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ABSTRACT

A Java profile suitable for development of high integrity em-
bedded systems is presented. It is based on event handlers
which are grouped in missions and equipped with respec-
tively private handler memory and shared mission memory.
This is a result of our previous work on developing a Java
profile, and is directly inspired by interactions with the Open
Group on their on-going work on a safety critical Java pro-
file (JSR-302). The main contribution is an arrangement of
the class hierarchy such that the proposal is a generalization
of Real-Time Specification for Java (RTSJ). A further con-
tribution is to integrate the mission concept as a handler,
such that mission memory becomes a handler private mem-
ory and such that mission initialization and finalization are
scheduled activities. Two implementations are presented:
one directly on an open source JVM using Xenomai and
another, based on delegation, on an RTSJ platform.

Categories and Subject Descriptors

C.3 [Special Purpose and application-based systems|:
Real-time and embedded systems; D.3.3 [ Programming
Languages|: Language Constructs and Features
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1. INTRODUCTION

The Real-Time Specification for Java (RTSJ) [8] was a ma-
jor breakthrough for Java as a language for programming
embedded software, but soon after it had emerged, the dis-
cussion began as to whether it was too large or too dynamic
to really support high integrity applications. This led to pro-
posals for smaller profiles with a rationale presented in [27]
and an implementation in the Ravenscar Java profile [25];
the focus was on embedded systems and on making pro-
grams amiable to analysis with state-of-the-art techniques.
These formed a starting point for our own work with a pre-
dictable Java profile [32, 29] which considered using inte-
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grated analysis tools instead of programmer supplied pa-
rameters to provide predictable programs. More recently
the Open Group has formed a committee to develop a pro-
file for Safety-Critical Java [17, 4], and they have outlined
their approach in a recent paper [20]. During the work in
the committee we have had access to intermediate drafts
which we have commented. This paper is a summary and
consolidation of points where we find that the current draft
may improve.

We have found the Open Group’s approach refreshing, be-
cause they solve a major issue by settling for handlers as
the schedulable entities in a real-time system. RTSJ sup-
ports both a handler paradigm and a thread paradigm, but
the latter is hampered by inheritance from Java threads, for
instance with unwanted asynchronous interrupts and con-
ditional waits. Threads are not really suitable as logical
processes. The handler concept is much closer in spirit to a
logical process. In this, as in many other details, we agree
with the SCJ draft.

The points where we would see further advances, and thus
the contributions of this paper are:

1. An arrangement of the class hierarchy such that the pro-
posal is a generalization of RTSJ, as we believe it should be,
because it has far fewer details and options. The SCJ draft
uses spectalization.

2. The SCJ draft organizes handlers in missions. We pro-
pose to make missions first-class handlers, such that initial-
ization, termination and transition between missions may
be given a precise semantics. Furthermore it makes mission
memory equal to handler memory.

In Section 2 we elaborate on constructs that make mis-
sions first-class schedulable entities which gives a structured
replacement for the Scheduling Groups of RTSJ and the
Thread Groups of Java. These concepts form the core of
our proposal for a Predictable Java (PJ) profile!.

It is evident that for practical reasons any viable profile must
be compliant with RTSJ, but we observed that defining a
profile by specializing or subclassing RTSJ leads to much
clutter. That this must be so is rather clear if one considers

"'We have avoided to name the profile SCJ in order to avoid
confusion, but if the main ideas are taken up by SCJ, PJ
has served its purpose.



which profile really extends the other: RT'SJ is a very flexible
and detailed theory, whereas what we are searching for is an
abstraction or generalization of it. Thus in an ideal world,
RTSJ would be a specialization or refinement of a smaller
profile. Doing it the other way around is like deriving the
class of natural numbers from a class of rational numbers:
sign inversion would need to be disallowed, division would
become a partially defined operator, subtraction likewise,
etc. Yet, the world is not ideal, so in a first step, we define
a profile by manually abstracting from RTSJ classes and
interfaces for relevant entities. Then a few specific classes
are introduced to deal with handlers and missions. This
gives a very compact and orthogonal organization of a pack-
age for the profile which is explained in Section 3. For ex-
ample, the RT'SJ-class AsyncEventHandler has 7 constructors
and 32 methods. In PJ, we need of those only 1 construc-
tor and 6 methods in the superclass ManagedEventHandler -
a considerable reduction. Another benefit compared with
the specialization approach is that we avoid annotations like
@SCJAllowed annotations to prohibit unwanted methods.

