
Advanced Algorithm
Design and Analysis (Lecture 14)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 14, © Simonas Šaltenis, 2004 2

Plan for Lecture 15

Group presentations, no more than 20 minutes
each + 5-10 minutes of questions, discussion.
Questions to address:

What is the problem?
• Input, output
• What interface are you implementing?

What are the possible algorithmic solutions?
• Description:

• Data structures used
• Algorithm design techniques used

• Theoretical comparison:
• Worst-case running time?
• Amortized running time
• Space used

AALG, lecture 14, © Simonas Šaltenis, 2004 3

Plan for lecture 15

Experiments
• Settings, data sets
• Average running time
• Reflection (why the results are as they are? Is this as

expected?)

What are the implementation issues?

AALG, lecture 14, © Simonas Šaltenis, 2004 4

Backtracking, Branch&Bound

Main goals of the lecture:
to understand the principles of backtracking
and branch-and-bound algorithm design
techniques;
to understand how these algorithm design
techniques are applied to the example
problems (CNF-Sat, TSP, and Knapsack).

AALG, lecture 14, © Simonas Šaltenis, 2004 5

Coping with NP-completeness

Options for coping with an NP-complete
problem:

We may be able to find provably near-optimal
solutions in polynomial time – approximation
algorithms
Special cases maybe solvable in polynomial
time
Just use an exponential algorithm – either hope
that the input is very small or that the worst
case manifests itself very rarely
• use different heuristics to speed up search through

the space of possible solutions

AALG, lecture 14, © Simonas Šaltenis, 2004 6

Propositional logic

George Boole (1815-1864) – reduced popositional
logic to algebraic manipulations

A propositional logic formula is composed from:
• Boolean variables (x, y, …) – can get values true(1)

and false(0)
• Boolean operators:

• Negation “Not” (notation:)
• Conjunction “And” (notation: x⋅y)
• Disjunction “Or” (notation: x+y)

Example:

x

() ()r w m f+ ⋅ +

Satisfiability: Give an assignments of values
to variables, if there is one, that makes the input
formula true (1)

AALG, lecture 14, © Simonas Šaltenis, 2004 7

Map labeling

Why do we need
satisfiability?

Modeling different
problems with
propositional logic
formulas
Map labeling:
• Four positions for a label

of a city: {above-right,
above-left, below-right,
below-left}

• Goal: find a labeling where
city names in a map do
not overlap

AALG, lecture 14, © Simonas Šaltenis, 2004 8

Map labeling

What are the variables and how do we
specify constraints (conflicts) as a formula?

Each city x two variables:
• xa: label is above if 1, else label is below
• xr: label is right if 1, else label is left

Describe each constraint:
• For example:
• Connect constraints by “and”

() ()a a r a a ro f f o f f⋅ ⋅ = + +

AALG, lecture 14, © Simonas Šaltenis, 2004 9

CNF

Conjunctive Normal Form (CNF) for
boolean formulas

CNF is a conjunction of clauses
Each clause is a disjunction of literals
Each literal is a variable or its negation.
Any boolean formula can be transformed to
CNF:
• For example:

When is CNF satisfied?

()()()a a r r a r a r a r ao f f k k e e k k e e+ + + + + + + +

AALG, lecture 14, © Simonas Šaltenis, 2004 10

CNF-Sat brute force

CNF-Sat is NP-complete
How do we solve it then with brute force?

Consider all possible assignments of truth
values to all variables in the formula:

What is the running-time?

…………

111

1…00

0…00

formulaxn…x2x1

AALG, lecture 14, © Simonas Šaltenis, 2004 11

Structure of the NPC problem

We can do better in practice:
We use the structure of an NP-complete
problem:
• If we have a certificate, we can check
• A certificate is constructed by making a number of

choices
• What are these choices for the CNF-Sat?

Configuration (X, Y):
• Y – choices made so far (part of the certificate)
• X – a subproblem remaining to be solved

AALG, lecture 14, © Simonas Šaltenis, 2004 12

Backtracking

Backtracking algorithm design technique:
Have a frontier set of configurations .
Observation 1: sometimes we can see that
configuration is a dead end – it can not lead to
a solution
• we backtrack, discarding this configuration

Observation 2: If we have several
configurations, some of them may be more
“promising” than the others
• We consider them first

AALG, lecture 14, © Simonas Šaltenis, 2004 13

Backtracking

Backtracing(P) // Input: problem P
01 F ← {(P, ∅)} // Frontier set of configurations
02 while F ≠ ∅ do
03 Let (X,Y)∈F – the most ”promising” configuration
04 Expand (X,Y), by making a choice(es)
05 Let (X1,Y1), (X1,Y1), ..., (Xk,Yk) be new configurations
06 for each new configuration (Xi,Yi) do
07 ”Check” (Xi,Yi)
08 if ”solution found” then
09 return the solution derived from (Xi,Yi)
10 if not ”dead end” then
11 F ← F ∪ {(Xi,Yi)} // else ”backtrack”
12 return ”no solution”

AALG, lecture 14, © Simonas Šaltenis, 2004 14

Details to fill in

Important “details” in a backtracking
algorithm:

What is a configuration (choices and
subproblems)?
How do you select the most “promising”
configuration from F? – Ordering search
• Traditional backtracing uses LIFO (stack)– depth-first

search, one could use FIFO (queue) – breadth-first
search, or some more clever heuristic

How do you extend a configuration into
subproblem configurations?
How do you recognize a dead end or a solution?

