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Approximation Algorithms

Main goals of the lecture:
to understand the concepts of approximation 
ratio, approximation algorithm, and 
approximation scheme;
to understand the examples of approximation 
algorithms for the problems of vertex-cover, 
traveling-salesman, and set-covering. 
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NP problems

For some problems 
there are no known 
polynomial algorithms…

Hamiltonian-cycle 
problem:

• Find a cycle in a graph 
that visits all vertices 
exactly once

Traveling-salesman 
problem (TSP):

• Given a weighted 
undirected graph G=(V,E)
and non-negative costs 
c(u,v), find a hamiltonian
cycle with minimum cost.   
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NP-complete problems

There is a class of NP-complete problems
We look at the optimization variants of these 
problems

All you need to know about NP-complete 
problems for this lecture:

no algorithms are known to solve them in 
polynomial time
• P ≠≠≠≠ NP conjecture 

They are related: 
• If we solved one in polynomial time, we could solve all 

of them in polynomial time, because we can convert 
input for any of them into input for any other in 
polynomial time (polynomial reduction) 
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Coping with NP-completeness

Do we surrender if we have an NP-
complete problem?

Not so fast! Options:
• Just use an exponential algorithm – either hope that 

the input is very small or that worst case manifests 
itself very rarely 

• use different heuristics to speed up search

• Special cases maybe solvable in polynomial time
• We may be able to find provably near-optimal

solutions in polynomial time
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Simplified TSP

Assumptions for simplified TSP:
The graph is complete
• Each vertex has V-1 edges to all remaining vertices

Triangle inequality is satisfied:
• For all u, v, w ∈∈∈∈ V:

c(u,w) ≤≤≤≤ c(u,v) + c(v,w)

These are natural simplifications
For example: vertices – points in the plane, 
edge weights – euclidean distances between 
them 
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Using Minimum Spanning Trees

Can we start by computing something that 
is easy to compute and is somehow 
similar/related to the shortest tour?

Minimum Spanning Tree
How do we convert MST into a shortest tour?
If we perform a depth first search, we traverse 
all edges twice
Let’s just visit all vertices in the order of a 
preorder walk of the tree
• Due to triangle inequality we are reducing the length
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Approximate MST

Approximate-TSP(G)
1 select a vertex r ∈ G.V to be a “root” vertex
2 T ← MST-Prim(G, r)  // compute an MST
3 let L be a list of vertices in a preorder tree walk of T
4 return the hamiltonian cycle H that visits the vertices 

in the order L

What is its worst-case running time?
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Example

Compute an approximate TSP tour:
Use a as a starting vertex
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Near-optimality

How much worse is such a solution, when 
compared to an optimal one?

Observation: We can convert an optimal TSP H* tour into 
a tree. 

• We get a lower bound – the cost of an MST T: 
c(T) ≤≤≤≤ c(H*) 

A full depth-first walk of the tree W visits all edges twice: 
c(W) = 2c(T)
This gives: c(W) ≤≤≤≤ 2c(H*)
The algorithm removes duplicate vertices by following 
direct edges between vertices to get H

• This is possible because the graph is complete
• This does not increase cost because of triangle inequality 

Thus: c(H) ≤≤≤≤ c(W) ≤≤≤≤ 2c(H*)
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Reflection

We showed that our solutions are never 
more than twice worse than optimal
How did we prove without knowing 
(constructing) an optimal solution?

We used a known structure (MST) to:
• Use as a starting point in the algorithm
• To prove the lower bound on the cost of an optimal 

solution
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Approximation algorithms

Concepts, terminology:
Approximation ratio ρ(n)
• For any input-size n, costs C and C* of approximate 

and optimal solutions: *

*max , ( )C C n
C C

ρ
 

≤ 
 

ρρρρ(n)-approximation algorithm
Approximation scheme

Gets ε as input too, s.t. the scheme is a (1+ε)-
approximation algorithm
Polynomial-time approximation scheme

Fully polynomial-time approximation 
scheme

Polynomial in both the input size and the ε
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No efficient ρρρρ-approximation

Do all NP-complete problems have 
polynomial ρρρρ-approximation algorithms 
(where ρρρρ is a constant)?

No! We can prove that the general TSP problem 
can not have a polynomial ρρρρ-approximation 
algorithm, unless P = NP.
Proof by contradiction: if there is such an 
algorithm A we will use it to solve the 
hamiltonian-cycle problem:
• We need to modify the input of a hamiltonian-cycle 

problem G = (V, E) to feed it to A.
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No efficient ρρρρ-approximation

Modifying the input of a hamiltonian-cycle 
problem:

Add edges to make the graph complete: 
G’=(V,E’)
Assign costs to edges:

Two cases:
• There is a hamiltonian-cycle in G
• There is no such cycle

What each of these cases mean for the cost of 
the optimal TSP tour? 
How this can be used to solve the hamiltonian-
cycle problem with an algorithm A?

1          if ( , )
( , )

1 otherwise   
u v E

c u v
Vρ

∈
=  +
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Vertex-cover problem

The problem:
Old network routers (vertices) must be changed 
to new ones which can “monitor” connections 
between routers (edges). To monitor a 
connection, one adjacent router is enough. 
What is the smallest amount of new routers 
needed to monitor all connections?
Formally: Given a graph G=(V,E), find a 
minimum subset V’ ⊆ ⊆ ⊆ ⊆ V such that if (u,v)∈∈∈∈E, 
then either u∈V’ or v∈V’ (or both). 
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Maximal matching

Again, find a concept that is easy to 
compute and is similar

We are covering edges
Matching is a subset of edges so that each 
vertex is adjacent to at most one edge
Maximal matching is a matching that is not a 
proper subset of any other matching
How do we compute it?
• Let’s just take edges one by one and try to include in 

the matching
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Approximate Vertex Cover

Do the edges taken in step 4 constitute a maximal 
matching?
Does it compute the vertex cover?
What is its running time?

Approximate-Vertex-Cover(G)
1 C ← ∅
2 E’← G.E
3 while E’ ≠ ∅ do
4 Let (u,v) be an arbitrary edge of E’
5 C ← C ∪ {u,v}
6   Remove from E’ every edge adjacent to either u or v 
7 return C
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Approximation ratio

What is the approximation ratio?
Observation: the size of the maximal matching 
A found in line 4 gives us a lower bound on the 
minimum vertex cover C*:  |A| ≤ ≤ ≤ ≤ | C*| (Why?)
It is easy to see: |C| = 2|A|
Hence: |C| = 2|A| ≤ ≤ ≤ ≤ 2| C*|

Conclusion: we have a 2-approximation 
algorithm 
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Example

Compute the approximate vertex cover
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Summary

Good news:
You can find solutions that are “just” constant 
factor worse than optimal in polynomial time
You do that by:
• Finding a similar but much easier problem
• Just solving with a help of standard algorithm design 

techniques for optimization problems: 
• Dynamic programming, greedy algorithms, linear 

programming

Bad news:
Not all problems can have such constant factor 
approximations in polynomial time.


