
Advanced Algorithm
Design and Analysis (Lecture 10)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 10, © Simonas Šaltenis, 2004 2

Computational geometry

Main goals of the lecture:
to understand the concept of output-sensitive
algorithms;
to be able to apply the divide-and-conquer
algorithm design technique to geometric
problems;
to remember how recurrences are used to
analyze the divide-and-conquer algorithms;
to understand and be able to analyze the
Jarvis’s march and the divide-and-conquer
closest-pair algorithms.

AALG, lecture 10, © Simonas Šaltenis, 2004 3

Size of the output

In computational geometry, the size of an
algorithm’s output may differ/depend on
the input.

Line-intersection problem vs. convex-hull
problem
Observation: Graham’s scan running time
depends only on the size of the input – it is
independent of the size of the output

AALG, lecture 10, © Simonas Šaltenis, 2004 4

Gift wrapping

Would be nice to have an algorithm that
runs fast if the convex hull is small

Idea: gift wrapping (a.k.a Jarvis’s march)
• 1. Start with the lowest point a, include it in the

convex hull
• 2. The next point in the convex hull has to be in the

clockwise direction with respect to all other points
looking from the current point on the convex hull

• 3. Repeat 2. until a is reached.

a a a

AALG, lecture 10, © Simonas Šaltenis, 2004 5

Jarvis’s march

How many cross products are computed for this
example?

The running time of Jarvis’s march:
Find lowest point – O(n)
For each vertex in the convex hull: n–1 cross-product
computations
Total: O(nh), where h is the number of vertices in the
convex hull

AALG, lecture 10, © Simonas Šaltenis, 2004 6

Output-sensitive algorithms

Output-sensitive algorithm: its running
time depends on the size of the output.

When should we use Jarvi’s march instead of
the Graham’s scan?
The asymptotically optimal output-sensitive
algorithm of Kirkpatrick and Seidel runs in
O(n lg h)

AALG, lecture 10, © Simonas Šaltenis, 2004 7

Closest-pair problem

Given a set P of n points, find p,q ∈ P, such
that the distance d(p, q) is minimum

Checking the distance between two points is
O(1)

What is the brute-force algorithm and it’s
running time?

AALG, lecture 10, © Simonas Šaltenis, 2004 8

Steps of Divide-and-Conquer

What are the steps of a divide-and-
conquer algorithm?

If trivial (small), solve it “brute force”
Else
• 1.divide into a number of sub-problems
• 2.solve each sub-problem recursively
• 3.combine solutions to sub-problems

AALG, lecture 10, © Simonas Šaltenis, 2004 9

Dividing into sub-problems

How do we divide into sub-problems?
Idea: Sort on x-coordinate, and divide into left and right
parts:

• p1 p2 ... pn/2 ... pn/2+1 ... pn

Solve recursively the left sub-problem Pl (closest-pair
distance dl) and the right sub-problem Pr (distance dr)

AALG, lecture 10, © Simonas Šaltenis, 2004 10

Combining two solutions

How do we combine two solutions to sub-
problems?

Let d = min{dl, dr}
Observation 1: We already have the closest
pair where both points are either in the left or
in the right sub-problem, we have to check
pairs where one point is from one sub-problem
and another from the other.
Observation 2: Such closest-pair can only be
somewhere in a strip of width 2d around the
dividing line!
• Otherwise the points would be more than d units

apart.

AALG, lecture 10, © Simonas Šaltenis, 2004 11

Combining two solutions

Combining solutions: Finding the closest
pair (,) in a strip of width 2d, knowing
that no (,) or (,) pair is closer than d

AALG, lecture 10, © Simonas Šaltenis, 2004 12

Combining Two Solutions

Do we have to check all pairs of points in the
strip?

For a given point p from one partition, where can there
be a point q from the other partition, that can form the
closest pair with p?
In the d××××d square:

How many points can there be in this square?
At most 4!

p

AALG, lecture 10, © Simonas Šaltenis, 2004 13

Combining two solutions

Algorithm for checking the strip:
Sort all the points in the strip on the y-
coordinate
For each point p only 7 points ahead of it in the
order have to be checked to see if any of them
is closer to p than d

p

AALG, lecture 10, © Simonas Šaltenis, 2004 14

Pseudocode

What is the trivial problem?
That is – when do we stop recursion?

Closest-Pair(P, l, r)
// First call: an array P of points sorted on x-coordinate, 1, n
01 if r – l < 3 then return Brute-Force-CPair(P, l, r)
02 q ← (l+r)/2
03 dl ← Closest-Pair(P, l, q-1)
04 dr ← Closest-Pair(P, q, r)
05 d ← min(dl, dr)
06 for i ← l to r do
07 if P[q].x - d ≤ P[i].x ≤ P[q].x + d then
08 append P[i] to S
09 Sort S on y-coordinate
10 for j ← 1 to size_of(S)-1 do
11 Check if any of d(S[j],S[j]+1), ..., d(S[j],S[j]+7) is

smaller than d, if so set d to the smallest of them
12 return d

AALG, lecture 10, © Simonas Šaltenis, 2004 15

Example

How many distance computations are done
in this example?

AALG, lecture 10, © Simonas Šaltenis, 2004 16

Running time

What is the running time of this algorithm?
Running time of a divide-and-conquer
algorithm can be described by a recurrence
Divide = O(1)
Combine = O(n lg n)
This gives the following recurrence:

 if 3
()

2 (/ 2) log otherwise
n n

T n
T n n n

≤=  +

Total running time: O(n log2 n)
Better than brute force, but…

AALG, lecture 10, © Simonas Šaltenis, 2004 17

Improving the running time

How can we improve the running time of
the algorithm?

Idea: Sort all the points by x and y coordinate
once
Before recursive calls, partition the sorted
lists into two sorted sublists for the left and
right halves: O(n)
When combining, run through the y-sorted list
once and select all points that are in a 2d strip
around partition line: O(n)

How does the new recurrence look like and
what is its solution?

AALG, lecture 10, © Simonas Šaltenis, 2004 18

Conclusion

The closest pair can be found in O(n log n)
time with divide-and-conquer algorithm

Plane-sweep algorithm with the same
asymptotic running time exists
This is asymptotically optimal

AALG, lecture 10, © Simonas Šaltenis, 2004 19

Exercise: Convex-hull

Let’s find the convex-hull using divide-and-
conquer

What is a trivial problem and how we solve it?
How do we divide the problem into sub-
problems?
How do we combine solutions to sub-problems?

AALG, lecture 10, © Simonas Šaltenis, 2004 20

Repeated Substitution

Solving recurrences by repeated
substitution:

1 if 1
()

2 (/ 2) if 1
n

T n
T n n n

=
=  + >

()
()()

2

2

3

lg

() 2 / 2 substitute
2 2 / 4 / 2 expand

2 (/ 4) 2 substitute
2 (2 (/8) / 4) 2 expand

 2 (/8) 3 observe the pattern
() 2 (/ 2)

2 (/) lg lg

i i

n

T n T n n
T n n n

T n n
T n n n

T n n
T n T n in

T n n n n n n n

= +
= + +

= +
= + +

= +
= +
= + = +

AALG, lecture 10, © Simonas Šaltenis, 2004 21

Repeated Substitution Method

The procedure is straightforward:
Substitute
Expand
Substitute
Expand
…
Observe a pattern and write how your expression looks
after the i-th substitution
Find out what the value of i (e.g., lg n) should be to get
the base case of the recurrence (say T(1))
Insert the value of T(1) and the expression of i into your
expression

