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Abstract. In this paper, hybrid logic is used to formulate a rational re-
construction of a previously published control flow analysis for the mobile
ambients calculus and we further show how a more precise flow-sensitive
analysis, that takes the ordering of action sequences into account, can
be formulated in a natural way. We show that hybrid logic is very well
suited to express the semantic structure of the ambient calculus and how
features of hybrid logic can be exploited to reduce the “administrative
overhead” of the analysis specification and thus simplify it. Finally, we
use HyLoTab, a fully automated theorem prover for hybrid logic, both
as a convenient platform for a prototype implementation as well as to
formally prove the correctness of the analysis.
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1 Introduction

With the increased, and increasing, focus on making secure and reliable systems
also comes an increased need for advanced tools and techniques that can verify
important security and reliability properties of a system in all phases of design,
modelling, and implementation. In recent years various forms of static analysis
has gained popularity as basis for verification tools, in part because static analy-
sis can be fully automated and in part because of the ability of static analysis to
scale to even the largest systems. There has also been a growing interest in ap-
plying static analysis techniques to the verification of more or less formal system
models, e.g., models formulated as UML diagrams or process calculi, to verify
relevant safety and security properties before starting the actual implementation.

The main goal of this paper is to show how hybrid logics can be applied to
the specification, validation, and implementation of static analyses. We do this
by developing three increasingly precise analyses of the mobile ambients process
calculus [6] which is used to model distributed systems with a high degree of
mobility. The analyses are specified using hybrid logics, in a way that is inspired
by the Flow Logic approach [10]; the correctness of the analyses are proved using
the HyLoTab theorem prover for hybrid logics [11]; and by exploiting the model
generation capabilities of HyLoTab we also automatically obtain implementa-
tions of the analyses directly from their respective specifications. In addition to
the obvious convenience of getting an implementation for free, it also obviates
the need for proving the correctness of the implementation.



Furthermore, we argue that hybrid logics are particularly well-suited for spec-
ifying analyses for the mobile ambients calculus because the structure of models
for hybrid logic formulae is very similar to the structures underlying the seman-
tics of mobile ambients. In addition, the nominals, intrinsic to hybrid logics,
provides an easy way to handle the analysis of bound names in the ambient cal-
culus and thereby avoid the additional technical complexity otherwise necessary,
cf. [7, 8].

Finally, while the intention of this paper is to show some of the advantages
of using hybrid logics for static analysis, the developed analyses are not mere
“toy”-analyses only useful for demonstration purposes. Indeed the analysis de-
scribed in Section 6 is comparable to the 0CFA analyses of [7, 8] and the analysis
defined in Section 7 incorporates an element of flow sensitivity, by taking the
ordering of action sequences into account, that markedly and non-trivially im-
proves precision of the analysis. Although this flow-sensitive analysis is unlikely
to be as precise as the “counting analysis” of [7] it does have the advantage of
retaining a simple specification, that is straightforward to prove correct, as well
as being easily implementable.

Related Work

The mobile ambients calculus has been studied in a number of contexts and
several type systems and static analyses have been developed for it, see for ex-
ample [4, 5, 7, 8, 2, 1, 9]. The analyses in this paper are mainly inspired by the
control flow analyses developed in the Flow Logic framework [7, 8]. However, in
none of these works are logics used so pervasively and essentially to obtain clear
analysis specifications, computer assisted correctness proofs, and automated im-
plementation. We are also not aware of any prior use of hybrid logics for static
analysis.

2 Mobile Ambients

Process algebras have long been used for modelling concurrent and distributed
systems. These models have been invaluable in studying and solving some of the
many problems inherent in such systems such as deadlocking, synchronisation,
fairness etc.

The ambient calculus is a process calculus specifically designed to model
mobility of processes. This is in contrast to traditional process calculi, such
as CSP and the π-calculus, that focus on communication between processes.
In particular it is possible for an active process and its environment to move
between sites. The entities that move in the calculus are called ambients and
they may contain other active processes as well as other ambients. This gives
rise to a tree structure that changes dynamically as ambients move.

It is exactly this tree structure the static analyses discussed in later sections
are designed to approximate. The primary goal of the analyses is to ensure
that all possible concrete tree structures that may occur during the execution
of a program are represented in the analysis result. Since this is undecidable in
general, the analyses have to over-approximate the set of actual tree structures



P, Q ::= (νn)P restriction
| 0 inactivity
| P | Q composition
| !P replication
| n[P ] ambient
| in n.P capability to enter n
| out n.P capability to exit n
| open n.P capability to open n

Fig. 1. Ambient Syntax.

and thus an analysis result may contain tree structures that will never actually
occur in a program execution.

In this paper we focus on the core calculus and thus do not take communi-
cation into account. As shown in [6] the core calculus is Turing-complete.

