
Non-Interference and Simple Erasure Policies
for Java Card Bytecode

(Extended Abstract)

René Rydhof Hansen

Informatics and Mathematical Modelling
Technical University of Denmark

E-mail: rrh@imm.dtu.dk

1 Introduction

Smart cards have found widespread use in applications with stringent require-
ments on handling secret or private information in a safe and secure manner,
e.g., electronic purses and GSM cards for mobile phones. It is therefore very
important to ensure that programs intended to run on a smart card do not leak
sensitive information whether through accident or on purpose. Consequently,
software handling confidential information on smart cards are often required to
be formally certified in accordance with one or more rigorous security standards,
e.g., the Common Criteria [4], that mandate the use of formal methods and tech-
niques (for assurance level EAL5 and up) to guarantee that the program under
scrutiny does not have any leaks. However, verifying that a program does not
have any leaks is very hard and doing it manually for even a modestly sized
application is infeasible.

In this paper we propose a notion of non-interference for an abstract version
of the Java Card bytecode language. Programs that have the non-interference
property are guaranteed to not leak any secret information. Furthermore an
information flow analysis for verifying non-interference is developed and proved
sound and correct with respect to the formal semantics of the language. The
information flow analysis can be implemented and used to automatically verify
the absence of leaks in a program. Furthermore we argue that our notion of
non-interference can be used to also verify certain simple erasure policies.

2 The Carmel Core Language

Carmel Core is an abstraction of the Java Card Virtual Machine Language
(JCVML). It abstracts away some of the implementation details, e.g., the con-
stant pool, and all the features that are not essential to our development, e.g.,
static fields and static methods. The language is a subset of Carmel which is
itself a rational reconstruction of the JCVML that retains the full expressive
power of JCVML. See [11, 7] for a specification and discussion of the full Carmel
language. We shall use both “Carmel” and “Carmel Core” to denote Carmel
Core.

2 René Rydhof Hansen

Instr ::= push c | pop n | numop op | load x | store x | new σ

| getfield f | putfield f | if cmpOp goto pc0

| invokevirtual m | return t

Fig. 1. Carmel Core instruction set

m.instructionAt(pc) = push t n

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, c :: S〉 :: SF 〉

m.instructionAt(pc) = if t cmp goto pc0

pc1 =


pc0 if cmp(v1, v2) = true

pc + 1 otherwise

P ` 〈H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc1, L, S〉 :: SF 〉

m.instructionAt(pc) = getfield f

loc 6= null o = H(loc) v = o.fieldValue(f)

P ` 〈H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = invokevirtual m0

loc 6= null o = H(loc)
Lv = loc :: v1 · · · :: v|m0| mv = methodLookup(m0, o.class)

P ` 〈H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈H, 〈mv, 0, Lv, ε〉 :: 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

Fig. 2. Small step semantics for Carmel Core (excerpt)

The instruction set for Carmel Core, shown in Figure 1 includes instructions
for stack manipulation, local variables, object generation, field access, a simple
conditional, and method invocation and return. A program, P ∈ Program, is then
defined to be the set of classes it defines: P.classes. Each class, σ ∈ Class, contains
a set of methods, σ.methods, and a number of instance fields, σ.fields ⊆ Field.
Each method comprises an instruction for each program counter, pc ∈ N0 in the
method, m.instructionAt(pc) ∈ Instr.

The semantics for Carmel Core is defined as a straightforward small step
semantics. In Figure 2 an excerpt of the semantics is shown.

3 Non-Interference for Carmel

The notion of secure information flow defined here is based on the observation
that the information that must be protected on a smart card, e.g., a PIN code,
typically resides in particular instance fields of objects in memory. Thus our
notion of security should be flexbile enough that it allows applets to manipulate
and temporarily store sensitive information, e.g., on the operand stack, yet strict

Non-Interference and Simple Erasure Policies for Java Card Bytecode 3

enough that it catches and rejects any applet that tries to store high security
information in a low security field. This is loosely inspired by the approach taken
in [6, 10]. In order to formalise the above intuitions we define a security policy

to be a map that assigns a security level to every instance field. We assume that
the set of security levels forms a lattice, denoted (Level,v):

Definition 1 (Security policy). A security policy is a total function, level :
Field → Level, that assigns a security level to instance fields.

To simplify presentation in this paper, we consider a simple security lattice with
only two levels: low (L) and high (H) with the obvious ordering: L v H.

