Advanced Algorithm Design and Analysis (Lecture 11)

SW5 fall 2004 *Simonas Šaltenis E1-215b simas@cs.aau.dk*

Range Searching in 2D

Main goals of the lecture:

- to understand and to be able to analyze
 - the kd-trees and the range trees;
- to see how data structures can be used to trade the space used for the running time of queries

Range queries

- How do you efficiently find points that are inside of a rectangle?
 - Orthogonal range query ([x₁, x₂], [y₁, y₂]): find all points (x, y) such that x₁ < x < x₂ and y₁ < y < y₂
 - Useful also as a multi-attribute database query

Preprocessing

- How much time such a query would take?
- Rules of the game:
 - We preprocess the data into a data structure
 - Then, we perform queries and updates on the data structure
 - Analysis:
 - Preprocessing time
 - Efficiency of queries (and updates)
 - The size of the structure
 - Assumption: no two points have the same xcoordinate (the same is true for y-coordinate).

1D range query

How do we find all these leaf nodes?

- A possibility: have a linked list of leaves and traverse from q₁ to q₂
 - but, will not work for more dimensions...
- Sketch of the algorithm:
 - Find the split node
 - Continue searching for x1, report all right-subtrees
 - Continue searching for x2, report all left-subtrees
 - When leaves q₁ and q₂ are reached, check if they belong to the range
- Why is this correct?

Analysis of 1D range query

- What is the worst-case running time of a query?
 - It is output-sensitive: two traversals down the tree plus the O(k), where k is the number of reported data points: O(log n + k)
- What is the time of construction?
 - Sort, construct by dividing into two, creating the root and conquering the two parts recursively
 - O(n log n)
- Size: O(n)

2D range query

- How can we solve a 2D range query?
 - Observation 2D range query is a conjunction of two 1D range queries: x₁ < x < x₂ and y₁ < y < y₂
 - Naïve idea:
 - have two BSTs (on x-coordinate and on y-coordinate)
 - Ask two 1D range queries
 - Return the intersection of their results

What is the worst-case running time (and when does it happen)? Is it output-sensitive?

Range tree

- Idea: when performing search on x-coordinate, we need to start filtering points on y-coordinate earlier!
 - Canonical subset P(v) of a node v in a BST is a set of points (leaves) stored in a subtree rooted at v
 - Range tree is a multi-level data structure:

BST on y-coords

- The main tree is a BST T on the x-coordinate of points
- Any node v of T stores a pointer to a BST T_a(v) (associated structure of v), which stores canonical subset P(v) organized on the y-coordinate
- 2D points are stored in all leaves!

Querying the range tree

- How do we query such a tree?
 Use the 1DPaperSearch on T but it
 - Use the 1DRangeSearch on T, but replace ReportSubtree(w) with 1DRangeSearch(T_a(w), y₁, y₂)
- What is the worst-case running time?
 - Worst-case: We query the associated structures on all nodes on the path down the tree
 - On level *j*, the depth of the associated structure is $\log \frac{n}{2^{j}} = \log n - j$

Total running time: O(log² n + k)

Size of the range tree

What is the size of the range tree?

- At each level of the main tree associated structures store all the data points once (with constant overhead) (Why?) : O(n)
- There are O(log n) levels
- Thus, the total size is O(n log n)

Building the range tree

- How do we efficiently build the range tree?
 - Sort the points on x and on y (two arrays: X,Y)
 - Take the median v of X and create a root, build its associated structure using Y
 - Split X into sorted X_L and X_R , split Y into sorted Y_L and Y_R (s.t. for any $p \in X_L$ or $p \in Y_L$, p.x < v.x and for any $p \in X_R$ or $p \in Y_R$, $p.x \ge v.x$)
 - Build recursively the left child from X_L and Y_L and the right child from X_R and Y_R
- What is the running time of this?
 O(n log n)

Range trees: summary

Range trees

- Building (preprocessing time): O(n log n)
- Size: O(n log n)
- Range queries: O(log² n + k)
- Running time can be improved to O(log n + k) without sacrificing the preprocessing time or size
 - Layered range trees (uses *fractional cascading*)
 - Priority range trees (uses priority search trees as associated structures)

Kd-trees

What if we want linear space?

- Idea: partition trees generalization of binary search trees
- Kd-tree: a binary tree
 - Data points are at leaves
 - For each internal node v:
 - *x*-coords of left subtree ≤ *v* < *x*-coords of right subtree,
 if depth of v is *even* (*split with vertical line*)
 - y-coords of left subtree ≤ v < y-coords of right subtree,
 if depth of v is odd (split with horizontal line)
- Space: O(n) points are stored once.

Querying the kd-tree

- How do we answer a range query?
 - Observation: Each internal node v corresponds to a region(v) (where all its children are included).
 - We can maintain region(v) as we traverse down the tree

Querying the kd-tree

- The range query algorithm (query range R):
 - If region(v) does not intersect R, do not go deeper into the subtree rooted at v
 - If region(v) is fully contained in R, report all points in the subtree rooted at v
 - If region(v) only intersects with R, go recursively into v's children.

Analysis of the search alg.

- What is the worst-case running time of the search?
 - Traversal of subtrees v, such that region(v) is fully contained in R adds up to O(k).
 - We need to find the number of regions that intersect R – the regions which are crossed by some border of R
 - As an upper bound for that, let's find how many regions a crossed by a vertical (or horizontal) line
 - What recurrence can we write for it?

$$T(n) = 2 + 2T(n/4)$$

Solution: $O(\sqrt{n})$ Total time: $O(\sqrt{n+k})$

Building the kd-tree

- How do we build the kd-tree?
 - Sort the points on x and on y (two arrays: X,Y)
 - Take the median v of X (if depth is even) or Y (if depth is odd) and create a root
 - Split X into sorted X_L and X_R, split Y into sorted Y_L and Y_R, s.t.
 - for any p∈X_L or p∈Y_L, p.x < v.x (if depth is even) or p.y < v.y (if depth is odd)
 - for any $p \in X_R$ or $p \in Y_R$, $p.x \ge v.x$ (if depth is even) or $p.y \ge v.y$ (if depth is odd)
 - Build recursively the left child from X_L and Y_L and the right child from X_R and Y_R
- What is the running time of this?
 O(n log n)

Kd-trees: summary

Kd-tree:

Building (preprocessing time): O(n log n)

- Size: O(n)
- **Range queries:** $O(\sqrt{n}+k)$

