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Overview

Why do we need this course?
Goals of the course
Mode of work
Prerequisites, textbook
The first lecture – external data structures
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External Mem. Data Structures

Goals of the lecture:
to understand the external memory model and 
the principles of analysis of algorithms and data 
structures in this model; 
to understand why main-memory algorithms 
are not efficient in external memory;
to understand the algorithms of B-tree and its 
variants and to be able to analyze them.
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Hard disk I

In real systems, we 
need to cope with data 
that does not fit in 
main memory
Reading a data 
element from the 
hard-disk:

Seek with the head
Wait while the necessary 
sector rotates under the 
head 
Transfer the data 
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Hard disk II

Example: Seagate Cheetah 10K.6, 146.8Gb
Seek time: ~5ms
Half of rotation: ~3ms
Transferring 1 byte: 0.000016ms

Conclusions:
1. It makes sense to read and write in large 

blocks – disk pages (2 – 16Kb)
2. Sequential access is much faster than random 

access
3. Disk access is much slower than main-memory 

access
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External memory model

Running time: in page accesses or “I/Os”
B – page size is an important parameter:

Not “just” a constant: O(log2n) ≠ O(logBn)

Constant size main memory buffer of 
“current” pages is assumed. 
Operations:

DiskRead(x:pointer_to_a_page)
DiskWrite(x:pointer_to_a_page)
AllocatePage():pointer_to_a_page 
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Writing algorithms

The typical working pattern for algorithms:

Pointers in data-structures point to disk-
pages, not locations in memory

01 …
02 x ← a pointer to some object
03 DiskRead(x)
04 operations that access and/or modify x
05 DiskWrite(x) //omitted if nothing changed
06 other operations, only access no modify
07 …
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“Porting” main-memory DSs

Why not “just” use the main-memory data 
structures and algorithms in external 
memory?
Consider a balanced binary search tree. 

A, B, C, D, E, F, G, H, I
Options:

Each node gets a separate disk page – waist of 
space and search is just O(log2n)
Nodes are somehow packed to make disk pages 
full – search may still be O(log2n) in the worst-
case
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B-tree: Definition I

We are concerned only with keys
B-tree is a balanced tree, and all leaves 
have the same depth: h
The nodes have high fan-out (many 
children)

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F
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B-tree: Definition II

Non-leaf node structure:
A list of alternating pointers to children and 
keys: p1, key1, p2, key2 … pn, keyn, pn+1 

key1 ≤ key2 ≤ … ≤ keyn 

For any key k in a sub-tree rooted at pi, it is 
true: keyi ≤ k ≤ keyi+1

Leaf node is a sorted list of keys.
Lets draw a B-tree:

A, B, C, D, E, F, G, H, I, J, K
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B-tree operations

An implementation needs to support the 
following B-tree operations (corresponds to 
Dictionary ADT operations): 
Search (simple)
Create an empty tree (trivial)
Insert (complex)
Delete (complex)

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F
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Btree and Bnode ADTs

Btree ADT:
root():Bnode – T.root() gives a pointer to a 
root node of a tree T

Bnode ADT:
n():int – x.n() the number of keys in node x
key(i:int):key_t – x.key(i) the i-th key in x
p(i:int):Bnode – x.p(i) the i-th pointer in x
leaf():bool - x.leaf() is true if x is a leaf 

Simplified syntax for set methods:
e.g., x.n() ← 0, instead of x.setn(0) 
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Search

Straightforward generalization of a binary 
tree search:

Initial call BtreeSearch(T.root(), k)

BTreeSearch(x,k)
01 i ← 1
02 while i ≤ x.n() and k > x.key(i)
03    i ← i+1
04 if i ≤ x.n() and k = x.key(i) then
05    return (x,i)
06 if x.leaf() then
08    return NIL
09    else DiskRead(x.p(i))
10         return BTtreeSearch(x.p(i),k)
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Analysis of Search I

B-tree of a minimum degree t (t ≥ 2):
All nodes except the root node have between t
and 2t children (i.e., between t–1 and 2t–1 
keys).
The root node has between 0 and 2t children 
(i.e., between 0 and 2t–1 keys)
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Analysis of Search II

