
i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6
ava i lab le at www.sc ienced i rec t . com

www.compsecon l ine .com/pub l i ca t ions /prod in f .h tm
An extensible analysable system model5
Christian W. Probsta,*, René Rydhof Hansenb

aTechnical University of Denmark, Denmark
bAalborg University, Aalborg, Denmark
5 Part of this work has been supported by
* Corresponding author.

E-mail addresses: probst@imm.dtu.dk (C
1363-4127/$ – see front matter ª 2008 Elsevi
doi:10.1016/j.istr.2008.10.012
a b s t r a c t

Analysing real-world systems for vulnerabilities with respect to security and safety threats

is a difficult undertaking, not least due to a lack of availability of formalisations for those

systems. While both formalisations and analyses can be found for artificial systems such

as software, this does not hold for real physical systems. Approaches such as threat

modelling try to target the formalisation of the real-world domain, but still are far from the

rigid techniques available in security research. Many currently available approaches to

assurance of critical infrastructure security are based on (quite successful) ad-hoc tech-

niques. We believe they can be significantly improved beyond the state-of-the-art by

pairing them with static analyses techniques.

In this paper we present an approach to both formalising those real-world systems, as well

as providing an underlying semantics, which allows for easy development of analyses for

the abstracted systems. We briefly present one application of our approach, namely the

analysis of systems for potential insider threats.

ª 2008 Elsevier Ltd. All rights reserved.
1. Introduction from being paired with static analysis techniques. As we have
Over the last years, protection of critical (information) infra-

structure has gained considerable importance. As a result,

many approaches have been developed that, often based on

an analysis of previous attacks, try to determine whether

a currently observed activity should be deemed an attack or

not. This approach has proved to be very successful, especially

as often the behaviour observed does not change too much,

thereby allowing the recognition of attacks.

On the other hand, static analysis (Nielson et al., 1999) is

completely independent of previously observed behaviour or

attacksdit is concerned with identifying properties that hold

for every single configuration of the analysed system. Being

based on a formal system model, from an initial configuration

all possible states of the system are computed.

We believe that many of the existing approaches to the

protection of critical information infrastructure can benefit
the EU research project #

.W. Probst), rrh@cs.aau.dk
er Ltd. All rights reserved
shown in previous work (Probst et al., 2006), static analysis

techniques can be used to compute possible threats before the

fact, allowing to either identify a need to increased protection,

or a need for special alertness, either at certain locations or at

certain actors.

This allows our techniques to be used in the complete

lifetime of a systemdfrom the design of systems, over the

prediction of possibly precarious situations during operation,

to the guidance of auditing after an attack.

The rest of the paper is structured as follows. The next

section introduces our abstract system model, along with an

example, and Section 2.3 shows possible extensions of this

model. Section 3 shows how systems can be represented in

files, which then can be analysed using the techniques pre-

sented in Section 4. We conclude the paper in Section 5 by

giving an outlook on future work. We start, however, by briefly

introducing the problem of insider threats.
016004, Software Engineering for Service-Oriented Overlay Computers.

(R.R. Hansen).
.

mailto:probst@imm.dtu.dk
mailto:rrh@cs.aau.dk
http://www.compseconline.com/publications/prodinf.htm

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6236
1.1. Countering insider threats
User OfficeServer / Printer Janitor Workshop

C C

Janitor

User

Hallway
C

Fig. 1 – The example system used to illustrate our

approach. The user can use the network connection to

print some potentially confidential data in the server room.

Depending on the configuration on the cipher locks, the

janitor might or might not be able to pick up that printout.

The building entrance is secured with a face recognition

system.
As modern economies depend ever more on information

technology systems, the information handled by these

systems becomes a precious good in lockstep. The disruption

of services or loss of data can cause increasingly severe

damage, leading to an ever increased interest in the protection

of both data and systems.

One of the toughest and most insidious problems in

information security, and indeed in security in general, is

that of protecting against attacks from an insider. By defini-

tion, an insider has better access, is more trusted, and has

better information about internal procedures, high-value

targets, and potential weak spots in the security. Conse-

quently, an insider attack has the potential to cause signifi-

cant, even catastrophic, damage to the targeted

infrastructure. The problem is well recognised in the security

community as well as in law-enforcement and intelligence

communities, cf. (Bishop, 2005; Brackney and Anderson, 2005;

Gollmann, 1998; Bishop et al., 2008). In spite of this, there has

been relatively little focused research into developing

models, automated tools, and techniques for analysing and

solving (parts of) the problem. The main measure taken still

is to audit log files after an insider incident has occurred

(Brackney and Anderson, 2005).

The biggest problem is that typically insider threats occur

in real-world systems with, e.g., large office complexes,

human actors, and physical objects such as folders, print-

outs, and keys. While many analysis techniques exist for

verifying safety and security properties, they have been

developed for application to rigorous formal models, which

usually do not exist for real-world systems. Formal model-

ling and analysis, however, is increasingly important in

a modern environment with widely distributed (physical and

computer) systems, computing grids, and service-oriented

architectures, where the line between the real and the

virtual domain is more blurred than ever. Approaches such

as threat modelling (Swiderski and Snyder, 2004) try to target

the formalisation of the real-world domain, but still are far

from the rigid techniques available in security research and

formal methods.