An application that uses the PJ package may compile and,
given that semantics is preserved, run under RTSJ with an
adapter layer that through delegation disallows some RTSJ
methods and give default values for some parameters. This
is demonstrated in Section 4. Furthermore we outline a more
direct implementation with a modified JamVM [23] on top
of Xenomai [15] and Linux.

Finally, Section 5 investigates what kind of static constraints
are needed to make the profile truly predictable and what
tool support would be feasible for checking the constraints;
and in Section 6 we conclude.

2. KEY CONCEPTS

In this section we introduce the key concepts in the Pre-
dictable Java profile: handlers and mission and the sup-
porting resource concepts of memory and schedulers. The
interplay between resources, handlers and missions deter-
mine predictability of applications.

2.1 Handlers

An application programmer must have the means to define
temporal scopes [10] (period, deadline, execution time bud-
get) and the specific algorithm for handling a periodic or
aperiodic event triggered computation when developing real-
time applications. This is succinctly encoded as a periodic
or aperiodic event handler.

A periodic event handler in an application is a specialization
of the PeriodicEventHandler of the profile, see Section 3.

class Periodic extends PeriodicEventHandler
{
protected Periodic(PriorityParameters priority,
PeriodicParameters pp,
Scheduler scheduler,
MemoryArea memory)
{ super(priority, pp, scheduler, memory); }

public void handleEvent() {
// the logic to be executed every period

}

It defines the temporal scope in the parameter pp. The
priority parameter is for use by a scheduler and the handler
has a memory to be used during execution of the algorithm.
These parameters are concerns of the system programmer
that assembles the application; the programmer of individ-
ual tasks focuses on giving an algorithm that specializes the
handleEvent method.

The semantics is a periodic execution of the algorithm with
the given period within its deadline which both are speci-
fied in the value pp of the PeriodicParameters object. The
semantics is conditional on the algorithm completing within
its execution time budget, included in pp, without declar-
ing more temporary objects than can be accommodated in
the memory, and refraining from declaring non-temporary ob-
jects. These semantic conditions can be checked by conser-
vative approximation using abstract interpretation. This is
discussed further in Section 5.

The aperiodic event handler is very similar:

class Aperiodic extends AperiodicEventHandler
{
protected Aperiodic(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memory)
{ super(priority, ap, scheduler, memory); }

public void handleEvent() {
// the logic to be executed when an event occurs
}
}

It defines the deadline and cost, in the parameter ap. The
remaining parameters are analogous to the ones for a pe-
riodic handler. The logic is given by specialization of the
handleEvent method.

The semantics is an activation and execution of the algo-
rithm within its deadline when an event is pending on an
Event object to which the handler is attached. As for pe-
riodic handlers, the semantics is conditional on the algo-
rithm completing within its execution time budget, without
declaring too many temporary objects and refraining from
declaring non-temporary objects.

A further condition is that event occurrences are sufficiently
separated. A safe interpretation is that they are separated
at least by the specified deadline. However, this may be un-
duly pessimistic, for instance with a shutdown handler, thus
we have considered adding a minimal interarrival time to
the parameters, as in RT'SJ SporadicParameters. The trou-
blesome point is whether this is statically checkable. For
external events, this is clearly not possible; they must be as-
sured by assumptions about the environment. However, for
internal events, model checking based tools like TIMES [3]
are able to combine analysis of event passing with schedu-
lability analysis, again assuming some conservative approx-
imation of the actual algorithm.

A bolder interpretation of aperiodic events is that they are
just indistinguishable ticks, counting them is sufficient, and
with a long counter, there should be space for even the most



lively interrupt generators. It is then up to the application to
handle and reset the counter. Such liberal semantics could
be considered.

2.2 Missions

The functionality of an application is made up of handlers;
but they have to be executed according to a feasible schedule
implemented by a scheduler. Handlers use private memories
for temporary objects, but they may use more permanent
shared objects protected through mutual exclusion mecha-
nisms as specified by the Java synchronized method qualifier.
These are placed in the memory of the mission. The embed-
ded software systems programmer designs the architecture
in terms of missions that encapsulates a set of handlers.

