Advanced Algorithm Design and Analysis (Lecture 11)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

Range Searching in 2D

- Main goals of the lecture:
- to understand and to be able to analyze
- the kd-trees and the range trees;
- to see how data structures can be used to trade the space used for the running time of queries

Range queries

- How do you efficiently find points that are inside of a rectangle?
- Orthogonal range query ($\left.\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)$: find all points (x, y) such that $x_{1}<x<x_{2}$ and $y_{1}<y<y_{2}$
- Useful also as a multi-attribute database query

Preprocessing

- How much time such a query would take?
- Rules of the game:
- We preprocess the data into a data structure
- Then, we perform queries and updates on the data structure
- Analysis:
- Preprocessing time
- Efficiency of queries (and updates)
- The size of the structure
- Assumption: no two points have the same x coordinate (the same is true for y-coordinate).

1D range query

- How do we do a 1D range query $\left[x_{1}, x_{2}\right]$?
- Balanced BST where all data points are stored in the leaves
- The size of it?
- Where do we find the answer to a query?

1D range query

- How do we find all these leaf nodes?
- A possibility: have a linked list of leaves and traverse from q_{1} to q_{2}
- but, will not work for more dimensions...
- Sketch of the algorithm:
- Find the split node
- Continue searching for $\times 1$, report all right-subtrees
- Continue searching for $\times 2$, report all left-subtrees
- When leaves q_{1} and q_{2} are reached, check if they belong to the range
- Why is this correct?

Analysis of 1D range query

- What is the worst-case running time of a query?
- It is output-sensitive: two traversals down the tree plus the $O(k)$, where k is the number of reported data points: $O(\log n+k)$
- What is the time of construction?
- Sort, construct by dividing into two, creating the root and conquering the two parts recursively
- $O(n \log n)$
- Size: $O(n)$

2D range query

- How can we solve a $2 D$ range query?
- Observation - 2D range query is a conjunction of two 1D range queries: $x_{1}<x<x_{2}$ and $y_{1}<y<y_{2}$
- Naïve idea:
- have two BSTs (on x-coordinate and on y-coordinate)
- Ask two 1D range queries
- Return the intersection of their results
- What is the worst-case running time (and when does it happen)? Is it output-sensitive?

AALG, lecture 11, © Simonas Šaltenis, 2004

Range tree

- Idea: when performing search on x-coordinate, we need to start filtering points on y-coordinate earlier!
- Canonical subset $P(v)$ of a node v in a BST is a set of points (leaves) stored in a subtree rooted at v
- Range tree is a multi-level data structure:

BST on x-coords

Querying the range tree

- How do we query such a tree?
- Use the 1DRangeSearch on T, but replace ReportSubtree(w) with 1DRangeSearch $\left(T_{a}(w), y_{1}, y_{2}\right)$
- What is the worst-case running time?
- Worst-case: We query the associated structures on all nodes on the path down the tree
- On level j, the depth of the associated structure is

$$
\log \frac{n}{2^{j}}=\log n-j
$$

- Total running time: $O\left(\log ^{2} n+k\right)$

Size of the range tree

- What is the size of the range tree?
- At each level of the main tree associated structures store all the data points once (with constant overhead) (Why?) : $O(n)$
- There are $O(\log n)$ levels
- Thus, the total size is $O(n \log n)$

Building the range tree

- How do we efficiently build the range tree?
- Sort the points on x and on y (two arrays: X, Y)
- Take the median v of X and create a root, build its associated structure using Y
- Split X into sorted X_{L} and X_{R}, split Y into sorted Y_{L} and Y_{R} (s.t. for any $p \in X_{L}$ or $p \in Y_{L} p . x<v . x$ and for any $p \in X_{R}$ or $p \in Y_{R^{\prime}} p . x \geq v . x$)
- Build recursively the left child from X_{L} and Y_{L} and the right child from X_{R} and Y_{R}
- What is the running time of this?
- $O(n \log n)$

Range trees: summary

- Range trees
- Building (preprocessing time): $O(n \log n)$
- Size: $O(n \log n)$
- Range queries: $O\left(\log ^{2} n+k\right)$
- Running time can be improved to $O(\log n+k)$ without sacrificing the preprocessing time or size
- Layered range trees (uses fractional cascading)
- Priority range trees (uses priority search trees as associated structures)

Kd-trees

- What if we want linear space?
- Idea: partition trees - generalization of binary search trees
- Kd-tree: a binary tree
- Data points are at leaves
- For each internal node v :
- x-coords of left subtree $\leq v<x$-coords of right subtree, if depth of v is even (split with vertical line)
- y-coords of left subtree $\leq v<y$-coords of right subtree, if depth of v is odd (split with horizontal line)
- Space: $O(n)$ - points are stored once.

Example kd-tree

Draw a kd-tree

- Draw a kd-tree storing the following data points

Querying the kd-tree

- How do we answer a range query?
- Observation: Each internal node v corresponds to a region(v) (where all its children are included).
- We can maintain region (v) as we traverse down the tree

Querying the kd-tree

- The range query algorithm (query range R):
- If region(v) does not intersect R, do not go deeper into the subtree rooted at v
- If region(v) is fully contained in R, report all points in the subtree rooted at v
- If region (v) only intersects with R, go recursively into v 's children.

Analysis of the search alg.

- What is the worst-case running time of the search?
- Traversal of subtrees v, such that region(v) is fully contained in R adds up to $O(k)$.
- We need to find the number of regions that intersect R - the regions which are crossed by some border of R
- As an upper bound for that, let's find how many regions a crossed by a vertical (or horizontal) line
- What recurrence can we write for it?

$$
T(n)=2+2 T(n / 4)
$$

- Solution: $O(\sqrt{n}) \quad$ Total time: $O(\sqrt{n}+k)$

Building the kd-tree

- How do we build the kd-tree?
- Sort the points on x and on y (two arrays: X, Y)
- Take the median v of X (if depth is even) or Y (if depth is odd) and create a root
- Split X into sorted X_{L} and X_{R}, split Y into sorted Y_{L} and Y_{R}, s.t.
- for any $p \in X_{L}$ or $p \in Y_{L}, p . x<v . x$ (if depth is even) or $p . y<$ $v . y$ (if depth is odd)
- for any $p \in X_{R}$ or $p \in Y_{R^{\prime}} p . x \geq v . x$ (if depth is even) or $p . y \geq$ $v . y$ (if depth is odd)
- Build recursively the left child from X_{L} and Y_{L} and the right child from X_{R} and Y_{R}
- What is the running time of this?
- $O(n \log n)$

Kd-trees: summary

- Kd-tree:
- Building (preprocessing time): $O(n \log n)$
- Size: $O(n)$
- Range queries: $O(\sqrt{n}+k)$

Quadtrees

- Quadtree - a four-way partition tree
- region quadtrees vs. point quadtrees
- kd-trees can also be point or region
- Linear space
- Good average query performance

