Advanced Algorithm
 Design and Analysis (Lecture 1)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

Overview

- Why do we need this course?
- Goals of the course
- Mode of work
- Prerequisites, textbook
- The first lecture - external data structures

External Mem. Data Structures

- Goals of the lecture:
- to understand the external memory model and the principles of analysis of algorithms and data structures in this model;
- to understand why main-memory algorithms are not efficient in external memory;
- to understand the algorithms of B-tree and its variants and to be able to analyze them.

Hard disk I

- In real systems, we need to cope with data that does not fit in main memory
- Reading a data element from the hard-disk:
- Seek with the head
- Wait while the necessary sector rotates under the head
- Transfer the data

Hard disk II

- Example: Seagate Cheetah 10K.6, 146.8Gb
- Seek time: ~5ms
- Half of rotation: ~3ms
- Transferring 1 byte: 0.000016 ms
- Conclusions:

1. It makes sense to read and write in large blocks - disk pages (2-16Kb)
2. Sequential access is much faster than random access
3. Disk access is much slower than main-memory access

External memory model

- Running time: in page accesses or "I/Os"
- B - page size is an important parameter:
- Not "just" a constant: $O\left(\log _{2} n\right) \neq O\left(\log _{B} n\right)$
- Constant size main memory buffer of "current" pages is assumed.
- Operations:
- DiskRead(x:pointer_to_a_page)
- DiskWrite(x:pointer_to_a_page)
- AllocatePage():pointer_to_a_page

Writing algorithms

- The typical working pattern for algorithms:

```
01 ...
0 2 x \leftarrow ~ a ~ p o i n t e r ~ t o ~ s o m e ~ o b j e c t
0 3 ~ D i s k R e a d ( x )
0 4 ~ o p e r a t i o n s ~ t h a t ~ a c c e s s ~ a n d / o r ~ m o d i f y ~ x ~
0 5 \text { DiskWrite(x) //omitted if nothing changed}
0 6 \text { other operations, only access no modify}
07 ...
```

- Pointers in data-structures point to diskpages, not locations in memory

"Porting" main-memory DSs

- Why not "just" use the main-memory data structures and algorithms in external memory?
- Consider a balanced binary search tree.
- A, B, C, D, E, F, G, H, I
- Options:
- Each node gets a separate disk page - waist of space and search is just $O\left(\log _{2} n\right)$
- Nodes are somehow packed to make disk pages full - search may still be $O\left(\log _{2} n\right)$ in the worstcase

B-tree: Definition I

- We are concerned only with keys
- B-tree is a balanced tree, and all leaves have the same depth: h
- The nodes have high fan-out (many children)

B-tree: Definition II

- Non-leaf node structure:
- A list of alternating pointers to children and keys: p_{1}, key $_{1}, p_{2}$, key $_{2} \ldots p_{n}$, key ${ }_{n}, p_{n+1}$
- key $_{1} \leq$ key $_{2} \leq \ldots \leq$ key $_{n}$
- For any key k in a sub-tree rooted at p_{i}, it is true: key $_{i} \leq k \leq$ key $_{i+1}$
- Leaf node is a sorted list of keys.
- Lets draw a B-tree:
- A, B, C, D, E, F, G, H, I, J, K

B-tree operations

- An implementation needs to support the following B-tree operations (corresponds to Dictionary ADT operations):
- Search (simple)
- Create an empty tree (trivial)
- Insert (complex)
- Delete (complex)

Btree and Bnode ADTs

- Btree ADT:
- root():Bnode - T.root() gives a pointer to a root node of a tree T
- Bnode ADT:
- $n()$:int - x.n() the number of keys in node x
- key(i :int):key_t - x.key(i) the i-th key in x
- $p(i$: int $): B n o d e-x \cdot p(i)$ the i-th pointer in x
- leaf():bool - x.leaf() is true if x is a leaf
- Simplified syntax for set methods:
- e.g., x. $n() \leftarrow 0$, instead of $x . \operatorname{setn}(0)$

Search

- Straightforward generalization of a binary tree search:
- Initial call BtreeSearch(T.root(), k)

```
BTreeSearch (x,k)
01 i \leftarrow & 
02 while i \leq x.n() and k > x.key(i)
03 i }\leftarrowi+
04 if i s x.n() and k = x.key(i) then
05 return (x,i)
0 6 ~ i f ~ x . l e a f ( ) ~ t h e n ~
0 8 ~ r e t u r n ~ N I L ~
09 else DiskRead(x.p(i))
10 return BTtreeSearch(x.p(i),k)
```