A mission is essentially a set of tasks that collaborate on
providing a desired functionality. When application func-
tionality changes over time - mode transitions - there are
multiple missions. In very simple cases there is only one
mission, which may need an initialization and termination.
In more complex cases, missions may compose sequentially,
conditionally or even in parallel, from which there is but a
small step to having statically nested missions.

Already initialization and termination indicates that a mis-
sion is more than a simple container for a set of handlers.
It is itself a handler for termination or in some cases an ini-
tialization event. Thus we collect the responsibilities of a
mission in a handler class that contains handlers.

The alternative, the Mission as a simple container for han-
dlers, we found, would further complicate the profile: a
new class hierarchy is introduced along with special mission
memory, and even new types of handlers for mission start,
stop, initialize etc. might be introduced, to handle missions,
and possibly more. This does not contribute to the frame-
work since what is needed to express the mission concept
already exists in handlers: private handler memory, used as
mission memory, the handler concept allows functionality to
be expressed, such as start, stop etc.

The code below gives the termination handler aspect of the
mission in the handleEvent logic. Initialization is done in
the constructor of a mission, where the container aspect is
the vector of eventHandlers. Individual handlers belonging
to the mission are added by the addToMission method. Note
that handlers can be added only, and only during initial-
ization, thus a mission contains a static and finite set of
handlers. One could consider replacing the dynamic vector
with a simple array since the length is known at initialization
time.

public class Mission extends AperiodicEventHandler
{

Vector<ManagedEventHandler> eventHandlers;

protected Mission(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memory)
{
super (priority, ap, scheduler, memory);
eventHandlers = new Vector<ManagedEventHandler>();

}

public void addToMission(ManagedEventHandler eh)
{ eventHandlers.add(eh); }

public void handleEvent() {
// the logic to be executed to terminate a mission
}
}

The elided part denoted by the ellipsis above are methods
that interact with the scheduler.

public Vector<ManagedEventHandler> getEventHandlers() {
return eventHandlers;

}

public boolean add() {
return getScheduler().add(this);
}

public boolean remove() {
return getScheduler().remove(this);

}

A mission is submitted to its scheduler by add. The sched-
uler knows that the calling handler is a Mission and con-
tains a list of handlers. They can be accessed through
getEventHandlers, and it is then up to the scheduler to sched-
ule the set if it is feasible. The handlers of a mission are
assumed to be started from a common start time.

Correspondingly, as a step in termination, the set may be
removed from the scheduler through remove. There are sev-
eral possibilities for a termination semantics. These are
discussed below under schedulers in subsection 2.4. The
method getScheduler is defined in the superclass,
ManagedEventHandler.

2.2.1 Mission examples

A basic mission contains periodic handlers without any ter-
mination. It uses a cyclic scheduler declared in main and
has a Linear Time LTMemory at its disposal. Since it never
terminates and therefore does not need to be scheduled as a
handler, it does not need any priority or release parameters.

public class Basic extends Mission
{
protected Basic(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memoryArea)
{
... // initialization

}

public static void main (String[] args) {
new Basic(null, null, new CyclicScheduler(),
new LTMemory(10%1024));



The interesting part is the initialization of the periodic han-
dlers (the ellipsis above):

RelativeTime C = new RelativeTime(4,0);

RelativeTime D = new RelativeTime(20,0);

RelativeTime T = new RelativeTime(20,0);

PeriodicParameters pp = new PeriodicParameters(C,D,T);

addToMission(new Periodic(null,pp, getScheduler(),
new LTMemory(1024)));

addToMission(new Periodic(null,pp, getScheduler(),
new LTMemory(1024)));

add(); // mission to its scheduler

The priority parameters are not needed for a cyclic sched-
uler and are therefore left as null; but it sets up the release-
parameters for the periodic handlers. The scheduler is the
cyclic scheduler, and both periodic handlers get a private
Linear Time memory. The concrete numbers in the param-
eters are arbitrary.

Next, we modify the example to include a termination event
that can be triggered by a periodic handler. Since the mis-

sion is an aperiodic event handler, we use a PriorityScheduler.