Syntax

We assume the existence of a countably infinite set Nam of names. The metavari-
ables k, l,m, n, and so on, range over names. The syntax of the mobile ambient
calculus is defined in Figure 1. The restriction operator (νn)P creates a new
name n with scope P ; the inactive process, i.e., a process that does nothing, is
denoted by 0; processes P and Q running in parallel is represented by P | Q;
replication, !P , is equivalent to an unbounded number of copies of P running in
parallel, thereby providing a recursive operator.

By n[P ] we denote the ambient named n that has the process P running
inside it. The capabilities in n and out n are used to move their enclosing
ambients whereas open n is used to dissolve the boundary of a sibling ambient;
this will be made precise when we define the semantics below. We write fn(P )
for the free names of P . Trailing occurrences of the inactive process 0 will often
be omitted.

Semantics

The semantics of the mobile ambients calculus is defined as a straightforward
reduction semantics (see Figure 3) using a congruence relation (see Figure 2) as
is common for process calculi.

The essential idea is that the ambient hierarchy, i.e., the structure deter-
mining which ambients are inside which other ambients, can be changed dy-
namically by ambients entering or exiting other ambients or even by dissolving
another ambient. These notions are formalised as the (in), (out), and (open)
reduction shown in Figure 3. In later sections these rules will be visualised and
explained in more detail. The (amb) rule allows processes to be active even when
moved around in the ambient hierarchy. The (ν) rule defines a scope for the
name bound at the ν in much the same way that λ acts as a name binder in the
λ-calculus. In the ambient calculus α-equivalent processes, i.e., processes that
are identical modulo α-renaming of bound names, are considered to be identical.



P ≡ P
P ≡ Q ⇒ Q ≡ P
P ≡ Q ∧Q ≡ R ⇒ P ≡ R

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)
!P ≡ P |!P

P ≡ Q ⇒ (νn)P ≡ (νn)Q
P ≡ Q ⇒ P | R ≡ Q | R
P ≡ Q ⇒ !P ≡!Q
P ≡ Q ⇒ n[P ] ≡ n[Q]

P | 0 ≡ P
(νn)0 ≡ 0
!0 ≡ 0

P ≡ Q ⇒ in n.P ≡ in n.Q
P ≡ Q ⇒ out n.P ≡ out n.Q
P ≡ Q ⇒ open n.P ≡ open n.Q

(νn)(νm)P ≡ (νm)(νn)P
(νn)(P | Q) ≡ P | (νn)Q

if n 6∈ fn(P )
(νn)(m[P ]) ≡ m[(νn)P ]

if n 6= m

Fig. 2. Structural congruence.

n[ in m.P | Q ] | m[R] → m[ n[P | Q] | R ] (in)

m[ n[out m.P | Q] | R ] → n[P | Q] | m[R] (out)

open n.P | n[Q] → P | Q (open)

P → Q

n[P ] → n[Q]
(amb)

P → Q

(νn)P → (νn)Q
(ν)

P → Q

P | R → Q | R (|)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′ (≡)

Fig. 3. Reduction relation.

This equivalence often gives rise to technical difficulties in the design of static
analyses and heavy technical machinery, like annotating the syntax of processes
with labels or markers that remain stable under α-conversion, frequently has
to be employed to overcome the inherent difficulties in handling α-equivalence.
In a later section we show how such difficulties can be completely avoided by
encoding ambient names as nominals in hybrid logic and thereby significantly
simplify the technical developments needed for an analysis of the ambient calcu-
lus. Processes can be composed in parallel and executed in an interleaved way,
as shown by the (|)-rule. Finally, the (≡)-rule integrates the congruence relation
defined in Figure 2 into the reduction rules. We will not go into further detail
with the semantics here but refer the reader to later sections and [6].

Analysing Ambients

As mentioned earlier, the essential and most basic property to analyse in the am-
bient calculus, is how the ambient hierarchy, i.e., the tree structure determined
by which ambients are contained inside which other ambients, may dynamically
develop during execution. The analyses described in this paper all compute over-
approximations of this dynamically evolving structure. Such analyses are com-
parable to computing control flow graphs for imperative languages or performing



control flow analysis of a functional language. Indeed, in keeping with [7, 8], we
call such analyses of the ambient calculus control flow analyses. In [7, 8] the Flow
Logic framework is used to define a number of control flow analyses for the ambi-
ent calculus. The Flow Logic framework [10] is a specification-oriented framework
for defining static analyses where specification of the analysis is clearly separated
from the computation of the analysis result.

In the Flow Logic framework analyses are defined by specifying what it means
for a proposed analysis result to be correct (rather than how to compute it).
In this way an analysis designer can focus on high-level aspects such as what
properties to analyse and what correctness means without having to take low-
level implementation issues into account. This approach gives a framework that
is light-weight and well-suited for rapidly developing a large variety of analyses.
The analyses described in later sections are developed in a way that is inspired
by the Flow Logic framework.