The ability to dynamically allocate objects on the heap and the subsequent
handling of object references in an applet poses a particular challenge when
defining non-interference for Carmel Core and languages with similar features.
We overcome this by defining non-interference “up to” isomorphism on memory
locations in the heap that contain objects with at least one field classified as low -
security. In preparation of this we first introduce the following relation, called
π-equivalence, for comparing values in a program up to the given π-mapping.
The map is required to be bijective (on the subset of Loc on which it is defined);
in the definition of heap equivalence (Definition 3) the map must be an isomor-
phism on the locations that point to objects containing fields with a low-security
classification:

Definition 2 (π-equivalence). Let v1, v2 ∈ Val and π : Loc → Loc be a bijec-

tive partial map and define

v1 ≡π v2 iff















v1 = v2 if v1, v2 /∈ Loc

v2 = π(v1) if v1 ∈ dom(π)
v1 = π−1(v2) if v2 ∈ codom(π)
true if v1 ∈ Loc \ dom(π), v2 ∈ Loc \ codom(π)

As already mentioned, the kind of non-interference of interest here must be able
to prevent leaks from high-security instance fields to low-security instance fields.
Local variables and stack contents are of no concern here since they are only used
temporarily for storing secret information. Thus security, as defined here, is only
concerned with the contents if the heap. The following definition formalises that
two heaps are considered to be equivalent, as seen from a security perspective,
when all fields that have a low security classification are equivalent (modulo the
isomorphism on low heap locations):

Definition 3 (Heap-equivalence). Let H1, H2 ∈ Heap, then H1 ≈L H2 if and

only if there exists a bijective partial map, π : Loc → Loc, such that

∀loc1 ∈ dom(H1) : ∀f ∈ H1(loc1).fields : f.level v L ⇒
H1(loc1).class = H2(π(loc1)).class ∧ H1(loc1).f ≡π H2(π(loc1)).f

and

∀loc2 ∈ dom(H2) : ∀f ∈ H2(loc2).fields : f.level v L ⇒
H1(π

−1(loc2)).class = H2(loc2).class ∧ H1(π
−1(loc2)).f ≡π H2(loc2).f

4 René Rydhof Hansen

A mapping, π, that fulfils the above requirements is called a low-isomorphism

on locations. Note that π is not defined for all locations, only those that point
to objects that contain at least one field of a low security classification. Thus
any object that is composed entirely of high-security fields is “invisible” to a low
security observer. We can now define non-interference for Carmel:

Definition 4 (Non-Interference). Let P ∈ Program, H1, H2 ∈ Heap and let

〈Hi, 〈mi, 0, Li, ε〉〉 for i = 1, 2 be initial configurations for P such that P `
〈Hi, 〈mi, 0, Li, ε〉〉 =⇒∗ 〈H ′

i
, 〈Ret vi〉〉 then P is said to be non-interfering if and

only if H1 ≈L H2 ⇒ H ′
1
≈L H ′

2

Intuitively this interpretation of non-interference states that if a given program
is started in two different initial configurations with equivalent heaps, then the
program is non-interfering if both executions terminate and the heaps in the
final configurations are equivalent. This guarantees that no high-security field
could have influenced any low-security field. Note that only the heap is needed
to achieve the (informal) notion of security discussed previously in this section.

The definition of non-interference has a number of noteworthy implications.
First, it only applies to terminating programs and thus cannot prevent informa-
tion leaks through termination (or timing) behaviour. In [1] a program transfor-
mation that can eliminate such timing leaks is discussed. The second thing to
note is the definition of non-interference, and thus security, could be extended
to also cover return values and thus implement an aspect of input/output non-
interference as well as heap-equivalence.

