

Finally, while the intention of this paper is to show some of the advantages of using hybrid logics for static analysis, the

developed analyses are not mere “toy”-analyses useful only for demonstration purposes. Indeed the analysis described in

Section 7 is comparable to the 0CFA analyses of [3,5] and the analysis defined in Section 8 incorporates an element of flow

sensitivity, by taking the ordering of action sequences into account, thatmarkedly and non-trivially improves precision of the

analysis. Although this flow sensitive analysis is not as precise as the “counting analysis” of [3] nor as the shape analysis of [6],

it does have the advantage of retaining a simple specification that is straightforward to prove correct and easily implemented.

A preliminary version of this paper appeared as [7].

2. Mobile Ambients

Process algebras have long been used for modelling concurrent and distributed systems. These models have been invalu-

able in studying and solving some of the many problems inherent in such systems such as deadlocking, synchronisation,

fairness, etc.

The ambient calculus is a process calculus specifically designed to model mobility of processes. This is in contrast to

traditional process calculi, such as CCS, CSP and theπ-calculus, that focus on communication between processes. In particular

it is possible for an active process and its environment to move between sites. The entities that move in the calculus are

called ambients and theymay contain other active processes as well as other ambients. This gives rise to a tree structure that

changes dynamically as ambients move.

It is exactly this tree structure, formalised in terms of containment as explained in Section 3, the static analyses discussed

in later sections are designed to approximate. The primary goal of the analyses is to ensure that all possible concrete tree

structures that may occur during the execution of a program are represented in the analysis result. Since this is undecidable

in general, the analyses have to over-approximate the set of actual tree structures and thus an analysis result may contain

tree structures that will never actually occur in a program execution.

In this paper, we focus on the core calculus and thus do not take communication into account. As shown in [1] the core

calculus is Turing-complete.

Syntax

Weassume the existence of a countably infinite setNamof names. Themetavariables k, l, m, n, and soon, rangeover names.

The syntax of the ambient calculus is defined in Fig. 1. The restriction operator (νn)P creates a new name n with scope P;

the inactive process, i.e., a process that does nothing, is denoted by 0; processes P and Q running in parallel is represented by

P|Q ; replication, !P, is equivalent to an unbounded number of copies of P running in parallel, thereby providing a recursive

operator.

By n[P] we denote the ambient named n that has the process P running inside it. The capabilities in n and out n are used

to move their enclosing ambients whereas open n is used to dissolve the boundary of a sibling ambient; this will be made

precise when we define the semantics below. We write fn(P) for the free names of P. Trailing occurrences of the inactive

process 0will often be omitted.

Semantics

The semantics of the ambient calculus is defined as a straightforward reduction semantics (see Fig. 3) using a congruence

relation (see Fig. 2) as is common for process calculi.

The essential idea is that the ambient hierarchy, i.e., the structure determining which ambients are inside which other

ambients, canbe changeddynamically by ambients entering or exiting other ambients or evenbydissolving another ambient.

These notions are formalised as the (in), (out), and (open) reduction shown in Fig. 3. In later sections these rules will

be visualised and explained in more detail. The (amb) rule allows processes to be active even when moved around in the

ambient hierarchy.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 3

Fig. 2. Structural congruence.

Fig. 3. Reduction relation.

The (ν) rule defines a scope for the name bound at the ν in much the same way that λ acts as a name binder in the

λ-calculus. In the ambient calculus α-equivalent processes, i.e., processes that are identical modulo α-renaming of bound

names, are identified. To allow our analyses to deal with this, we employ themethod of [3]. We introduce the notion of stable

names: assume the set of names is equippedwith anequivalence relation≡α such that eachequivalence class {m | m ≡α n} is
countably infinite and contains a unique representative n∗. Wewrite SNam for the subset {n∗ | n ∈ Nam} of representatives,
called the stable names. We then restrict α-renaming by only allowing bound names to be renamed with names from the

same equivalence class. This simplifies the technicalities of our analyses without affecting the generality of the semantics.

In [8] a variant of the ambient calculus using only stable names is defined.

Processes can be composed in parallel and executed in an interleaved way, as shown by the (|)-rule. Finally, the (≡)-rule
integrates the congruence relation defined in Fig. 2 into the reduction rules. We will not go into further detail with the

semantics here but refer the reader to later sections and [1].

3. Analysing Mobile Ambients

As mentioned earlier, the most basic and essential property of an ambient program is how the ambient hierarchy dy-

namically develops and unfolds during execution since this is how computation is expressed in the ambient calculus. Here

the ambient hierarchy is the tree structure determined by which ambients are contained in which other ambients. It is, in

general, an undecidable problem to determine the exact tree structure, or rather sequence of tree structures, a given program

will give rise to without actually running it. This is a straightforward consequence of the fact that the ambient calculus is

Turing-complete, see [1].

By applying well-known standard techniques from the static analysis community, it is possible to side-step the above

decidability issues by computing a conservative over-approximation of the set of all possible runtime ambient hierarchies.

This approach to the ambient calculus was pioneered and developed in [9–11,3,5] where the developed static analyses are

used to verify a number of security related properties. These analyses are comparable to computing control flow graphs

for imperative languages or performing control flow analysis of a functional language and are therefore called control flow

analyses.

In this paper, we shall only be concerned with control flow analyses, since they form the foundation upon which other,

more specialised and advanced, analyses are built. For a recent example of a Flow Logic based control flow analysis of the

ambient calculus, see [8]. In [3,6] more advanced static analysis techniques, such as shape analysis, are used to obtain very

precise analyses. However, the increased precision comes at the cost of increased time complexity. Note that even the more

advanced analyses compute or contain a control flow analysis component with varying degrees of precision. We conjecture

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

4 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Fig. 4. Satisfaction relation for the hybrid logic HL(@,− ,↓).

that the method used in this paper to develop analyses can be systematically extended to cover also the more advanced

analyses.

Notably, the above analyses are all developed using the Flow Logic framework for static analysis. The Flow Logic frame-

work [2] is a specification-oriented framework for defining static analyses where specification of the analysis is clearly

separated from the computation of the analysis result. In the Flow Logic framework analyses are defined by specifying what

it means for a proposed analysis result to be correct (rather than how to compute it). In this way an analysis designer

can focus on high-level aspects, such as what properties to analyse and what correctness means, without having to take

low-level implementation issues into account. This approach results in a framework that is light-weight and well-suited for

experimentation and rapid development of a large variety of analyses. The analyses developed in later sections of this paper

are similar in spirit to the analyses of [3,5] and are specified in a manner that is inspired by the Flow Logic framework.