An analysis specified using Flow Logic is typically implemented by system-
atically transforming the analysis specification into a constraint generator and
then use an appropriate constraint solver to perform the actual (fixed-point)
computation of the analysis result. It is often a trivial but tedious task to prove
that the constraint generator correctly implements the analysis specification.
In this paper we show how the model-generating capabilities of the HyLoTab
theorem prover for hybrid logics enables us to automatically obtain an imple-
mentation for performing the necessary fixed-point computations directly from
the high-level analysis specification and thereby obviating the need for proving
correctness of the implementation: it is correct by construction.

3 Hybrid Logic

Hybrid logic is an extension of propositional modal logic. Both modal and hybrid
logic are thoroughly introduced in [3]. Hybrid logic is obtained from propositional
modal logic by adding a second sort of propositional symbols, called nominals.
We assume that a countably infinite set Nom of nominals is given. The metavari-
ables a, b, c, and so on, range over nominals. The semantic difference between
ordinary propositional symbols and nominals is that nominals are required to be
true at exactly one world; that is, a nominal “points to a unique world”. In addi-
tion to the nominals we have a countable set of ordinary propositional symbols,
Prop. We use the metavariables p, q, r, and so on, to range over propositional
symbols. We assume that the sets Nom and Prop are disjoint. The hybrid logic
we consider has the following syntax:

φ ::= > | p | a | ¬φ | φ ∧ φ | ♦φ | ♦−φ | @aφ | ↓a.φ

where p ∈ Prop and a ∈ Nom. This hybrid logic is usually denoted HL(@,−, ↓).
The dual modal operators � and �−, and the propositional connectives not
taken as primitive are defined as usual. We now define models.

Definition 1. A model is a tuple (W,R, V ) where

1. W is a non-empty set, whose elements are usually called worlds.



2. R is a binary relation on W called the accessibility relation of the model. If
(w, v) ∈ R we say that v is accessible from w.

3. For each propositional symbol p, V (p) is a subset of W . For each nominal
a, V (a) is an element of W . V (a) is called the world denoted by a.

Given a model M = (W,R, V ), a world w ∈ W , and a nominal a, we will use
Ma

w to refer to the model which is identical to M except V maps a to w.

The relation M, w |= φ is defined inductively, where M = (W,R, V ) is a model,
w is an element of W , and φ is a formula of HL(@,−, ↓).

M, w |= > iff true
M, w |= p iff w ∈ V (p)
M, w |= a iff V (a) = w

M, w |= ¬φ iff not M, w |= φ
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= ♦φ iff for some v ∈W , (w, v) ∈ R and M, v |= φ
M, w |= ♦−φ iff for some v ∈W, (v, w) ∈ R and M, v |= φ
M, w |= @aφ iff M, V (a) |= φ
M, w |=↓a.φ iff Ma

w, w |= φ.

By convention M |= φ means M, w |= φ for every world w ∈ W . A formula
φ is valid if an only if M |= φ for any model M. In this case we simply write
|= φ. A formula φ is satisfiable if and only if ¬φ is not valid, that is, if and only
if there exists a model M and a world w such that M, w |= φ. A formula φ is
satisfiable in a model M = (W,R, V ) if and only there is a world w ∈ W such
that M, w |= φ. When φ is satisfiable in a model M we also say that M satisfies
φ.

If φ and ψ are formulae and χ is a subformula of φ, we use φ[ψ/χ] to denote
the formula obtained from φ by replacing all occurrences of χ by ψ. Later we will
need the following well-known and basic result which we state without proof.

Lemma 1. Let φ and ψ be formulae of hybrid logic, and let p be propositional
symbol occurring in φ. If |= φ then |= φ[ψ/p].

In later sections nominals are used to represent the names of the ambient cal-
culus. To simplify matters we take Nam to be a subset of Nom thus allowing
ambient names to be represented directly as nominals in a hybrid logic formula.
This further has the great advantage that α-renaming in the ambient calculus
can be directly modelled by α-renaming in hybrid logic, and thereby dispense
with the need for more technically involved solutions.

4 Modelling Ambients in Hybrid Logic

Our inspiration for modelling ambients using hybrid logic comes from the way
expressions in the ambient calculus are usually visualised. To make things simple,
let us start by considering only the following fragment of the ambient calculus:

P,Q ::= 0 | P |Q | n[P ]. (1)
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Fig. 5. Tree visualisation of the process
Ps.