4 Control and Information Flow Analysis

One of the main problems for an information flow analysis to overcome is to
take implicit flows into account and ensure that they are handled correctly.
The information flow analysis described below incorporates a special component
specifically to track the implicit flow of a program. However, there is another
problem related to the implicit flows: conditionals in Carmel, and other low
level languages, are basically conditional jumps and, in contrast to higher level
languages, there is no program structure to indicate or even suggest the scope
of a conditional statement. In order to recover (some of) that structure the
analysis computes the post-dominators or forward dominators for all program
points; such post-dominators represent program points where every terminating
execution from the corresponding conditional must pass through regardless of the
branch taken. This is similar to the approach taken in [8, 2]. For a configuration
〈H, 〈m, pc, L, S〉 :: SF 〉 let C.address = (m, pc). The post-dominator can then
be formally defined in the current setting as follows:

Definition 5 (Post-dominator). For P ∈ Program the program counter pc
is a post-dominator for (m1, pc1), written (m1, pc1) y pc′

1
, if for all reduction

sequences with C1.address = (m1, pc1) and of the form: P ` C0 =⇒∗ C1 =⇒
· · · =⇒ Cn =⇒ 〈H, 〈Ret v〉〉 there exists an i ∈ {2, . . . , n} such that Ci.address =
(m1, pc′

1
).

Non-Interference and Simple Erasure Policies for Java Card Bytecode 5

ŜtackIFA = Addr → ((cVal × Security)∗)> ̂LocHeap
IFA

= Addr → N0 → (cVal × Security)

Ôbject
IFA

= Field → (cVal × Security) Ĥeap
IFA

= ObjRef → Ôbject
IFA

̂Implicit = Addr → P(Security × Addr) Dominators = Addr → P(PC)

Fig. 3. Abstract Domains for the Information Flow Analysis

For lack of space we shall not go into further details here but merely refer to [7]
for a formal proof that the above indeed captures the intended intuition and an
algorithm for computing the post-dominators in a given Carmel program.

4.1 Abstract Domains

The abstract domains for the information flow analysis are mainly extensions
of the abstract domains for the control flow analysis with security information.
In addition abstract domains are needed to compute the post-dominators (the
Dominators domain), as discussed above, and to track the implicit flow (the
̂Implicit domain). The abstract domains are shown in Figure 3.

Tracking implicit flow requires keeping track of the security label of the im-
plicit flow and also the origin of the implicit flow, i.e., the program point of the
conditional or method invocation that gave rise to the implicit flow: The least
upper bound of the security levels of the possible implicit flows at an address,
i.e., t{`′| (`′, (m′, pc′)) ∈ Ĉ(m, pc)}, is called the security context of that address
and is written t Ĉ(m, pc). Implicit flows originating at program point pc must
be propagated throughout the program until a post-dominator for pc is encoun-

tered. This is formalised as follows for Ĉ1, Ĉ2 ∈ ̂Implicit and DOM ∈ Dominators:

Ĉ1(m1, pc1) vDOM Ĉ2(m2, pc2) iff

{(`, (m, pc)) ∈ Ĉ1(m1, pc1)|m2 6= m ∨ pc2 /∈ DOM (m, pc)} ⊆ Ĉ2(m2, pc2)

Putting all of the above together results in the following abstract domain for the
information flow analysis:

ÂnalysisIFA = ĤeapIFA × ̂LocHeapIFA × ŜtackIFA × ̂Implicit × Dominators

Elements of the analysis domain are written (Ĥ, L̂, Ŝ, Ĉ;DOM) where the semi-
colon serves as a reminder that the dominator component, DOM , is a parameter
to the Flow Logic specification and is not, as such, part of the analysis.

4.2 Flow Logic Specification

The information flow analysis is specified using the Flow Logic framework, cf. [9],
and is composed of three mostly independent components: a control flow analysis,
tracking of implicit flows, and calculation of dominators. This gives Flow Logic
judgements of the form: (Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : instr. Figure 4 shows

6 René Rydhof Hansen

an excerpt containing the most interesting Flow Logic judgements. Below the
judgements for conditionals and method invocations are discussed in more detail.
For the full specification and detailed discussion see [7].

In the analysis specification we use the notation A1 :: · · · :: An :: X /Ŝ(m, pc)
to mean that the abstract stack at instruction (m, pc) has at least n elements
bound to the variables A1 through An for later reference. The X /Y is generally
also used to introduce X as a shorthand for Y in the analysis specification.

Conditionals The security context for the current instruction is determined by
the (security label of) the op two values on the operand stack and the implicit
flows that may have reached the instruction. First we find the security labels
of the top two stack values: A1

`1 :: A2
`2 :: X / Ŝ(m, pc). Based on the security

levels of the stack values and the implicit flows the security level for the current
instruction is calculated: ` / t Ĉ(m, pc)t `1 t `2. Next the rest of the stack is
pushed forward to the two possible jump destinations: X v Ŝ(m, pc+1) and X v
Ŝ(m, pc0). Similarly for the local heap: L̂(m, pc) v L̂(m, pc + 1) and L̂(m, pc) v
L̂(m, pc0). Since conditionals give rise to new implicit flows that must be tracked,
the current conditional is added to the set of tracked conditionals (and method
invocations), all of which must also be copied forward: {(`, pc)}∪Ĉ(m, pc) vDOM

Ĉ(m, pc + 1) and {(`, pc)} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc0).

