Advanced Algorithm Design and Analysis (Lecture 10)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

Computational geometry

- Main goals of the lecture:
 - to understand the concept of output-sensitive algorithms;
 - to be able to apply the divide-and-conquer algorithm design technique to geometric problems;
 - to remember how recurrences are used to analyze the divide-and-conquer algorithms;
 - to understand and be able to analyze the Jarvis's march and the divide-and-conquer closest-pair algorithms.

Size of the output

- In computational geometry, the size of an algorithm's output may differ/depend on the input.
 - Line-intersection problem vs. convex-hull problem
 - Observation: Graham's scan running time depends only on the size of the input – it is independent of the size of the output

Gift wrapping

- Would be nice to have an algorithm that runs fast if the convex hull is small
 - Idea: gift wrapping (a.k.a Jarvis's march)
 - 1. Start with the lowest point a, include it in the convex hull
 - 2. The next point in the convex hull has to be in the clockwise direction with respect to all other points looking from the current point on the convex hull
 - 3. Repeat 2. until *a* is reached.

Jarvis's march

How many cross products are computed for this example?

- The running time of Jarvis's march:
 - Find lowest point *O*(*n*)
 - For each vertex in the convex hull: *n*−1 cross-product computations
 - Total: O(nh), where h is the number of vertices in the convex hull

Output-sensitive algorithms

- Output-sensitive algorithm: its running time depends on the size of the output.
 - When should we use Jarvi's march instead of the Graham's scan?
 - The asymptotically optimal output-sensitive algorithm of Kirkpatrick and Seidel runs in O(n lg h)

Closest-pair problem

- Given a set P of n points, find $p,q \in P$, such that the distance d(p,q) is minimum
 - Checking the distance between two points is O(1)
 - What is the brute-force algorithm and it's running time?

Steps of Divide-and-Conquer

- What are the steps of a divide-andconquer algorithm?
 - If trivial (small), solve it "brute force"
 - Else
 - 1.divide into a number of sub-problems
 - 2.solve each sub-problem recursively
 - 3.combine solutions to sub-problems

Dividing into sub-problems

- How do we divide into sub-problems?
 - Idea: Sort on x-coordinate, and divide into left and right parts:
 - $p_1 p_2 ... p_{n/2} ... p_{n/2+1} ... p_n$

Solve recursively the left sub-problem P_r (closest-pair distance d_r) and the right sub-problem P_r (distance d_r)

Combining two solutions

- How do we combine two solutions to subproblems?
 - Let $d = \min\{\frac{d_l}{d_l}, \frac{d_r}{d_r}\}$
 - Observation 1: We already have the closest pair where both points are either in the left or in the right sub-problem, we have to check pairs where one point is from one sub-problem and another from the other.
 - Observation 2: Such closest-pair can only be somewhere in a strip of width 2d around the dividing line!
 - Otherwise the points would be more than d units apart.

Combining two solutions

■ Combining solutions: Finding the closest pair (o, •) in a strip of width 2d, knowing that no (o, o) or (•, •) pair is closer than d

Combining Two Solutions

- Do we have to check all pairs of points in the strip?
 - For a given point p from one partition, where can there be a point q from the other partition, that can form the closest pair with p?
 - In the $d \times d$ square:

$$y(p) - d \le y(q) \le y(p)$$

- How many points can there be in this square?
 - At most 4!

Combining two solutions

- Algorithm for checking the strip:
 - Sort all the points in the strip on the ycoordinate
 - For each point p only 7 points ahead of it in the order have to be checked to see if any of them is closer to p than d

Pseudocode

- What is the trivial problem?
 - That is when do we stop recursion?

```
Closest-Pair(P, 1, r)
// First call: an array P of points sorted on x-coordinate, 1, n
01 if r - 1 < 3 then return Brute-Force-CPair(P, 1, r)
02 q \leftarrow \lceil (1+r)/2 \rceil
03 dl \leftarrow Closest-Pair(P, l, q-1)
04 dr \leftarrow Closest-Pair(P, q, r)
05 d \leftarrow min(dl, dr)
06 for i \leftarrow 1 to r do
of if P[q].x - d \le P[i].x \le P[q].x + d then
          append P[i] to S
0.8
09 Sort S on y-coordinate
10 for j \leftarrow 1 to size of (S) -1 do
      Check if any of d(S[j],S[j]+1), ..., d(S[j],S[j]+7)
    smaller than d, if so set d to the smallest of them
12 return d
```

Example

How many distance computations are done in this example?

Running time

- What is the running time of this algorithm?
 - Running time of a divide-and-conquer algorithm can be described by a recurrence
 - Divide = O(1)
 - Combine = $O(n \lg n)$
 - This gives the following recurrence:

$$T(n) = \begin{cases} n & \text{if } n \le 3\\ 2T(n/2) + n \log n & \text{otherwise} \end{cases}$$

- Total running time: $O(n \log^2 n)$
 - Better than brute force, but...

Improving the running time

- How can we improve the running time of the algorithm?
 - Idea: Sort all the points by x and y coordinate once
 - Before recursive calls, partition the sorted lists into two sorted sublists for the left and right halves: O(n)
 - When combining, run through the y-sorted list once and select all points that are in a 2d strip around partition line: O(n)
- How does the new recurrence look like and what is its solution?

Conclusion

- The closest pair can be found in *O*(*n* log *n*) time with divide-and-conquer algorithm
 - Plane-sweep algorithm with the same asymptotic running time exists
 - This is asymptotically optimal

Exercise: Convex-hull

- Let's find the convex-hull using divide-andconquer
 - What is a trivial problem and how we solve it?
 - How do we divide the problem into subproblems?
 - How do we combine solutions to sub-problems?

Repeated Substitution

Solving recurrences by repeated substitution:

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

$$T(n) = 2T(n/2) + n \text{ substitute}$$

$$= 2(2T(n/4) + n/2) + n \text{ expand}$$

$$= 2^{2}T(n/4) + 2n \text{ substitute}$$

$$= 2^{2}(2T(n/8) + n/4) + 2n \text{ expand}$$

$$= 2^{3}T(n/8) + 3n \text{ observe the pattern}$$

$$T(n) = 2^{i}T(n/2^{i}) + in$$

$$= 2^{\lg n}T(n/n) + n\lg n = n + n\lg n$$

Repeated Substitution Method

- The procedure is straightforward:
 - Substitute
 - Expand
 - Substitute
 - Expand
 - **.** ...
 - Observe a pattern and write how your expression looks after the *i*-th substitution
 - Find out what the value of i (e.g., $\lg n$) should be to get the base case of the recurrence (say T(1))
 - Insert the value of *T*(1) and the expression of *i* into your expression