Consider the process Ps in this fragment given by Ps = n[ v[0] | k[u[0]] ] | m[0].
The standard visualisation of Ps is given in Figure 4. The idea is here to visualise
each ambient expression n[P ] as a box, using the name n of the ambient as a
label on the box, and P as the content of the box. If the process P itself contains
ambients, these will be visualised as boxes nested inside the box labelled n. This
gives the system of boxes nested within each other a tree-like structure, and it
seems obvious to try to visualise this structure as a tree instead of a system of
boxes. Ambient names can then be used to label the nodes of the tree, so the
process Ps would become represented by the tree given in Figure 5. Such a tree
can be interpreted as a hybrid logical model with the ambient names interpreted
as nominals. In fact, we can even describe the tree of Figure 5 directly a hybrid
logical formula, φs = ♦

(
n ∧ ♦v ∧ ♦(k ∧ ♦u)

)
∧ ♦m. The formula φs represents

the tree in the sense that any hybrid logical model M in which φs is satisfiable
will contain the tree of Figure 5 as a subtree (unless some of the nominals are
mapped into identical worlds, but if needed this possibility can be excluded by
replacing φs by φs ∧

∧
x6=y ¬@xy). Thus the formula φs can be considered as

a syntactic representation of the tree in Figure 5, which in turn represents the
process Ps. Indeed the original process and the corresponding hybrid formula
are quite similar:

Ps = n
[

v[0] | k[u[0]]
]
| m[0].

φs = ♦
(
n∧ ♦v ∧ ♦(k ∧ ♦u)

)
∧ ♦m.

Inspired by this similarity we can define a direct translation from processes of
the fragment (1) into hybrid logical formulae. We define such a translation (·)∗
recursively by:

0∗ = >
(P | Q)∗ = P ∗ ∧Q∗

(n[P ])∗ = ♦(n ∧ P ∗).

It is easy to check that P ∗
s is logically equivalent to φs. The point is now that if

we take a process P , translate it into the hybrid logical formula P ∗, and calculate
a model M of P ∗ then M will actually be an analysis of P . This is because the
accessibility relation of M will be encoding the containment relation between
the ambients appearing in Q.

Consider now the following extended fragment of the ambient calculus in-
cluding the three capabilities in, out and open:

P,Q ::= 0 | P |Q | n[P ] | in n.P | out n.P | open n.P.
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Fig. 7. Tree visualisation of the (in) axiom.
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Fig. 8. Hybrid logical visualisation of the (in) axiom.

Capabilities are expressing actions that can be performed on the surrounding
ambients. Consider the axiom (in) of Figure 3. A standard visualisation of this
axiom is given in Figure 6. What happens in the reduction step of the axiom is
that we “execute” the capability in m.P which tells the surrounding ambient
n to move inside the sibling ambient named m. Using trees instead of boxes, a
simple representation of the (in) axiom could be as in Figure 7. In the figure the
root is marked by ◦. We will use this as a general convention in the following.
From the figure we see that the capability essentially removes one edge and
adds another. Since our analyses of the ambient calculus are going to be over-
approximations, we will concentrate on edges that are added and ignore edges
that are removed. Ignoring the removed edge, the capability ‘in m’ can be seen
as expressing “if m is my sibling, then add an edge from m to me” (compare
Figure 7). In hybrid logic this translates into: ↓x.(♦−♦m→ @m♦x). The hybrid
logical formula expresses: “At the current node x, if it is possible to go one step
backwards and then one step forwards to find the node m then there is an edge
from m to x”. Or simply: “If m is a sibling of the current node x then there is an
edge from m to x”. This suggests extending the translation (·)∗ defined above
to translate in-capabilities in the following way:

(in n.P )∗ = P ∗∧ ↓x.(♦−♦n→ @n♦x).

Graphically we can then replace the capability ‘in m’ in Figure 7 by the hybrid
logical formula ↓x.(♦−♦m → @m♦x), as is done in Figure 8. The point is now
that if we have a hybrid logical model containing the tree on the left hand side
of the reduction arrow in Figure 8, then it will also contain the tree on the right
hand side. This is because the translated capability ↓x.(♦−♦m → @m♦x) at n



forces there to be an edge from m to n. We can make translations of the out and
open capabilities that behave in a similar way. In the end we obtain a translation
(·)∗ satisfying the following property:

Let P and Q be processes. If a hybrid logical model M satisfies P ∗ and
if P can be reduced to Q, then M also satisfies Q∗.

This is a subject reduction result, which is a central property of any analysis
based in Flow Logic. As we shall see in the following section, it follows directly
from this subject reduction result that the translation (·)∗ gives rise to a correct
analysis of the calculus.

Note that the above translation of ambient calculus processes into hybrid
logic formulae merges all occurrences of ambients with the same name, i.e., the
translation is unable to distinguish between two different syntactic occurences
of the same name. This results in a slight imprecision (when analysing processes
with non-bound names) in the analyses described in later sections. However, this
does not affect the correctness of the analyses and it is easily remedied in the
rare cases where the extra precision is needed, e.g., by adding more structure to
ambient names or even by annotating ambients with labels, cf. [7, 8].

5 The Naive Analysis

We now develop the ideas introduced above in detail. Our first analysis is rather
simple, and we thus call it the ‘the naive analysis’. The naive analysis is based on
a simple operator (·)0 taking a process P and returning a hybrid logical formula
P0. The operator is defined inductively by the following clauses.

