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Plan for Lecture 15

Group presentations, no more than 20 minutes 
each + 5-10 minutes of questions, discussion.
Questions to address:

What is the problem? 
• Input, output
• What interface are you implementing?

What are the possible algorithmic solutions?
• Description:

• Data structures used
• Algorithm design techniques used

• Theoretical comparison:
• Worst-case running time? 
• Amortized running time
• Space used
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Plan for lecture 15

Experiments 
• Settings, data sets
• Average running time
• Reflection (why the results are as they are? Is this as 

expected?)

What are the implementation issues?
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Backtracking, Branch&Bound

Main goals of the lecture:
to understand the principles of backtracking
and branch-and-bound algorithm design 
techniques;
to understand how these algorithm design 
techniques are applied to the example 
problems (CNF-Sat, TSP, and Knapsack). 
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Coping with NP-completeness

Options for coping with an NP-complete 
problem:

We may be able to find provably near-optimal
solutions in polynomial time – approximation 
algorithms
Special cases maybe solvable in polynomial 
time
Just use an exponential algorithm – either hope 
that the input is very small or that the worst 
case manifests itself very rarely 
• use different heuristics to speed up search through 

the space of possible solutions 
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Propositional logic 

George Boole (1815-1864) – reduced popositional 
logic to algebraic manipulations

A propositional logic formula is composed from:
• Boolean variables (x, y, …) – can get values true(1) 

and false(0)
• Boolean operators:

• Negation “Not” (notation:   )
• Conjunction “And” (notation: x⋅y)
• Disjunction “Or” (notation: x+y)

Example:

x

( ) ( )r w m f+ ⋅ +

Satisfiability: Give an assignments of values 
to variables, if there is one, that makes the input 
formula true (1) 
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Map labeling

Why do we need 
satisfiability?

Modeling different 
problems with 
propositional logic 
formulas
Map labeling:
• Four positions for a label 

of a city: {above-right, 
above-left, below-right, 
below-left}

• Goal: find a labeling where 
city names in a map do 
not overlap   
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Map labeling

What are the variables and how do we 
specify constraints (conflicts) as a formula?

Each city x two variables: 
• xa: label is above if 1, else label is below
• xr: label is right if 1, else label is left 

Describe each constraint:
• For example:
• Connect constraints by “and”  

( ) ( )a a r a a ro f f o f f⋅ ⋅ = + +



AALG, lecture 14, © Simonas Šaltenis, 2004 9

CNF

Conjunctive Normal Form (CNF) for
boolean formulas

CNF is a conjunction of clauses
Each clause is a disjunction of literals
Each literal is a variable or its negation.
Any boolean formula can be transformed to 
CNF:
• For example:

When is CNF satisfied?

( )( )( )a a r r a r a r a r ao f f k k e e k k e e+ + + + + + + +
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CNF-Sat brute force

CNF-Sat is NP-complete
How do we solve it then with brute force?

Consider all possible assignments of truth 
values to all variables in the formula:

What is the running-time? 

…………
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Structure of the NPC problem

We can do better in practice:
We use the structure of an NP-complete 
problem:
• If we have a certificate, we can check
• A certificate is constructed by making a number of 

choices
• What are these choices for the CNF-Sat?

Configuration (X, Y):
• Y – choices made so far (part of the certificate)
• X – a subproblem remaining to be solved
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Backtracking 

Backtracking algorithm design technique:
Have a frontier set of configurations .
Observation 1: sometimes we can see that 
configuration is a dead end – it can not lead to 
a solution 
• we backtrack, discarding this configuration 

Observation 2: If we have several 
configurations, some of them may be more 
“promising” than the others
• We consider them first
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Backtracking

Backtracing(P)   // Input: problem P
01 F ← {(P, ∅)}    // Frontier set of configurations
02 while F ≠ ∅ do 
03   Let (X,Y)∈F – the most ”promising” configuration
04   Expand (X,Y), by making a choice(es) 
05   Let (X1,Y1), (X1,Y1), ..., (Xk,Yk) be new configurations
06   for each new configuration (Xi,Yi) do
07      ”Check” (Xi,Yi) 
08      if ”solution found” then 
09 return the solution derived from (Xi,Yi) 
10      if not ”dead end” then 
11         F ← F ∪ {(Xi,Yi)}   // else ”backtrack”
12 return ”no solution”
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Details to fill in