An analysis specified using Flow Logic is typically implemented by systematically transforming the analysis specification

into a constraint generator and then use an appropriate constraint solver to perform the actual (fixed-point) computation

of the analysis result. It is often a straightforward albeit tedious task to prove that the constraint generator correctly im-

plements the analysis specification. In this paper we show how the model-generating capabilities of the HyLoTab theorem

prover for hybrid logics enables us to automatically obtain an implementation for performing the necessary fixed-point

computations directly from the high-level analysis specification and thereby obviating the need for proving correctness of

the implementation: it is correct by construction.

4. Hybrid logic

Hybrid logic is an extension of propositional modal logic. Both modal and hybrid logic are thoroughly introduced in [12].

Hybrid logic is obtained from propositional modal logic by adding a second sort of propositional symbols, called nominals.

We assume that a countably infinite set Nom of nominals is given. The semantic difference between ordinary propositional

symbols and nominals is that nominals are required to be true at exactly one world; that is, a nominal “points to a unique

world”. In addition to the nominals we have a countable set of ordinary propositional symbols, Prop. We assume that the sets

Nom and Prop are disjoint. The hybrid logic we consider has the following syntax:

φ ::= � | p | a | ¬φ | φ ∧ φ | ♦φ | ♦−φ | @aφ | ↓a.φ
where p ∈ Prop and a ∈ Nom. This hybrid logic is usually denoted HL(@,−,↓). Often this hybrid logic is presented with

two sorts of nominals: nominal constants that cannot be bound by the downarrow binder and the quantifiers, and nominal

variables that can. However, as in [13] we here choose to avoid the distinction. We now define models.

Definition 1. Amodel is a tuple (W, R, V)where

1. W is a non-empty set, whose elements are usually called worlds.

2. R is a binary relation on W called the accessibility relation of the model. If (w, v) ∈ R we say that v is accessible from w.

3. For each propositional symbol p, V(p) is a subset of W . For each nominal a, V(a) is an element of W . V(a) is called the

world denoted by a.

Given a model M = (W, R, V), a world w ∈ W , and a nominal a, we use Ma
w to refer to the model which is identical to

M except V maps a to w. The relation M, w |= φ is defined inductively in Fig. 4, where M = (W, R, V) is a model, w is an

element ofW , and φ is a formula of HL(@,−,↓).
By conventionM |= φmeansM, w |= φ for everyworldw ∈ W . A formulaφ is valid if and only ifM |= φ for anymodel

M. In this case we simply write |= φ. A formula φ is satisfiable if and only if ¬φ is not valid, that is, if and only if there exists

a model M and a world w such that M, w |= φ. A formula φ is satisfiable in a model M = (W, R, V) if and only if there is a

world w ∈ W such that M, w |= φ. When φ is satisfiable in a model M we also say that M satisfies φ.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 5

Fig. 5. Box visualisation of the process Ps .

Fig. 6. Tree visualisation of the process Ps .

If φ andψ are formulae and χ is a subformula of φ, we use φ[ψ/χ] to denote the formula obtained from φ by replacing

all occurrences of χ byψ . Later we will need the following well-known and basic result which we state without proof.

Lemma 2. Let φ andψ be formulae of hybrid logic, and let p be a propositional symbol occurring in φ. If |= φ then |= φ[ψ/p].
In later sections nominals are used to represent the (stable) names of the ambient calculus. To simplify matters we take

the set of ambient calculus names, Nam, to be a subset of Nom, thus allowing names to be represented directly as nominals

in a hybrid logical formula.

5. Modelling ambients in hybrid logic

Our inspiration for modelling ambients using hybrid logic comes from the way expressions in the ambient calculus are

usually visualised. To make things simple, let us start by considering only the following fragment of the ambient calculus:

P, Q ::= 0 | P|Q | n[P]. (1)

Consider the process Ps in this fragment given by

Ps = n[v[0]|k[u[0]]]|m[0].
The standard visualisation of Ps is given in Fig. 5. The idea is here to visualise each ambient expression n[P] as a box, using

the name n of the ambient as a label on the box, and P as the content of the box. If the process P itself contains ambients,

these will be visualised as boxes nested inside the box labelled n. This gives the system of boxes nested within each other a

tree-like structure, and we can obviously choose to visualise this structure as a tree instead of a system of boxes. Ambient

names can then be used to label the nodes of the tree, so the process Ps would become represented by the tree given in

Fig. 6. In [14], Cardelli and Gordon introduce a similar tree representation of ambient expressions, however they label the

edges rather than the nodes by ambient names. We have chosen the labelling of nodes to allow a simple translation into

hybrid logic. A labelled tree such as the one given Fig. 6 can be interpreted as a hybrid logical model with the ambient names

interpreted as nominals. In fact, we can even describe the tree directly by the following hybrid logical formula:

φs = ♦
(
n ∧ ♦v ∧ ♦(k ∧ ♦u)

)
∧ ♦m.

The formula φs represents the tree in the sense that any hybrid logical model M in which φs is satisfiable will contain the

tree of Fig. 6 as a subtree—unless some of the nominals are mapped into identical worlds, but if needed this possibility can

be excluded by replacing φs by

φs ∧ ∧{¬@ab | a, b are nominals in φs with a /= b}.
Thus the formula φs can be considered as a syntactic representation of the tree in Fig. 6, which in turn represents the process

Ps. Indeed the original process and the corresponding hybrid formula are quite similar:

Ps = n
[

v[0] | k[u[0]]
]

| m[0]
φs = ♦

(
n∧ ♦v∧ ♦(k ∧ ♦u)

)
∧ ♦m.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

6 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Fig. 7. Box visualisation of the (in) axiom.

Fig. 8. Tree visualisation of the (in) axiom.

Inspired by this similarity we can define a direct translation from processes of the fragment (1) into hybrid logical formulae.

We define such a translation T recursively by:

T (0) = �
T (P|Q) = T (P) ∧ T (Q)
T (n[P]) = ♦(n ∧ T (P)).

It is easy to check that T (Ps) is logically equivalent to φs. The point is now that if we take a process P, translate it into the

hybrid logical formula T (P), and calculate a model M of T (P) then M will actually be an analysis of P. This is because the

accessibility relation of M will be encoding the containment relation between the ambients appearing in Q .

Consider now the following extended fragment of the ambient calculus including the three capabilities in, out and open:

P, Q ::= 0 | P|Q | n[P] | in n.P | out n.P | open n.P.