((νn)P )0 = P0

00 = >
(P | Q)0 = P0 ∧Q0

(!P )0 = P0

(n[P ])0 = ♦(n ∧ P0)
(in n.P )0 = P0∧ ↓x.(♦−♦n→ @n♦x)
(out n.P )0 = P0∧ ↓x.(♦−n→ @n�−♦x)
(open n.P )0 = P0 ∧ (♦n→ n).

For the translation operator (·)0 we have the following results.

Lemma 2. For all processes P and Q, if P ≡ Q then |= P0 ↔ Q0.

Proof (Sketch). We need to show that for each of the rules of Figure 2 we get
a true statement if we replace each congruence P ≡ Q appearing in the rule
by |= P0 ↔ Q0. It is easy to check that this is indeed the case using the basic
properties of the logical connectives ↔ and ∧.

Theorem 1 (Subject Reduction for (·)0). For all processes P and Q, if
P → Q then |= P0 → Q0.

Proof. The proof proceeds by induction on the depth of the proof tree for P → Q.
In the base case we consider proof trees of depth 0 corresponding to the axioms



(in), (out) and (open). Consider first the case of the (in) axiom. If P → Q is
an instance of the (in) axiom then there must be processes P ′, Q′, R′ and names
n,m such that P = n[ in m.P ′ | Q′ ] | m[R′] and Q = m[ n[P ′ | Q′] | R′ ]. This
implies

P0 = ♦
(
n ∧ P ′

0 ∧Q′
0∧ ↓x.(♦−♦m→ @m♦x)

)
∧ ♦

(
m ∧R′

0

)
Q0 = ♦

(
m ∧R′

0 ∧ ♦(n ∧ P ′
0 ∧Q′

0)
)
.

We now need to prove |= P0 → Q0. By Lemma 1, it suffices to prove validity of
the formula ψ = (P0 → Q0)[p/P ′

0, q/Q
′
0, r/R

′
0], where p, q and r are arbitrarily

chosen propositional symbols. The theorem prover HyLoTab can be used to verify
the validity of ψ in the following way. First ψ is negated, and then the negated
formula is translated into the syntactic form expected by HyLoTab (see [12]):

-((<>conj(c0,p0,p1,Dx.(<∼><>c1 -> @c1 <>x))
& <>conj(c1,p2)) -> <>conj(c1,p2,<>conj(c0,p0,p1))).

(2)

To conform to the HyLoTab syntax, n has been replaced by c0, m by c1, p by
p0, q by p1 and r by p2. Now HyLoTab is run with the formula (2) as input,
and it is checked that HyLoTab terminates with output “not satisfiable”. Since
HyLoTab thus proves ¬ψ to be non-satisfiable, ψ must be valid, as required.
This concludes the case of the (in) axiom. The cases of the (out) and (open)
axioms are similar, and have been verified by HyLoTab as well. Thus the base
cases are completed. We now turn to the induction step. Assume that P → Q
is the root of a proof tree of depth n, and suppose that for any reduction step
P ′ → Q′ with a proof tree of depth less than n we have |= P ′

0 → Q′
0. There are

now four cases to consider, one for each of the four possible proof rules (amb),
(ν), (|) and (≡) that could have produced the reduction step P → Q. Consider
first the case of the (amb) rule. If P → Q has been produced by (amb) then
there must exist processes P ′, Q′ and a name n such that P = n[P ′], Q = n[Q′],
and there is a proof tree of depth n − 1 for the reduction step P ′ → Q′. By
induction hypothesis we then get |= P ′

0 → Q′
0. Furthermore, by the definition of

(·)0 we get P0 = ♦(n ∧ P ′
0) and Q0 = ♦(n ∧ Q′

0). Since P ′
0 → Q′

0 is valid it is
easy to see that P0 → Q0 must be valid as well, as required. This concludes the
case of the (amb) rule. The cases of the three remaining rules, (ν), (|) and (≡),
are equally simple. In the case of the (≡) rule, Lemma 2 immediately gives the
required conclusion.

We will now show how the translation (·)0 gives rise to a correct analysis of the
ambient calculus. First we need a few new notions. Let M = (W,R, V ) be a
model. The nominal accessibility relation of M is the following relation:

{(m,n) ∈ Nom2 | (V (m), V (n)) ∈ R}.

Thus the nominal accessibility relation contains the set of pairs of nominals
(m,n) for which the world denoted by n is accessible from the world denoted
by m. It is simply the accessibility relation of M translated into a relation on
nominals. Let P be a process and let m and n be names occurring in P . We say
that m contains n in P , written m >P n, if there exists a subprocess P ′ of P



satisfying P ′ ≡ m[ Q | n[R] ]. The intuition here is that ‘m contains n’ means
that the ambient named n runs immediately inside the ambient named m. A
correct analysis of a process P is a set M of pairs of ambient names satisfying:

For any process Q and any pair of ambient names m and n, if P →∗ Q
and m >Q n then (m,n) ∈M .