Furthermore a static event is used to signal a termination
request from the application handlers. This event is handled
by the handleEvent of the mission. Note that the mission as
a handler is included in its handler set.

public class Extended extends Mission
{

static AperiodicEvent event;

protected Extended(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memoryArea)
{ // set up periodic or other aperiodic handlers
// with prioritites etc.

event = new AperiodicEvent(this);
add(); // start mission

}

public void handleEvent() {
remove(); // from scheduler

// clean up etc.
}

public static void main (String[] args) {
new Extended(new PriorityParameters(10),
null,new PriorityScheduler(),
new LTMemory(10%1024));

With missions, it is possible to build sequential and concur-
rent missions, assuming that the selected scheduler is able
to handle it. An outline of a sequential composition of three
sub-missions is:

public class ThreeSequentialMissions extends Mission
{

private Mission[] mission;

private int active = 0;

static AperiodicEvent event;

public ThreeSequentialMissions(...) {

mission = new Mission[3];

// set up the three missions
mission[0] = new Mission(...);

// add handlers for mission 0O

// including the mission termination

mission[1] = new Mission();

mission[2] = new Mission();

// start the first mission
mission[active].add();

event = new AperiodicEvent(this);

}

public void handleEvent() {
mission[active] .remove();
active = (active + 1) % mission.length;
mission[active] .add();

The outer mission removes and terminates the inner missions
one at a time and starts the next one. Note that the handlers
are initialized once. When the next mission is started, any
shared objects will have the state in which they were left by
the previous mission. If a reinitialization has to take place,
the local missions must define a termination handler that
takes care of reinitialization.

Analogously, missions may include sub-missions to be ex-
ecuted concurrently. That is, if the scheduler can accept
it.

2.3 Memory

When the runtime system starts an application like Basic,
an object of this class and objects for its arguments are cre-
ated in what is usually called the heap (but here without
GCQ). The lifetime of those objects is the lifetime of the ap-
plication.

Since Basic extends Mission which is an aperiodic event han-
dler this has as consequences:

e Immortal memory in the sense of RT'SJ, which contains
objects that has to live for the duration of the mission,
is not needed, because the scoped memory belonging
to the mission, here Basic, takes over this role.

e Just one kind of scoped memory is necessary, because
there is no semantic difference between mission mem-
ory and private memory for a handler.

e Scoped memories are private for their handlers. In
particular, a mission’s memory contains objects shared
by the set of event handlers of the mission.

This simplifies the memory hierarchy. Yet, in order to be
compliant with RT'SJ we have retained the following classes
in a hierarchy.



The abstract class

public abstract class MemoryArea

{
// dummy implementations,
// exceptions not considered
protected MemoryArea(long size) {3}

public void enter(Runnable logic) {}

public static MemoryArea getMemoryArea(Object object)
{ return null; }

public Object newArray(Class type, int number)
{ return null; }

public Object newInstance(Class type)
{ return null; }

public Object newInstance(Constructor constructor,
Object[] args)
{ return null; }

the intermediate abstraction

public abstract class ScopedMemory extends MemoryArea
{
public ScopedMemory(long size) {
super (size) ;
}
}

and the concrete

public class LTMemory extends ScopedMemory
{
public LTMemory (long size) {
super (size) ;
}
}

Concrete implementations of MemoryArea are shown in Sec-
tion 4.

2.4 Schedulers

A scheduler must support the mission. Therefore the con-
structor to a Mission has a parameter of type Scheduler, see
Section 2.2.

The concrete schedulers specialize an abstract profile class:

public abstract class Scheduler
{

private static Scheduler sc;

protected abstract boolean add(Mission mission);
protected abstract boolean remove(Mission mission);

public static Scheduler getDefaultScheduler() {
return sc;
}
protected static void
setDefaultScheduler (Scheduler scheduler) {
sc = scheduler;

}

We have removed the feasibility checking of RTSJ, because
it aims at systems where handlers are added and removed
dynamically. Please note that even with nested missions,
the overall structure is known at compile time.

New, is the concept of adding and removing missions as a
whole. For a simple scheduler that accepts a single mission
at a time, the most interesting semantics is termination. We
would suggest a mode change semantics, where termination
takes place only at points where no handlers are released
[31]; but other mode change semantics are certainly possible.