Capabilities are expressing actions that can be performed on the surrounding ambients. Consider the axiom (in) of Fig. 3. A
standard visualisation of this axiom is given in Fig. 7. What happens in the reduction step of the axiom is that we “execute”

the capability in n.P which tells the surrounding ambientm tomove inside the sibling ambient named n. Using trees instead

of boxes, a simple representation of the (in) axiom could be as in Fig. 8. In the figure the root is marked by ◦. We will use this

as a general convention in the following. From the figure we see that the capability essentially removes one edge and adds

another. Since our analyses of the ambient calculus are going to be over-approximations, wewill concentrate on edges that are

added and ignore edges that are removed. Ignoring the removed edge, the capability ‘in n’ can be seen as a node expressing

“if n is my sibling, then add an edge from n tome” (compare Fig. 8). In hybrid logic this translates into:↓x·(♦−♦n → @n♦x).
The hybrid logical formula expresses: “At the current node x, if it is possible to go one step backwards and then one step

forwards to find the node n then there is an edge from n to x”. Or simply: “If n is a sibling of the current node x then there

is an edge from n to x”. This suggests extending the translation T defined above to translate in capabilities in the following

way:

T (in n.P) = T (P)∧ ↓x·(♦−♦n → @n♦x).

Graphicallywe can then replace the capability ‘in n’ in Fig. 8 by the hybrid logical formula↓x·(♦−♦n → @n♦x), as is done in
Fig. 9. The point is now that if we have a hybrid logical model containing the tree on the left hand side of the reduction arrow

in Fig. 9, then itwill also contain the tree on the right hand side. This is because the translated capability↓x·(♦−♦n → @n♦x)
atm forces there to be an edge from n tom. We canmake translations of the out and open capabilities that behave in a similar

way. Hereby we obtain a translation T satisfying the following property:

Let P and Q be processes. If a hybrid logical model M satisfies T (P) and if P can be reduced to Q , then M also satisfies

T (Q).

This is a subject reduction result, which is a central property of any analysis based in Flow Logic. As we shall see in the

following section, it follows directly from this subject reduction result that the translation T gives rise to a correct analysis

of the calculus.

Note that even though we refer to the mapping T as a ‘translation’ it is not meaning preserving in any strict sense, and

neither is it supposed to be. Rather, it is a mapping that transforms an ambient calculus process into a hybrid logical formula

encoding an approximation of the process and its possible reductions. One of the approximations takes place in the translation

of the composition operator. Given aprocess P, the processes P and P|P are not in general congruent. However, their respective

translations by T will always be logically equivalent, since the composition operator is translated into logical conjunction.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 7

Fig. 9. Hybrid logical visualisation of the (in) axiom.

Fig. 10. Defining clauses for the translation T0.

Thus the difference between P and P|P is not captured in the translation. For a more precise translation, the composition

operatorwould have to be translated into a contraction-free connective in a suitable substructural logic. However, this would

introduce a number of other technical issues and complexities outside the scope of the present paper and therefore we do

not consider it further here, but leave it for future work.

Note also that the translation T merges all occurrences of ambients with the same name, i.e., the translation is unable

to distinguish between two different syntactic occurrences of the same name. This results in a slight imprecision (when

analysing processes with non-bound names) in the analyses described in later sections. However, it does not affect the

correctness of the analyses and it is easily remedied in the rare cases where the extra precision is needed, e.g., by adding

more structure to ambient names or even by annotating ambients with labels, cf. [3,5].

6. The naïve analysis

We now develop the ideas introduced above in detail. Our first analysis is rather simple, and we thus call it the ‘the naïve

analysis’. The naïve analysis is based on a simple translation T0 taking a process P and returning a hybrid logical formula

T0(P). The translation is defined inductively by the clauses given in Fig. 10. Note that in the translation T0, all ambient calculus

names n are replaced by their respective stable names n∗. This is done in order to ensure that the translation is invariant

under the restricted form of α-renaming employed in the semantics of the ambient calculus (cf. Section 2 above).

The intuition behind the translations of the out and open capabilities is probably best illustrated through visualisations

of the corresponding axioms. The standard box visualisation of the (out) axiom is given in Fig. 11. A corresponding tree

visualisation is given in Fig. 12. In the latter figure we see that when the capability out n atm is executed the edge from n to

m is being replaced by an edge from the root to m. Ignoring the edge being removed, the capability thus expresses: “at the

present node x, if there is an edge from n to x then add an edge from the predecessor(s) of n to x”. In terms of hybrid logic

this can be expressed by the following formula: ↓x·(♦−n → @n�−♦x). This is exactly the formula used in T0 to translate

the out n capability. Consider now the open capability. The standard box visualisation of the (open) axiom is given in Fig. 13

and the corresponding tree visualisation in Fig. 14. From the tree visualisation we see that executing the open capability

essentially amounts to performing an edge contraction. This is very simple to express in hybrid logic, as we can identify the

two end points of an edge by letting the same nominal hold at both points. This leads us to translate the capability open n by

the hybrid logical formula ♦n → n, which expresses: “if there is an edge from here to n, then n is here”.

For the translation operator T0 we have the following results.

Lemma 3. For all processes P and Q of the ambient calculus, if P ≡ Q then |= T0(P) ↔ T0(Q).

Proof. We need to show that for each of the rules of Fig. 2 we get a true statement if we replace each congruence P ≡ Q

appearing in the rule by |= T0(P) ↔ T0(Q). In Fig. 15we have shown that this indeed holds (compare Fig. 15with Fig. 2). The

remark in parentheses given after each statement in the figure explainswhy the statement is true.We also need to check that

if P is α-equivalent to Q then |= T0(P) ↔ T0(Q). So suppose P and Q are α-equivalent. By convention, P and Q then become

syntactically identical when all occurring names are replaced by their corresponding stable names. Since the translation T0

replaces all names by their corresponding stable names, we immediately get T0(P) = T0(Q) and thus |= T0(P) ↔ T0(Q).
�

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

8 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Fig. 11. Box visualisation of the (out) axiom.

Fig. 12. Tree visualisation of the (out) axiom.

Theorem 4 (Subject reduction for T0). For all processes U and V of the ambient calculus, if U → V then |= T0(U) → T0(V).

Proof. The proof proceeds by induction on the depth of the proof tree forU → V . In the base casewe consider proof trees of

depth 0 corresponding to the axioms (in), (out) and (open). Consider first the case of the (in) axiom. If U → V is an instance

of the (in) axiom then there must be processes P, Q , R and names n, m such that:

U = m[in n.P|Q]|n[R]
V = n[m[P|Q]|R].

This implies

T0(U) = ♦
(
m∗ ∧ T0(P) ∧ T0(Q)∧ ↓x·(♦−♦n∗ → @n∗♦x)

)
∧ ♦

(
n∗ ∧ T0(R)

)

T0(V) = ♦
(
n∗ ∧ T0(R) ∧ ♦(m∗ ∧ T0(P) ∧ T0(Q))

)
.