Thus if M is a correct analysis of a process P and if (m,n) is a pair of names
not belonging to M , then we know that it is impossible for n to end up running
immediately inside m. This is what allows one to prove security properties of
e.g. firewalls using correct analyses: If a correct analysis of a process P does not
contain a pair (m,n) then we have verified that n can never enter m.

Theorem 2 (Correctness). Given any process P and any model M satisfying
P0, the nominal accessibility relation of M is a correct analysis of P .

Proof (Sketch). First it is proved that the following holds:

For all processes Q, all ambient names m,n, and all models M,
if m >Q n and M = (W,R, V ) satisfies Q0 then (V (m), V (n)) ∈ R. (3)

This property is proved by induction on the syntactic structure of Q. We leave
out the details, as all cases in the induction proof are easily carried out using
the relevant clauses in the definition of (·)0. Now assume P is a process and
M = (W,R, V ) is a model satisfying P0. What we need to prove is the following:

If Q is a process such that P →∗ Q and m >Q n then (V (m), V (n)) ∈ R.

Let thus a process Q be given such that P →∗ Q and m >Q n. By subject
reduction, Theorem 1, we get |= P0 → Q0. Since M satisfies P0 it must also
satisfy Q0. We can now apply (3) to conclude (V (m), V (n)) ∈ R, as required.
This concludes the proof.

The theorem above shows that to make an analysis of a process P we simply
need to find a model of P0. This can be done e.g. by using HyLoTab, since
HyLoTab is a tableau-based theorem prover, and given a satisfiable formula as
input it will return a model of that formula. Let us consider an example.

Example 1 (A simple process). Consider the simple process P given by P =
a[ open b.c[0] | b[0] ]. We see that b is contained in a in this process. Applying
the (open) axiom and the (amb) rule to the process we get P → a[ c[0] | 0 ]. So
P reduces to a process in which c is contained in a. Thus a correct analysis of P
must contain at least the pairs (a, b) and (a, c)—where the first pair corresponds
to the fact that a contains b in P , and the second pair corresponds to the fact
that P can be reduced to a process in which a contains c. We will now try to
apply the machinery above to construct an analysis of P . By the correctness
theorem above, Theorem 2, the nominal accessibility relation of any model of
P0 will be a correct analysis. We can use HyLoTab to compute a model of P0 by
simply giving the formula as input to HyLoTab. HyLoTab then returns the model
M = (W,R, V ) given by: W = {w1, w2, w3}; R = {(w1, w2), (w2, w2), (w2, w3)};
V (a) = w2, V (b) = w2, V (c) = w3. This model is illustrated in Figure 9. From
the figure we see that the nominal accessibility relation of M is {a, b}×{a, b, c}.
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Fig. 10. Tree visualisation of the open axiom.
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Fig. 11. Hybrid logical visualisation of the open axiom using (·)0.
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Fig. 12. A better hybrid logical visualisation of the open axiom.

This set constitutes, by Theorem 2, a correct analysis of the process P . We see
that the analysis contains the pairs (a, b) and (a, c) as expected. However, it
also contains the pair (b, a) which actually does not correspond to a possible
configuration, since it is easily seen that no sequence of reduction steps can
reduce P to a process where b contains a. This is because our treatment of the
open capability in the translation (·)0 is a bit too simplistic.

Let us take a closer look at how we translate the open capability. A tree
visualisation of the open axiom (open n.P | n[Q] → P | Q) is given in Figure 10.
Replacing the capability open n in Figure 10 by its translation ♦n → n we get
the hybrid logical visualisation given in Figure 11. Consider the left-hand tree
in this figure. Since the formula ♦n → n holds at the root of this tree, and
since the node labelled n is accessible from the root, the nominal n must also
hold at the root of the tree. Since nominals are true at unique worlds, the two
nodes must be identical. In other words, the two nodes are collapsed into one,
corresponding to the right-hand tree in the figure. This shows that the translation
of the open capability behaves as expected. However, there is one complication.
The collapsed node will obviously be labelled by n, but the root of the right-
hand tree is not labelled by n. Since a correct analysis is an over-approximation,
adding n as label to some node can never affect correctness, but it can affect the
precision of the analysis. What we would like is a more precise translation of the
open capability that does not add n as label to the root node. That is, we seek a
translation that ‘copies’ the subtree Q at the node labelled n to the root node,



but does not also copy the label n. Such a ‘copying’ of Q can be performed by
the following process: For every node u in Q, if there is an edge from n to u then
add an edge from the root to u. We can also express this process as a hybrid
logical formula at the root node: ↓x.(♦n→ @n�♦−x). If we translate the open
capability by this formula rather than simply ♦n → n then we get the hybrid
logical visualisation in Figure 12. The dashed edges correspond to the edges that
are added by the new translation. In the following section we show that using
this more complicated translation of the open capability actually yields a more
precise analysis. In particular, it will solve the imprecision problem discussed in
Example 1.