AALG, lecture 14, © Simonas Šaltenis, 2004 15

CNF-Sat: Promising configuration

CNF-Sat: What is a configuration?
An assignment to a subset of variables
CNF with the remaining variables

What is a promising configuration?
Formula with the smallest clause
• Idea: to show as soon as possible that this is a dead

end

Other choices are possible

How do we generate subproblems?
Take the smallest clause and pick a variable x:
• One subproblem corresponds to x = 0
• Another to x = 1

AALG, lecture 14, © Simonas Šaltenis, 2004 16

CNF-Sat: generating subproblems

Generating subproblems:
For each choice of assignment to x do:
• 1. Assign the value to x everywhere in the formula

• If a literal = 1, the clause disapears,
• If a literal = 0, the literal disapears

• 2. If this results in a clause with single literal, assign 1
to that literal and propagate as in 1.

• Do 2. while there are clauses with single literal

How do we recognize a dead-end or a solution?
• Dead-end: single-literal clause is forced to be 0
• Solution: all clauses disappear

AALG, lecture 14, © Simonas Šaltenis, 2004 17

Example

This is a so-called David-Putnam procedure
Do the example:

What is the running time of this algorithm?

1 2 3 2 3 4 1 2 4() () ()x x x x x x x x x+ + ⋅ + + ⋅ + +

AALG, lecture 14, © Simonas Šaltenis, 2004 18

Optimization problems

Can we use a backtracking algorithm to
solve an optimization problem (not a
decision problem)?

For example: In TSP problem we need to find a
shortest hamiltonian cycle, not just some
hamiltonian cycle
Idea: Use a backtracking algorithm but modify
it so that when a solution S is found:
• If S is better than the best solution seen so far (B),

update B=S, otherwise discard solution.
• Continue

AALG, lecture 14, © Simonas Šaltenis, 2004 19

Pruning

This works, but we can do better – discard
solutions earlier:

If we can estimate the lower-bound lb on the cost of a
solution derived from a configuration C, then we can
discard C, whenever lb(C) is larger than the cheapest
solution found so far (B)
This is called pruning:

• For example, if a partially constructed path P in TSP
problem is longer than the best solution found so far, we
can discard P

Backtracking together with pruning constitute the
branch-and-bound algorithm design technique

AALG, lecture 14, © Simonas Šaltenis, 2004 20

Branch-and-Bound algorithm

Branch-and-Bound(P) // Input: minimization problem P
01 F ← {(P, ∅)} // Frontier set of configurations
02 B ← (+∞, ∅) // Best cost and solution
03 while F ≠ ∅ do
04 Let (X,Y)∈F – the most ”promising” configuration
05 Expand (X,Y), by making a choice(es)
06 Let (X1,Y1), (X1,Y1), ..., (Xk,Yk) be new configurations
07 for each new configuration (Xi,Yi) do
08 ”Check” (Xi,Yi)
09 if ”solution found” then
10 if the cost c of (Xi,Yi) is less than B cost then
11 B ← (c,(Xi,Yi))
12 else discard the configuration (Xi,Yi)
13 if not ”dead end” then
14 if lb(Xi,Yi) is less than B cost then // pruning
15 F ← F ∪ {(Xi,Yi)} // else ”backtrack”
16 return B

AALG, lecture 14, © Simonas Šaltenis, 2004 21

TSP: Branch-and-Bound

Let’s solve TSP with branch-and-bound:
Let’s start by assuming edge e=(v,w) is in a
tour
Then the problem is: to find a shortest tour
visiting all vertices starting from v and finishing
in w in the graph G=(V,E–{e})
What is a configuration?
• Path P constructed so far
• Remaining subproblem: G=(V–{vertices in P},E–{e})

How do I generate new configurations?
Which may be chosen as the most promising?

AALG, lecture 14, © Simonas Šaltenis, 2004 22

TSP:Branch-and-Bound

When do we see that a path is a dead-end?
A partial path P is a dead-end,
if G=(V–{vertices in P},E–{e}) is disconnected

How do we define a lower bound function
for pruning?

The lower bound on the cost of the tour can be
the cost of all edges on P plus c(e)

When we are done with an edge e, we can
repeat the same for the remaining edges

B, the cheapest tour seen so far, does not have
to be reset for each starting edge – improved
pruning

AALG, lecture 14, © Simonas Šaltenis, 2004 23

Example

Run the branch-and-bound algorithm to
find TSP on the following graph:

H

C D

G
F E

1
8

3

7

4

10 6 9

12