Method Invocation The information flow analysis for method invocation pro-
ceeds like the semantics fetching parameters from the stack along with a reference
to the target object: A1

`1 :: · · · :: A|m0|
`|m0| :: B`0 :: X / Ŝ(m, pc) :. The security

levels are then used to calculate the current security context: ` / t Ĉ(m, pc) :.
Now all object references found on the stack are used for method lookup:

∀(Ref σ) ∈ B : mv = methodLookup(m0, σ) . . .

Next the parameters are transferred annotated with the updated security con-
text:

{(Ref σ)}`0 t ` :: A1
`1 t ` :: · · · :: A|m0|

`|m0| t ` v L̂(mv, 0)[0..|m0|]

and the implicit flows are also copied to the invoked method:

{(`0, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(mv, 0)

Any return values from the method invocation are handled as in the control flow
analysis updated with the security level of the current context:

A`A :: Y / Ŝ(mv,END) : A`A t ` :: X v Ŝ(m, pc + 1)

Then the local heaps and (local) implicit flows are copied forward:

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

Non-Interference and Simple Erasure Policies for Java Card Bytecode 7

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : load t x

iff ` / t Ĉ(m, pc)t L̂↓2(m, pc)(x) :

L̂↓1(m, pc)(x)` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : if t cmp goto pc0

iff A1
`1 :: A2

`2 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc)t `1 t `2 :

X v Ŝ(m, pc + 1)

X v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc + 1)

L̂(m, pc) v L̂(m, pc0)

{(`, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

{(`, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc0)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : new σ

iff ` / t Ĉ(m, pc) :

{(Ref σ)}` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

default`(σ) v Ĥ(Ref σ)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : getfield f

iff B`1 :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

` / t Ĉ(m, pc)t `1 t Ĥ↓2(Ref σ)(f) :

Ĥ↓1(Ref σ)(f)` :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : invokevirtual m0

iff A1
`1 :: · · · :: A|m0|

`|m0| :: B`0 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc) :
∀(Ref σ) ∈ B: mv / methodLookup(m0, σ) :

{(Ref σ)}`0 t ` :: A1
`1 t ` :: · · · :: A|m0|

`|m0| t ` v L̂(mv, 0)[0..|m0|]

{(`0, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(mv, 0)

m0.returnType = void ⇒ X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A`A :: Y / Ŝ(mv, END) :

A`A t ` :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

Fig. 4. Information Flow Analysis (1)

8 René Rydhof Hansen

4.3 Soundness and Non-Interference

Proving that the information flow analysis is semantically sound amounts to
showing that it can be used to show that a program is non-interfering in the
sense of Definition 4. We prove this by showing that the anlaysis statically guar-
antees that a so-called A-equivalence, parameterised on the analysis A, holds
between semantic configurations of the analysed program; this A-equivalence is
then shown to be sufficient to establish non-interference for the analysed pro-
gram. For lack of space only the most important definitions and lemmas are
stated; see [7] for further details.

First we define an equivalence on individual stack frames. Taking the dynamic
memory allocation into account the equivalence is defined only up to a given low-
ismorphism:

Definition 6. Let Fi = 〈mi, pc0, Li, Si〉 for i = 1, 2 be stack frames and let

A = (Ĥ, L̂, Ŝ, Ĉ;DOM) ∈ ÂnalysisIFA then F1 and F2 are A-equivalent, written

F1 ≈π

A F2, if and only if π : Loc → Loc is a bijective partial map and the

following conditions hold:

1. m1 = m2

2. pc1 = pc2

3. ∀x : L̂↓2(m1, pc1)(x) v L ⇒ L1(x) ≡π L2(x)

4. ∀i : Ŝ↓2(m1, pc1)|i v L ⇒ S1|i ≡π S2|i

This is trivially extended to call stacks: SF1 ≈π

A SF2 if and only if ∀i : SF1|i ≈
π

A

SF2|i. Note that this requires the two call stacks to be of equal length. Now

the equivalence of two semantic configurations, modulo A ∈ ÂnalysisIFA, can be
defined:

Definition 7 (A-equivalence). Let Ci = 〈Hi, SFi〉 for i = 1, 2 be semantic

configurations and let A = (Ĥ, L̂, Ŝ, Ĉ;DOM) ∈ ÂnalysisIFA then C1 and C2 are

A-equivalent, written C1 ≈A C2, if and only if there exists an bijective partial

map, π : Loc → Loc, such that SF1 ≈π

A SF2 and for all (Ref σ) ∈ dom(Ĥ) and

f ∈ σ.fields the following holds:

Ĥ↓2(Ref σ)(f) v L ⇒
∀loc1: H1(loc1).class = H2(π(loc1)).class

H1(loc1).f ≡π H2(π(loc1)).f
∀loc2: H2(loc2).class = H1(π

−1(loc2)).class
H2(loc2).f ≡π H1(π

−1(loc1)).f

Note that this definition is very similar to that for heap equivalence, cf. Defini-
tion 3, with added requirements on the local heap and the operand stack.

We now state the main technical lemma needed to prove the main theorem.
The lemma (called a “hexagon lemma” in [5]) shows that A-equivalence on
configurations is preserved by reduction or, more precisely, that A-equivalence
is preserved by sufficiently long reduction sequences. Figure 5 summarises the
lemma and illustrates the source of its name. Note that this proof works on the

Non-Interference and Simple Erasure Policies for Java Card Bytecode 9

P ` C1 ≈A P ` C2

C′′
1

∗

C′′
2

∗C′
1

≈A C′
2

Fig. 5. Diamond property

assumption that programs are bytecode verified and thus that the stack height
is fixed for each instruction.

Lemma 1 (Diamond property). Let P ∈ Program, A ∈ ÂnalysisIFA, C1, C2 ∈
Conf such that A |=IFA P and P ` C1 =⇒ C ′′

1
=⇒∗ 〈H ′′′

1
, 〈Ret v′′′

1
〉〉, P ` C2 =⇒

C ′′
2

=⇒∗ 〈H ′′′
2

, 〈Ret v′′′
2
〉〉 with C1 ≈A C2 then ∃C ′

1
, C ′

2
such that P ` C ′′

1
=⇒∗ C ′

1
,

P ` C ′′
2

=⇒∗ C ′
2
, and C ′

1
≈A C ′

2
.

Proof. By case analysis.

Having established the diamond property for A-equivalence all that remains is
to relate the security policy for a program to the security levels found by the
information flow analysis:

Definition 8 (Security compatible). For a program, P ∈ Program, such that

(K̂, Ĥ, L̂, Ŝ) |=CFA P the analysis, (Ĥ, L̂, Ŝ, Ĉ;DOM), is said to be security com-
patible with P if ∀σ ∈ P.classes: ∀f ∈ σ.fields: f.level = L ⇒ Ĥ↓2(Ref σ)(f) = L

Finally, the main non-interference result can be stated and proved:

Theorem 1 (Non-Interference). Let P ∈ Program and A ∈ ÂnalysisIFA such

that A |=CFA P and A is security compatible with P . If C0 and C ′
0

are initial

configurations for P such that C0 ≈A C ′
0

and P ` C0 =⇒∗ 〈H, 〈Ret v〉〉 and

P ` C ′
0

=⇒∗ 〈H ′, 〈Ret v′〉〉 then P is non-interfering, i.e., H ≈L H ′.

Proof. Follows directly by application of Lemma 1 and Definition 7.

The theorem shows that if the security level found by the information flow
analysis agrees with those of the given security policy for a given program, then
the program is non-interfering and thus no secret information can be leaked.

5 Simple Erasure Policies (work in progress)

Here we present a way to model simple erasure policies using the notion of non-
interference defined previously. The material in this section is work-in-progress

10 René Rydhof Hansen

and therefore we state no theorems or make any formal proofs. This is left for
future work.