6 The not-so-Naive Analysis

We now try to construct a slightly more precise analysis. It is based on a trans-
lation (·)1 from processes into hybrid logical formulae given by the following
clauses.

((νn)P )1 = P1

01 = >
(P | Q)1 = P1 ∧Q1

(!P )1 = P1

(n[P ])1 = ♦(n ∧ P1)
(in n.P )1 = P1 ∧ ♦�− ↓x.(♦−♦n→ @n♦x)
(out n.P )1 = P1 ∧ ♦�− ↓x.(♦−n→ @n�−♦x)
(open n.P )1 = P1 ∧ ♦�− ↓x.(♦n→ @n�♦−x).

Note that the first five clauses in the definition of (·)1 are identical to the cor-
responding five clauses for (·)0. Furthermore, the clauses for the in and out
capabilities only differ from the corresponding (·)0 clauses by adding ♦�− in
front of the downarrow binder. The clauses for the in, out and open capabilities
are now very similar. The translations of in n.P , out n.P and open n.P are all
on the form

P1 ∧ ♦�− ↓x.(An→ @nBx)

where A and B are combined modal operators given by:

formula value of A value of B
in n.P ♦−♦ ♦
out n.P ♦− �−♦
open n.P ♦ �♦−

Note in particular the duality between the translations of out n.P and open n.P .
We can now prove the same results for (·)1 as we did for (·)0.

Lemma 3. For all processes P and Q, if P ≡ Q then |= P1 ↔ Q1.

Proof. Identical to the proof of Lemma 2 (simply replace 0 by 1 everywhere).

Theorem 3 (Subject Reduction for (·)1). For all processes P and Q, if
P → Q then |= P1 → Q1.



Proof (Sketch). Since the first five clauses are identical for (·)0 and (·)1, we can
reuse most of the proof of the subject reduction result for (·)0, Theorem 1. We
only need to check the cases where P → Q has been produced by one of the
rules (in), (out) or (open). In each case we again end up with an implication
P1 → Q1 that we need to prove valid, and again we use HyLoTab to verify the
validity.

Theorem 4 (Correctness). Given any process P and any model M satisfying
P1, the nominal accessibility relation of M is a correct analysis of P .

Proof. Identical to the proof of Theorem 2 (simply replace 0 by 1 everywhere).

Example 2 (A simple process). In Example 1 we considered the process P given
by P = a[ open b.c[0] | b[0] ]. Let us see how our new analysis based on the
translation (·)1 behaves with respect to P . Giving P1 as input formula to Hy-
LoTab it produces the model M = (W,R, V ) given by W = {w1, w2, w3, w4, w5};
R = {(w1, w2), (w2, w3), (w2, w4), (w2, w5)}; V (a) = w2, V (b) = w3, V (c) = w4.
This model is illustrated in Figure 13. The dashed edges are the edges that either
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start or end in a node not labelled by any nominal. Such edges do not affect the
nominal accessibility relation, and from now on we simply omit them. From the
figure we see that the nominal accessibility relation of M is {(a, b), (a, c)}. By
Theorem 4, this set is a correct analysis of P . Since the set is a proper subset
of the analysis we obtained in Example 1, we have now indeed obtained a more
precise analysis. Actually, the present analysis of P contains only the two pairs
that any correct analysis of P is required to contain, by Example 1.

Example 3 (Nested capabilities). Let us consider a slightly more complex exam-
ple. Let Q be the process given by Q = a[ open b.open c.0 | c[ d[0] ] ]. Using
Q1 as input to HyLoTab we get the model M illustrated in Figure 14. Its nom-
inal accessibility relation is {(a, c), (a, d), (c, d)}. This is the same analysis as
provided by the 0CFA analysis of [7]. However, the analysis is not completely
precise. There are no non-trivial reductions that can be made on Q since there
is no ambient named b that the outermost open capability can be applied to.
Thus we would expect a precise analysis to only give the pairs (a, c) and (c, d)
corresponding to the fact that a contains c and c contains d in Q. The reason
that the present analysis and the 0CFA of [7] do not give this result is that they
both ignore the nesting order on the capabilities. In the case of Q this means



that the relative ordering of the two capabilities open b and open c is ignored.
Using the hybrid logical machinery we have developed it is fortunately quite easy
to improve the analysis and obtain one which takes the ordering of capabilities
into account.

Consider the following sequence of capabilities: in k.out l.open m.0. Using the
present translation we get:

(in k.out l.open m.0)1 = (in k.0)1 ∧ (out l.0)1 ∧ (open m.0)1.