We now need to prove |= T0(U) → T0(V). By Lemma 2, it suffices to prove validity of the following formula:

ψ =
(

T0(U) → T0(V)

)
[p/T0(P), q/T0(Q), r/T0(R)]

where p, q and r are arbitrarily chosen propositional symbols. The theorem prover HyLoTab can be used to verify the validity

ofψ in the following way. Firstψ is negated, and then the negated formula is translated into the syntactic form expected by

HyLoTab (see [15]):

-((<>conj(c0,p0,p1,Dx.(<∼><>c1 -> @c1 <>x)) &

<>conj(c1,p2)) -> <>conj(c1,p2,<>conj(c0,p0,p1))).
(2)

To conform to the HyLoTab syntax,m∗ has been replaced by c0, n∗ by c1, p by p0, q by p1 and r by p2. Now HyLoTab is run with

the formula (2) as input, and it is checked that HyLoTab terminates with output “not satisfiable”. Since HyLoTab thus proves

¬ψ to be non-satisfiable,ψ must be valid, as required. This concludes the case of the (in) axiom. The cases of the (out) and
(open) axioms are similar, and have been verified by HyLoTab as well. Thus the base cases are completed. We now turn to the

induction step. Assume that U → V is the root of a proof tree of depth k, and suppose that for any reduction step U′ → V ′
with a proof tree of depth less than k we have |= T0(U

′) → T0(V
′). There are now four cases to consider, one for each of

the four possible proof rules (amb), (ν), (|) and (≡) that could have produced the reduction step U → V . Consider first the

case of the (amb) rule. If U → V has been produced by (amb) then there must exist processes P, Q and a name n such that

U = n[P], V = n[Q], and there is a proof tree of depth k − 1 for the reduction step P → Q . By induction hypothesis we then

get |= T0(P) → T0(Q). Furthermore, by the definition of T0 we get T0(U) = ♦(n∗ ∧ T0(P)) and T0(V) = ♦(n∗ ∧ T0(Q)).
Since T0(P) → T0(Q) is valid it is easy to see that T0(U) → T0(V)must be valid as well, as required. This concludes the case

of the (amb) rule. The cases of the three remaining rules, (ν), (|) and (≡), are equally simple. In the case of the (≡) rule,
Lemma 3 immediately gives the required conclusion. �

Wewill now showhow the translation T0 gives rise to a correct analysis of the ambient calculus. Firstwe need to introduce

a few new notions. Let M = (W, R, V) be a model. The nominal accessibility relation of M is the following relation:

{(m, n) ∈ Nom2 | (V(m), V(n)) ∈ R}.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 9

Fig. 13. Box visualisation of the (open) axiom.

Fig. 14. Tree visualisation of the (open) axiom.

Thus the nominal accessibility relation contains the set of pairs of nominals (m, n) for which the world denoted by n is

accessible from the world denoted by m. It is simply the accessibility relation of M translated into a relation on nominals.

Let P be a process and let m and n be names occurring in P. We say that m contains n in P, written m ↓P n, if there exists

a subprocess P′ of P satisfying P′ ≡ m[Q |n[R]]. The intuition here is that ‘m contains n’ means that the ambient named n

runs immediately inside the ambient named m. A correct analysis of a process P is a setM ⊆ SNam2 satisfying:

For any process Q and any pair of names m and n, if P →∗ Q andm ↓Q n then (m∗, n∗) ∈ M.

Thus if M is a correct analysis of a process P and if (m∗, n∗) is a pair of names not belonging to M, then we know that it is

impossible for n to end up running immediately insidem. This iswhat allows one to prove security properties of e.g., firewalls

using correct analyses: If a correct analysis of a process P does not contain a pair (m∗, n∗) then we have verified that n can

never enterm.

Theorem 5 (Correctness). Given any process P and any model M satisfying T0(P), the nominal accessibility relation of M is a

correct analysis of P.

Proof. First it is proved that the following holds:

For all processes Q , all ambient names m, n, and all models M,

ifm ↓Q n and M = (W, R, V) satisfies T0(Q) then
(V(m∗), V(n∗)) ∈ R.

(3)

The property is proved by induction on the syntactic structure ofQ . The base caseQ = 0, and the induction stepsQ = !U and

Q = (νk)U are trivial. Now consider the induction stepwhereQ = in k.U for some k andU. Supposem ↓Q n andM satisfies

T0(Q). By definition of T0 we have T0(Q) = T0(U) ∧ ψ for some formulaψ . Thus sinceM satisfies T0(Q) it must also satisfy

T0(U). SinceQ = ink.U andm ↓Q n,wemust alsohavem ↓U n. Thusby inductionhypothesiswenowget (V(m∗), V(n∗)) ∈ R,

as required. The cases of the out and open capabilities are completely similar to the case of the in capability. Consider now

the case where Q = U|V for some U and V . Suppose m ↓Q n and M satisfies T0(Q). Then M must satisfy both T0(U)
and T0(V), by definition of T0. Since m ↓Q n, either m ↓U n or m ↓V n. In either case the induction hypothesis implies

(V(m∗), V(n∗)), as needed. Consider finally the case where Q = k[U] for some k and U. Suppose m ↓Q n and M satisfies

T0(Q). Since M satisfies T0(Q) there must exist a world w such that M, w |= T0(Q), that is, M, w |= ♦(k∗ ∧ T0(U)). This
implies M, V(k∗) |= T0(U). Since Q = k[U] and m ↓Q n we must have either m ↓U n or k = m and U ≡ V |n[W] for some

processes V and W . Assume first m ↓U n. Since M, V(k∗) |= T0(U) we have that M satisfies T0(U) and thus the induction

hypothesis immediately gives the needed conclusion. Assume now that k = m and U ≡ V |n[W]. Since M, V(k∗) |= T0(U),
Lemma 3 implies M, V(k∗) |= T0(V) ∧ ♦(n∗ ∧ T0(W)). In particular, we get M, V(k∗) |= ♦n∗, and since k = m this implies

(V(m∗), V(n∗)) ∈ R, as needed. This completes the proof of (3). Now assume P is a process and M = (W, R, V) is a model

satisfying T0(P). What we need to prove is the following:

If Q is a process such that P →∗ Q andm ↓Q n then (V(m∗), V(n∗)) ∈ R.

Let thus a process Q be given such that P →∗ Q and m ↓Q n. By subject reduction, Theorem 4, we get |= T0(P) → T0(Q).
Since M satisfies T0(P) it must thus also satisfy T0(Q). We can now apply (3) to conclude (V(m∗), V(n∗)) ∈ R, as required.

