
Advanced Algorithm
Design and Analysis (Lecture 13)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 13, © Simonas Šaltenis, 2004 2

Approximation Algorithms

Main goals of the lecture:
to understand the concepts of approximation
ratio, approximation algorithm, and
approximation scheme;
to understand the examples of approximation
algorithms for the problems of vertex-cover,
traveling-salesman, and set-covering.

AALG, lecture 13, © Simonas Šaltenis, 2004 3

NP problems

For some problems
there are no known
polynomial algorithms…

Hamiltonian-cycle
problem:

• Find a cycle in a graph
that visits all vertices
exactly once

Traveling-salesman
problem (TSP):

• Given a weighted
undirected graph G=(V,E)
and non-negative costs
c(u,v), find a hamiltonian
cycle with minimum cost.

AALG, lecture 13, © Simonas Šaltenis, 2004 4

NP-complete problems

There is a class of NP-complete problems
We look at the optimization variants of these
problems

All you need to know about NP-complete
problems for this lecture:

no algorithms are known to solve them in
polynomial time
• P ≠≠≠≠ NP conjecture

They are related:
• If we solved one in polynomial time, we could solve all

of them in polynomial time, because we can convert
input for any of them into input for any other in
polynomial time (polynomial reduction)

AALG, lecture 13, © Simonas Šaltenis, 2004 5

Coping with NP-completeness

Do we surrender if we have an NP-
complete problem?

Not so fast! Options:
• Just use an exponential algorithm – either hope that

the input is very small or that worst case manifests
itself very rarely

• use different heuristics to speed up search

• Special cases maybe solvable in polynomial time
• We may be able to find provably near-optimal

solutions in polynomial time

AALG, lecture 13, © Simonas Šaltenis, 2004 6

Simplified TSP

Assumptions for simplified TSP:
The graph is complete
• Each vertex has V-1 edges to all remaining vertices

Triangle inequality is satisfied:
• For all u, v, w ∈∈∈∈ V:

c(u,w) ≤≤≤≤ c(u,v) + c(v,w)

These are natural simplifications
For example: vertices – points in the plane,
edge weights – euclidean distances between
them

AALG, lecture 13, © Simonas Šaltenis, 2004 7

Using Minimum Spanning Trees

Can we start by computing something that
is easy to compute and is somehow
similar/related to the shortest tour?

Minimum Spanning Tree
How do we convert MST into a shortest tour?
If we perform a depth first search, we traverse
all edges twice
Let’s just visit all vertices in the order of a
preorder walk of the tree
• Due to triangle inequality we are reducing the length

AALG, lecture 13, © Simonas Šaltenis, 2004 8

Approximate MST

Approximate-TSP(G)
1 select a vertex r ∈ G.V to be a “root” vertex
2 T ← MST-Prim(G, r) // compute an MST
3 let L be a list of vertices in a preorder tree walk of T
4 return the hamiltonian cycle H that visits the vertices

in the order L

What is its worst-case running time?

AALG, lecture 13, © Simonas Šaltenis, 2004 9

Example

Compute an approximate TSP tour:
Use a as a starting vertex

1 2 3 4 5 6 7 8
1

6

7

5

4

3

2

8

a

b

c

d

e

f

g

h

AALG, lecture 13, © Simonas Šaltenis, 2004 10

Near-optimality

How much worse is such a solution, when
compared to an optimal one?

Observation: We can convert an optimal TSP H* tour into
a tree.

• We get a lower bound – the cost of an MST T:
c(T) ≤≤≤≤ c(H*)

A full depth-first walk of the tree W visits all edges twice:
c(W) = 2c(T)
This gives: c(W) ≤≤≤≤ 2c(H*)
The algorithm removes duplicate vertices by following
direct edges between vertices to get H

• This is possible because the graph is complete
• This does not increase cost because of triangle inequality

Thus: c(H) ≤≤≤≤ c(W) ≤≤≤≤ 2c(H*)

AALG, lecture 13, © Simonas Šaltenis, 2004 11

Reflection

We showed that our solutions are never
more than twice worse than optimal
How did we prove without knowing
(constructing) an optimal solution?

