
Advanced Algorithm
Design and Analysis (Lecture 11)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 11, © Simonas Šaltenis, 2004 2

Range Searching in 2D

Main goals of the lecture:
to understand and to be able to analyze
• the kd-trees and the range trees;

to see how data structures can be used to trade
the space used for the running time of queries

AALG, lecture 11, © Simonas Šaltenis, 2004 3

Range queries

How do you efficiently find points that are
inside of a rectangle?

Orthogonal range query ([x1, x2], [y1,y2]):
find all points (x, y) such that x1<x<x2 and
y1<y<y2

Useful also as a multi-attribute database query

x

y

x1 x2

y1

y2

AALG, lecture 11, © Simonas Šaltenis, 2004 4

Preprocessing

How much time such a query would take?
Rules of the game:

We preprocess the data into a data structure
Then, we perform queries and updates on the
data structure
Analysis:
• Preprocessing time
• Efficiency of queries (and updates)
• The size of the structure

Assumption: no two points have the same x-
coordinate (the same is true for y-coordinate).

AALG, lecture 11, © Simonas Šaltenis, 2004 5

1D range query

How do we do a 1D range query [x1, x2]?
Balanced BST where all data points are stored
in the leaves
• The size of it?

Where do we find the answer to a query?

T

… b1 q1 a1 … b2 q2 a2 …

Search path for x2Search path for x1

Total order of data points

AALG, lecture 11, © Simonas Šaltenis, 2004 6

1D range query

How do we find all these leaf nodes?
A possibility: have a linked list of leaves and
traverse from q1 to q2
• but, will not work for more dimensions…

Sketch of the algorithm:
• Find the split node
• Continue searching for x1, report all right-subtrees
• Continue searching for x2, report all left-subtrees
• When leaves q1 and q2 are reached, check if they

belong to the range

Why is this correct?

AALG, lecture 11, © Simonas Šaltenis, 2004 7

Analysis of 1D range query

What is the worst-case running time of a
query?

It is output-sensitive: two traversals down the
tree plus the O(k), where k is the number of
reported data points: O(log n + k)

What is the time of construction?
Sort, construct by dividing into two, creating
the root and conquering the two parts
recursively
O(n log n)

Size: O(n)

AALG, lecture 11, © Simonas Šaltenis, 2004 8

2D range query

How can we solve a 2D range query?
Observation – 2D range query is a conjunction of two 1D
range queries: x1<x<x2 and y1<y<y2

Naïve idea:
• have two BSTs (on x-coordinate and on y-coordinate)
• Ask two 1D range queries
• Return the intersection of their results

What is the worst-case running time (and when does it
happen)? Is it output-sensitive?

x

y

x1 x2

y1

y2

AALG, lecture 11, © Simonas Šaltenis, 2004 9

Range tree

Idea: when performing search on x-coordinate,
we need to start filtering points on y-coordinate
earlier!

Canonical subset P(v) of a node v in a BST is a set of
points (leaves) stored in a subtree rooted at v
Range tree is a multi-level data
structure:

• The main tree is a BST T on the
x-coordinate of points

• Any node v of T stores a pointer
to a BST Ta(v) (associated
structure of v), which stores
canonical subset P(v) organized
on the y-coordinate

• 2D points are stored in all leaves!

BST on y-coords

P(v)

Ta(v)

T

P(v)

v

BST on x-coords

AALG, lecture 11, © Simonas Šaltenis, 2004 10

Querying the range tree

How do we query such a tree?
Use the 1DRangeSearch on T, but replace
ReportSubtree(w) with
1DRangeSearch(Ta(w), y1, y2)

What is the worst-case running time?
Worst-case: We query the associated structures
on all nodes on the path down the tree
On level j, the depth of the associated structure
is

log log
2 j
n n j= −

Total running time: O(log2 n + k)

AALG, lecture 11, © Simonas Šaltenis, 2004 11

Size of the range tree

What is the size of the range tree?
At each level of the main tree associated
structures store all the data points once (with
constant overhead) (Why?) : O(n)
There are O(log n) levels
Thus, the total size is O(n log n)

AALG, lecture 11, © Simonas Šaltenis, 2004 12

Building the range tree

How do we efficiently build the range tree?
Sort the points on x and on y (two arrays: X,Y)
Take the median v of X and create a root, build
its associated structure using Y
Split X into sorted XL and XR, split Y into sorted
YL and YR (s.t. for any p∈∈∈∈XL or p∈∈∈∈YL, p.x < v.x
and for any p∈∈∈∈XR or p∈∈∈∈YR, p.x ≥≥≥≥ v.x)
Build recursively the left child from XL and YL
and the right child from XR and YR