Before presenting our techniques for using such formal

methods for identifying insider threats, we first want to

define, what we understand by an insider, as this recently

has been the topic of intense discussions, for example

(Bishop, 2005; Brackney and Anderson, 2005; Bishop et al.,

2008). Often, insiders and outsiders are treated the same

since they can cause the same damage once they have the

same knowledge. However, they intrinsically remain

different with respect to the organisation they damaged

while the insider is trusted to perform certain actions, the

outsider most certainly is not. In our work we therefore

make a clear distinction between insiders and outsiders,

where only the former can be source of insider threats.

However, as a consequence of such a threat, an outsider may

obtain knowledge that will enable him to cause damage

comparable to that an insider may cause. It is noteworthy

that the techniques presented in this work can be applied to

both insiders and outsiders.
2. View of the world

In this section we introduce the kind of system we are

addressing with our model, and thereafter introduce the

actual model in Section 2.2. There is no real restriction as to

which properties of systems can be modelled, such that our

approach can be used in almost any setting with varying

granularity.
2.1. High-level overview

The kind of systems we are interested in is characterised by

certain basic properties. We assume that there are locations

that are connected by some means, and that there are actors

who can move around in the system, performing actions on

data as they move around. Again, the notions of locations,

actors, actions, and data are rather loosedlocations can, e.g.,

be physical locations such as rooms or offices, or virtual

locations in computer systems. In the former case the actors

would probably be persons, in the latter programs. The actions

performed can either be related to moving around, e.g.,

entering or leaving a room, or to operations on data, such as

access, creation, etc.

Consider, for example, the insider problem as introduced

in Section 1.1. Clearly we are mostly concerned with office

buildings and real data such as folders, as well as computer

networks and data that is available on these. Fig. 1 shows such

a real-world system components typical for the kind of

systems we are interested indnamely rooms that are con-

nected, a computer network, access control, etc. All these are

aspects that we want to represent in our model, as they

influence the way actors can behave in the modelled systems.

In the example, actors can, e.g., walk around, pick up data

from the printer or the waste basket, etc. The example shown

in the figure models part of an environment with physical

CL
SRV

CL
USR

JANUSRSRV

HALL

PC1PC2

PRT

WASTE

UserOfficeServer Janitor Workshop

Hallway

L
JAN

FR
ENT

OUT-

SIDE

FR
EXIT

Fig. 2 – Abstraction for the example system from Fig. 1. The

different kinds of arrows indicate how connections can be

accessed. The solid lines, e.g., are accessible by actors

modelling persons, the dashed lines by processes

executing on the network. The dotted lines are special in

that they express possible actions of actors.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6 237
locations (an entrance, a server room with a printer and

a waste basket, a user office, and a janitor’s workshop con-

nected through a hallway), and network locations (two

computers connected by a network, and a printer connected

to one of them). The access to the entrance, the server room,

and the user office is restricted by a cipher lock, while the

janitor workshop is accessible with a physical key. The actors

in this system are a user and a janitor.

2.2. An analysable model of the world

We now define and discuss our system model in detail. The

formal underpinnings of the modelling language will also be

introduced and discussed to some extent, although the focus

will be on the modelling aspects of the language. This includes

specification of actions of interest, data items handled, and

actors and their (partly) behaviour, if known.

The presented model is an extension of the one presented

in Probst et al. (2006). Beside the model itself we also present

how it can be extended with specialised constructs, and

illustrate the extensibility with examples.

The abstraction is based on a system consisting of

components. We distinguish between location components,

such as offices and computers, data components, such as keys

and actual data, and mobile components, such as processes and

actors. Data can be associated with (stored at) locations and

actors, and it can be secured by, e.g., encryption, and locations

can be secured by access-control mechanisms, e.g., cipher

locks. To support movements of dynamic components, loca-

tions can be connected by directed edges, which define free-

doms of movements of actors.

The rest of this section introduces all of the system

components and shows several possible extensions.

2.2.1. Infrastructure
We start with defining the notion of an infrastructure, which

consists of a set of locations and connections. The infrastructure

models the available connections in the modelled system, be

it connections between rooms or computers, or be it possible

to access one location from another one.

For the example shown in Fig. 1 we obtain the graph

representation in Fig. 2. All rooms have become nodes in the

graph, as have computers, the printer, and the waste basket.

In general, all elements of a system where data can be located

are modelled as nodes. Additionally, places at which some

kind of access control is applied can be turned into nodes. In

the example these are all the doors. The connections between

nodes are generated based on the type of connection they

allow in the real system. For example, there is a one-way

connection from the node representing the hallway to the

node representing the server room’s cipher lock, since the

user will have to pass the access control to get into the room.

On the other hand, there is no check to get out of the room into

the hallway, so there is a direct edge from the server room

node to the hallway node.

Note the special node labelled ‘‘Outside’’, which represents

parts of the system that are of no interest, in this case

everything that is outside of the office complex. Collapsed

nodes like this, that model potentially large areas of the

system under inspection that are of no interest, allow the
system modeller to concentrate on the essential parts to be

modelled. If the analysis result turns out to be too imprecise,

collapsed nodes can later be replaced by a more detailed

model of the previously ignored part of the system. A system

model can have several of these collapsed nodes, each rep-

resenting entities that are not connected to each other.

Choosing what to collapse is highly dependent on the

modelled system and the analysis to be performeddin the

case of the insider analysis our foremost interest is to find out

whether data leaves the modelled system, therefore we are

not interested in what lies outside of that system.