We used a known structure (MST) to:
• Use as a starting point in the algorithm
• To prove the lower bound on the cost of an optimal

solution

AALG, lecture 13, © Simonas Šaltenis, 2004 12

Approximation algorithms

Concepts, terminology:
Approximation ratio ρ(n)
• For any input-size n, costs C and C* of approximate

and optimal solutions: *

*max , ()C C n
C C

ρ
 

≤ 
 

ρρρρ(n)-approximation algorithm
Approximation scheme

Gets ε as input too, s.t. the scheme is a (1+ε)-
approximation algorithm
Polynomial-time approximation scheme

Fully polynomial-time approximation
scheme

Polynomial in both the input size and the ε

AALG, lecture 13, © Simonas Šaltenis, 2004 13

No efficient ρρρρ-approximation

Do all NP-complete problems have
polynomial ρρρρ-approximation algorithms
(where ρρρρ is a constant)?

No! We can prove that the general TSP problem
can not have a polynomial ρρρρ-approximation
algorithm, unless P = NP.
Proof by contradiction: if there is such an
algorithm A we will use it to solve the
hamiltonian-cycle problem:
• We need to modify the input of a hamiltonian-cycle

problem G = (V, E) to feed it to A.

AALG, lecture 13, © Simonas Šaltenis, 2004 14

No efficient ρρρρ-approximation

Modifying the input of a hamiltonian-cycle
problem:

Add edges to make the graph complete:
G’=(V,E’)
Assign costs to edges:

Two cases:
• There is a hamiltonian-cycle in G
• There is no such cycle

What each of these cases mean for the cost of
the optimal TSP tour?
How this can be used to solve the hamiltonian-
cycle problem with an algorithm A?

1 if (,)
(,)

1 otherwise
u v E

c u v
Vρ

∈
=  +

AALG, lecture 13, © Simonas Šaltenis, 2004 15

Vertex-cover problem

The problem:
Old network routers (vertices) must be changed
to new ones which can “monitor” connections
between routers (edges). To monitor a
connection, one adjacent router is enough.
What is the smallest amount of new routers
needed to monitor all connections?
Formally: Given a graph G=(V,E), find a
minimum subset V’ ⊆ ⊆ ⊆ ⊆ V such that if (u,v)∈∈∈∈E,
then either u∈V’ or v∈V’ (or both).

AALG, lecture 13, © Simonas Šaltenis, 2004 16

Maximal matching

Again, find a concept that is easy to
compute and is similar

We are covering edges
Matching is a subset of edges so that each
vertex is adjacent to at most one edge
Maximal matching is a matching that is not a
proper subset of any other matching
How do we compute it?
• Let’s just take edges one by one and try to include in

the matching

AALG, lecture 13, © Simonas Šaltenis, 2004 17

Approximate Vertex Cover

Do the edges taken in step 4 constitute a maximal
matching?
Does it compute the vertex cover?
What is its running time?

Approximate-Vertex-Cover(G)
1 C ← ∅
2 E’← G.E
3 while E’ ≠ ∅ do
4 Let (u,v) be an arbitrary edge of E’
5 C ← C ∪ {u,v}
6 Remove from E’ every edge adjacent to either u or v
7 return C

AALG, lecture 13, © Simonas Šaltenis, 2004 18

Approximation ratio

What is the approximation ratio?
Observation: the size of the maximal matching
A found in line 4 gives us a lower bound on the
minimum vertex cover C*: |A| ≤ ≤ ≤ ≤ | C*| (Why?)
It is easy to see: |C| = 2|A|
Hence: |C| = 2|A| ≤ ≤ ≤ ≤ 2| C*|

Conclusion: we have a 2-approximation
algorithm

AALG, lecture 13, © Simonas Šaltenis, 2004 19

Example

Compute the approximate vertex cover

H

B C

I
A

D

G

F E

1

5
10

4

6

8

3

7

2 14

11 13 9

12

AALG, lecture 13, © Simonas Šaltenis, 2004 20

Summary

Good news:
You can find solutions that are “just” constant
factor worse than optimal in polynomial time
You do that by:
• Finding a similar but much easier problem
• Just solving with a help of standard algorithm design

techniques for optimization problems:
• Dynamic programming, greedy algorithms, linear

programming

Bad news:
Not all problems can have such constant factor
approximations in polynomial time.

