Advanced Algorithm
Design and Analysis (Lecture 14)

SW5 fall 2004
Simonas Saltenis
E1-215b
simas@cs.aau.dk



Plan for Lecture 15

m Group presentations, no more than 20 minutes
each + 5-10 minutes of questions, discussion.

m Questions to address:

s What is the problem?
e Input, output
e What interface are you implementing?
s What are the possible algorithmic solutions?
e Description:
e Data structures used
o Algorithm design techniques used
e Theoretical comparison:
e Worst-case running time?
e Amortized running time
e Space used

AALG, lecture 14, © Simonas Saltenis, 2004



Plan for lecture 15

m Experiments
e Settings, data sets
e Average running time

o Reflection (why the results are as they are? Is this as
expected?)

s What are the implementation issues?

AALG, lecture 14, © Simonas Saltenis, 2004 3



Backtracking, Branch&Bound

m Main goals of the lecture:

m to understand the principles of backtracking
and branch-and-bound algorithm design
technigues;

m to understand how these algorithm design
technigues are applied to the example
problems (CNF-Sat, TSP, and Knapsack).

AALG, lecture 14, © Simonas Saltenis, 2004



Coping with NP-completeness

m Options for coping with an NP-complete
problem:

= We may be able to find provably near-optimal
solutions in polynomial time - approximation
algorithms

m Special cases maybe solvable in polynomial
time

m Just use an exponential algorithm - either hope
that the input is very small or that the worst
case manifests itself very rarely

e use different heuristics to speed up search through
the space of possible solutions

AALG, lecture 14, © Simonas Saltenis, 2004 5



Propositional logic

m George Boole usis1s64)— reduced popositional
logic to algebraic manipulations

m A propositional logic formula is composed from:

e Boolean variables (x, y, ...) — can get values true(1)
and false(0)

e Boolean operators:
* Negation “"Not” (notation: x)
e Conjunction “And” (notation: x-y)
e Disjunction “Or” (notation: x+y)

s Example: (F+w)-(m+f)

s Satisfiability: Give an assignments of values
to variables, if there is one, that makes the input

formula true (1)

AALG, lecture 14, © Simonas Saltenis, 2004 6



Map labeling

m Why do we need
satisfiability?

m Modeling different
problems with
propositional logic
formulas

= Map labeling:

e Four positions for a label
of a city: {above-right,
above-left, below-right,
below-left}

e Goal: find a labeling where
city names in a map do
not overlap

AALG, lecture 14, © Simonas Saltenis, 2004

Skagen
Albtrg SWEDEN
Randers,
Jutland ﬁ.l’hLlS
i Y ol g
Vejle, _ oL o COPENHAGEN
Kolding & reoencia o B
Esbjerg g Sjasliand
=yn
-ij.bEI'Ifﬁi : o FtﬁnnE.
il Bombolm
A
Ry Falates
. B O km L
GERMAMY e "-L
7




Map labeling

m What are the variables and how do we
specify constraints (conflicts) as a formula?
m Each city x two variables:

e x_: label is above if 1, else label is below
e x.: label is right if 1, else label is left

m Describe each constraint:

e For example: (o, fa -f.)=(, + [, +/7r)
e Connect constraints by “and”

AALG, lecture 14, © Simonas Saltenis, 2004 8



CNF

m Conjunctive Normal Form (CNF) for
boolean formulas
s CNF is a conjunction of clauses
m Each clause is a disjunction of literals
m Each literal is a variable or its negation.

s Any boolean formula can be transformed to
CNF: i
e For example: (0, +f, + f (k. +k, +e +e )k +k, +e +e,)

m When is CNF satisfied?

AALG, lecture 14, © Simonas Saltenis, 2004 9



CNF-Sat brute force

m CNF-Sat is NP-complete
m How do we solve it then with brute force?

m Consider all possible assignments of truth
values to all variables in the formula:

X1 X5 X, |formula
0 0 0
0 0 1
1 1 1

m What is the running-time?

AALG, lecture 14, © Simonas Saltenis, 2004

10



Structure of the NPC problem

m We can do better in practice:

m We use the structure of an NP-complete
problem:
e If we have a certificate, we can check

e A certificate is constructed by making a number of
choices

e What are these choices for the CNF-Sat?

m Configuration (X, Y):
e Y — choices made so far (part of the certificate)
e X — a subproblem remaining to be solved

AALG, lecture 14, © Simonas Saltenis, 2004 11



Backtracking

m Backtracking algorithm design technique:
m Have a frontier set of configurations .
m Observation 1: sometimes we can see that
configuration is a dead end - it can not lead to
a solution
e we backtrack, discarding this configuration

m Observation 2: If we have several
configurations, some of them may be more
“promising” than the others

e We consider them first

AALG, lecture 14, © Simonas Saltenis, 2004 12



Backtracking

Backtracing (P) // Input: problem P

01 F « { (P, 9)} // Frontier set of configurations
02 while F #J do

03 Let (X,Y)eF - the most ”"promising” configuration
04 Expand (X,Y), by making a choice(es)

05 I IS PR IEKA NS R S L KA E ) g Elciv CORBBgLEEI i On =
06 for each new configuration (X,,Y;) do

07 fChicicke') kX3 R |

08 if "solution found” then

09 return the solution derived from (X,,Y,)

10 if not ”"dead end” then

11 F« Fu {(X,,Y,)} // else "backtrack”

12 return "no solution”

AALG, lecture 14, © Simonas Saltenis, 2004 13



Details to fill in

m Important “details” in a backtracking
algorithm:
m What is a configuration (choices and
subproblems)?

m How do you select the most "promising”
configuration from F? — Ordering search

e Traditional backtracing uses LIFO (stack)- depth-first
search, one could use FIFO (queue) — breadth-first
search, or some more clever heuristic

m How do you extend a configuration into
subproblem configurations?

m How do you recognize a dead end or a solution?