An open point is whether missions are structured counter-
parts of a RTSJ ProcessingGroup. This requires further in-
vestigation [36].

Two concrete schedulers are shown in Section 4: a cyclic
executive scheduler for a mission with solely periodic event
handlers and a fixed-priority preemptive scheduler for mis-
sions with both periodic and aperiodic event handlers. These
are the schedulers needed to run the examples of Section 2.2

2.5 Synchronization

Objects, shared between handlers, are placed in the mis-
sion’s memory. In a simple profile, mutual exclusion locking
is done by synchronization of the methods of the shared
object. Synchronization at block level is not considered be-
cause of its added complexity, see the discussion in [10].

Priority inversion can be avoided, either by priority inher-
itance or priority ceiling emulation. The open source im-
plementation in Section 4 uses priority inheritance because
priority ceiling emulation is not implemented in Xenomai.
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Interfacing to devices is an important aspect of real-time
applications, and we suggest a solution with Device Objects
and Interrupt Handlers; this is discussed in detail in [30, 24].

3. BUILDING THE HIERARCHY

The Predictable Java profile we propose organizes the con-
cepts discussed above in a hierarchy which is a generalization
of RTSJ. Here it is useful to recall what inheritance may be
used for. Inheritance is a way of forming new classes, allow-
ing subclasses to inherit commonly used state and behaviour
from a superclass. This can be interpreted in different ways.
Budd [9] lists seven forms of inheritance, of which the most
interesting for our purpose are:

Inheritance for specialization: Here a new class is a spe-
cialized class of the parent class. The new class sat-
isfies the specification of the parent class. Thus, the
new class is a subtype of the parent class. This cor-
responds to a refinement in a formal semantics setting
or a conservative extension in logics.

Inheritance for limitation: (often called implementation
inheritance), here the new class redefines the behaviour
of the parent class. The new class does not satisfy the
specification of the parent class. This means that in
the subclass only some of the behaviour from the par-
ent class is allowed in the subclass. This can be done



in different ways: a) overriding the unwanted methods
in the subclass and let them throw an IllegalMethod
exception; b) using Java annotations. This does not
fit well with formal semantics or logics.

It is evident that since a predictable Java profile is smaller
than RTSJ, it cannot be derived by specialization, and for
semantic reasons, we are not happy to pursue a limitation
approach.

3.1 The ideal profile

The Predictable Java profile is based on RT'SJ. It is a restric-
tion of RT'SJ in line with Ravenscar Java [25] and Safety
Critical Java [20], but those two profiles are both defined
from RTSJ by “inheritance for limitation” which results in
much clutter.

To get a clean and compact PJ profile, "inheritance for spe-
cialization” was used. By this, RTSJ was regarded as a
specialization of PJ. This means that the behaviour of a
PJ-class is exactly those methods from the corresponding
RTSJ-class that are necessary, and no more. Thus instead
of using

RTSJ - class
{all the methods in RTSJ-class}
|
+ -—- PJ - class
{with limitation of methods
inherited from RTSJ, which
are not part of PJ-class}

we have used:

PJ - class
{exactly those methods from RTSJ-
class necessary to define PJ-class}
|
+--RTSJ - class
{all the methods in RTSJ-class}

The resulting classes are shown in Figure 1. A few PJ spe-
cific classes are introduced: the ManagedEventHandler hierar-
chy, including the Mission subclass, and two subclasses to
AsyncEvent.

For the Scheduler we have been forced to start afresh, be-
cause the current RT'SJ does not recognize missions. We
could have removed the mission specific methods and seen
them as subclasses of a very abstract scheduler to be fully
consistent with our goal. The Scheduler in the PJ would
then be a specialization with further concrete specializations
CyclicScheduler and PriorityScheduler. They might even be
placed outside the profile.

3.2 RTSJ compliance: delegation

The ideal PJ profile described above requires some work-
arounds. Because RTSJ already exists, it cannot be defined
as subclasses to PJ, but an application that uses the PJ

package has to compile and, given that semantics is pre-
served, run under RTSJ with an adapter layer that essen-
tially disallows some RTSJ methods and gives default values
to some parameters. Hereby, the RTSJ compliance require-
ment is satisfied. An implementation of a concrete adapter
layer is shown in the next sections.