As seen in Fig. 1, it is often natural to group several loca-

tions together, e.g., based on the room they are located in.

Groups of locations can provide interfaces that control access

how actors can enter (some of the) locations in the group. In

the example, the cipher locks prevent actors who do not have

the correct code from entering some rooms, while the

computers located in these rooms are accessible via the

network.

2.2.2. Actors
Next, we define actors, which can move in the infrastructure

by following edges between nodes, and domains, which allow

to constrain the nodes that an actor can move in. Usually,

actors can only move in a certain domain. In the example

setting, actors would be the user, the janitor, or processes on

the computers.

The user and the janitor can move in the locations repre-

senting rooms (physical domain), but they can only access,

e.g., the printer and the waste basket to take items out of them

(object domain).

2.2.3. Data
Besides actors we are interested in the objects they work with,

or data in general. Note that we use a rather loose definition of

datadany set of items can be used to model data at

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6238
a convenient level of detail. Data items can be associated with

both actors and locations, representing either what a user

knows or possesses, e.g., by carrying around, or what data is

available at a certain location. Assigning such knowledge to

actors or locations before performing an actual analysis

allows to incorporate previously obtained insights into the

analysis resultsdand furthermore allows to very easily test

hypotheses about what could have happened if, e.g., a certain

actor had known a certain piece of information.

In the example, data could be used to model codes for the

cipher locks or the key for the real lock, once we have

extended the system model with access control in Section

2.3.1. Also printouts made from the work stations would be

represented as data.

2.2.4. Actions
In order to model the behaviour of actors in a system, we will

need to supply actions that can be performed by them. For each

of these actions the system needs to specify how the action

changes the locations of users, and the storage of data.

The actions we use are based on those available in the

system described in Probst et al. (2006) and Gunnarsson (2007),

partly because they allow to model the typical actions per-

formed in real-world systems quite naturally. The actions

allowed are input and output of data, evaluation of code at

another location (starting a process on a computer), and

moving to another location.

The effect of each action is currently described by the

semantics of the underlying process calculus. We are working

on integrating the effect specification into the system defini-

tion, in order to allow an even more modular specification,

where the semantics can be freely substituted.

2.2.5. System model definition
A system model in our approach consists of all the components

just introduced. Using locations, actors, data, and actions, it

allows to capture the most important aspects of systems and

insider threatsdwho the user is, what the user does and

knows, and where the user does it. While very simple in

nature, this model is both powerful enough to model real-

world scenarios, and at the same time flexible enough to be

easily extendable.

2.3. System extensions

In this section we briefly describe how to add extensions to the

system model. The extensions covered are access control,

encryption and decryption of data, which will be very similar

to access control on locations, and a logging component,

allowing to create log files, which then can be used in ana-

lysing the system.

2.3.1. Access control
To model systems with access control, we need to model how

actors can obtain the right to access locations, and how access

to a location can be granted or denied. We associate actors

with a set of capabilities, and locations with a set of restrictions.

Both restrictions and capabilities can be used to restrain the

mobility of actors, by requiring, e.g., a certain key to enter

a location, or allowing access only for certain actors, or from

certain locations.
To ease presentation we use data items as keys and

capabilities, and checker functions to test whether a given

capability matches a restriction or not. In the example

setting we could interpret the face of the actors as capability

to enter the entrance of the building (based on face recog-

nition), and the cipher keys as capabilities to enter the server

room and the user office. The associated checkers would

implement the test whether an actor with a given face is

allowed to enter the building, or whether a cipher code

matches the ones stored in the lock. In the semantics, access

control and the related checkers are realised by reference

monitors similar to Gunnarsson (2007); Hansen et al. (2006)

and Probst et al. (2006) that check whether a certain action is

allowed before executing it.

Fig. 3 shows the graphical representation of access control

added to the example system (for the time being, ignore the

overlined characters). Each of the boxes specifies how access

is granted to certain actions at the location. For example,

knowledge of the data item CU allows both access to the server

room as well as the user office, as specified by CU:m, while CJ

only allows access to the server room. The lines J:m and U:m at

the entrance refer to the identity of the actor that wants to

perform an action, and are here used to represent the face

recognition.

2.3.2. Encryption and decryption
A convenient extension of the data model described in the

previous section is to model encryption and decryption of

data. We use an approach similar to the one for access control,

that is we annotate data with the key it has been encrypted

with, and require knowledge of the matching key for decryp-

tion. This can be seen as requirements (of the data for being

decrypted) and capabilities (of the user for being able to

decrypt). A data item can be encrypted with a set of keysdan

empty set of keys represents unencrypted data.

It is noteworthy that this small change supports both

asymmetric as well as symmetric encryption schemes, as the

checker for the capabilities and restrictions ensures that the

keys used for encryption and decryption match each other.

2.3.3. Logging
Another important component in a system is the ability to log

(some of the) performed actions. Again, adding such

a component to our system model is straightforward and

requires only minimal changes to the systemdthe actual

logging is performed as part of the semantics of the under-

lying process calculus. The additions to the system are

a global clock and a logging component. The logging compo-

nent maps a log entry to the reason why an action was

allowed or denieddthat is a certain key, the actor’s identity, or

the location from which the request came, as well as the

locations from where to where the action was performed.

