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Computational geometry

Main goals of the lecture:
to understand the concept of output-sensitive 
algorithms;
to be able to apply the divide-and-conquer
algorithm design technique to geometric 
problems;
to remember how recurrences are used to 
analyze the divide-and-conquer algorithms; 
to understand and be able to analyze the 
Jarvis’s march and the divide-and-conquer 
closest-pair algorithms.
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Size of the output

In computational geometry, the size of an 
algorithm’s output may differ/depend on 
the input.

Line-intersection problem vs. convex-hull 
problem
Observation: Graham’s scan running time 
depends only on the size of the input – it is 
independent of the size of the output
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Gift wrapping

Would be nice to have an algorithm that 
runs fast if the convex hull is small

Idea: gift wrapping (a.k.a Jarvis’s march)
• 1. Start with the lowest point a, include it in the 

convex hull
• 2. The next point in the convex hull has to be in the 

clockwise direction with respect to all other points 
looking from the current point on the convex hull

• 3. Repeat 2. until a is reached.

a a a
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Jarvis’s march

How many cross products are computed for this 
example?

The running time of Jarvis’s march:
Find lowest point – O(n)
For each vertex in the convex hull: n–1 cross-product 
computations
Total: O(nh), where h is the number of vertices in the 
convex hull
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Output-sensitive algorithms

Output-sensitive algorithm: its running 
time depends on the size of the output.

When should we use Jarvi’s march instead of 
the Graham’s scan?
The asymptotically optimal output-sensitive 
algorithm of Kirkpatrick and Seidel runs in    
O(n lg h)
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Closest-pair problem

Given a set P of n points, find p,q ∈ P, such 
that the distance d(p, q) is minimum

Checking the distance between two points is 
O(1)

What is the brute-force algorithm and it’s 
running time?
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Steps of Divide-and-Conquer

What are the steps of a divide-and-
conquer algorithm?

If trivial (small), solve it “brute force”
Else 
• 1.divide into a number of sub-problems
• 2.solve each sub-problem recursively
• 3.combine solutions to sub-problems
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Dividing into sub-problems

How do we divide into sub-problems?
Idea: Sort on x-coordinate, and divide into left and right 
parts:

• p1 p2 ... pn/2 ... pn/2+1 ... pn

Solve recursively the left sub-problem Pl (closest-pair 
distance dl) and the right sub-problem Pr (distance dr)



AALG, lecture 10, © Simonas Šaltenis, 2004 10

Combining two solutions

How do we combine two solutions to sub-
problems?

Let d = min{dl, dr}
Observation 1: We already have the closest 
pair where both points are either in the left or 
in the right sub-problem, we have to check 
pairs where one point is from one sub-problem 
and another from the other.
Observation 2: Such closest-pair can only be 
somewhere in a strip of width 2d around the 
dividing line!
• Otherwise the points would be more than d units 

apart.
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Combining two solutions

Combining solutions: Finding the closest 
pair (  ,  ) in a strip of width 2d, knowing 
that no ( , ) or ( , ) pair is closer than d
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Combining Two Solutions

Do we have to check all pairs of points in the 
strip? 

For a given point  p from one partition, where can there 
be a point q from the other partition, that can form the 
closest pair with p?
In the d××××d square:

How many points can there be in this square?
At most 4!

p
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Combining two solutions

Algorithm for checking the strip:
Sort all the points in the strip on the y-
coordinate
For each point p only 7 points ahead of it in the 
order have to be checked to see if any of them 
is closer to p than d

p



AALG, lecture 10, © Simonas Šaltenis, 2004 14

Pseudocode

What is the trivial problem?
That is – when do we stop recursion?

Closest-Pair(P, l, r)  
// First call: an array P of points sorted on x-coordinate, 1, n  
01 if r – l < 3 then return Brute-Force-CPair(P, l, r)
02 q ← (l+r)/2
03 dl ← Closest-Pair(P, l, q-1)
04 dr ← Closest-Pair(P, q, r)
05 d ← min(dl, dr)  
06 for i ← l to r do
07    if P[q].x - d ≤ P[i].x  ≤ P[q].x + d then
08       append P[i] to S
09 Sort S on y-coordinate
10 for j ← 1 to size_of(S)-1 do
11  Check if any of d(S[j],S[j]+1), ..., d(S[j],S[j]+7) is 

smaller than d, if so set d to the smallest of them
12 return d
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Example

How many distance computations are done 
in this example?
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Running time

What is the running time of this algorithm?
Running time of a divide-and-conquer 
algorithm can be described by a recurrence
Divide = O(1)
Combine = O(n lg n)
This gives the following recurrence: 

                         if 3   
( )

2 ( / 2) log otherwise
n n

T n
T n n n

≤=  +

Total running time: O(n log2 n)
Better than brute force, but…
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Improving the running time

How can we improve the running time of 
the algorithm?

Idea: Sort all the points by x and y coordinate
once
Before recursive calls, partition the sorted 
lists into two sorted sublists for the left and 
right halves: O(n)
When combining, run through the y-sorted list 
once and select all points that are in a 2d strip 
around partition line: O(n)

How does the new recurrence look like and 
what is its solution?
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Conclusion

The closest pair can be found in O(n log n) 
time with divide-and-conquer algorithm

Plane-sweep algorithm with the same 
asymptotic running time exists
This is asymptotically optimal
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Exercise: Convex-hull   

Let’s find the convex-hull using divide-and-
conquer

What is a trivial problem and how we solve it?
How do we divide the problem into sub-
problems?
How do we combine solutions to sub-problems?
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Repeated Substitution

Solving recurrences by repeated 
substitution:

1   if 1
( )

2 ( / 2)   if 1
n

T n
T n n n

=
=  + >

( )
( )( )

2

2

3

lg

( ) 2 / 2     substitute
2 2 / 4 / 2    expand

2 ( / 4) 2    substitute
2 (2 ( /8) / 4) 2    expand

             2 ( /8) 3     observe the pattern
( ) 2 ( / 2 )

2 ( / ) lg lg

i i

n

T n T n n
T n n n

T n n
T n n n

T n n
T n T n in

T n n n n n n n

= +
= + +

= +
= + +

= +
= +
= + = +
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Repeated Substitution Method

The procedure is straightforward:
Substitute
Expand
Substitute 
Expand
…
Observe a pattern and write how your expression looks 
after the i-th substitution
Find out what the value of i (e.g., lg n) should be to get 
the base case of the recurrence (say T(1))
Insert the value of T(1) and the expression of i into your 
expression


