Advanced Algorithm Design and Analysis (Lecture 1)

SW5 fall 2004 *Simonas Šaltenis E1-215b simas@cs.aau.dk*

Overview

- Why do we need this course?
- Goals of the course
- Mode of work
- Prerequisites, textbook
- The first lecture external data structures

External Mem. Data Structures

Goals of the lecture:

- to understand the external memory model and the principles of analysis of algorithms and data structures in this model;
- to understand why main-memory algorithms are not efficient in external memory;
- to understand the algorithms of B-tree and its variants and to be able to analyze them.

Hard disk I

- In real systems, we need to cope with data that does not fit in main memory
- Reading a data element from the hard-disk:
 - Seek with the head
 - Wait while the necessary sector rotates under the head
 - Transfer the data

Hard disk II

- Example: Seagate Cheetah 10K.6, 146.8Gb
 - Seek time: ~5ms
 - Half of rotation: ~3ms
 - Transferring 1 byte: 0.000016ms
- Conclusions:
 - It makes sense to read and write in large blocks – *disk pages* (2 – 16Kb)
 - 2. Sequential access is much faster than random access
 - 3. Disk access is much slower than main-memory access

External memory model

- Running time: in page accesses or "I/Os"
- B page size is an important parameter:
 - Not "just" a constant: $O(log_2n) \neq O(log_Bn)$
- Constant size main memory buffer of "current" pages is assumed.
- Operations:
 - DiskRead(x:pointer_to_a_page)
 - DiskWrite(x:pointer_to_a_page)
 - AllocatePage():pointer_to_a_page

Writing algorithms

The typical working pattern for algorithms:

```
01 ...
```

02 x \leftarrow a pointer to some object

```
03 DiskRead(x)
```

- 04 operations that access and/or modify \boldsymbol{x}
- 05 **DiskWrite**(x) //omitted if nothing changed
- 06 other operations, only access no modify

```
07 ...
```

 Pointers in data-structures point to diskpages, not locations in memory

"Porting" main-memory DSs

- Why not "just" use the main-memory data structures and algorithms in external memory?
- Consider a balanced binary search tree.
 A, B, C, D, E, F, G, H, I
- Options:
 - Each node gets a separate disk page waist of space and search is just O(log₂n)
 - Nodes are somehow packed to make disk pages full – search may still be O(log₂n) in the worstcase

B-tree: Definition I

- We are concerned only with keys
- B-tree is a balanced tree, and all leaves have the same depth: h
- The nodes have high fan-out (many children)

B-tree: Definition II

Non-leaf node structure:

- A list of alternating pointers to children and keys: p₁, key₁, p₂, key₂ ... p_n, key_n, p_{n+1}
- $key_1 \le key_2 \le \dots \le key_n$
- For any key k in a sub-tree rooted at p_i, it is true: key_i ≤ k ≤ key_{i+1}
- Leaf node is a sorted list of keys.
- Lets draw a B-tree:
 - A, B, C, D, E, F, G, H, I, J, K

B-tree operations

An implementation needs to support the following B-tree operations (corresponds to Dictionary ADT operations):

 $\mathbf{C} \in \mathbf{G} \setminus \mathbf{M}$

JKL

Ρ

ΝΟ

X

Q R S

- Search (simple)
- Create an empty tree (trivial)

 \mathbf{F}

E

- Insert (complex)
- Delete (complex)

B

Α

Y Z

Btree and Bnode ADTs

Btree ADT:

root():Bnode – T.root() gives a pointer to a root node of a tree T

Bnode ADT:

- n():int x.n() the number of keys in node x
- key(i:int):key_t x.key(i) the i-th key in x
- p(i:int):Bnode x.p(i) the i-th pointer in x

leaf():bool - x.leaf() is true if x is a leaf

Simplified syntax for set methods:
 e.g., x.n() ← 0, instead of x.setn(0)