Analysis of Search I

- B-tree of a minimum degree $t(t \geq 2)$:
- All nodes except the root node have between t and $2 t$ children (i.e., between $t-1$ and $2 t-1$ keys).
- The root node has between 0 and $2 t$ children (i.e., between 0 and $2 t-1$ keys)

Analysis of Search II

- For B-tree containing $n \geq 1$ keys and minimum degree $t \geq 2$, the following restriction on the height h holds: $h \leq \log _{t} \frac{n+1}{2}$
- Why? The highest tree:

depth 0	\#of nodes	
		1
1	2	
1	2	$2 t$

Analysis of search III

$$
n \geq 1+(t-1) \sum_{i=1}^{h} 2 t^{i-1}=2 t^{h}-1 \quad \Rightarrow \quad h \leq \log _{t} \frac{n+1}{2}
$$

- Thus, the worst-case running time is:
- $O(h)=O\left(\log _{t} n\right)=O\left(\log _{B} n\right)$
- Comparing with the "straightforward" balanced binary search tree $\left(O\left(\log _{2} n\right)\right)$:
- a factor of $O\left(\log _{2} B\right)$ improvement

Insert

- Insertion is always performed at the leaf level
- Let's do an example ($\mathrm{t}=2$):
- Insert: H, J, P

Splitting Nodes

- Nodes fill up and reach their maximum capacity $2 t-1$
- Before we can insert a new key, we have to "make room," i.e., split a node

Splitting Nodes II

- Result: one key of x moves up to parent + 2 nodes with $t-1$ keys
- How many I/O operations?

Insert I

- Skeleton of the algorithm:
- Down-phase: recursively traverse down and find the leaf
- Insert the key
- Up-phase: if necessary, split and propagate the splits up the tree
- Assumptions:
- In the down-phase pointers to traversed nodes are saved in the stack. Function parent(x) returns a parent node of x (pops the stack)
- split(y:Bnode):(zk:key_t, z:Bnode)

Insert II

```
DownPhase ( \(x, k\) )
01 i \(\leftarrow 1\)
02 while \(i \leq x . n()\) and \(k>x . k e y(i)\)
\(03 \quad i \leftarrow i+1\)
04 if x.leaf() then
05 return \(x\)
06 else DiskRead(x.p(i))
07 return DownPhase(x.p(i),k)
```

Insert (T,k)
$01 \mathrm{x} \leftarrow$ DownPhase (T.root (), k)
02 UpPhase(x, k, nil)

Insert III

```
UpPhase ( \(\mathrm{x}, \mathrm{k}, \mathrm{p}\) )
01 if \(x . n()=2 t-1\) then
\(02(z k, z) \leftarrow\) split (x)
03 if \(\mathrm{k} \leq \mathrm{zk}\) then InsertIntoNode ( \(\mathrm{x}, \mathrm{k}, \mathrm{p}\) )
04 else InsertIntoNode (z,k,p)
05 if parent \((x)=\) nil then (Create new root)
06 else UpPhase(parent (x), zk, z)
07 else InsertIntoNode ( \(\mathrm{x}, \mathrm{k}, \mathrm{p}\) )
```

InsertIntoNode ($\mathrm{x}, \mathrm{k}, \mathrm{p}$)
Inserts the hey k and the following pointer p (if not nil) into the sorted order of keys of x, so that all the keys before k are smaller or equal to k and all the keys after k are greater than k

Splitting the Root

- Splitting the root requires the creation of a new root

- The tree grows at the top instead of the bottom

One/Two Phase Algorithms

- Running time: $O(h)=O\left(\log _{B} n\right)$
- Insert could be done in one traversal down the tree (by splitting all full nodes that we meet, "just in case")
- Disadvantage of the two-phase algorithm:
- Buffer of $O(h)$ pages is required

Deletion

- Case 1: A key k is in a non-leaf node
- Delete its predecessor (which is always in a leaf, thus case 2) and put it in k^{\prime} s place.
- Case 2: A key is in a leaf-node:
- Just delete it and handle under-full nodes
- Try: delete $M, B, K(t=3)$

Handling Under-full Nodes

- Distributing:

- Merging:

Sequential access

- Other useful ADT operator: successor
- For example, range queries: find all accounts with the amount in the range [100K - 200K].
- How do you do that in B-trees?

B^{+}-trees

- B^{+}-trees is a variant of B -trees:
- All data keys are in leaf nodes
- The split does not move the middle key to the parent, but copies it to the parent!
- Leaf-nodes are connected into a (doubly) linked list
- How the range query is performed?
- Compare with the B-tree