In the access-control specifications we distinguish logged

and unlogged restrictions, and mark logged ones by using

overlined characters (see Fig. 3). From the view of the system

definition there is no difference between the versions with

and without loggingdall we assume is that there is a subset of

restrictions that are logged as opposed to a subset of restric-

tions that are not logged. The difference will only occur in the

underlying semantics.

CL
SRV CL

USR

JANUSR
SRV

HALL

PC1PC2

PRT

WASTE

*: m

cU: m

*: m *: m

U: e,i,o

SRV: i
PC2: o

PC1: m
U: e,i,o

SRV: i,o

*: m

cU: m
cJ: m

L
JAN

kJ: m

FR
ENT

U: m
J: m

Out-

side

FR
EXIT

U: m
J: m

Fig. 3 – The abstracted example system from Fig. 2, extended with policy annotations. There are two actors, janitor J and

user U, who, e.g., have different access rights to the user office and the server room. Note the difference between accessing

the user office or the server room with a cipher lock (logged) as opposed to the janitor workshop with a key (not logged).

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6 239
2.4. Formal semantics of system models

The system model defined above has been designed to be easy

and intuitive for use in the system modelling process. It

furthermore lends itself very well to graph-based analysis

techniques (see Section 4 for an example). However, in order

to bring a wider variety of advanced analysis techniques and

methodologies to bear, the system model needs a formal

underpinning.

In Probst et al. (2006) we show how the semantics of

a system model can be formalised using a process algebra.

Process algebras have been widely used to model and study

problems in the concurrency and distributed systems

communities. This work has led to the development of

numerous automated tools and advanced techniques for

analysis and verification of system properties. By formalising

the semantics of system models using process algebras we

enable the use of these tools and techniques for forensic

analysis of our system models.

The process algebra used in Probst et al. (2006) is called

acKlaim and belongs to the Klaim family of process calculi

originally developed to study the tuple-space paradigm (Nic-

ola et al., 1998). The acKlaim calculus is a variation of the

mKlaim calculus enhanced with access-control primitives and

equipped with a reference monitor semantics, inspired by Han-

sen et al. (2006), that ensures compliance with a system’s

access-control policy. In addition to providing a convenient

and well-understood formal framework with built-in support

for access control, it has a well-established and mature

history showing numerous successful applications of formal

methods and techniques to analysis and verification of Klaim

systems (Nicola et al., 1998; Nicola et al., 2000). This provides

analysts with a proven and well-tested toolbox for analysing

system models. In addition it forms a solid foundation for

exploring novel approaches and integrating new technologies,
thereby enabling forensic analysts to adapt the analysis

platform to emerging threats and the ever-changing attack

landscape.

The reference monitor semantics mentioned above

ensures that the semantics only performs actions that are

specifically allowed, based on a number of factors, such as: the

type of action to be performed, the identity of the actor

wishing to perform the action, the data in possession of the

actor, and/or the locations involved in the action. This

constitutes an implementation of the checkers defined in the

previous section, and is also the place where logging is added

to the system.
3. A modelling language

Being based on a collection of mathematical definitions, the

abstract system specification described so far is not well

suited for implementation. In this section we therefore define

a language for specifying system models as text files, which

then can be used as input for analyses. Although an abstract

specification will be mapped to an acKlaim program, the

syntax of the language should be as close to the abstract

specification as possible. However, the user should not have to

know anything about the underlying theory in order to use the

analyses.

The syntax of the specification language is given in Fig. 4

and Fig. 5. Like the specification from Section 2.2, a system is

composed of four major categories: locations, connections,

actors, and data. Locations are represented by a location name

along with a list of restrictions that the location makes on

actions performed on it. Each restriction is a name specifying

a location, an actor, a piece of data, or + representing a wild

card, and a list of actions that the given name is allowed to

perform at the location. Each location also specifies the

Fig. 4 – Syntax for specifying locations and associated policies. Elements of lists are separated with commas. Note that for

the list of allowed actions only one version (logged or unlogged) of each action may occur.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6240
domain it is member of. The domain is simply a name and

must of course not conflict with names used for other

purposes. The list of restrictions for a location may be empty,

meaning that no restrictions are imposed on the access of that

location. To model that no access is allowed by anyone, the list

of access modes should be left empty as in safe {+:}.

Connections are specified with a right-pointing arrow from

a location A to another location B, meaning that there is an

edge from A to B. Both end points in a connection must be

defined for the connection to be well-formed.

Actors are represented by a list of pairs of actor names and

the name of the location(s) the actor is located at initially. Note

that, in the case of uncertainty, an actor may be placed at

several locations. The set of actor names must be disjoint

from the set of location names for the specification to be well-

formed. The location at which an actor is located must be

defined in the list of locations.
Fig. 5 – Syntax for specifying connections, actors, and data. The

an action in a DataPolicy is optional.
Data is specified as a list of data elements annotated with

access restrictions and information on where they are located

(either at an actor or at a location). For ease of presentation, the

structure of data is one-dimensional, namely a single string.

This can easily be extended to a more complex tuple structure

with nested tuples and so on. It should be noted that such

a change does not require changes to the techniques presented

here. If the list of restrictions is empty, the datum is assumed to

be public, and if the list of access modes is empty for the +

name, the datum cannot be accessed by any actor in the

system. Access restriction on data may be decryption and read/

write restrictions, modelled as input and output as for loca-

tions. Any actor is free to pick up or read data (as long as he has

access to it), but to get the information that encrypted data

holds he needs to have thenecessarykey to be able to decrypt it.

