# Advanced Algorithm <br> Design and Analysis (Lecture 12) 

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

## Amortized analysis

- Main goals of the lecture:
- to understand what is amortized analysis, when is it used, and how it differs from the average-case analysis;
- to be able to apply the techniques of the aggregate analysis, the accounting method, and the potential method to analyze operations on simple data structures.


## Sequence of operations

- The problem:
- We have a data structure
- We perform a sequence of operations
- Operations may be of different types (e.g., insert, delete)
- Depending on the state of the structure the actual cost of an operation may differ (e.g., inserting into a sorted array)
- Just analyzing the worst-case time of a single operation may not say too much
- We want the average running time of an operation (but from the worst-case sequence of operations!).


## Binary counter example

- Example data structure: a binary counter
- Operation: Increment
- Implementation: An array of bits $A[0 . . k-1]$

```
Increment(A)
1 i}\leftarrow
2 while i < k and A[i] = 1 do
3 A[i] }\leftarrow
4 i}\leftarrow i + 1
5 if i < k then A[i] \leftarrow 1
```

- How many bit assignments do we have to do in the worst-case to perform Increment(A)?
- But usually we do much less bit assignments!


## Analysis of binary counter

- How many bit-assignments do we do on average?
- Let's consider a sequence of $n$ Increment's
- Let's compute the sum of bit assignments:
- $A[0]$ assigned on each operation: $n$ assignments
- $A[1]$ assigned every two operations: $n / 2$ assignments
- $A[2]$ assigned every four ops: $\mathrm{n} / 4$ assignments
- $A[i]$ assigned every $2^{i}$ ops: $n / 2^{i}$ assignments

$$
\sum_{i=0}^{\lfloor\lg n\rfloor}\left\lfloor\frac{n}{2^{i}}\right\rfloor<2 n
$$

- Thus, a single operation takes $2 n / n=2=O(1)$ time amortized time


## Aggregate analysis

- Aggregate analysis - a simple way to do amortized analysis
- Treat all operations equally
- Compute the worst-case running time of a sequence of $n$ operations.
- Divide by $n$ to get an amortized running time


## Another look at binary counter

- Another way of looking at it (proving the amortized time):
- To assign a bit, I have to use one dollar
- When I assign "1", I use one dollar, plus I put one dollar in my "savings account" associated with that bit.
- When I assign "0", I can do it using a dollar from the savings account on that bit
- How much do I have to pay for the Increment $(A)$ for this scheme to work?
- Only one assignment of " 1 " in the algorithm. Obviously, two dollars will always pay for the operation


## Accounting method

- Principles of the accounting method
- 1. Associate credit accounts with different parts of the structure
- 2. Associate amortized costs with operations and show how they credit or debit accounts
- Different costs may be assigned to different operations
- Requirement ( $c$ - real cost, $c^{\prime}$ - amortized cost):

$$
\sum_{i=1}^{n} c_{i}^{\prime} \geq \sum_{i=1}^{n} c_{i}
$$

- This is equivalent to requiring that the sum of all credits in the data structure is non-negative
- What would it mean not satisfy this requirement?
- 3. Show that this requirement is satisfied


## Stack example

- Start with an empty stack and consider a sequence of $n$ operations: Push, Pop, and Multipop (k).
- What is the worst-case running time of an operation from this sequence?
- 1. Let's associate an account with each element in the stack
- 2. After pushing an element, put a dollar into the account associated with it,
- then Pop and Multipop can work only using money in the accounts (amortized cost 0)
- Push has amortized cost 2
- 3. The total credit in the structure is always $\geq 0$
- Thus, the amortized cost of an operation is $O(1)$


## Potential method

- We can have one account associated with the whole structure:
- We call it a potential
- It's a function that maps a state of the data structure after operation $i$ to a number: $\Phi\left(D_{i}\right)$

$$
c_{i}^{\prime}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
$$

- The main step of this method is defining the potential function
- Requirement: $\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right) \geq 0$
- Once we have $\Phi$, we can compute the amortized costs of operations