4. IMPLEMENTATIONS

We present two open source implementations of the pro-
file: one native implementation and one RTSJ compliant
implementation. Source code for both implementations is
available, as explained in Appendix A.

4.1 Native implementation

In this part we outline how the profile is implemented on an
ARM controller using a modified JamVM on top of Xenomai
and Linux. JamVM is both extremely small (~200K) and
optimized, and conforms to the JVM specification version 2
[23]. Xenomai is a real-time extension to the Linux operating
system. The Native Xenomai API has different services for
real-time tasks and task scheduling, synchronization support
including mutexes etc. [39].

4.1.1 Schedulers and handlers

In a basic implementation with a CyclicScheduler, we have
only one periodic Xenomai RT_TASK that implements the
well-known cyclic executive model [5]. When the single mis-
sion that is allowed for a cyclic scheduler is given the list
of handlers, it creates a cyclic executive table. In this table
the logic for the periodic handlers are set up, in line with
the model, and the period of the periodic Xenomai task is
calculated as the greatest common divisor of the periods of
the periodic handlers (minor cycle).

Furthermore, the CyclicScheduler maintains a list of point-
ers to the private memories of handlers.

When a PriorityScheduler is used, for instance when both
periodic and aperiodic event handlers are in play, each han-
dler is bound to a Xenomai RT task, has a memory area
allocated by the operating system, and a list of locks be-
longing to synchronized objects in the memory area. This
information is gathered in a vector for the set of handlers in
the mission, where each element is defined by:

typedef struct handler_info {

MEM_AREA *memArea; // private mem
RT_MUTEX *rt_locks; // Xenomai mutex
RT_TASK  task; // Xenomai task

} HANDLER_INFO;

A periodic handler uses Xenomai TASK services, for in-
stance rt_task_set_periodic and rt_task_wait_period .
An example is periodic invocation of a handler that is im-
plemented as:

for (;) {
JNI-callback-to-PeriodicEventHandler-run
rt_task_wait_period(NULL);

}
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Figure 1: PJ class diagram

Similarly, Xenomai EVENT and INTERRUPT services are used to
implement events or hardware generated interrupts.

The implementation does not support nested missions or, at
the moment, mission termination.

4.1.2 Memory management
The garbage collector in JamVM is switched off so that the
heap is used as immortal memory.

For the implementation of a MemoryArea, the standard C malloc
is used to allocate a MEM_AREA, which is a new struct we have

defined in JamVM. It is similar to the existing heap memory

structure in JamVM.

Thus, the essential part of the Java implementation of mem-
ory area becomes:

public abstract class MemoryArea
{

long memSize;
int memID; // a reference to the MEM_AREA

public void enter (Runnable logic) {
Native.enterNativeMemArea (memID);
logic.run();
Native.leaveNativeMemArea (memID);

}

When new objects are created by logic.run, they are placed
in the memory area belonging to the handler. This memory
area is reset by Native.leaveNativeMemArea.

4.1.3 Synchronization

Shared objects are represented by classes with synchronized
methods. Synchronized blocks are not allowed which means
that the Java bytecodes monitorenter and monitorexit which
implement a Java synchronized block [26], are not rewritten
in JamVM.

In the virtual machine synchronized methods are marked
with the ACC_SYNCHRONIZED flag. This means that in JamVM
we only need to replace the local objectLock/objectUnlock

functions with two new functions called rt_object_lock
and rt_object_unlock.

Those two new functions uses Xenomais MUTEX services with
methods like rt_mutex_aquire and rt_mutex_release on
elements in the list rt_locks.

Xenomai’s MUTEX services enforce priority inheritance. Pri-
ority ceiling emulation is not enforced yet. It is a weakness
with Xenomai.

4.2 The RTSJ adapter layer

This section describes the RT'SJ implementation of the pro-
file on top of the timesys 1.0.2 RTSJ implementation [34].
The technique used is encapsulation by delegating responsi-
bility to appropriate RTSJ classes.

