Advanced Algorithm Design and Analysis (Lecture 14)

SW5 fall 2004 *Simonas Šaltenis E1-215b simas@cs.aau.dk*

Plan for Lecture 15

- Group presentations, no more than 20 minutes each + 5-10 minutes of questions, discussion.
- Questions to address:
 - What is the problem?
 - Input, output
 - What interface are you implementing?
 - What are the possible algorithmic solutions?
 - Description:
 - Data structures used
 - Algorithm design techniques used
 - Theoretical comparison:
 - Worst-case running time?
 - Amortized running time
 - Space used

AALG, lecture 14, © Simonas Šaltenis, 2004

Plan for lecture 15

Experiments

- Settings, data sets
- Average running time
- Reflection (why the results are as they are? Is this as expected?)
- What are the implementation issues?

AALG, lecture 14, © Simonas Šaltenis, 2004

Backtracking, Branch&Bound

Main goals of the lecture:

- to understand the principles of backtracking and branch-and-bound algorithm design techniques;
- to understand how these algorithm design techniques are applied to the example problems (CNF-Sat, TSP, and Knapsack).

Coping with NP-completeness

- Options for coping with an NP-complete problem:
 - We may be able to find provably near-optimal solutions in polynomial time – approximation algorithms
 - Special cases maybe solvable in polynomial time
 - Just use an exponential algorithm either hope that the input is very small or that the worst case manifests itself very rarely
 - use different heuristics to speed up search through the space of possible solutions

Propositional logic

- George Boole (1815-1864) reduced popositional logic to algebraic manipulations
 - A propositional logic formula is composed from:
 - Boolean variables (x, y, ...) can get values true(1) and false(0)
 - Boolean operators:
 - Negation "Not" (notation: \overline{x})
 - Conjunction "And" (notation: x·y)
 - Disjunction "Or" (notation: x+y)
 - Example: $(\overline{r} + w) \cdot (m + f)$

Satisfiability: Give an assignments of values to variables, if there is one, that makes the input formula true (1)

Map labeling

- Why do we need satisfiability?
 - Modeling different problems with propositional logic formulas

Map labeling:

- Four positions for a label of a city: {above-right, above-left, below-right, below-left}
- Goal: find a labeling where city names in a map do not overlap

AALG, lecture 14, © Simonas Šaltenis, 2004

Map labeling

What are the variables and how do we specify constraints (conflicts) as a formula?

- Each city x two variables:
 - x_a : label is above if 1, else label is below
 - x_r: label is right if 1, else label is left

Describe each constraint:

• For example: $(o_a \cdot \overline{f_a} \cdot f_r) = (\overline{o_a} + f_a + \overline{f_r})$

Connect constraints by "and"

CNF

- Conjunctive Normal Form (CNF) for boolean formulas
 - CNF is a conjunction of clauses
 - Each clause is a disjunction of literals
 - Each literal is a variable or its negation.
 - Any boolean formula can be transformed to CNF:

• For example: $(\overline{o}_a + f_a + f_r)(k_r + \overline{k}_a + \overline{e}_r + \overline{e}_a)(k_r + k_a + \overline{e}_r + e_a)$

When is CNF satisfied?

CNF-Sat brute force

CNF-Sat is NP-complete

- How do we solve it then with brute force?
 - Consider all possible assignments of truth values to all variables in the formula:

<i>x</i> ₁	<i>x</i> ₂		$ x_n $	formula
0	0		0	
0	0	•••	1	
	•••			
1	1		1	

What is the running-time?

AALG, lecture 14, © Simonas Šaltenis, 2004

Structure of the NPC problem

- We can do better in practice:
 - We use the structure of an NP-complete problem:
 - If we have a certificate, we can check
 - A certificate is constructed by making a number of choices
 - What are these choices for the CNF-Sat?
 - Configuration (X, Y):
 - Y choices made so far (part of the certificate)
 - X a subproblem remaining to be solved

Backtracking

Backtracking algorithm design technique:

- Have a *frontier* set of configurations.
- Observation 1: sometimes we can see that configuration is a *dead end* – it can not lead to a solution
 - we backtrack, discarding this configuration
- Observation 2: If we have several configurations, some of them may be more "promising" than the others
 - We consider them first

