
Advanced Algorithm
Design and Analysis (Lecture 12)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 12, © Simonas Šaltenis, 2004 2

Amortized analysis

Main goals of the lecture:
to understand what is amortized analysis,
when is it used, and how it differs from the
average-case analysis;
to be able to apply the techniques of the
aggregate analysis, the accounting
method, and the potential method to
analyze operations on simple data structures.

AALG, lecture 12, © Simonas Šaltenis, 2004 3

Sequence of operations

The problem:
We have a data structure
We perform a sequence of operations
• Operations may be of different types (e.g., insert,

delete)
• Depending on the state of the structure the actual

cost of an operation may differ (e.g., inserting into a
sorted array)

Just analyzing the worst-case time of a single
operation may not say too much
We want the average running time of an
operation (but from the worst-case sequence of
operations!).

AALG, lecture 12, © Simonas Šaltenis, 2004 4

Binary counter example

Example data structure: a binary counter
Operation: Increment
Implementation: An array of bits A[0..k–1]

Increment(A)
1 i ← 0
2 while i < k and A[i] = 1 do
3 A[i] ← 0
4 i ← i + 1
5 if i < k then A[i] ← 1

How many bit assignments do we have to do in
the worst-case to perform Increment(A)?

But usually we do much less bit assignments!

AALG, lecture 12, © Simonas Šaltenis, 2004 5

Analysis of binary counter

How many bit-assignments do we do on
average?

Let’s consider a sequence of n Increment’s
Let’s compute the sum of bit assignments:
• A[0] assigned on each operation: n assignments
• A[1] assigned every two operations: n/2 assignments
• A[2] assigned every four ops: n/4 assignments
• A[i] assigned every 2i ops: n/2i assignments

lg

0

2
2

n

i
i

n n

=

 <
∑

Thus, a single operation takes 2n/n = 2 = O(1)
time amortized time

AALG, lecture 12, © Simonas Šaltenis, 2004 6

Aggregate analysis

Aggregate analysis – a simple way to do
amortized analysis

Treat all operations equally
Compute the worst-case running time of a
sequence of n operations.
Divide by n to get an amortized running time

AALG, lecture 12, © Simonas Šaltenis, 2004 7

Another look at binary counter

Another way of looking at it (proving the
amortized time):

To assign a bit, I have to use one dollar
When I assign “1”, I use one dollar, plus I put
one dollar in my “savings account” associated
with that bit.
When I assign “0”, I can do it using a dollar
from the savings account on that bit
How much do I have to pay for the
Increment(A) for this scheme to work?
• Only one assignment of “1” in the algorithm.

Obviously, two dollars will always pay for the
operation

AALG, lecture 12, © Simonas Šaltenis, 2004 8

Accounting method

Principles of the accounting method
1. Associate credit accounts with different parts of the
structure
2. Associate amortized costs with operations and show
how they credit or debit accounts

• Different costs may be assigned to different operations

Requirement (c – real cost, c’ – amortized cost):

1 1

n n

i i
i i
c c

= =

′ ≥∑ ∑
This is equivalent to requiring that the sum of all credits
in the data structure is non-negative

What would it mean not satisfy this requirement?
3. Show that this requirement is satisfied

AALG, lecture 12, © Simonas Šaltenis, 2004 9

Stack example

Start with an empty stack and consider a
sequence of n operations: Push, Pop, and
Multipop(k).

What is the worst-case running time of an operation from
this sequence?
1. Let’s associate an account with each element in the
stack
2. After pushing an element, put a dollar into the account
associated with it,

• then Pop and Multipop can work only using money in the
accounts (amortized cost 0)

• Push has amortized cost 2

3. The total credit in the structure is always ≥≥≥≥ 0
Thus, the amortized cost of an operation is O(1)

AALG, lecture 12, © Simonas Šaltenis, 2004 10

Potential method

We can have one account associated with
the whole structure:

We call it a potential
It’s a function that maps a state of the data
structure after operation i to a number: Φ(Di)

1() ()i i i ic c D D −′ = + Φ − Φ

The main step of this method is defining the
potential function

Requirement: Φ(Dn) – Φ(D0) ≥≥≥≥ 0

Once we have Φ, we can compute the
amortized costs of operations

AALG, lecture 12, © Simonas Šaltenis, 2004 11

Binary counter example

How do we define the potential function for
the binary counter?