This implies that each of the three individual capabilities in k, out l and
open m will be ‘executed’ in the same world of the Kripke model induced by the
translated formula. This of course means that the translation is flow-insensitive:
The ordering of the capabilities is not preserved under the translation. However,
since we are working with graphs, there is a simple way to solve this problem.
Instead of translating a capability like in k.P into a formula of the form P1 ∧ψ
we could translate it into a formula of the form ♦(P1 ∧ψ). Then each capability
will add a new edge to the graph because of the ♦ in front of the formula, and
the body of the capability will be ‘executed’ at the world that this new edge
leads to. Thus sequences of capabilities will be translated into paths, and the
ordering of them will thus be preserved. In the following section we show how
to construct such a flow-sensitive translation.

7 A Better Analysis

We now try to construct an even more precise analysis. It is based on a trans-
lation (·)2 from processes into hybrid logical formulae given by the following
clauses.

((νn)P )2 = P2

02 = >
(P | Q)2 = P2 ∧Q2

(!P )2 = P2

(n[P ])2 = ♦(n ∧ P2)
(in n.P )2 = ♦(P2∧ ↓y.�− ↓x.(♦−♦n→ @n♦x ∧@y�♦−x))
(out n.P )2 = ♦(P2∧ ↓y.�− ↓x.(♦−n→ @n�−♦x ∧@y�♦−x))
(open n.P )2 = ♦(P2∧ ↓y.�− ↓x.(♦n→ @n�♦−x ∧@y�♦−x)).

Note that the first five clauses in the definition of (·)2 are identical to the corre-
sponding five clauses for (·)0 and (·)1. Furthermore, the clauses for the in, out
and open capabilities are quite similar to the corresponding clauses for (·)1. The
translation of in n.P , out n.P and open n.P are now all on the form

♦(P2∧ ↓y.�− ↓x.(An→ @nBy ∧@x�♦−y))

where A and B are the same combined modal operators as for (·)1.

Lemma 4. For all processes P and Q, if P ≡ Q then |= P2 ↔ Q2.

Proof. Identical to the proof of Lemma 2 (simply replace 0 by 2 everywhere).



Theorem 5 (Subject Reduction for (·)2). For all processes P and Q, if
P → Q then |= P2 → Q2.

Proof. Since the first five clauses are identical for (·)0, (·)1 and (·)2, we again
only need to consider the rules (in), (out) and (open). These cases are treated
similarly to the corresponding cases in the proof of subject reduction for (·)1 and
(·)0.

Theorem 6 (Correctness). Given any process P and any model M satisfying
P2, the nominal accessibility relation of M is a correct analysis of P .

Proof. Identical to the proof of Lemma 2 (simply replace 0 by 2 everywhere).

Example 4 (Nested capabilities). In Example 3 we considered the processQ given
by Q = a[ open b.open c.0 | c[ d[0] ] ]. As mentioned in Example 3, the translation
(·)1 gave us an analysis of Q which was not completely precise. Let us see whether
the translation (·)2 performs better. Giving Q2 as input to HyLoTab we obtain
the model M presented in Figure 15. This model is exactly as the model of Q1
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Fig. 15. Model of Q2.

except that the edge from w1 to w3 is no longer present. Thus we instead get
the following nominal accessibility relation: {(a, c), (c, d)}. This relation is the
analysis we expected and it is seen to be more precise than both our analysis
based on (·)1 and the 0CFA analysis of [7]. This improved precision is gained
by making the analysis of capability sequences flow sensitive (cf. the concluding
discussion at the end of Section 6).

8 Complexity Issues and Future Work

So far in this paper we have not dealt with questions concerning computability
and complexity. Since the full hybrid logic HL(@,−, ↓) is actually undecidable,
it is not immediately obvious that the formulae generated by our translations
are always computable. Fortunately, the translations are designed in such a way
that they translate into a decidable fragment of hybrid logics called the innocent
fragment [11]. A formula φ is called innocent if every binder subformula ↓x.ψ is
only outscoped by ♦’s being in the scope of an even number of negation operators
(when counting negation operators it is assumed that φ uses only the primitive
operators, that is, not →, � or �−). It is easily seen that our translations all
fall within the innocent fragment. In [11] van Eijck proves that HyLoTab decides
the innocent fragment. Thus given any process P , HyLoTab will necessarily



terminate on any translation of P resulting in a model for the translation and
thereby an analysis of P .

Furthermore, it appears that the fragment of hybrid logic used in our trans-
lations is sufficiently simple that it is possible to obtain a complexity bound on
the model generation that is comparable to existing analysis tools for the ambi-
ent calculus. However, we leave this investigation for future work. Another line
of future work we are interested in is to try to make even better analyses than
the one provided by (·)2. We believe that the possibilities of using hybrid logic
for precise and yet compact as well as clear analysis of the ambient calculus are
yet far from exhausted.
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