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Range Searching in 2D

m Main goals of the lecture:

m to understand and to be able to analyze
o the kd-trees and the range trees;

m to see how data structures can be used to trade
the space used for the running time of queries
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Range queries

m How do you efficiently find points that are
inside of a rectangle?

s Orthogonal range query ([x;, x>1, [V, V>]):

find all points (x, y) such that x,<x<x, and
Yi<Y<Yy;

m Useful also as a multi-attribute database query
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Preprocessing

m How much time such a query would take?

m Rules of the game:
s We preprocess the data into a data structure

m Then, we perform queries and updates on the
data structure

= Analysis:
e Preprocessing time

o Efficiency of queries (and updates)
e The size of the structure

m Assumption: no two points have the same x-
coordinate (the same is true for y-coordinate).
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1D range query

m How do we do a 1D range query [Xx;, X5]?

m Balanced BST where all data points are stored
in the leaves
e The size of it?

s Where do we find the answer to a query?
T

Search path for x, Search path for X,

..b;q;a; ...b,q,a,... «— Total order of data points
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1D range query

m How do we find all these leaf nodes?

m A possibility: have a linked list of leaves and
traverse from g, to g,
e but, will not work for more dimensions...

m Sketch of the algorithm:
e Find the split node
e Continue searching for x1, report all right-subtrees
e Continue searching for x2, report all left-subtrees
e When leaves g, and g, are reached, check if they
belong to the range

m Why is this correct?
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Analysis of 1D range query

m What is the worst-case running time of a
query?

m [t is output-sensitive: two traversals down the
tree plus the O(k), where k is the number of
reported data points: O(log n + k)

m What is the time of construction?

m Sort, construct by dividing into two, creating
the root and conquering the two parts
recursively

m O(n log n)
m Size: O(n)
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2D range query

m How can we solve a 2D range query?

m Observation — 2D range query is a conjunction of two 1D
range queries: x,<x<x, and y,<y<y,
= Naive idea:

e have two BSTs (on x-coordinate and on y-coordinate)
e Ask two 1D range queries
e Return the intersection of their results

m What is the worst-case running time (and when does it
happen)? Is it output-sensitive?
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Range tree

m [dea: when performing search on x-coordinate,
we need to start filtering points on y-coordinate

earlier!

s Canonical subset P(v) of a node v in a BST is a set of
points (leaves) stored in a subtree rooted at v

= Range tree is a multi-level data
structure:

e The main tree is a BST T on the
x-coordinate of points

e Any node v of T stores a pointer
to a BST T,(v) (associated
structure of v), which stores
canonical subset P(v) organized
on the y-coordinate

e 2D points are stored in all leaves!
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Querying the range tree

m How do we query such a tree?

m Use the 1DRangeSearch on T, but replace
ReportSubtree(w) with
1DRangeSearch(T,(wW), Y1, V>)

m What is the worst-case running time?

m Worst-case: We query the associated structures
on all nodes on the path down the tree

m On level j, the depth of the associated structure

IS 1 n_l :
ogi— ogn—j

m Total running time: O(log? n + k)
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Size of the range tree

m What is the size of the range tree?

m At each level of the main tree associated
structures store all the data points once (with
constant overhead) (Why?) : O(n)

m There are O(log n) levels
m Thus, the total size is O(n log n)
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Building the range tree

m How do we efficiently build the range tree?
m Sort the points on x and on y (two arrays: X,Y)

m Take the median v of X and create a root, build
its associated structure using Y

m Split X into sorted X, and Xj, split Y into sorted
Y, and Y; (s.t. for any pe X, or peY,, p.x < v.x
and for any pe X, or peYy,, p.x = V.X)

m Build recursively the left child from X, and Y,
and the right child from X, and Y,

m What is the running time of this?
x O(n log n)
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Range trees: summary

= Range trees
m Building (preprocessing time): O(n log n)
m Size: O(n log n)
s Range queries: O(log? n + k)
m Running time can be improved to
O(log n + k) without sacrificing the
preprocessing time or size
m Layered range trees (uses fractional cascading)

m Priority range trees (uses priority search trees
as associated structures)
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Kd-trees

m What if we want linear space?

m Idea: partition trees - generalization of
binary search trees

m Kd-tree: a binary tree
e Data points are at leaves
e For each internal node v:

e x-coords of left subtree < v < x-coords of right subtree,
if depth of v is even (split with vertical line)

e y-coords of left subtree < v < y-coords of right subtree,
if depth of v is odd (split with horizontal line)

m Space: O(n) - points are stored once.
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Example kd-tree
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Draw a kd-tree

B Draw a kd-tree storing the following data points
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Querying the kd-tree

m How do we answer a range query?

m Observation: Each internal node v corresponds to a
region(v) (where all its children are included).

m We can maintain region(v) as we traverse down the tree
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Querying the kd-tree

m The range query algorithm (query range
R):.
m If region(v) does not intersect R, do not go
deeper into the subtree rooted at v

m If region(v) is fully contained in R, report all
points in the subtree rooted at v

m If region(v) only intersects with R, go
recursively into v’s children.
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Analysis of the search alg.

m What is the worst-case running time of the
search?

m Traversal of subtrees v, such that region(v) is
fully contained in R adds up to O(k).

m We need to find the number of regions that
intersect R - the regions which are crossed by
some border of R

e As an upper bound for that, let’s find how many
regions a crossed by a vertical (or horizontal) line

e What recurrence can we write for it?
I'(n)=2+2T(n/4)

mSolution: 0(\/;) Total time: O(\/;+k)
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Building the kd-tree

m How do we build the kd-tree?

m Sort the points on x and on y (two arrays: X,Y)

m Take the median v of X (if depth is even) or Y (if depth is
odd) and create a root

m Split X into sorted X, and X, split Y into sorted Y, and Y,
s.t.

e for any peX, or peY,, p.x < v.x (if depth is even) or p.y <
v.y (if depth is odd)

e for any pe X, or peY,, p.x 2 v.x (if depth is even) or p.y 2
v.y (if depth is odd)

m Build recursively the left child from X, and Y, and the
right child from X, and Y,

m What is the running time of this?
m O(nlog n)
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Kd-trees: summary

m Kd-tree:
m Building (preprocessing time): O(n log n)
m Size: O(n)
= Range queries: O/n +k)
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Quadtrees

m Quadtree - a four-way partition tree

m region quadtrees vs. point quadtrees
e kd-trees can also be point or region

m Linear space
m Good average query performance
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