Advanced Algorithm Design and Analysis (Lecture 12)

SW5 fall 2004 *Simonas Šaltenis E1-215b simas@cs.aau.dk*

Amortized analysis

Main goals of the lecture:

 to understand what is amortized analysis, when is it used, and how it differs from the average-case analysis;

to be able to apply the techniques of the aggregate analysis, the accounting method, and the potential method to analyze operations on simple data structures.

Sequence of operations

• The problem:

- We have a data structure
- We perform a sequence of operations
 - Operations may be of different types (e.g., *insert, delete*)
 - Depending on the state of the structure the actual cost of an operation may differ (e.g., *inserting into a sorted array*)
- Just analyzing the worst-case time of a single operation may not say too much
- We want the average running time of an operation (but from the worst-case sequence of operations!).

Binary counter example

Example data structure: a binary counter

- Operation: Increment
- Implementation: An array of bits A[0..k-1]

```
Increment(A)
1 i ← 0
2 while i < k and A[i] = 1 do
3 A[i] ← 0
4 i ← i + 1
5 if i < k then A[i] ← 1</pre>
```

 How many bit assignments do we have to do in the worst-case to perform Increment(A)?
 But usually we do much less bit assignments!

Analysis of binary counter

- How many bit-assignments do we do on average?
 - Let's consider a sequence of n Increment's
 - Let's compute the sum of bit assignments:
 - A[0] assigned on each operation: n assignments
 - *A*[1] assigned every two operations: *n*/2 assignments
 - A[2] assigned every four ops: n/4 assignments
 - *A*[*i*] assigned every 2^{*i*} ops: n/2^{*i*} assignments

$$\sum_{i=0}^{\lfloor \lg n \rfloor} \left\lfloor \frac{n}{2^i} \right\rfloor < 2n$$

Thus, a single operation takes 2n/n = 2 = O(1) time **amortized** time

Aggregate analysis

- Aggregate analysis a simple way to do amortized analysis
 - Treat all operations equally
 - Compute the *worst-case* running time of a sequence of *n* operations.
 - Divide by n to get an amortized running time

Another look at binary counter

- Another way of looking at it (proving the amortized time):
 - To assign a bit, I have to use one dollar
 - When I assign "1", I use one dollar, plus I put one dollar in my "savings account" associated with that bit.
 - When I assign "0", I can do it using a dollar from the savings account on that bit
 - How much do I have to pay for the Increment(A) for this scheme to work?
 - Only one assignment of "1" in the algorithm. Obviously, two dollars will always pay for the operation

Accounting method

Principles of the accounting method

- 1. Associate credit accounts with different parts of the structure
- 2. Associate amortized costs with operations and show how they credit or debit accounts
 - Different costs may be assigned to different operations
- Requirement (c real cost, c' amortized cost):

$$\sum_{i=1}^{n} c'_{i} \geq \sum_{i=1}^{n} c_{i}$$

- This is equivalent to requiring that the sum of all credits in the data structure is *non-negative*
 - What would it mean not satisfy this requirement?
- 3. Show that this requirement is satisfied

Stack example

- Start with an empty stack and consider a sequence of *n* operations: *Push, Pop,* and *Multipop(k)*.
 - What is the worst-case running time of an operation from this sequence?
 - 1. Let's associate an account with each element in the stack
 - 2. After pushing an element, put a dollar into the account associated with it,
 - then Pop and Multipop can work only using money in the accounts (amortized cost 0)
 - Push has amortized cost 2
 - 3. The total credit in the structure is always ≥ 0
 - Thus, the amortized cost of an operation is O(1)

Potential method

- We can have one account associated with the whole structure:
 - We call it a potential

• It's a function that maps a state of the data structure after operation *i* to a number: $\Phi(D_i)$

$$c'_{i} = c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})$$

The main step of this method is defining the potential function

• Requirement: $\Phi(D_n) - \Phi(D_0) \ge 0$

Once we have Φ, we can compute the amortized costs of operations

Binary counter example

- How do we define the potential function for the binary counter?
 - Potential of A: b_i a number of "1"s
 - What is $\Phi(D_i) \Phi(D_{i-1})$, if the number of bits set to 0 in operation i is t_i ?
 - What is the amortized cost of Increment(A)?
 - We showed that $\Phi(D_i) \Phi(D_{i-1}) \le 1 t_i$
 - Real cost $c_i = t_i + 1$

• Thus,

$$c'_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \le (t_i + 1) + (1 - t_i) = 2$$

Potential method

- We can analyze the counter even if it does not start at 0 using potential method:
 - Let's say we start with b₀ and end with b_n "1"s
 Observe that:

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} c'_i - \Phi(D_n) + \Phi(D_0)$$

• We have that: $c'_i \leq 2$

• This means that: $\sum_{i=1}^{n} c_i \leq 2n - b_n + b_0$

• Note that $b_0 \le k$. This means that, if k = O(n) then the total actual cost is O(n).

Dynamic table

It is often useful to have a dynamic table:

- The table that expands and contracts as necessary when new elements are added or deleted.
 - Expands when insertion is done and the table is already full
 - Contracts when deletion is done and there is "too much" free space
- Contracting or expanding involves relocating
 - Allocate new memory space of the new size
 - Copy all elements from the table into the new space
 - Free the old space
- Worst-case time for insertions and deltions:
 - Without relocation: O(1)
 - With relocation: O(m), where m the number of elements in the table

Requirements

Load factor

- num current number of elements in the table
- size the total number of elements that can be stored in the allocated memory
- Load factor α = num/size
- It would be nice to have these two properties:
 - Amortized cost of insert and delete is constant
 - The load factor is always above some constant
 - That is the table is not too empty

Naïve insertions

- Let's look only at insertions: Why not expand the table by some constant when it overflows?
 - What is the amortized cost of an insertion?
 - Does it satisfy the second requirement?

Aggregate analysis

- The "right" way to expand double the size of the table
 - Let's do an aggregate analysis
 - The cost of *i*-th insertion is:
 - *i*, if *i*-1 is an exact power of 2
 - 1, otherwise
 - Let's sum up...
 - The total cost of n insertions is then < 3n</p>
 - Accounting method gives the intuition:
 - Pay \$1 for inserting the element
 - Put \$1 into element's account for reallocating it later
 - Put \$1 into the account of another element to pay for a later relocation of that element

Potential function

- What potential function do we want to have?
 - $\Phi_i = 2num_i size_i$
 - It is always non-negative
 - Amortized cost of insertion:
 - Insertion triggers an expansion
 - Insertion does not trigger an expansion
 - Both cases: 3

Deletions

- Deletions: What if we contract whenever the table is about to get less than half full?
 - Would the amortized running times of a sequence of insertions and deletions be constant?
 - Problem: we want to avoid doing reallocations often without having accumulated "the money" to pay for that!

Deletions

Idea: delay contraction!

 Contract only when num = size/4
 Second requirement still satisfied: α ≥ ¼

 How do we define the potential function?

$$\Phi = \begin{cases} 2 \cdot num - size & \text{if } \alpha \ge 1/2\\ size/2 - num & \text{if } \alpha < 1/2 \end{cases}$$

It is always non-negative

Let's compute the amortized running time of deletions:

• $\alpha < \frac{1}{2}$ (with contraction, without contraction)