What is the running time of this?
O(n log n)

AALG, lecture 11, © Simonas Šaltenis, 2004 13

Range trees: summary

Range trees
Building (preprocessing time): O(n log n)
Size: O(n log n)
Range queries: O(log2 n + k)

Running time can be improved to
O(log n + k) without sacrificing the
preprocessing time or size

Layered range trees (uses fractional cascading)
Priority range trees (uses priority search trees
as associated structures)

AALG, lecture 11, © Simonas Šaltenis, 2004 14

Kd-trees

What if we want linear space?
Idea: partition trees – generalization of
binary search trees
Kd-tree: a binary tree
• Data points are at leaves
• For each internal node v:

• x-coords of left subtree ≤≤≤≤ v <<<< x-coords of right subtree,
if depth of v is even (split with vertical line)

• y-coords of left subtree ≤≤≤≤ v <<<< y-coords of right subtree,
if depth of v is odd (split with horizontal line)

Space: O(n) – points are stored once.

AALG, lecture 11, © Simonas Šaltenis, 2004 15

Example kd-tree

1 2 3 4 5 6 7 8
1

6

7

5

4

3

2

8

d e b a
d

e

5

4 3

2 3 6

b

a

c
c f

g
f

g

x

y

x

AALG, lecture 11, © Simonas Šaltenis, 2004 16

Draw a kd-tree

1 2 3 4 5 6 7 8
1

6

7

5

4

3

2

8

Draw a kd-tree storing the following data points

a

b

c

d

e

f

g

h

AALG, lecture 11, © Simonas Šaltenis, 2004 17

Querying the kd-tree

How do we answer a range query?
Observation: Each internal node v corresponds to a
region(v) (where all its children are included).
We can maintain region(v) as we traverse down the tree

1 2 3 4 5 6 7 8
1

6

7

5

4

3

2

8

d e b a
d

e

5

4 3

2 3 6

b

a

c c f

gf

g

AALG, lecture 11, © Simonas Šaltenis, 2004 18

Querying the kd-tree

The range query algorithm (query range
R):

If region(v) does not intersect R, do not go
deeper into the subtree rooted at v
If region(v) is fully contained in R, report all
points in the subtree rooted at v
If region(v) only intersects with R, go
recursively into v’s children.

AALG, lecture 11, © Simonas Šaltenis, 2004 19

Analysis of the search alg.

What is the worst-case running time of the
search?

Traversal of subtrees v, such that region(v) is
fully contained in R adds up to O(k).
We need to find the number of regions that
intersect R – the regions which are crossed by
some border of R
• As an upper bound for that, let’s find how many

regions a crossed by a vertical (or horizontal) line
• What recurrence can we write for it?

() 2 2 (/ 4)T n T n= +

()O nSolution: Total time: ()O n k+

AALG, lecture 11, © Simonas Šaltenis, 2004 20

Building the kd-tree

How do we build the kd-tree?
Sort the points on x and on y (two arrays: X,Y)
Take the median v of X (if depth is even) or Y (if depth is
odd) and create a root
Split X into sorted XL and XR, split Y into sorted YL and YR,
s.t.

• for any p∈∈∈∈XL or p∈∈∈∈YL, p.x < v.x (if depth is even) or p.y <
v.y (if depth is odd)

• for any p∈∈∈∈XR or p∈∈∈∈YR, p.x ≥≥≥≥ v.x (if depth is even) or p.y ≥≥≥≥
v.y (if depth is odd)

Build recursively the left child from XL and YL and the
right child from XR and YR

What is the running time of this?
O(n log n)

AALG, lecture 11, © Simonas Šaltenis, 2004 21

Kd-trees: summary

Kd-tree:
Building (preprocessing time): O(n log n)
Size: O(n)
Range queries: ()O n k+

AALG, lecture 11, © Simonas Šaltenis, 2004 22

43

2 1

Quadtrees

Quadtree – a four-way partition tree
region quadtrees vs. point quadtrees
• kd-trees can also be point or region

Linear space
Good average query performance

a

b

c

d e

f

1
2

3

3 2 4 4

3 4 1 3

d e b a

fc