Potential of A: bi – a number of “1”s
What is Φ(Di) – Φ(Di-1), if the number of bits
set to 0 in operation i is ti?
What is the amortized cost of Increment(A)?
• We showed that Φ(Di) – Φ(Di-1) ≤≤≤≤ 1 – ti

• Real cost ci = ti + 1
• Thus,

1 () () (1) (1) 2i i i i i ic c D D t t−′ = + Φ − Φ ≤ + + − =

AALG, lecture 12, © Simonas Šaltenis, 2004 12

Potential method

We can analyze the counter even if it does
not start at 0 using potential method:

Let’s say we start with b0 and end with bn “1”s
Observe that:

0
1 1

() ()
n n

i i n
i i
c c D D

= =

′= − Φ + Φ∑ ∑

We have that: 2ic′ ≤

This means that:
Note that b0 ≤≤≤≤ k. This means that, if k = O(n)
then the total actual cost is O(n).

0
1

2
n

i n
i
c n b b

=

≤ − +∑

AALG, lecture 12, © Simonas Šaltenis, 2004 13

Dynamic table

It is often useful to have a dynamic table:
The table that expands and contracts as necessary when
new elements are added or deleted.

• Expands when insertion is done and the table is already full
• Contracts when deletion is done and there is “too much”

free space

Contracting or expanding involves relocating
• Allocate new memory space of the new size
• Copy all elements from the table into the new space
• Free the old space

Worst-case time for insertions and deltions:
• Without relocation: O(1)
• With relocation: O(m), where m – the number of elements

in the table

AALG, lecture 12, © Simonas Šaltenis, 2004 14

Requirements

Load factor
num – current number of elements in the table
size – the total number of elements that can be
stored in the allocated memory
Load factor α = num/size

It would be nice to have these two
properties:

Amortized cost of insert and delete is constant
The load factor is always above some constant
• That is the table is not too empty

AALG, lecture 12, © Simonas Šaltenis, 2004 15

Naïve insertions

Let’s look only at insertions: Why not
expand the table by some constant when it
overflows?

What is the amortized cost of an insertion?
Does it satisfy the second requirement?

AALG, lecture 12, © Simonas Šaltenis, 2004 16

Aggregate analysis

The “right” way to expand – double the
size of the table

Let’s do an aggregate analysis
The cost of i-th insertion is:
• i, if i–1 is an exact power of 2
• 1, otherwise

Let’s sum up…
The total cost of n insertions is then < 3n
Accounting method gives the intuition:
• Pay $1 for inserting the element
• Put $1 into element’s account for reallocating it later
• Put $1 into the account of another element to pay for

a later relocation of that element

AALG, lecture 12, © Simonas Šaltenis, 2004 17

Potential function

What potential function do we want to
have?

Φi=2numi – sizei

It is always non-negative
Amortized cost of insertion:
• Insertion triggers an expansion
• Insertion does not trigger an expansion

Both cases: 3

AALG, lecture 12, © Simonas Šaltenis, 2004 18

Deletions

Deletions: What if we contract whenever
the table is about to get less than half full?

Would the amortized running times of a
sequence of insertions and deletions be
constant?
Problem: we want to avoid doing reallocations
often without having accumulated “the money”
to pay for that!

AALG, lecture 12, © Simonas Šaltenis, 2004 19

Deletions

Idea: delay contraction!
Contract only when num = size/4
Second requirement still satisfied: α ≥≥≥≥ ¼

How do we define the potential function?

2 if 1 / 2
/ 2 if 1 / 2
num size

size num
⋅ − α ≥

Φ = − α <

It is always non-negative
Let’s compute the amortized running time
of deletions:

α <<<< ½ (with contraction, without contraction)