Backtracking

```
Backtracing(P) // Input: problem P
01 F \leftarrow {(P, Ø)} // Frontier set of configurations
02 while F \neq \emptyset do
03
   Let (X, Y) \in F - the most "promising" configuration
04 Expand (X,Y), by making a choice(es)
05 Let (X_1, Y_1), (X_1, Y_1), ..., (X_k, Y_k) be new configurations
06 for each new configuration (X_i, Y_i) do
07 "Check" (X_i, Y_i)
08
        if "solution found" then
09
           return the solution derived from (X_i, Y_i)
10 if not "dead end" then
11 F \leftarrow F \cup \{(X_i, Y_i)\} // else "backtrack"
12 return "no solution"
AALG, lecture 14, © Simonas Šaltenis, 2004
```

Details to fill in

- Important "details" in a backtracking algorithm:
 - What is a configuration (choices and subproblems)?
 - How do you select the most "promising" configuration from F? – Ordering search
 - Traditional backtracing uses LIFO (stack) depth-first search, one could use FIFO (queue) – breadth-first search, or some more clever *heuristic*
 - How do you extend a configuration into subproblem configurations?
 - How do you recognize a dead end or a solution?

CNF-Sat: Promising configuration

- CNF-Sat: What is a configuration?
 - An assignment to a subset of variables
 - CNF with the remaining variables
- What is a promising configuration?
 - Formula with the smallest clause
 - Idea: to show as soon as possible that this is a dead end
 - Other choices are possible
- How do we generate subproblems?
 - Take the smallest clause and pick a variable x:
 - One subproblem corresponds to x = 0
 - Another to x = 1

CNF-Sat: generating subproblems

Generating subproblems:

- For each choice of assignment to x do:
 - 1. Assign the value to x everywhere in the formula
 - If a literal = 1, the clause disapears,
 - If a literal = 0, the literal disapears
 - 2. If this results in a clause with single literal, assign 1 to that literal and propagate as in 1.
 - Do 2. while there are clauses with single literal
- How do we recognize a dead-end or a solution?
 - Dead-end: single-literal clause is forced to be 0
 - Solution: all clauses disappear

Optimization problems

- Can we use a backtracking algorithm to solve an optimization problem (not a decision problem)?
 - For example: In TSP problem we need to find a shortest hamiltonian cycle, not just some hamiltonian cycle
 - Idea: Use a backtracking algorithm but modify it so that when a solution S is found:
 - If S is better than the best solution seen so far (B), update B=S, otherwise discard solution.
 - Continue

Pruning

- This works, but we can do better discard solutions earlier:
 - If we can estimate the lower-bound *lb* on the cost of a solution derived from a configuration *C*, then we can discard *C*, whenever *lb*(*C*) is larger than the cheapest solution found so far (*B*)
 - This is called *pruning*:
 - For example, if a partially constructed path P in TSP problem is longer than the best solution found so far, we can discard P
- Backtracking together with pruning constitute the branch-and-bound algorithm design technique

Branch-and-Bound algorithm

Branch-and-Bound(P) // Input: minimization problem P 01 F \leftarrow {(P, Ø)} // Frontier set of configurations 02 B \leftarrow (+ ∞ , \emptyset) // Best cost and solution 03 while $F \neq \emptyset$ do 04 Let $(X, Y) \in F$ - the most "promising" configuration Expand (X,Y), by making a choice(es) 05 06 Let (X_1, Y_1) , (X_1, Y_1) , ..., (X_k, Y_k) be new configurations 07 for each new configuration (X_i, Y_i) do 08 "Check" (X_i, Y_i) if "solution found" then 09 if the cost c of (X_i, Y_i) is less than B cost then 10 $B \leftarrow (c, (X_i, Y_i))$ 11 else discard the configuration (X_i, Y_i) 12 if not "dead end" then 13 if $lb(X_i, Y_i)$ is less than B cost then // pruning 14 $F \leftarrow F \cup \{(X_i, Y_i)\}$ // else "backtrack" 15 16 return B

TSP: Branch-and-Bound

- Let's solve TSP with branch-and-bound:
 - Let's start by assuming edge e=(v, w) is in a tour
 - Then the problem is: to find a shortest tour visiting all vertices starting from v and finishing in w in the graph G=(V,E-{e})
 - What is a configuration?
 - Path P constructed so far
 - Remaining subproblem: G=(V-{vertices in P},E-{e})
 - How do I generate new configurations?
 - Which may be chosen as the most promising?

TSP:Branch-and-Bound

When do we see that a path is a dead-end?

- A partial path P is a dead-end,
 - if $G = (V \{vertices in P\}, E \{e\})$ is disconnected
- How do we define a lower bound function for pruning?
 - The lower bound on the cost of the tour can be the cost of all edges on P plus c(e)
- When we are done with an edge e, we can repeat the same for the remaining edges
 - B, the cheapest tour seen so far, does not have to be reset for each starting edge – improved pruning