4.2.1 Schedulers and handlers

The cyclic scheduler schedules a single mission, containing
periodic event handlers only, thus the add method expects a
Mission object satisfying this constraint. From this mission,
periodic handlers are retrieved and a cyclic executive table
is built: an array where each entry contains a list of han-
dlers for the given minor cycle. Execution is performed by
a single periodic thread, with a period of minor cycle, im-
plemented using the NoHeapRealtimeThread from RTSJ. Each
period the handleEvent methods are executed on behalf of
each handler in the current minor cycle, in the context of
the private memory associated with each handler. The pe-
riodic thread will loop through the executive table forever.
Thus the remove method has no effect and returns false.

The priority scheduler is implemented using the RT'SJ prior-
ity scheduler. For each event handler an appropriate schedu-
lable entity is created upon instantiation of the handler. It
has a simple logic responsible for executing the event handler
logic in the context of its private memory. For periodic han-
dlers this is done using a periodic thread, NoHeapRealtimeThread,
and for aperiodic handlers, the RTSJ AsyncEventHandler is
used. When a mission is added to the priority scheduler,
using the add method, priorities of the RT'SJ schedulables
are set using deadline monotonic priority assignment, and
all periodic threads are started.



Periodic event handlers internally contains a simple imple-
mentation of an RT'SJ NoHeapRealtimeThread as illustrated in
the PeriodicEventHandler constructor:

protected PeriodicEventHandler(...) {
super (priority, pp, scheduler, memoryArea);

final PeriodicEventHandler pevh = this;
rtsj_thread = new NoHeapRealtimeThread(
null, rtsj_releaseParameters, null,
ImmortalMemory.instance(), null,
new Runnable()
{
PeriodicEventHandler _pevh = pevh;
public void run() {
for(;;){
_pevh.memoryArea.enter (_pevh) ;
NoHeapRealtimeThread.waitForNextPeriod() ;
}
}
} // logic
);
}

The run method of the PeriodicEventHandler class invokes
the logic of the event handler, i.e. the handleEvent method.
The rtsj_releaseParameters, supplied to the thread con-
structor contains the RTSJ equivalent of the PJ periodic
parameters. The NoHeapRealtimeThread is executed in the
context of immortal memory since it requires no additional
memory during execution.

Similarly, the aperiodic event handler is implemented using
the RTSJ AsyncEventHandler:

protected AperiodicEventHandler(...) {
super (priority, ap, scheduler, memoryArea);

final AperiodicEventHandler aevh = this;
rtsj_asyncEventHandler = new AsyncEventHandler(
null, null, null,
ImmortalMemory.instance(), null,
true, // nonheap
new Runnable()
{
AperiodicEventHandler _aevh = aevh;
public void run() {
_aevh.memoryArea.enter(_aevh);

}
} // logic
)5

Here, the rtsj_asyncEventHandler is a package visible field of
AperiodicEventHandler, and hence is accessible to the class
AperiodicEvent. The fire method of AperiodicEvent then
delegates the responsibility of fire to an instance of the RT'SJ
AsyncEvent class associated with rtsj_asyncEventHandler.

The remove method has not yet been implemented. We con-
sider using the mode change semantics of [31] and imple-
mentations as suggested in [28].

4.2.2 Memory management
The memory area classes are implemented by delegation us-
ing their corresponding RTSJ classes. Event handlers has

their own scoped memories in which their logic can create
temporary objects. Since all handlers must be reference-
able by the RTSJ scheduler, the handler objects (Mission,
PeriodicEventHandler, and AperiodicEventHandler) are al-
located in immortal memory. This violates the hierarchical
memory structure, where the handlers of a mission shares
the mission memory. Instead immortal memory is used, a
temporary solution which in the future could be reworked
using techniques inspired by those presented in [2].

S. PROFILE COMPLIANCE

The most important tasks in checking that a program is in
compliance with the profile as described above are: ensuring
schedulability, verifying that (temporary) memory consump-
tion is within bounds, and checking that no non-temporary
objects are allocated. For these purposes Worst Case Exe-
cution Time (WCET) and Worst Case Memory Consump-
tion (WCMC) analyses are needed and may be combined
with model checkers, such as UPPAAL [35], to perform a full
schedulability analysis.

