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Range Searching in 2D

Main goals of the lecture:
to understand and to be able to analyze  
• the kd-trees and the range trees; 

to see how data structures can be used to trade 
the space used for the running time of queries
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Range queries

How do you efficiently find points that are 
inside of a rectangle?

Orthogonal range query ([x1, x2], [y1,y2]): 
find all points (x, y) such that x1<x<x2 and 
y1<y<y2

Useful also as a multi-attribute database query  
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Preprocessing

How much time such a query would take?
Rules of the game:

We preprocess the data into a data structure 
Then, we perform queries and updates on the 
data structure
Analysis:
• Preprocessing time
• Efficiency of queries (and updates)
• The size of the structure

Assumption: no two points have the same x-
coordinate (the same is true for y-coordinate).
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1D range query

How do we do a 1D range query [x1, x2]?
Balanced BST where all data points are stored 
in the leaves 
• The size of it?

Where do we find the answer to a query?

T

… b1 q1 a1 … b2 q2 a2 …

Search path for x2Search path for x1

Total order of data points
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1D range query

How do we find all these leaf nodes?
A possibility: have a linked list of leaves and 
traverse from q1 to q2 
• but, will not work for more dimensions…

Sketch of the algorithm:
• Find the split node
• Continue searching for x1, report all right-subtrees
• Continue searching for x2, report all left-subtrees
• When leaves q1 and q2 are reached, check if they 

belong to the range

Why is this correct? 
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Analysis of 1D range query

What is the worst-case running time of a 
query?

It is output-sensitive: two traversals down the 
tree plus the O(k), where k is the number of 
reported data points: O(log n + k)

What is the time of construction?
Sort, construct by dividing into two, creating 
the root and conquering the two parts 
recursively
O(n log n)

Size: O(n)
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2D range query

How can we solve a 2D range query?
Observation – 2D range query is a conjunction of two 1D 
range queries: x1<x<x2 and y1<y<y2

Naïve idea: 
• have two BSTs (on x-coordinate and on y-coordinate)
• Ask two 1D range queries
• Return the intersection of their results 

What is the worst-case running time (and when does it 
happen)? Is it output-sensitive?
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Range tree

Idea: when performing search on x-coordinate, 
we need to start filtering points on y-coordinate 
earlier!

Canonical subset P(v) of a node v in a BST is a set of 
points (leaves) stored in a subtree rooted at v
Range tree is a multi-level data 
structure:

• The main tree is a BST T on the 
x-coordinate of points 

• Any node v of T stores a pointer 
to a BST Ta(v) (associated 
structure of v), which stores 
canonical subset P(v) organized 
on the y-coordinate 

• 2D points are stored in all leaves!

BST on y-coords

P(v)

Ta(v)

T

P(v)

v

BST on x-coords
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Querying the range tree

How do we query such a tree?
Use the 1DRangeSearch on T, but replace 
ReportSubtree(w) with    
1DRangeSearch(Ta(w), y1, y2)

What is the worst-case running time?
Worst-case: We query the associated structures 
on all nodes on the path down the tree
On level j, the depth of the associated structure 
is 

log log
2 j
n n j= −

Total running time: O(log2 n + k)
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Size of the range tree

What is the size of the range tree?
At each level of the main tree associated 
structures store all the data points once (with 
constant overhead) (Why?) : O(n)
There are O(log n) levels
Thus, the total size is O(n log n)
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Building the range tree

How do we efficiently build the range tree?
Sort the points on x and on y (two arrays: X,Y)
Take the median v of X and create a root, build 
its associated structure using Y 
Split X into sorted XL and XR, split Y into sorted 
YL and YR  (s.t. for any p∈∈∈∈XL or p∈∈∈∈YL, p.x < v.x 
and for any p∈∈∈∈XR or p∈∈∈∈YR, p.x ≥≥≥≥ v.x)
Build recursively the left child from XL and YL
and the right child from XR and YR

What is the running time of this?
O(n log n) 
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Range trees: summary

Range trees
Building (preprocessing time): O(n log n)
Size: O(n log n)
Range queries: O(log2 n + k) 

Running time can be improved to        
O(log n + k) without sacrificing the 
preprocessing time or size

Layered range trees (uses fractional cascading) 
Priority range trees (uses priority search trees 
as associated structures)
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Kd-trees

What if we want linear space?
Idea: partition trees – generalization of 
binary search trees
Kd-tree: a binary tree
• Data points are at leaves 
• For each internal node v:

• x-coords of left subtree ≤≤≤≤ v <<<< x-coords of right subtree, 
if depth of v is even (split with vertical line)

• y-coords of left subtree ≤≤≤≤ v <<<< y-coords of right subtree, 
if depth of v is odd (split with horizontal line)

Space: O(n) – points are stored once.
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Example kd-tree
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Draw a kd-tree
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Querying the kd-tree

How do we answer a range query?
Observation: Each internal node v corresponds to a 
region(v) (where all its children are included).
We can maintain region(v) as we traverse down the tree
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Querying the kd-tree

The range query algorithm (query range 
R):

If region(v) does not intersect R, do not go 
deeper into the subtree rooted at v
If region(v) is fully contained in R, report all 
points in the subtree rooted at v
If region(v) only intersects with R, go  
recursively into v’s children.



AALG, lecture 11, © Simonas Šaltenis, 2004 19

Analysis of the search alg. 

What is the worst-case running time of the 
search?

Traversal of subtrees v, such that region(v) is 
fully contained in R adds up to O(k).
We need to find the number of regions that
intersect R – the regions which are crossed by 
some border of R
• As an upper bound for that, let’s find how many 

regions a crossed by a vertical (or horizontal) line
• What recurrence can we write for it?

( ) 2 2 ( / 4)T n T n= +

( )O nSolution:                 Total time: ( )O n k+
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Building the kd-tree 

How do we build the kd-tree?
Sort the points on x and on y (two arrays: X,Y)
Take the median v of X (if depth is even) or Y (if depth is 
odd) and create a root 
Split X into sorted XL and XR, split Y into sorted YL and YR, 
s.t. 

• for any p∈∈∈∈XL or p∈∈∈∈YL, p.x < v.x (if depth is even) or p.y < 
v.y (if depth is odd) 

• for any p∈∈∈∈XR or p∈∈∈∈YR, p.x ≥≥≥≥ v.x (if depth is even) or p.y ≥≥≥≥
v.y (if depth is odd) 

Build recursively the left child from XL and YL and the 
right child from XR and YR

What is the running time of this?
O(n log n) 
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Kd-trees: summary

Kd-tree:
Building (preprocessing time): O(n log n)
Size: O(n)
Range queries:  ( )O n k+
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43

2 1

Quadtrees

Quadtree – a four-way partition tree
region quadtrees vs. point quadtrees
• kd-trees can also be point or region

Linear space
Good average query performance  
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