AALG, lecture 14, © Simonas Saltenis, 2004 14



CNF-Sat: Promising configuration

m CNF-Sat:. What is a configuration?
s An assignment to a subset of variables
s CNF with the remaining variables

m What is a promising configuration?

m Formula with the smallest clause

e Jdea: to show as soon as possible that this is a dead
end

s Other choices are possible

m How do we generate subproblems?

m Take the smallest clause and pick a variable x:
e One subproblem corresponds to x = 0
e Anothertox =1

AALG, lecture 14, © Simonas Saltenis, 2004 15



CNF-Sat: generating subproblems

m Generating subproblems:

m For each choice of assignment to x do:

e 1. Assign the value to x everywhere in the formula
o If a literal = 1, the clause disapears,
o If a literal = 0, the literal disapears

e 2. If this results in a clause with single literal, assign 1
to that literal and propagate as in 1.

e Do 2. while there are clauses with single literal

m How do we recognize a dead-end or a solution?
e Dead-end: single-literal clause is forced to be O
e Solution: all clauses disappear

AALG, lecture 14, © Simonas Saltenis, 2004 16



Example

m This is a so-called David-Putnam procedure
m Do the example:

(X, +x,+%) (X, +x;,+x,)(x, + x, +X,)

m What is the running time of this algorithm?

AALG, lecture 14, © Simonas Saltenis, 2004 17



Optimization problems

m Can we use a backtracking algorithm to
solve an optimization problem (not a
decision problem)?

m For example: In TSP problem we need to find a

shortest hamiltonian cycle, not just some
hamiltonian cycle

m /dea: Use a backtracking algorithm but modify
it so that when a solution S is found:

o If S is better than the best solution seen so far (B),
update B=S, otherwise discard solution.

e Continue

AALG, lecture 14, © Simonas Saltenis, 2004 18



Pruning

m This works, but we can do better - discard
solutions earlier:

m If we can estimate the lower-bound /b on the cost of a
solution derived from a configuration C, then we can
discard C, whenever /b(C) is larger than the cheapest
solution found so far (B)

m This is called pruning:

e For example, if a partially constructed path P in TSP
problem is longer than the best solution found so far, we
can discard P

m Backtracking together with pruning constitute the
branch-and-bound algorithm design technique

AALG, lecture 14, © Simonas Saltenis, 2004 19



Branch-and-Bound algorithm

Branch-and-Bound (P) // Input: minimization problem P

01 F « { (P, Q)} // Frontier set of configurations

02 B « (+00, ) // Best cost and solution

03 while F #J do

04 Let (X,Y)eF - the most ”"promising” configuration

05 Expand (X,Y), by making a choice(es)

06 BIA R T4V A CCE VAR RE AR SR ] eisy Botoph-p ob iac] oyt
07 for each new configuration (X,,Y;) do

08 fChieckd f (X3, )

09 if ”"solution found” then

10 B3 Chefedaty (O ©F | (1200 I BBl L2 iy Bl ety ithen
11 BE &5 RS K KR AVE ] )

12 else discard the configuration (X;,Y;)

13 if not ”"dead end” then

14 if Ib(X,,Y;) is less than B cost themn // pruning
15 F« Fu {(X,Y,)} // else "backtrack”

16 return B

AALG, lecture 14, © Simonas Saltenis, 2004 20



TSP: Branch-and-Bound

m Let’'s solve TSP with branch-and-bound:
m Let's start by assuming edge e=(v,w) is in a
tour

m Then the problem is: to find a shortest tour
visiting all vertices starting from v and finishing
in w in the graph G=(V,E-{e})

m What is a configuration?

e Path P constructed so far

e Remaining subproblem: G=(V-{vertices in P} ,E-{e})
m How do I generate new configurations?
s Which may be chosen as the most promising?

AALG, lecture 14, © Simonas Saltenis, 2004 21



TSP:Branch-and-Bound

m When do we see that a path is a dead-end?
m A partial path P is a dead-end,
if G=(V-{vertices in P},E-{e}) is disconnected
m How do we define a lower bound function
for pruning??
m The lower bound on the cost of the tour can be
the cost of all edges on P plus c(e)

m When we are done with an edge e, we can
repeat the same for the remaining edges

m B, the cheapest tour seen so far, does not have
to be reset for each starting edge — improved
pruning

AALG, lecture 14, © Simonas Saltenis, 2004 22



Example

m Run the branch-and-bound algorithm to
find TSP on the following graph:

AALG, lecture 14, © Simonas Saltenis, 2004

23