This concludes the proof. �

The theorem above shows that to make an analysis of a process P we simply need to find a model of T0(P). This can be

done e.g., by using HyLoTab, since HyLoTab is a tableau-based theorem prover, and given a satisfiable formula as input it will

return a model of that formula. Let us consider an example.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

10 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Fig. 15. Congruences translated into logical equivalences.

Fig. 16. Model of T0(P).

Example 6 (A simple process). Consider the simple process P given by

P = a[open b.c[0]|b[0]].
For simplicity we will assume that a, b, and c are stable names. It is seen that b is contained in a in this process. Applying the

(open) axiom and the (amb) rule to the process we get

P → a[c[0]|0].
Thus P reduces to a process in which c is contained in a. Therefore a correct analysis of P must contain at least the pairs (a, b)
and (a, c)—where the first pair corresponds to the fact that a contains b in P, and the second pair corresponds to the fact that

P can be reduced to a process in which a contains c. We will now try to apply the machinery above to construct an analysis

of P. By the correctness theorem above, Theorem 5, the nominal accessibility relation of any model of T0(P)will be a correct

analysis. We can use HyLoTab to compute a model of T0(P) by simply giving the formula as input to HyLoTab. HyLoTab then

returns the model M = (W, R, V) given by:

W = {w1, w2, w3}
R = {(w1, w2), (w2, w2), (w2, w3)}
V(a) = w2, V(b) = w2, V(c) = w3.

This model is illustrated in Fig. 16. From the figure we see that the nominal accessibility relation of M is {a, b} × {a, b, c}.
This set constitutes, by Theorem 5, a correct analysis of the process P. We see that the analysis contains the pairs (a, b) and

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 11

Fig. 17. Hybrid logical visualisation of the (open) axiom using T0.

Fig. 18. A better hybrid logical visualisation of the (open) axiom.

(a, c) as expected. However, it also contains the pair (b, a) which actually does not correspond to a possible configuration,

since it is easily seen that no sequence of reduction steps can reduce P to a process where b contains a. This is because our

treatment of the open capability in the translation T0 is a bit too simplistic.

Let us take a closer look at how T0 translates the open capability. A tree visualisation of the (open) axiom was given in

Fig. 14. Replacing the capability open n in Fig. 14 by its translation ♦n → n we get the hybrid logical visualisation given

in Fig. 17 (n is assumed to be a stable name). Consider the left-hand tree in this figure. Since the formula ♦n → n holds

at the root of this tree, and since the node labelled n is accessible from the root, the nominal n must also hold at the root

of the tree. Since nominals are true at unique worlds, the two nodes must be identical. In other words, the two nodes are

collapsed into one, corresponding to the right-hand tree in the figure. This shows that the translation of the open capability

behaves as expected. However, there is one complication. The collapsed node will obviously be labelled by n, but the root of

the right-hand tree is not labelled by n. Since a correct analysis is an over-approximation, adding n as label to some node can

never affect correctness, but it can affect the precision of the analysis.Whatwewould like is amore precise translation of the

open capability that does not add n as label to the root node. That is, we seek a translation that ‘copies’ the subtree Q at the

node labelled n to the root node, but does not also copy the label n. Such a ‘copying’ of Q can be performed by the following

process: For every node u in Q , if there is an edge from n to u then add an edge from the root to u. We can also express this

process as a hybrid logical formula at the root node:↓x·(♦n → @n�♦−x). If we translate the open capability by this formula

rather than simply♦n → n then we get the hybrid logical visualisation in Fig. 18. The dashed edges correspond to the edges

that are added by the new translation. In the following section, we show that using this more complicated translation of

the open capability actually yields a more precise analysis. In particular, it will solve the imprecision problem discussed in

Example 6.

7. The not-so-naïve analysis

Wenowconstruct a slightlymorepreciseanalysis. It is basedona translationT1 fromprocesses intohybrid logical formulae

given by the clauses in Fig. 19. Note that the first five clauses in the definition of T1 are identical to the corresponding five

clauses for T0. Furthermore, the clauses for the in and out capabilities only differ from the corresponding T0 clauses by

adding ♦�− in front of the downarrow binder. The addition of ♦�− ensures that the body Q of an ambient n[Q] will be

translated into formulas holding at proper descendants of the node named n. This is necessary to be sure that everything in

Q will be moved into the right place if the boundary of the ambient n[Q] is dissolved by an open n capability (cf. Fig. 18).

The clauses for the in, out and open capabilities are now very similar. The translations of in n.P, out n.P and open n.P are

all on the form

T1(P) ∧ ♦�− ↓x·(An∗ → @n∗Bx)

where A and B are compound modal operators given by:

Formula Value of A Value of B

in n.P ♦−♦ ♦
out n.P ♦− �−♦
open n.P ♦ �♦−

Note in particular the duality between the translations of out n.P and open n.P. We can now prove the same results for T1 as

we did for T0.

Lemma 7. For all processes P and Q of the ambient calculus, if P ≡ Q then |= T1(P) ↔ T1(Q).

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

12 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Fig. 19. Defining clauses for the translation T1.

Proof. The proof is essentially the same as the proof of Lemma 3: simply replace T0 by T1 everywhere. �

Theorem 8 (Subject reduction for T1). For all processes U and V of the ambient calculus, if U → V then |= T1(U) → T1(V).

Proof. Since the first five clauses are identical for T0 and T1, we can reuse most of the proof of the subject reduction result

for T0, Theorem 4.We only need to check the cases where P → Q has been produced by one of the rules (in), (out) or (open).
The cases of (in) and (out) are treated exactly as in the proof of Theorem 4, so we will here only cover the case of (open). In
the case of (open) there exist processes P, Q and a name n such that:

U = open n.P|n[Q]
V = P|Q .

This gives

T1(U) = T1(P) ∧ ♦�− ↓x·(♦n∗ → @n∗�♦−x) ∧ ♦(n∗ ∧ T1(Q))

T1(V) = T1(P) ∧ T1(Q).

Unfortunately, the formula

(
T1(U) → T1(V)

)
[p/T1(P), q/T1(Q)]

is not valid. So to prove the validity of T1(U) → T1(V)we need to take a closer look at the structure of T1(P) and T1(Q). From
the definition of T1 it can be seen that any processW will be translated into a formula T1(W) on the formψ1 ∧ ψ2 ∧ · · ·ψk ,

where eachψi is either the formula� or a formula on the form♦χ . Thus for anyprocessW , T1(W)will be logically equivalent

to a formula of the form ♦χ1 ∧ · · · ♦χl . In particular, T1(P) and T1(Q)will be logically equivalent to formulas on this form.