Additionally, a compliance check may also need to enforce
syntactic and structural requirements and constraints de-
manded by the profile, e.g., that all loops are explicitly
bounded and that the program is not recursive. Standard
analyses, such as control flow, data flow, and information
flow analyses combined with simple syntactic checks are suf-
ficient for this.

The design of our Java profile is intended to facilitate com-
prehensive tool support for most or all aspects of the pro-
file. In particular, we believe that abstract interpretation,
and similar static analysis techniques, combined with model
checking can be leveraged to provide automated analysis and
verification of important properties such as resource usage
and profile compliance. Going beyond resource and com-
pliance checking, static analysis techniques have also been
applied with great success in the area of compile time veri-
fication of safety and security properties, e.g., prevention of
race conditions and deadlocks, guaranteed secure informa-
tion flow, and bug hunting.

Below we discuss in more detail the relevant analyses and
how they may be applied here.

5.1 Resource usage

A prime example of an analysis in this category is the WCET
analysis [38, 12, 33, 37] mentioned above. A WCET analy-
sis can statically compute a sound over-approximation of the
worst possible execution time behaviour of a program. This
is needed, among other things, to determine if a given pro-
gram can safely be scheduled. Dually, a best case execution
time [38] computes a conservative under-approximation of
the execution time of a given program. This may, in certain
cases, be used to give a (conservative) lower bound on the
execution time for aperiodic event generators and thus on
the minimal interarrival time between aperiodic events.

In [7] a more direct approach to schedulability analysis is
taken: here it is shown how to automatically extract a timed-
automata based model of a Java bytecode program. The
extracted model is then model-checked, using UPPAAL, to
determine directly if it is schedulable.



Other analyses in this category include analyses to deter-
mine worst case memory (WCMC) usage [16, 11] and maxi-
mum stack depth, both of which are instrumental for ensur-
ing that a given program can be executed within the bounds
set by the platform.

5.2 Safety and security

By computing standard control flow, data flow, and informa-
tion flow analyses a number of safety and security properties
can be guaranteed at compile time. Including the absence
of certain bugs, e.g., null pointer exceptions [21], initialisa-
tion failures [22], secure information flow [19, 18, 14, 6], and
avoiding race conditions [1, 13].

Combining a best/worst case execution time analysis with
analyses that extract abstract timing models from a pro-
gram, e.g., in the form of timed automata [7], it may be
possible to give a compile time proof that a given program
cannot possibly end in a deadlock state nor a livelock situ-
ation.

6. CONCLUSION

We have presented Predictable Java (PJ), a Java profile suit-
able for development of high integrity real-time systems. PJ
shows that it is beneficial to define a specialized profile as
a generalization of RTSJ. This is in contrast to other pro-
posals, such as Ravenscar Java [25] and Safety-Critical Java
[17, 4] which are (extended) subsets defined as limitations of
RTSJ using subclassing. PJ uses only the handler paradigm,
having periodic and aperiodic handlers. Those handlers
are grouped in missions which are first-class objects as the
Mission class is a subclass of the AperiodicEventHandler class.

Each handler has a private memory for allocation of local
objects during execution of its handleEvent method. This
private memory is reset every time this method completes.
Because a mission is an event handler there is no semantic
difference between mission memory and handler memory.
This also means that the memory belonging to a mission is
reset when a mission comes to end.

In order to ensure that it is a valid profile, it has two proto-
type implementations on different platforms; An RTSJ plat-
form, showing that PJ is compliant with RTSJ, and a “na-
tive” platform.
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APPENDIX
A. SOURCE CODE

The implementations mentioned in this paper are open source.
The source code for both implementations, and further in-
structions, is available at http://pj.boegholm.dk. Please re-
fer to the individual README files for further instructions.

The RTSJ layer implementation includes two examples,
CyclicExample and PriorityExample. These examples are us-
ing the two scheduling mechanisms together with a few han-
dlers. The reference implementation of RTSJ used is the
timesys 1.0.2, available at: http://timesys.com/java. A
Makefile exists for running and compiling the examples, the
latter using an ant build configuration. Instructions are
found in the README file.

The implementation using JamVM, Xenomai, and Linux, con-
tains a modified version of the JamVM virtual machine, JNI
functions, and the PJ implementation, with examples. In-
structions on how to compile and run the examples are found
in the README file.