For B-tree containing n ≥ 1 keys and 
minimum degree t ≥ 2, the following 
restriction on the height h holds:

Why? The highest tree:
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Analysis of search III

Thus, the worst-case running time is:
O(h) = O(logtn) = O(logBn)

Comparing with the “straightforward” 
balanced binary search tree (O(log2n)):

a factor of O(log2B) improvement
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Insert

Insertion is always performed at the leaf 
level
Let’s do an example (t = 2):

Insert: H, J, P

G   M

K  L R   SN  O  Q Y   ZU   V

T   X

Q

D   E   F
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Splitting Nodes

Nodes fill up and reach their maximum 
capacity 2t – 1
Before we can insert a new key, we have 
to “make room,” i.e., split a node
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Splitting Nodes II

P   Q   R   S   T   V   W

T1 T8...

...   N   W   ...

y = x.p(i)

x.key(
i-1

)

x.k
ey

(i)

x

...   N   S   W   ...
x.key(

i-1
)

x.k
ey

(i)

x x.k
ey

(i+
1)

P   Q   R T   V   W

y = x.p(i) z = x.p(i+1)

Result: one key of x moves up to parent + 
2 nodes with t-1 keys

How many I/O operations?
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Insert I

Skeleton of the algorithm:
Down-phase: recursively traverse down and
find the leaf
Insert the key
Up-phase: if necessary, split and propagate the 
splits up the tree

Assumptions:
In the down-phase pointers to traversed nodes 
are saved in the stack. Function parent(x) 
returns a parent node of x (pops the stack)
split(y:Bnode):(zk:key_t, z:Bnode)
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Insert II

DownPhase(x,k)
01 i ← 1
02 while i ≤ x.n() and k > x.key(i)
03    i ← i+1
04 if x.leaf() then
05    return x
06    else DiskRead(x.p(i))
07         return DownPhase(x.p(i),k)

Insert(T,k)
01 x ← DownPhase(T.root(), k)
02 UpPhase(x, k, nil)
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Insert III

UpPhase(x,k,p)
01 if x.n() = 2t-1 then
02   (zk,z) ← split(x)
03   if k ≤ zk then InsertIntoNode(x,k,p)
04  else InsertIntoNode(z,k,p)
05   if parent(x)=nil then (Create new root)
06   else UpPhase(parent(x),zk,z) 
07 else InsertIntoNode(x,k,p)

InsertIntoNode(x,k,p)
Inserts the hey k and the following pointer p (if  
not nil) into the sorted order of keys of x, so 
that all the keys before k are smaller or equal 
to k and all the keys after k are greater than k
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Splitting the root requires the creation of a  
new root

The tree grows at the top instead of the 
bottom

Splitting the Root

A   D   F   H   L   N   P

T1 T8...

T.root()
x

A   D   F L   N   P

H

T.root()

zx
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One/Two Phase Algorithms

Running time: O(h) = O(logBn)
Insert could be done in one traversal down 
the tree (by splitting all full nodes that we 
meet, “just in case”)
Disadvantage of the two-phase algorithm:

Buffer of O(h) pages is required
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Deletion

Case 1: A key k is in a non-leaf node
Delete its predecessor (which is always in a 
leaf, thus case 2) and put it in k’s place.

Case 2: A key is in a leaf-node:
Just delete it and handle under-full nodes   

Try: delete M, B, K (t =3)

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F
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Handling Under-full Nodes

Distributing:

Merging:

x ... k’ ...

... k       

A   B

x.p(i)

x ... k ...

...       k’ ...

A

x.p(i)

B  

x ... l’ m’ ...

...l k m ...       

A   B

x ... l’ k m’...

... l        m …

A B  

x.p(i)

...
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Sequential access 

Other useful ADT operator: successor
For example, range queries: find all accounts 
with the amount in the range [100K – 200K].
How do you do that in B-trees?
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B+-trees

B+-trees is a variant of B-trees:
All data keys are in leaf nodes
• The split does not move the middle key to the parent, 

but copies it to the parent! 

Leaf-nodes are connected into a (doubly) linked 
list
How the range query is performed?
• Compare with the B-tree