To prove the validity of T1(U) → T1(V) it thus suffices to prove the validity of the following formula:

(
T1(U) → T1(V)

)
[♦p/T1(P),♦q/T1(Q)].

This latter formula has been fed to HyLoTab and, as required, its validity was verified. The fact that we need to use♦p and♦q

instead of p and q to obtain a valid formula shows that the extra ♦ in the translation of the in and out capabilities is indeed

required, as also noted in the informal discussion following the definition of T1. �

Theorem 9 (Correctness). Given any process P and any model M satisfying T1(P), the nominal accessibility relation of M is a

correct analysis of P.

Proof. The proof is essentially identical to the proof of Lemma 5: simply replace T0 by T1 everywhere. �

Example 10 (A simple process). In Example 6 we considered the process P given by P = a[open b.c[0]|b[0]]. Let us see
how our new analysis based on the translation T1 behaves with respect to P. Giving T1(P) as input formula to HyLoTab it

produces the model M = (W, R, V) given by

W = {w1, w2, w3, w4, w5}
R = {(w1, w2), (w2, w3), (w2, w4), (w2, w5)}
V(a) = w2, V(b) = w3, V(c) = w4.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 13

Fig. 20. Model of T1(P).

Fig. 21. Model of T1(Q).

This model is illustrated in Fig. 20. The dashed edges are the edges that either start or end in a node not labelled by any

nominal. Such edges do not affect the nominal accessibility relation, and from now onwe simply omit them. From the figure

we see that the nominal accessibility relation of M is {(a, b), (a, c)}. By Theorem 9, this set is a correct analysis of P. Since the

set is a proper subset of the analysisweobtained in Example 6,wehavenow indeedobtained amoreprecise analysis. Actually,

the present analysis of P contains only the two pairs that any correct analysis of P is required to contain, by Example 6.

Example 11 (Nested capabilities). Let us consider a slightly more complex example. Let Q be the process given by Q =
a[open b.open c.0|c[d[0]]].Wewill assume that a, b, c and d are stable names. Using T1(Q) as input to HyLoTabwe get the

model M illustrated in Fig. 21. Its nominal accessibility relation is {(a, c), (a, d), (c, d)}. This is the same analysis as provided

by the 0CFA analysis of [3]. However, the analysis is not completely precise. There are no non-trivial reductions that can be

made on Q since there is no ambient named b that the outermost open capability can be applied to. Thus we would expect a

precise analysis to only give the pairs (a, c) and (c, d) corresponding to the fact that a contains c and c contains d in Q . The

reason that the present analysis and the 0CFA of [3] do not give this result is that they both ignore the nesting order on the

capabilities. In the case of Q this means that the relative ordering of the two capabilities open b and open c is ignored. Using
the hybrid logical machinery we have developed it is fortunately quite easy to improve the analysis and obtain one which

takes the ordering of capabilities into account.

Consider the following sequence of capabilities: in k.out l.openm.0. Using the present translation we get:

T1(in k.out l.openm.0) = T1(in k.0) ∧ T1(out l.0) ∧ T1(openm.0).

This implies that each of the three individual capabilities in k, out l and open m will be ‘executed’ in the same world of the

Kripke model induced by the translated formula. This of course means that the translation is flow insensitive: The ordering

of the capabilities is not preserved under the translation. However, since we are working with graphs, there is a simple way

to solve this problem. Instead of translating a capability like in k.P into a formula of the form T1(P) ∧ ♦ψ we could translate

it into a formula of the form ♦(T1(P) ∧ ψ). Then each capability will add a new edge to the graph because of the ♦ in front

of the formula, and the body of the capability will be ‘executed’ at the world that this new edge leads to. Thus sequences of

capabilities will be translated into paths, and the ordering of them will thus be preserved. In the following section we show

how to construct such a flow sensitive translation.

8. A better analysis

Wefinally construct an evenmore precise analysis where the nesting of not only ambients but also of capabilities is taken

into account. The resulting analysis is a so-called flow sensitive analysis because it takes the order in which capabilities can

be exercised into account. The analysis is based on a translation T2 from processes into hybrid logical formulae given by the

clauses in Fig. 22.

Note that the first five clauses in the definition of T2 are identical to the corresponding five clauses for T0 and T1.

Furthermore, the clauses for the in, out and open capabilities are quite similar to the corresponding clauses for T1. The

translation of in n.P, out n.P and open n.P are now all on the form

♦(T2(P)∧ ↓y.�− ↓x·(An∗ → @n∗By ∧ @xy))

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

14 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Fig. 22. Defining clauses for the translation T2.

Fig. 23. Modified tree visualisation of the (in) axiom.

where A and B are the same compound modal operators as for T1. As before, we will try to illustrate the intuition behind

the translations of the capabilities by tree visualisations. The previously given tree visualisations need to be modified, since

now our trees will not only encode the nesting of ambients, but also the nesting of capabilities. Consider again the standard

box visualisation of the (in) axiom given in Fig. 7. In the modified tree visualisation, the capability in nwill no longer be put

at the same level as the ambient m, but will generate a new level below m. This results in the tree visualisation presented

in Fig. 23. The visualised reduction step now involves two changes to the tree structure: (1) the edge from the root to m is

replaced by an edge from n to m; (2) the edge from m to the node labelled in n is contracted. In the translation T2 the edge

replacement is treated the sameway as in T1. The edge contraction is dealt with by the addition of the subformula @xy in the

definition of T2(in n.P). The translations of the out and open capabilities by T2 are similarly obtained from T1 by the addition

of a subformula @xy taking care of the edge contraction.

Lemma 12. For all processes P and Q of the ambient calculus, if P ≡ Q then |= T2(P) ↔ T2(Q).

Proof. The proof is essentially the same as the proof of Lemma 3: simply replace T0 by T2 everywhere. �

Theorem 13 (Subject reduction for T2). For all processes U and V of the ambient calculus, if U → V then |= T2(U) → T2(V).

Proof. Since the first five clauses are identical for T0, T1 and T2, we again only need to consider the rules (in), (out) and
(open). In each case we need to prove the validity of a formula T2(U) → T2(V). As in the proof of Theorem 8, this is done

using HyLoTab. The only complication is that as in the proof of Theorem 8 we need to replace the translated subprocesses by

formulas on the form ♦p rather than simply propositional symbols. We leave out the details, as the proof is essentially the

same as the proof of Theorem 8. �

Theorem 14 (Correctness). Given any process P and any model M satisfying T2(P), the nominal accessibility relation of M is a

correct analysis of P.