Search

Straightforward generalization of a binary tree search:

Initial call BtreeSearch(T.root(), k)

```
BTreeSearch(x,k)
```

```
01 i \leftarrow 1
```

```
02 while i \leq x.n() and k > x.key(i)
```

```
03 i \leftarrow i+1
```

```
04 if i \leq x.n() and k = x.key(i) then
```

```
05 return (x,i)
```

06 if x.leaf() then

08 return NIL

```
09 else DiskRead(x.p(i))
```

```
10 return BTtreeSearch(x.p(i),k)
```

Analysis of Search I

B-tree of a minimum degree $t (t \ge 2)$:

- All nodes except the root node have between t and 2t children (i.e., between t-1 and 2t-1 keys).
- The root node has between 0 and 2t children (i.e., between 0 and 2t-1 keys)

Analysis of search III

$$n \ge 1 + (t-1) \sum_{i=1}^{h} 2t^{i-1} = 2t^{h} - 1 \implies h \le \log_{t} \frac{n+1}{2}$$

Thus, the worst-case running time is:
 O(h) = O(log_tn) = O(log_Bn)

 Comparing with the "straightforward" balanced binary search tree (O(log₂n)):
 a factor of O(log₂B) improvement

Splitting Nodes

- Nodes fill up and reach their maximum capacity 2t 1
- Before we can insert a new key, we have to "make room," i.e., split a node

Insert I

Skeleton of the algorithm:

- Down-phase: recursively traverse down and find the leaf
- Insert the key
- Up-phase: if necessary, split and propagate the splits up the tree
- Assumptions:
 - In the *down-phase* pointers to traversed nodes are saved in the stack. Function *parent(x)* returns a parent node of *x* (pops the stack)
 split(y:Bnode):(*zk*:key_t, *z*:Bnode)

Insert II

DownPhase(x, k)

```
01 i ← 1
02 while i ≤ x.n() and k > x.key(i)
03 i ← i+1
04 if x.leaf() then
05 return x
06 else DiskRead(x.p(i))
07 return DownPhase(x.p(i),k)
```

Insert(T,k) 01 x \leftarrow DownPhase(T.root(), k)

```
02 UpPhase(x, k, nil)
```

AALG, lecture 1, © Simonas Šaltenis, 2004

Insert III

UpPhase(x,k,p) 01 if x.n() = 2t-1 then 02 (zk,z) \leftarrow split(x) 03 if k \leq zk then InsertIntoNode(x,k,p) 04 else InsertIntoNode(z,k,p) 05 if parent(x) = nil then (Create new root) 06 else UpPhase(parent(x), zk, z) 07 else InsertIntoNode(x,k,p)

InsertIntoNode(x,k,p)

Inserts the hey k and the following pointer p (if not *nil*) into the sorted order of keys of x, so that all the keys before k are smaller or equal to k and all the keys after k are greater than k

Boccom

AALG, lecture 1, © Simonas Šaltenis, 2004

One/Two Phase Algorithms

- Running time: $O(h) = O(\log_B n)$
- Insert could be done in one traversal down the tree (by splitting all full nodes that we meet, "just in case")
- Disadvantage of the two-phase algorithm:
 - Buffer of O(h) pages is required

Handling Under-full Nodes Distributing: ... k' X X ... k ... x.p(i)x.p(i)k' ... K ... B R Merging: ... l'/ m' l', k,m'... X X ...l k m ... x.p(i)m AALG, lecture 1, © Simonas Šaltenis, 2004 26

Sequential access

Other useful ADT operator: successor

- For example, range queries: find all accounts with the amount in the range [100K – 200K].
- How do you do that in B-trees?

B⁺-trees B⁺-trees is a variant of B-trees: All data keys are in leaf nodes The split does not move the middle key to the parent, but copies it to the parent! Leaf-nodes are connected into a (doubly) linked list How the range query is performed? Compare with the B-tree