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Amortized analysis

Main goals of the lecture:
to understand what is amortized analysis, 
when is it used, and how it differs from the 
average-case analysis; 
to be able to apply the techniques of the 
aggregate analysis, the accounting 
method, and the potential method to 
analyze operations on simple data structures. 
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Sequence of operations

The problem:
We have a data structure
We perform a sequence of operations
• Operations may be of different types (e.g., insert, 

delete)
• Depending on the state of the structure the actual 

cost of an operation may differ (e.g., inserting into a 
sorted array)

Just analyzing the worst-case time of a single 
operation may not say too much
We want the average running time of an 
operation (but from the worst-case sequence of 
operations!). 
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Binary counter example

Example data structure: a binary counter
Operation: Increment
Implementation: An array of bits A[0..k–1] 

Increment(A)  
1 i ← 0
2 while i < k and A[i] = 1 do 
3 A[i] ← 0 
4 i ← i + 1
5 if i < k then A[i] ← 1

How many bit assignments do we have to do in 
the worst-case to perform Increment(A)?

But usually we do much less bit assignments!
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Analysis of binary counter

How many bit-assignments do we do on 
average?

Let’s consider a sequence of n Increment’s
Let’s compute the sum of bit assignments:
• A[0] assigned on each operation: n assignments
• A[1] assigned every two operations: n/2 assignments
• A[2] assigned every four ops: n/4 assignments
• A[i]  assigned every 2i ops: n/2i assignments
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Thus, a single operation takes 2n/n = 2 = O(1) 
time amortized time 
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Aggregate analysis

Aggregate analysis – a simple way to do 
amortized analysis

Treat all operations equally
Compute the worst-case running time of a 
sequence of n operations.
Divide by n to get an amortized running time
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Another look at binary counter

Another way of looking at it (proving the 
amortized time):

To assign a bit, I have to use one dollar
When I assign “1”, I use one dollar, plus I put 
one dollar in my “savings account” associated 
with that bit.
When I assign “0”, I can do it using a dollar 
from the savings account on that bit
How much do I have to pay for the 
Increment(A) for this scheme to work?
• Only one assignment of “1” in the algorithm. 

Obviously, two dollars will always pay for the 
operation
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Accounting method

Principles of the accounting method
1. Associate credit accounts with different parts of the 
structure
2. Associate  amortized costs with operations and show 
how they credit or debit accounts

• Different costs may be assigned to different operations

Requirement (c – real cost, c’ – amortized cost):
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This is equivalent to requiring that the sum of all credits 
in the data structure is non-negative

What would it mean not satisfy this requirement?
3. Show that this requirement is satisfied
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Stack example

Start with an empty stack and consider a 
sequence of n operations: Push, Pop, and 
Multipop(k). 

What is the worst-case running time of an operation from 
this sequence? 
1. Let’s associate an account with each element in the 
stack 
2. After pushing an element, put a dollar into the account 
associated with it, 

• then Pop and Multipop can work only using money in the 
accounts (amortized cost 0)

• Push has amortized cost 2

3. The total credit in the structure is always ≥≥≥≥ 0
Thus, the amortized cost of an operation is O(1)  
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Potential method

We can have one account associated with 
the whole structure:

We call it a potential
It’s a function that maps a state of the data 
structure after operation i to a number: Φ(Di)  

1( ) ( )i i i ic c D D −′ = + Φ − Φ

The main step of this method is defining the 
potential function

Requirement: Φ(Dn) – Φ(D0) ≥≥≥≥ 0

Once we have Φ, we can compute the 
amortized costs of operations
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Binary counter example

How do we define the potential function for 
the binary counter?

Potential of A: bi – a number of “1”s
What is Φ(Di) – Φ(Di-1), if the number of bits 
set to 0 in operation i is ti?
What is the amortized cost of Increment(A)?
• We showed that Φ(Di) – Φ(Di-1) ≤≤≤≤ 1 – ti 

• Real cost   ci = ti + 1
• Thus, 

1  ( ) ( )  ( 1) (1 )  2i i i i i ic c D D t t−′ = + Φ − Φ ≤ + + − =
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Potential method

We can analyze the counter even if it does 
not start at 0 using potential method:

Let’s say we start with b0 and end with bn “1”s
Observe that:  
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We have that:  2ic′ ≤

This means that:
Note that b0 ≤≤≤≤ k. This means that, if k = O(n) 
then the total actual cost is O(n). 
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Dynamic table

It is often useful to have a dynamic table:
The table that expands and contracts as necessary when 
new elements are added or deleted.

• Expands when insertion is done and the table is already full
• Contracts when deletion is done and there is “too much” 

free space

Contracting or expanding involves relocating
• Allocate new memory space of the new size
• Copy all elements from the table into the new space
• Free the old space

Worst-case time for insertions and deltions:
• Without relocation: O(1)
• With relocation: O(m), where m – the number of elements 

in the table  
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Requirements

Load factor
num – current number of elements in the table 
size – the total number of elements that can be 
stored in the allocated memory
Load factor α = num/size

It would be nice to have these two 
properties:

Amortized cost of insert and delete is constant
The load factor is always above some constant 
• That is the table is not too empty
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Naïve insertions

Let’s look only at insertions: Why not 
expand the table by some constant when it 
overflows?

What is the amortized cost of an insertion?
Does it satisfy the second requirement?
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Aggregate analysis 

The “right”  way to expand – double the 
size of the table

Let’s do an aggregate analysis
The cost of i-th insertion is:
• i,  if i–1 is an exact power of 2
• 1, otherwise

Let’s sum up…
The total cost of n insertions is then < 3n
Accounting method gives the intuition:
• Pay $1 for inserting the element 
• Put $1 into element’s account for reallocating it later
• Put $1 into the account of another element to pay for 

a later relocation of that element  
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Potential function

What potential function do we want to 
have?

Φi=2numi – sizei

It is always non-negative
Amortized cost of insertion: 
• Insertion triggers an expansion
• Insertion does not trigger an expansion

Both cases: 3
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Deletions

Deletions: What if we contract whenever 
the table is about to get less than half full?

Would the amortized running times of a 
sequence of insertions and deletions be 
constant? 
Problem: we want to avoid doing reallocations 
often without having accumulated “the money” 
to pay for that!  
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Deletions

Idea: delay contraction!
Contract only when num = size/4
Second requirement still satisfied: α  ≥≥≥≥ ¼

How do we define the potential function?

2 if 1 / 2
/ 2 if 1 / 2
num size

size num
⋅ − α ≥

Φ =  − α <

It is always non-negative
Let’s compute the amortized running time 
of deletions: 

α  <<<< ½ (with contraction, without contraction)