Proof. Essentially identical to the proof of Lemma 3: simply replace T0 by T2 everywhere. �

Example 15 (Nested capabilities). In Example 11we considered the process Q given by Q = a[open b.open c.0|c[d[0]]]. As
mentioned in Example 11, the translation T1 gave us an analysis of Q which was not completely precise. Let us see whether

the translation T2 performs better. Giving T2(Q) as input to HyLoTabwe obtain themodel M presented in Fig. 24. This model

is exactly as the model of T1(Q) except that the edge from w1 to w3 is no longer present. Thus we instead get the following

nominal accessibility relation: {(a, c), (c, d)}. This relation is the analysis we expected and it is seen to be more precise than

both our analysis based on T1 and the 0CFA analysis of [3]. This improved precision is gained by making the analysis of

capability sequences flow sensitive (cf. the concluding discussion at the end of Section 7).

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 15

Fig. 24. Model of T2(Q).

Flow sensitive analyses

The increased precision of the T2 analysis developed in this section derives from the encoding of not only the ambient

hierarchy but also the capability hierarchy. Intuitively this allows the analysis to take the temporal ordering of capabilities

into account when analysing an ambient program. Such analyses are called flow sensitive analyses and are, in general, more

precise (and often much more expensive) than the corresponding flow insensitive analysis. In [16] a flow sensitive control

flow analysis of the ambient calculus is developed and extended into a so-called boundary nesting analysis that is used to

verify that certain confidential information is not leaked. We believe that the precision of the boundary nesting analysis

in [16] is comparable to that of our T2 analysis. Furthermore, the advantages of choosing a logical foundation for our analyses

that is very close to the semantics of the ambient calculus become evident: the hybrid logic formulation remains succinct and

does not require anymajor additions to the specification. In comparison, the flow sensitive analysis of [16] requires significant

extensionsof andadditions to theunderlying control flowanalysis in order to accomodate the increasedprecision. A thorough

and formal comparison of the two analyses is the topic of future work.

9. Complexity issues

So far we have not been concerned with the important issues of computability and complexity. Since the full hybrid

logic HL(@,−,↓) is undecidable, it is not immediately obvious that models of translated processes can always be computed.

Fortunately, the fragment of HL(@,−,↓) utilised in this paper is decidable, and HyLoTab decides it. This means that when

HyLoTab is given the translation of a process P as input it will eventually terminate and return a model of the translated

process, that is, an analysis of P. We will prove this in the following.

A formula of HL(@,−,↓) is said to be in negation normal form (NNF) if all negation symbols are immediately in front of

nominals or propositional symbols. A simple procedure for putting an arbitrary hybrid formula into negation normal form

is given in [17]. Let φ denote a formula in negation normal form. φ is said to be non-existential if for all subformulas of the

form ♦ψ or ♦−ψ ,ψ is a nominal [18]. φ is said to semi-non-existential if for all subformulas of the form �ψ or �−ψ ,ψ is

non-existential. In other words, φ is semi-non-existential if and only if each ♦ and ♦− in the scope of a � or �− is applied

directly to a nominal. A formula not in negation normal form is said to be (semi-)non-existential if and only if it becomes

(semi-)non-existential when put in negation normal form. We now have the following result.

Theorem 16. HyLoTab decides the satisfiability problem for the semi-non-existential formulae of HL(@,−,↓).
Proof. Let φ be a semi-non-existential formula of HL(@,−,↓). We need to prove that HyLoTab terminates on input φ. To
prove this we simply need to prove that any tableau with root φ in the calculus employed by HyLoTab is finite (see [4] for

details on the tableau calculus). It suffices to prove that any tableau branch with root φ is finite. To prove this, let Γ denote

such a tableau branch, and let n denote the total number of connectives occurring in φ. Each node on Γ is a formula of the

form@mψ , wherem is a nominal andψ is a quasi-subformula ofφ (a quasi-subformula is either a subformula or the negation

of a subformula). The number of nodes on Γ is thus bounded by the product of the number of nominals occurring on Γ and

the number of quasi-subformulas of φ. The number of quasi-subformulas of φ is obviously in O(n). Thus to prove that Γ is

of finite length, we only need to prove that the number of nominals occurring on Γ is finite. This number is equal to the sum

of the nominals in the input formula and the number of fresh nominals introduced on the branch. In the tableau calculus

employed by HyLoTab, only the rules for♦ and♦− can introduce fresh nominals to the branch. The occurrences of♦ and♦−
in φ that are not in the scope of a � or a �− can only produce one fresh nominal each. The occurrences of ♦ or ♦− in the

scope of a� or a�− cannot produce fresh nominals, as these are by assumption only applied directly to nominals. Thus the

number of fresh nominals introduced to Γ must be in O(n), and therefore the total number of nominals on the branch must

also be in O(n). This is the required conclusion. �

It is easy to check that eachof the translationsT0,T1, andT2 only produce semi-non-existential formulas. Thus the theorem

above guarantees that all three translations give rise to computable analyses.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

ARTICLE IN PRESS

16 T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx

Wewill not provide a more detailed complexity analysis in this paper, as it would require a much more detailed analysis

of the workings of the HyLoTab prover. The generality of the HyLoTab prover makes it unlikely that HyLoTab-based analyses

will reach the state-of-the-art complexities for analyses of the ambient calculus. To obtain better complexities one should

make specialised algorithms for model generation of formulas of the type generated by T0, T1, and T2. We have not analysed

the complexities that would be obtained by constructing such specialised algorithms.

10. Conclusions

The ambient calculus has been studied in many variations and contexts and numerous type systems and static analyses

have been developed for it. Much of this work is aimed at particular application areas or focussed on providing powerful

analyses [19,14,3,5,20,21,6], most of which are variations over or specialisations of the basic notion of control flow analysis.

In this paper we have been more concerned with the theory underlying the analyses and in particular to examine the use of

hybrid logics as a platform for static analysis of the ambient calculus. This is especially evident in the way the analyses were

derived, almost mechanically, from the semantics of the ambient calculus leading to compact yet clear analyses that are very

close to the ambient semantics.

We have argued, persuasively we hope, that hybrid logics do indeed provide a very elegant and useful platform for

developing concrete analyses in a systematic and incremental way, with strong tool support throughout all phases of

development, but also as a convenient platform for experimenting with and reasoning about many aspects of static analysis.

Related work

While various logics have been used extensively for program analysis, we are not aware of any prior use of hybrid logics

in this context. A number of specialised logics specifically for reasoning about the ambient calculus and similarly structured

data have been proposed in the literature [14,22]. These logics are very expressive and focussed on exact and powerful

reasoning about ambient programs. However, this power comes at a price: the full logics are either undecidable or have very

high time complexities. In program analysis the focus is on balancing expressiveness and precision with implementability

and efficiency. This leads to the adoption of simpler logics or fragments of more powerful logics for analysis purposes. In

future work we intend to continue investigating the merits of different (fragments of) hybrid or modal logics for program

analysis.