The text in Fig. 6 shows the representation of the example

system from Fig. 3. Beyond the system graph shown there, the
same restrictions for lists apply as in Fig. 4. Specification of

Fig. 6 – Textual representation of the example system from Fig. 3, including some data known at actors or stored at

locations. For experiments, the locations of actors and data can easily be changed.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6 241
textual representation also includes the data available at

actors or locations, as well as the locations where actors are

located initially. In order to run through different scenarios,

these locations, as well as the data available, can easily be

changed. If, for example, during an investigation there was

some doubt, where the janitor was located, the input could be

changed to J @ outside, server if he might have been at the

server room.

4. System model analysis

In this section we present two analysis techniques related to

the model and language described in the previous sections.

The goal of this section is to introduce the reader to some of

the analytical tools and insights needed to get started. Both

analyses are graph-based and work on the system model

defined above.

The first analysis, called Conditional Reachability Analysis, is

designed to determine, which locations in a system an actor

with name n and keys k can reach from location ldeither

directly, or by performing an action on them. In the insider-

threat scenario introduced above, this allows to determine,

which locations an insider can reach and which data he can

potentially access. This analysis can be compared to a before-

the-fact system analysis to identify possible vulnerabilities

and actions that an audit should check for.

The second analysis, called Log-trace Reachability Analysis,

takes a log file as input and based on this determines which

actor has been where, performing which actions and access-

ing which data. In the insider-threat scenario this analysis

allows to determine where actors might have been based on

the observed actions. In an after-the-fact analysis, this
analysis can also be used to add observations or investigation

results to the log file in order to evaluate their impact.

The rest of this section is structured as follows. We first

give a high-level introduction to the two analyses, followed by

a more detailed presentation of their technical details in

Section 4.2. After this, we evaluate both analyses in Section 4.3

by applying them to the example system. Interested readers

can find the technical details in Section 4.2.

4.1. Analysis overview

When dealing with insiders and the threat they potentially

might pose, we deem two scenarios especially importantdon

the one hand, we would like to know before an attack, what

capabilities certain actors have in the system based on what

they know (and, as a result of this, where they can get). On the

other hand, once an attack has happened, we would like to be

able to identify, what has happened in the system before,

under, and after the attack. Before presenting the technical

details in the next section (which safely can be skipped), we

give a more high-level overview, how these two analyses work

on our system model. It should be noted that these analyses

only are examples of what the system can be used for. We are

currently working on control-flow analyses (Nielson et al.,

1999), which however are beyond the scope of the work pre-

sented here. An example can be found in Probst et al. (2006).

4.1.1. Before the fact
When designing a system, especially an access-control

system, it rapidly becomes unclear, which parts of the system

are accessible by which users. In systems combining networks

with real buildings, the distinction between reachable and

unreachable becomes even more blurry.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6242
In this scenario our first analysis may be applied. Given

a representation of the system under development (Section

2.2), and an extension with access restrictions (Section 2.3.1),

this analysis allows to identify which places a user may reach,

based on who he is, what he knows, and where he is located.

This analysis has two immediate applicationsdit allows to

identify possible shortcomings in an access-control system,

and it allows to decide whom to use in order to reach a certain

location or retrieve a certain piece of data. While the first

application probably is obvious, the second might not be. Here

the idea is to use the analysis to find out which users are able

to reach a certain location, based on their identity and

knowledge (the who and what above). From all these users,

one then can chose the user who lives up to certain expecta-

tions. These might be, for example, fewest access rights

(meaning that the potential collateral damage is minimised),

or above a certain rank in the hierarchy (hopefully meaning

that this user can be trusted more than users below him in the

hierarchy). Beyond these are uncounted possibilities to use

and interpret the results of this first analysis.

The analysis that provides system designers with this

knowledge is the conditional reachability analysis (CRA,

Section 4.2.2). It receives a system model such as the one from

Fig. 6 as input, and simulates for all users all actions they may

perform. In this process, a user may be located at several

positions simultaneously, thus representing uncertainty as to

where the user is located exactly. For each user the analysis

traces all possible ways the user might take through the

system. While this may occur pessimistic given that the user

eventually will only perform one sequence of actions, it is at

the same time conservative in computing a super set of what

will happen in real life. This is a necessary property for each

analysis whose results can be applied in a meaningful waydif

the analysis computes a certain result it must somehow be

possible that this result occurs (Nielson et al., 1999). Even

though the analysis thus computes many ways through the

system that no actor ever will follow, the computed result still

allows to see what can happen in the system based on access

rights assigned to locations and keys assigned to actorsd

exactly what is needed for a before-the-fact analysis to

support the system designer.

4.1.2. After the fact
Having designed a system, possibly with help of an analysis

like the just described, one needs to prepare for a potential

attack. Such a preparation can come in several formsdbe it in

form of logging of actions performed by users, be it in form of

after-the-fact forensic analyses using the log data as input.

Surprisingly, this after-the-fact analysis still seems to be

applied frequently (Brackney and Anderson, 2005).

