
Advanced Algorithm
Design and Analysis (Lecture 1)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 1, © Simonas Šaltenis, 2004 2

Overview

Why do we need this course?
Goals of the course
Mode of work
Prerequisites, textbook
The first lecture – external data structures

AALG, lecture 1, © Simonas Šaltenis, 2004 3

External Mem. Data Structures

Goals of the lecture:
to understand the external memory model and
the principles of analysis of algorithms and data
structures in this model;
to understand why main-memory algorithms
are not efficient in external memory;
to understand the algorithms of B-tree and its
variants and to be able to analyze them.

AALG, lecture 1, © Simonas Šaltenis, 2004 4

Hard disk I

In real systems, we
need to cope with data
that does not fit in
main memory
Reading a data
element from the
hard-disk:

Seek with the head
Wait while the necessary
sector rotates under the
head
Transfer the data

AALG, lecture 1, © Simonas Šaltenis, 2004 5

Hard disk II

Example: Seagate Cheetah 10K.6, 146.8Gb
Seek time: ~5ms
Half of rotation: ~3ms
Transferring 1 byte: 0.000016ms

Conclusions:
1. It makes sense to read and write in large

blocks – disk pages (2 – 16Kb)
2. Sequential access is much faster than random

access
3. Disk access is much slower than main-memory

access

AALG, lecture 1, © Simonas Šaltenis, 2004 6

External memory model

Running time: in page accesses or “I/Os”
B – page size is an important parameter:

Not “just” a constant: O(log2n) ≠ O(logBn)

Constant size main memory buffer of
“current” pages is assumed.
Operations:

DiskRead(x:pointer_to_a_page)
DiskWrite(x:pointer_to_a_page)
AllocatePage():pointer_to_a_page

AALG, lecture 1, © Simonas Šaltenis, 2004 7

Writing algorithms

The typical working pattern for algorithms:

Pointers in data-structures point to disk-
pages, not locations in memory

01 …
02 x ← a pointer to some object
03 DiskRead(x)
04 operations that access and/or modify x
05 DiskWrite(x) //omitted if nothing changed
06 other operations, only access no modify
07 …

AALG, lecture 1, © Simonas Šaltenis, 2004 8

“Porting” main-memory DSs

Why not “just” use the main-memory data
structures and algorithms in external
memory?
Consider a balanced binary search tree.

A, B, C, D, E, F, G, H, I
Options:

Each node gets a separate disk page – waist of
space and search is just O(log2n)
Nodes are somehow packed to make disk pages
full – search may still be O(log2n) in the worst-
case

AALG, lecture 1, © Simonas Šaltenis, 2004 9

B-tree: Definition I

We are concerned only with keys
B-tree is a balanced tree, and all leaves
have the same depth: h
The nodes have high fan-out (many
children)

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

AALG, lecture 1, © Simonas Šaltenis, 2004 10

B-tree: Definition II

Non-leaf node structure:
A list of alternating pointers to children and
keys: p1, key1, p2, key2 … pn, keyn, pn+1

key1 ≤ key2 ≤ … ≤ keyn

For any key k in a sub-tree rooted at pi, it is
true: keyi ≤ k ≤ keyi+1

Leaf node is a sorted list of keys.
Lets draw a B-tree:

A, B, C, D, E, F, G, H, I, J, K

AALG, lecture 1, © Simonas Šaltenis, 2004 11

B-tree operations

An implementation needs to support the
following B-tree operations (corresponds to
Dictionary ADT operations):
Search (simple)
Create an empty tree (trivial)
Insert (complex)
Delete (complex)

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

AALG, lecture 1, © Simonas Šaltenis, 2004 12

Btree and Bnode ADTs

Btree ADT:
root():Bnode – T.root() gives a pointer to a
root node of a tree T

Bnode ADT:
n():int – x.n() the number of keys in node x
key(i:int):key_t – x.key(i) the i-th key in x
p(i:int):Bnode – x.p(i) the i-th pointer in x
leaf():bool - x.leaf() is true if x is a leaf

Simplified syntax for set methods:
e.g., x.n() ← 0, instead of x.setn(0)

AALG, lecture 1, © Simonas Šaltenis, 2004 13

Search

Straightforward generalization of a binary
tree search:

Initial call BtreeSearch(T.root(), k)

BTreeSearch(x,k)
01 i ← 1
02 while i ≤ x.n() and k > x.key(i)
03 i ← i+1
04 if i ≤ x.n() and k = x.key(i) then
05 return (x,i)
06 if x.leaf() then
08 return NIL
09 else DiskRead(x.p(i))
10 return BTtreeSearch(x.p(i),k)

AALG, lecture 1, © Simonas Šaltenis, 2004 14

Analysis of Search I

B-tree of a minimum degree t (t ≥ 2):
All nodes except the root node have between t
and 2t children (i.e., between t–1 and 2t–1
keys).
The root node has between 0 and 2t children
(i.e., between 0 and 2t–1 keys)

AALG, lecture 1, © Simonas Šaltenis, 2004 15

Analysis of Search II

For B-tree containing n ≥ 1 keys and
minimum degree t ≥ 2, the following
restriction on the height h holds:

Why? The highest tree:

1log
2t
nh +≤

1

t - 1 t - 1

t - 1 t - 1 t - 1…

tt

t - 1 t - 1 t - 1… 2t2

21

10

#of
nodes

depth

AALG, lecture 1, © Simonas Šaltenis, 2004 16

Analysis of search III

Thus, the worst-case running time is:
O(h) = O(logtn) = O(logBn)

Comparing with the “straightforward”
balanced binary search tree (O(log2n)):

a factor of O(log2B) improvement

1

1

11 (1) 2 2 1 log
2

h
i h

t
i

nn t t t h−

=

+≥ + − = − ⇒ ≤∑

AALG, lecture 1, © Simonas Šaltenis, 2004 17

Insert

Insertion is always performed at the leaf
level
Let’s do an example (t = 2):

Insert: H, J, P

G M

K L R SN O Q Y ZU V

T X

Q

D E F

AALG, lecture 1, © Simonas Šaltenis, 2004 18

Splitting Nodes

Nodes fill up and reach their maximum
capacity 2t – 1
Before we can insert a new key, we have
to “make room,” i.e., split a node

AALG, lecture 1, © Simonas Šaltenis, 2004 19

Splitting Nodes II

P Q R S T V W

T1 T8...

... N W ...

y = x.p(i)

x.key(
i-1

)

x.k
ey

(i)

x

... N S W ...
x.key(

i-1
)

x.k
ey

(i)

x x.k
ey

(i+
1)

P Q R T V W

y = x.p(i) z = x.p(i+1)

Result: one key of x moves up to parent +
2 nodes with t-1 keys

How many I/O operations?

AALG, lecture 1, © Simonas Šaltenis, 2004 20

Insert I

Skeleton of the algorithm:
Down-phase: recursively traverse down and
find the leaf
Insert the key
Up-phase: if necessary, split and propagate the
splits up the tree

Assumptions:
In the down-phase pointers to traversed nodes
are saved in the stack. Function parent(x)
returns a parent node of x (pops the stack)
split(y:Bnode):(zk:key_t, z:Bnode)

AALG, lecture 1, © Simonas Šaltenis, 2004 21

Insert II

DownPhase(x,k)
01 i ← 1
02 while i ≤ x.n() and k > x.key(i)
03 i ← i+1
04 if x.leaf() then
05 return x
06 else DiskRead(x.p(i))
07 return DownPhase(x.p(i),k)

Insert(T,k)
01 x ← DownPhase(T.root(), k)
02 UpPhase(x, k, nil)

AALG, lecture 1, © Simonas Šaltenis, 2004 22

Insert III

UpPhase(x,k,p)
01 if x.n() = 2t-1 then
02 (zk,z) ← split(x)
03 if k ≤ zk then InsertIntoNode(x,k,p)
04 else InsertIntoNode(z,k,p)
05 if parent(x)=nil then (Create new root)
06 else UpPhase(parent(x),zk,z)
07 else InsertIntoNode(x,k,p)

InsertIntoNode(x,k,p)
Inserts the hey k and the following pointer p (if
not nil) into the sorted order of keys of x, so
that all the keys before k are smaller or equal
to k and all the keys after k are greater than k

AALG, lecture 1, © Simonas Šaltenis, 2004 23

Splitting the root requires the creation of a
new root

The tree grows at the top instead of the
bottom

Splitting the Root

A D F H L N P

T1 T8...

T.root()
x

A D F L N P

H

T.root()

zx

AALG, lecture 1, © Simonas Šaltenis, 2004 24

One/Two Phase Algorithms

Running time: O(h) = O(logBn)
Insert could be done in one traversal down
the tree (by splitting all full nodes that we
meet, “just in case”)
Disadvantage of the two-phase algorithm:

Buffer of O(h) pages is required

AALG, lecture 1, © Simonas Šaltenis, 2004 25

Deletion

Case 1: A key k is in a non-leaf node
Delete its predecessor (which is always in a
leaf, thus case 2) and put it in k’s place.

Case 2: A key is in a leaf-node:
Just delete it and handle under-full nodes

Try: delete M, B, K (t =3)

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

AALG, lecture 1, © Simonas Šaltenis, 2004 26

Handling Under-full Nodes

Distributing:

Merging:

x ... k’ ...

... k

A B

x.p(i)

x ... k ...

... k’ ...

A

x.p(i)

B

x ... l’ m’ ...

...l k m ...

A B

x ... l’ k m’...

... l m …

A B

x.p(i)

...

AALG, lecture 1, © Simonas Šaltenis, 2004 27

Sequential access

Other useful ADT operator: successor
For example, range queries: find all accounts
with the amount in the range [100K – 200K].
How do you do that in B-trees?

AALG, lecture 1, © Simonas Šaltenis, 2004 28

B+-trees

B+-trees is a variant of B-trees:
All data keys are in leaf nodes
• The split does not move the middle key to the parent,

but copies it to the parent!

Leaf-nodes are connected into a (doubly) linked
list
How the range query is performed?
• Compare with the B-tree