The analyses in this paper are mainly inspired by the control flow analyses developed in the Flow Logic framework [3,5].

In none of theseworks are logics used so pervasively and essentially to obtain clear analysis specifications, computer assisted

correctness proofs, and automated implementation.

Future work

Based on the positive experiences with formulating program analyses using hybrid logics described in this paper, we

will continue exploring the design space and in particular work on making more precise analyses by exploiting the close

connection between the ambient semantics and hybrid logics. We believe that the possibilities of using hybrid logic for

precise and yet compact as well as clear analyses of the ambient calculus are yet far from exhausted.

References

[1] L. Cardelli, A.D. Gordon, Mobile ambients, Theoretical Computer Science, 240 (2000) 177–213.
[2] H.R.Nielson, F.Nielson, Flow logic: amulti-paradigmatic approach to static analysis, TheEssenceofComputation:Complexity, Analysis, Transformation,

Lecture Notes in Computer Science, vol. 2566, Springer-Verlag, 2002, pp. 223–244.
[3] F. Nielson, R.R. Hansen, H.R. Nielson, Abstract interpretation of mobile ambients, Science of Computer Programming 47 (2–3) (2003) 145–175.
[4] J. van Eijck, Constraint Tableaux for Hybrid Logics, Manuscript, CWI, Amsterdam, 2002.
[5] F. Nielson, H.R. Nielson, R.R. Hansen, Validating firewalls using flow logics, Theoretical Computer Science 283 (2) (2002) 381–418.
[6] H.R. Nielson, F. Nielson, Shape analysis for mobile ambients, in: Conference Record of the Annual ACM Symposium on Principles of Programming

Languages, POPL’00, ACM Press, 2000, pp. 142–154.
[7] T. Bolander, R.R. Hansen, Hybrid logical analyses of the ambient calculus, in: D. Leivant, R. de Queiroz (Eds.), Workshop on Logic, Language, In-

formation and Computation (WoLLIC’07), Lecture Notes in Computer Science, vol. 4576, Springer-Verlag, Rio de Janeiro, Brazil, 2007, pp. 83–100,
doi: 10.1007/978-3-540-73445-1.

[8] H.R. Nielson, F. Nielson, M. Buchholtz, Security for mobility, in: R. Focardi, R. Gorrieri (Eds.), FOSAD, Lecture Notes in Computer Science, vol. 2946,
Springer, 2004, pp. 207–265.

[9] R.R. Hansen, J.G. Jensen, Flow logics for mobile ambients, Master’s Thesis, Aarhus University, 1999.
[10] R.R. Hansen, J.G. Jensen, F. Nielson, H.R. Nielson, Abstract interpretation of mobile ambients, in: A. Cortesi, G. Filé (Eds.), Proceedings of the Static

Analysis Symposium, SAS’99, Lecture Notes in Computer Science, vol. 1694, Springer-Verlag, Venice, Italy, 1999, pp. 134–148.
[11] F. Nielson, H.R. Nielson, R.R. Hansen, J.G. Jensen, Validating firewalls in mobile ambients, in: International Conference on Concurrency Theory

(CONCUR’99), 1999, pp. 463–477. Available from: <citeseer.ist.psu.edu/nielson99validating.html>.
[12] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge Tracts in Theoretical Computer Science, vol. 53, Cambridge University Press, Cambridge,

UK, 2001.
[13] T. Braüner, Natural deduction for hybrid logic, Journal of Logic and Computation 14 (3) (2004) 329–353. Available from:

<http://dx.doi.org/10.1093/logcom/14.3.329>.
[14] L. Cardelli, A.D. Gordon, Anytime, anywhere: modal logics for mobile ambients, Conference Record of the Annual ACM Symposium on Principles of

Programming Languages, POPL’00, ACM Press, 2000, pp. 365–377.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

doi:10.1007/978-3-540-73445-1
http://citeseer.ist.psu.edu/nielson99validating.html
http://dx.doi.org/10.1093/logcom/14.3.329

ARTICLE IN PRESS

T. Bolander, R.R. Hansen / Information and Computation xxx (2010) xxx–xxx 17

[15] J. van Eijck, HyLoTab—Tableau-based Theorem Proving for Hybrid Logics, Manuscript, CWI, Amsterdam, 2002.
[16] C. Braghin, Static analysis of security properties in mobile ambients, Ph.D. Thesis, Università Ca’ Foscari di Venezia, TD-2005-1, 2005. Available from:

<http://www.unive.it/media/dipInformatica/phd/CBraghin_thesis_hyperlinks3.pdf>.
[17] B. ten Cate, M. Franceschet, On the complexity of hybrid logics with binders, Proceedings of Computer Science Logic 2005, Lecture Notes in Computer

Science, vol. 3634, Springer-Verlag, 2005, pp. 339–354.
[18] T. Bolander, P. Blackburn, Terminating tableau calculi for hybrid logics extending K, in: Proceedings of Methods for Modalities 5 (M4M-5), 2007.
[19] L. Cardelli, A.D. Gordon, Types for mobile ambients, Conference Record of the Annual ACM Symposium on Principles of Programming Languages,

POPL’99, ACM Press, 1999, pp. 79–92.
[20] T. Amtoft, H. Makholm, J.B. Wells, Polya: true type polymorphism for mobile ambients, in: J.-J. Levy, E.W. Mayr, J.C. Mitchell (Eds.), TCS 2004 (Third

IFIP International Conference on Theoretical Computer Science), Toulouse, France, August 2004, Kluwer Academic Publishers, 2004, pp. 591–604.
[21] T. Amtoft, A.J. Kfoury, S.M. Pericas-Geertsen, What are polymorphically-typed ambients?, in: D. Sands (Ed.), ESOP 2001, Genova, LNCS, vol. 2028,

Springer-Verlag, 2001, pp. 206–220.
[22] C. Calcagno, P. Gardner, U. Zarfaty, Context logic and tree update, in: Conference Record of the Annual ACM Symposium on Principles of Programming

Languages, POPL’05, ACM, 2005, pp. 271–282.

Please cite this article in press as: T. Bolander, R.R. Hansen , Hybrid logical analyses of the ambient calculus, Inform. Comput. (2010),

doi:10.1016/j.ic.2009.01.006

	Introduction
	Mobile Ambients
	Analysing Mobile Ambients
	Hybrid logic
	Modelling ambients in hybrid logic
	The naïve analysis
	The not-so-naïve analysis
	A better analysis
	Complexity issues
	Conclusions
	References