While in Utopian worlds complete surveillance often is

assumed to be acceptable (and accepted), this is certainly not

the case for our societies. Privacy concerns often limit the

amount of data that may be logged1, thus also limiting how

useful the logged information is. Even worse, it often is more
1 Depending on the kind of institution applying the logging
these restrictions may be abandoned by individuals by signing
according contracts. This may be deemed against public policy
and inoperative in many states.
interesting what might have happened (unnoticed) in

between two log entries, than what actually has been logged.

In this situation our second analysis may help. Like the before-

the-fact analysis it receives a system model as input (Section

2.2), this time with the logging extension (Section 2.3.3), and

a stream of logged events, for example recovered from some

kind of logging system. This could either be the dump of

logging units in the system, it could, however, also be obser-

vations made as part of an investigation, or a mix of both

sources. Based on these, the analysis explores what an actor

might have done in between two log entries. The more fine-

grained the logging system is, the more precise the result of

this analysis will be, but the more coarse-grained the logging

system is, the more beneficial is our analysis. This is because

the set of actions possibly performed between two log entries

is getting bigger and bigger the further the two logged actions

are apart. Consequently, it becomes harder and harder to keep

a clear view of what might have happened in between.

The analysis that provides investigators with this knowl-

edge is the log-trace reachability analysis (LTRA, Section 4.2.3).

It receives a system model such as the one from Fig. 6 and a set

of logged events as input, and simulates for all users all

actions they may perform such that the set of logged events is

generated. The overall operation of this analysis is very

similar to the analysis described beforedagain, the analysis

traces for all users all possible ways that they might take

through the system. However, in this analysis the set of all

paths is restricted by the requirement that the actions per-

formed must match the logged events. This restriction results

exactly in what is needed for the after-the-fact analysisda

tool that matches logged actions against possible actions, thus

identifying locations that an actor might have reached and

data items an actor might have accessed unnoticed.

4.2. Technical details

This section introduces some of the technical details under-

lying our analyses, including pseudo-code algorithms for

computing the analysis results. Before going in more details

with respect to the two analyses, we first discuss equivalent

locations, an important issue for both analyses presented

here.

4.2.1. Equivalent locations and actions
A notion that we will use several times in the following

discussion is that of equivalent locations and actions. By this we

mean locations and actions that from the viewpoint of an

observer, in our case the analysis, cannot be distinguished. As

a result, if the analysis finds out that an actor can be in

a location [, then he might just as well be in any equivalent

location, or might have performed any actions in between.

This notion of equivalence serves two different purposes.

In the case of the conditional reachability analysis (Section

4.2.2) we use it to speed up the analysisdsince the actor could

reach all equivalent locations anyway, it is easier to just

compute the transitive, reflexive hull of the current location

and assume the actor is at any of these or has performed any

actions possible in between.

In the case of the log-trace reachability analysis, equiva-

lency of locations and actions is defined based on whether or

Fig. 7 – For each actor in the system we check for all locations he can be located at whether he can perform any actions. All

these actions are assumed to have been performed. In the case of the log-trace reachability analysis, only actions that would

not cause a log entry are considered.

Fig. 8 – Algorithm for computing which places an actor may

reach in the system, based on the actor’s initial location

and knowledge. Initially, all actors and locations are

initialized with the data they are assumed to know

beforehand, and actors are located at their possible

locations. Thereafter, the algorithm only needs to call the

function equivalent (Fig. 7), which computes and simulates

iteratively all actions that can be performed, until a fixpoint

is reached. At the end, for each actor we know all locations,

and for each pair of actor and location we know the

knowledge at this point.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6 243
not reaching a location from another one or performing an

action causes a log entry. Here, two locations and/or actions

are deemed indistinguishable from the viewpoint of the anal-

ysis if the actor does not cause a log entry. Log-equivalency is

needed to find out what might have happened between two log

entries.

The pseudo code in Fig. 7 shows the realisation of log-

equivalency in the log-trace reachability analysis. It simply

visits all locations where a user might be, and computes the

effect of every unlogged action that the user is allowed to

perform at that location. This computation is repeated until

no further changes to the graph occur. The implementation of

regular equivalency is quite similar, the only difference being

that there is no restriction as to causing a log entry.

4.2.2. Conditional reachability analysis
As mentioned before, the conditional reachability analysis is

equivalent to a before-the-fact analysis, where a system

designer might want to determine whether a given system

lives up to a set of access-control restrictions. To do so, the

analysis assumes the worst casedthat is, what ever can

happen, will happen. This is especially crucial with respect to

data exchange, which in our case means that keys or secret

data might be handed over between actors in the system.

Like the log-trace reachability analysis, which will be

covered in the next section, this analysis is graph based. It

starts from a system specification as presented before,

constructs a graph from it, and for each actor simulates all

possible actions that are allowed by the system. While the

LTRA will restrict possible paths through the system with the

set of logged actions that have been observed, the conditional

reachability analysis explores the whole graph unconstrained,

performing every action possible. In order to avoid non-

termination it keeps track of which actor with which knowl-

edge has been at which locationdthus, re-analysing already

seen scenarios can be avoided.

The algorithm for CRA is given in Fig. 8. Essentially it only

sets up the analysis by initialising all data structures, followed

by a single call to equivalent, which performs the simulation of

all possible actions and iterates until no further changes occur.
4.2.3. Log-trace reachability analysis
In Fig. 9 we present a graph-based algorithm for evaluating,

what effect sequences of logged actions might have had, by

evaluating all sequences of actions on the system represen-

tation. Note that the algorithm is intended to demonstrate the

principles underlying the solution rather than being an

optimal implementation.