Briefly, the idea underlying erasure policies, as defined in [3], is that infor-
mation that has been labelled with an erasure policy, e.g., L c↗H, is available at
level L until the condition c holds, after which the information should only be
available at level H. This kind of policy is useful for applications where sensi-
tive information is needed only temporarily, e.g. for voting or e-commerce. For
Carmel programs such policies can be interpreted as follows: once a program run
has ended in a terminal configuration, e.g., 〈H ′

1
, 〈Ret v1〉〉, any further program

runs using H ′
1

as the initial heap should not be able to extract any information
from H ′

1
about any field that contained information that was to be erased. This

kind of policy can be seen as a Chong/Myers erasure policy of the form L c↗H

where c is then fixed to mean “when the program ends”. We shall call such
policies “simple erasure” policies, written L end↗H, and formally define them as
follows: First extend the Level security lattice with an additional element, L↗H,
such that the three elements of the lattice are ordered in the following way:
L v L↗H v H. The element L↗H is then assigned to fields that contain data
that should be erased. Given that domain we can now define simple erasure
policies formally:

Definition 9 (Simple Erasure). Let P ∈ Program, H1, H2 ∈ Heap and let

〈Hi, 〈mi, 0, Li, ε〉〉 for i = 1, 2 be initial configurations for P such that P `
〈Hi, 〈mi, 0, Li, ε〉〉 =⇒∗ 〈H ′

i
, 〈Ret vi〉〉 then P is said to comply with the erasure

policy L ↗ H if and only if P is non-interfering and H1 ≈L H2 ⇒ H ′
1
≈H H ′

2

Intuitively the above definition states that no matter what information is initially
stored in a field with the label L↗H such information is erased when the program
ends, since the requirement H ′

1
≈H H ′

2
implies that such a field must have the

same final value for every program run. This ensures that the next program run,
starting from H ′

1
(or H ′

2
or any other final heap), will not be able to extract any

information about the previous values of such fields.

We conjecture that it is relatively straightforward to augment the informa-
tion flow analysis to also statically verify simple erasure policies by requiring
that every field of level L↗H is explicitly erased, e.g., through a special erase-
instruction, before the end of a program or before a method returns. This ex-
tension of the analysis is left for future work.

6 Conclusion

We have presented a notion of non-interference for a low-level bytecode language
with dynamic memory allocation and argued how this notion can be used to
verify certain simple erasure policies.

Non-Interference and Simple Erasure Policies for Java Card Bytecode 11

References

1. Johan Agat. Transforming out Timing Leaks. In Conference Record of the Annual

ACM Symposium on Principles of Programming Languages, POPL’00, pages 40–
53, Boston, Massachusetts, January 2000. ACM Press.

2. Marco Avvenuti, Cinzia Bernardeschi, and Nicoletta De Francesco. Java bytecode
verification for secure information flow. SIGPLAN Notices, 38(12):20–27, Decem-
ber 2003.

3. Stephen Chong and Andrew C. Myers. Language-Based Information Erasure.
In Proc. of the 18th IEEE Computer Security Foundations Workshop, Aix-en-
Provence, France, June 2005. IEEE Computer Society.

4. Common Criteria Project Sponsoring Organisations. Common Criteria for In-

formation Technology Security Evaluation, August 1999. Version 2.1. Also ap-
pears as International Standard ISO/IEC 15408:1999. Available for download at
http://www.commoncriteria.org.

5. Karl Crary, Aleksey Kliger, and Frank Pfenning. A Monadic Analysis of Informa-
tion Flow Security with Mutable State. Technical Report CMU-CS-03-164, School
of Computer Science, Carnegie Mellon University, July 2003.

6. Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia. Providing
Flexibility in Information Flow Control for Object-Oriented Systems. In Proc. of

the IEEE Symposium on Security and Privacy1997, pages 130–140, Oakland, CA,
USA, May 1997. IEEE Computer Society.

7. René Rydhof Hansen. Flow Logic for Language-Based Safety and Security. PhD
thesis, Technical University of Denmark, 2005.

8. Naoki Kobayashi and Keita Shirane. Type-Based Information Analysis for Low-
Level Languages. In Proc. of Asian Symposium on Programming Languages and

Systems, APLAS’02, pages 302–316, Shanghai, China, November/December 2002.
9. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer Verlag, 1999.
10. Pierangela Samarati, Elisa Bertino, Alessandro Ciampichetti, and Sushil Jajodia.

Information Flow Control in Object-Oriented Systems. IEEE Transactions on

Knowledge and Data Engineering, 9(4):524–538, July/August 1997.
11. Igor Siveroni and Chris Hankin. A Proposal for the JCVMLe Operational Seman-

tics. SECSAFE-ICSTM-001-2.2, October 2001.