## Binary counter example

- How do we define the potential function for the binary counter?
- Potential of $A: b_{i}$ - a number of " 1 " $s$
- What is $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$, if the number of bits set to 0 in operation $i$ is $t_{i}$ ?
- What is the amortized cost of Increment( $A$ )?
- We showed that $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \leq 1-t_{i}$
- Real cost $c_{i}=t_{i}+1$
- Thus,

$$
c_{i}^{\prime}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) \leq\left(t_{i}+1\right)+\left(1-t_{i}\right)=2
$$

## Potential method

- We can analyze the counter even if it does not start at 0 using potential method:
- Let's say we start with $b_{0}$ and end with $b_{n}$ " 1 "s
- Observe that:

$$
\sum_{i=1}^{n} c_{i}=\sum_{i=1}^{n} c_{i}^{\prime}-\Phi\left(D_{n}\right)+\Phi\left(D_{0}\right)
$$

- We have that: $c_{i}^{\prime} \leq 2$
- This means that: $\sum_{i=1}^{n} c_{i} \leq 2 n-b_{n}+b_{0}$
- Note that $b_{0} \leq k$. This means that, if $k=O(n)$ then the total actual cost is $O(n)$.


## Dynamic table

- It is often useful to have a dynamic table:
- The table that expands and contracts as necessary when new elements are added or deleted.
- Expands when insertion is done and the table is already full
- Contracts when deletion is done and there is "too much" free space
- Contracting or expanding involves relocating
- Allocate new memory space of the new size
- Copy all elements from the table into the new space
- Free the old space
- Worst-case time for insertions and deltions:
- Without relocation: $O(1)$
- With relocation: $O(m)$, where $m$ - the number of elements in the table


## Requirements

- Load factor
- num - current number of elements in the table
- size - the total number of elements that can be stored in the allocated memory
- Load factor $\alpha=$ num/size
- It would be nice to have these two properties:
- Amortized cost of insert and delete is constant
- The load factor is always above some constant
- That is the table is not too empty


## Naïve insertions

- Let's look only at insertions: Why not expand the table by some constant when it overflows?
- What is the amortized cost of an insertion?
- Does it satisfy the second requirement?


## Aggregate analysis

- The "right" way to expand - double the size of the table
- Let's do an aggregate analysis
- The cost of $i$-th insertion is:
- $i$, if $i-1$ is an exact power of 2
- 1, otherwise
- Let's sum up...
- The total cost of $n$ insertions is then $<3 n$
- Accounting method gives the intuition:
- Pay $\$ 1$ for inserting the element
- Put $\$ 1$ into element's account for reallocating it later
- Put $\$ 1$ into the account of another element to pay for a later relocation of that element


## Potential function

- What potential function do we want to have?
- $\Phi_{i}=2$ num $_{i}-$ size $_{i}$
- It is always non-negative
- Amortized cost of insertion:
- Insertion triggers an expansion
- Insertion does not trigger an expansion
- Both cases: 3


## Deletions

- Deletions: What if we contract whenever the table is about to get less than half full?
- Would the amortized running times of a sequence of insertions and deletions be constant?
- Problem: we want to avoid doing reallocations often without having accumulated "the money" to pay for that!


## Deletions

- Idea: delay contraction!
- Contract only when num = size/4
- Second requirement still satisfied: $\alpha \geq 1 / 4$
- How do we define the potential function?

$$
\Phi= \begin{cases}2 \cdot \text { num }- \text { size } & \text { if } \alpha \geq 1 / 2 \\ \text { size } / 2-\text { num } & \text { if } \alpha<1 / 2\end{cases}
$$

- It is always non-negative
- Let's compute the amortized running time of deletions:
- $\alpha<1 / 2$ (with contraction, without contraction)