The algorithm works on the sequence of logged actions. To

trace the potential actions of actors, it traces where actors

might be located, which data an actor n at a location l knows,

and which data is stored at which location. Initially, all actors

are assumed to be outside the system (location outside in the

example) and to know an initial key set, which may be empty.

Also locations are initialized with the potentially empty initial

data set.

Following the initialization, the algorithm consumes all

entries in the log sequence. During each iteration it first

simulates all log-equivalent actions that might be executed by

actors at their current locations. This simulation is repeated

Fig. 9 – Algorithm for evaluating the possible effect of all sequences of actions that can cause the logged events. For each

logged event the algorithm performs all actions that could go unnoticed (line 9), and identifies the set of actors that possibly

can have caused it (lines 12–26). If only one actor can have performed a logged action, we know exactly where this actor is

located, and it consequently is removed from all other locations (lines 14, 18–20, 23–25). Finally, the effect of the logged event

is simulated.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6244
until no further changes occur. After having simulated all log-

equivalent actions in the current state, the next logged action

is consumed. Before simulating this action, the algorithm first

checks whether there is exactly one actor that can have

caused the log entry, in which case the data structures are

updated accordingly.

Finally, at the end of each iteration the logged action is

simulated for all actors that may have caused the action to

happen. After doing so, the iteration starts over with the next

logged action, until all actions have been consumed. The

algorithm then repeats the simulation of all log-equivalent

actions.

4.3. An example

Now we apply the two analyses just presented to the example

system shown in Figs. 3 and 6. We start with the conditional

reachability analysis (Section 4.2.2). As shown in the textual
representation, we expect the user and the janitor to be

located outside the system, knowing the codes and/or keys to

their office and the server room. Table 1 shows the result of

applying CRA to the example. The table contains analysis

results for two different casesdfirst we analyse the cases

where the user and the janitor each are alone in the system.

As one would expect, the analysis finds out that each of them

can access the rooms they have the keys to, and that the user

can obtain the secret file stored on pc1, either by printing it on

the printer in the server room, or by obtaining it directly from

pc1. The file is only readable by U, therefore the janitor cannot

obtain it. In analysing the second case we assume the user and

the janitor to be acting in the system simultaneously. In this

case, the janitor is able to get hold of the secret file, namely if

the user prints it in the server room. It should be noted that

this second case is a coarse approximation of what really

might happen, as it does not contain any information about

timednevertheless, the threat exists.

Table 1 – Result of the conditional reachability analysis for
the example system from Figs. 2 and 6. As to be expected
the user can obtain the secret file (either directly from pc1
or by printing it and picking it up from the printer). The
janitor, on the other hand, cannot access the file. When
both actors are analysed simultaneously, then the janitor
can access secret because the user might print it, and the
janitor has access to the server room.

actor location data

analysis result

U outside, entry, exit, hall, lockuser, user,

locksrv, server

codeU, secret

lockjan, jan B

J outside, entry, exit, hall, lockjan, jan,

locksrv, server

codeJ, keyjan

lockuser, user B

simultaneous analysis result

U outside, entry, exit, hall, lockuser, user,

locksrv, server

codeU, secret

lockjan, jan B

J outside, entry, exit, hall, lockjan, jan,

locksrv, server

codeJ, keyjan, secret

lockuser, user B

Table 2 – Result of the log-trace reachability analysis for
the example system from Figs. 2 and 6.

actor location data

log sequence 1

U outside, entry, exit, hall, lockuser, user,

locksrv, server

codeU, secret

lockjan, jan B

J outside, entry, exit, hall, lockjan, user,

locksrv, server

codeJ, keyjan, secret

lockuser, user B

log sequence 2

U outside, entry, exit, hall, lockuser, user,

locksrv, server

codeU, secret

lockjan, jan B

J outside, entry, exit, hall, lockjan, user,

locksrv, server

codeJ, keyjan

lockuser, user B

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6 245
The ordering relation based on time is taken into account

in the log-trace reachability analysis (Section 4.2.3), which on

top of the system description also gets a string of logged

actions as input. There are two interesting cases with respect

to the two actors we are investigating. Considering the file

secret once it has been printed, it is of interest whether the

janitor has been in and left the server room before the file is

printed, or not. If not, then there is a risk of the janitor picking

up the secret file from the printerdor even only reading it and

leaving it in place. For performing LTRA we assume two

different log sequences. The first one is generated by the user

entering the system, going to his office, logging onto the

system, printing the file secret, going to the server room,

picking up the printout, and leaving the system again, fol-

lowed by the janitor coming, going to the server room, and

leaving again:

ð1;U;entry;mÞ; ð5; codeU; lockuser;mÞ; ð8;U;pc1; eÞ;
ð10;pc2;printer;oÞ; ð23; codeU; locksrv;mÞ; ð32;U;exit;mÞ;
ð40; J; entry;mÞ; ð45; J; locksrv;mÞ; ð58; J;exit;mÞ

Note that the log sequence does not mention the file to be

printed, but since it is stored on pc1 the analysis identifies it as

potentially printed. The second log sequence describes a case

where the janitor leaves the server room before the file is

printed:

ð1; J;entry;mÞ; ð11;U; entry;mÞ; ð15; J; locksrv;mÞ;
ð17; codeU; lockuser;mÞ; ð20; J;exit;mÞ; ð22;U;pc1;eÞ;
ð25;pc2;printer;oÞ; ð26; codeU; locksrv;mÞ; ð32;U;exit;mÞ

The result for these two sequences is shown in Table 2. It

shows that for the first sequence the janitor may obtain the

secret documentdthis is because we can not guarantee that

the user picked up the printout, even though he was in the

server room at time 23. This is because we cannot observe

the picking up. For the second log sequence, we know that

the janitor does not enter the server room after the file has

been printed, and the analysis result confirms this.
5. Conclusion

We have presented an extensible, analysable system model

for real-world systems. While the system model originated in

a desire to analyse and prevent insider attacks, the model is

sufficiently general, and easily extendable as shown, that it

can be used in many other application areas. In addition to the

abstract system model we have presented a modelling

language for representing and developing concrete models,

and we have shown that the underlying model can easily be

extended with domain specific concepts and notions such as

access control, cryptography, and logging.

In earlier work a formal semantics for the abstract system

model, in the form of a process algebra, has been specified and

used to further extend the analyst’s toolbox with methods and

techniques from the programming language and program

analysis communities. This is in contrast to many current

approaches that often lack this formal underpinning. We

believe that a formal semantics is absolutely essential for

future development, both in order to better understand the

underlying mechanisms, as well as for enabling a more formal

and rigorous approach to dealing with insider threats. Even

more so with the growing popularity and subsequent

deployment of distributed and decentralised systems, as well

as notions such as ‘‘cloud computing’’, grid computing, and

Software as a Service (SaaS). As the protection of these (often

mission-critical) information infrastructures has gained

considerable importance in the last years, many approaches

have been developed, which often are based on an analysis of

previous attacks. While these approaches have been very

successful, we believe that they can benefit from being paired

with static analysis techniques as shown in previous work

(Probst et al., 2006). Using these techniques, the model pre-

sented in this paper allows to either identify a need to

increased protection, or a need for special alertness, either at

certain locations or at certain actors.

A specific advantage of the flexibility of our approach is

that it can be used throughout the entire life-cycle of a sys-

temdfrom the design, over the prediction of possibly

precarious situation during operation, to the guidance of

auditing after an attack. Furthermore, due to its foundation on

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 3 (2 0 0 8) 2 3 5 – 2 4 6246
static analysis, it enables both combing sub-models, e.g., of

different parts of an investigations, to a bigger model, as well

as adapting the granularity (and as a result the speed) of the

analysis. We believe that these are properties essential for

enabling development and analysis of large, real-world

scenarios.
r e f e r e n c e s

Bishop M. The insider problem revisited. In: Proc. of new security
paradigms workshop 2005. Lake Arrowhead, CA, USA: ACM
Press; 2005.

Bishop M, Gollmann D, Hunker J, Probst CW. Dagstuhl seminar
‘‘countering insider threats’’, http://www.dagstuhl.de/08302;
2008. last visited [accessed 12.08.08].

Brackney RC, Anderson RH, editors. Understanding the insider
threat. Santa Monica, CA, U.S.A.: RAND Corporation; 2005.

Gollmann D. Insider fraud. In: Christianson B, Crispo B,
Harbinson WS, Roe M, editors. Proc. of the 6th international
workshop on security protocols, vol. 1550 of lecture notes in
computer science. Cambridge, UK: Springer Verlag; 1998.

Gunnarsson D. Static analysis of the insider problem, Master’s
thesis, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, Richard Petersens Plads,
Building 321, DK-2800 Kgs. Lyngby, supervised by Christian W.
Probst, IMM, DTU; 2007.

Hansen RR, Probst CW, Nielson F. Sandboxing in myKlaim. In:
The first international conference on availability, reliability
and security, ARES’06. Vienna, Austria: IEEE Computer Society;
2006.

Nicola RD, Ferrari G, Pugliese R. KLAIM: a kernel language for
agents interaction and mobility. IEEE Transactions on
Software Engineering 1998;24(5):315–30.

Nicola RD, Ferrari G, Pugliese R, Venneri B. Types for access
control. Theoretical Comput Sci 2000;240(1):215–54.

Nielson F, Nielson HR, Hankin CL. Principles of program analysis.
Springer-Verlag; 1999.

Probst CW, Hansen RR, Nielson F. Where can an insider attack?
In: Workshop on formal aspects in security and trust (FAST
2006); 2006.

Swiderski F, Snyder W. Threat modeling. Microsoft Press; 2004.

Christian W. Probst is Associate Professor in the Language-

based Technology section at the Technical University of

Denmark. He works on programming languages and model-

ling, analysis, and realization of systems, especially under

security aspects.

Rene Rydhof Hansen is Assitant Professor at Aalborg Univer-

sity, Denmark. He works in the area of static analysis for safe

and secure systems.

http://www.dagstuhl.de/08302

	An extensible analysable system model
	Introduction
	Countering insider threats

	View of the world
	High-level overview
	An analysable model of the world
	Infrastructure
	Actors
	Data
	Actions
	System model definition

	System extensions
	Access control
	Encryption and decryption
	Logging

	Formal semantics of system models

	A modelling language
	System model analysis
	Analysis overview
	Before the fact
	After the fact

	Technical details
	Equivalent locations and actions
	Conditional reachability analysis
	Log-trace reachability analysis

	An example

	Conclusion
	References