Important “details” in a backtracking 
algorithm:

What is a configuration (choices and 
subproblems)?
How do you select the most “promising” 
configuration from F? – Ordering search
• Traditional backtracing uses LIFO (stack)– depth-first 

search, one could use FIFO (queue) – breadth-first 
search, or some more clever heuristic

How do you extend a configuration into 
subproblem configurations?
How do you recognize a dead end or a solution?
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CNF-Sat: Promising configuration

CNF-Sat: What is a configuration?
An assignment to a subset of variables
CNF with the remaining variables

What is a promising configuration?
Formula with the smallest clause
• Idea: to show as soon as possible that this is a dead 

end

Other choices are possible 

How do we generate subproblems?
Take the smallest clause and pick a variable x:
• One subproblem corresponds to x = 0
• Another to x = 1
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CNF-Sat: generating subproblems

Generating subproblems:
For each choice of assignment to x do:
• 1. Assign the value to x everywhere in the formula

• If a literal = 1, the clause disapears, 
• If a literal = 0, the literal disapears

• 2. If this results in a clause with single literal, assign 1 
to that literal and propagate as in 1.

• Do 2. while there are clauses with single literal

How do we recognize a dead-end or a solution?
• Dead-end: single-literal clause is forced to be 0
• Solution: all clauses disappear   
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Example

This is a so-called David-Putnam procedure
Do the example:

What is the running time of this algorithm?

1 2 3 2 3 4 1 2 4( ) ( ) ( )x x x x x x x x x+ + ⋅ + + ⋅ + +
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Optimization problems

Can we use a backtracking algorithm to 
solve an optimization problem (not a 
decision problem)?

For example: In TSP problem we need to find a 
shortest hamiltonian cycle, not just some 
hamiltonian cycle
Idea: Use a backtracking algorithm but modify 
it so that when a solution S is found:
• If S is better than the best solution seen so far (B), 

update B=S, otherwise discard solution.
• Continue 
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Pruning

This works, but we can do better – discard 
solutions earlier:

If we can estimate the lower-bound lb on the cost of a 
solution derived from a configuration C, then we can 
discard C, whenever lb(C) is larger than the cheapest 
solution found so far (B) 
This is called pruning:

• For example, if a partially constructed path P in TSP 
problem is longer than the best solution found so far, we 
can discard P

Backtracking together with pruning constitute the 
branch-and-bound algorithm design technique
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Branch-and-Bound algorithm

Branch-and-Bound(P) // Input: minimization problem P
01 F ← {(P, ∅)}    // Frontier set of configurations
02 B ← (+∞, ∅)     // Best cost and solution
03 while F ≠ ∅ do 
04   Let (X,Y)∈F – the most ”promising” configuration
05   Expand (X,Y), by making a choice(es) 
06   Let (X1,Y1), (X1,Y1), ..., (Xk,Yk) be new configurations
07   for each new configuration (Xi,Yi) do
08      ”Check” (Xi,Yi) 
09  if ”solution found” then
10         if the cost c of (Xi,Yi) is less than B cost then
11            B ← (c,(Xi,Yi))
12         else discard the configuration (Xi,Yi) 
13      if not ”dead end” then 
14         if lb(Xi,Yi) is less than B cost then  // pruning
15            F ← F ∪ {(Xi,Yi)}   // else ”backtrack”
16 return B
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TSP: Branch-and-Bound 

Let’s solve TSP with branch-and-bound:
Let’s start by assuming edge e=(v,w) is in a 
tour
Then the problem is: to find a shortest tour 
visiting all vertices starting from v and finishing 
in w in the graph G=(V,E–{e})
What is a configuration?
• Path P constructed so far
• Remaining subproblem: G=(V–{vertices in P},E–{e})

How do I generate new configurations?
Which may be chosen as the most promising?
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TSP:Branch-and-Bound

When do we see that a path is a dead-end?
A partial path P is a dead-end, 
if G=(V–{vertices in P},E–{e}) is disconnected

How do we define a lower bound function 
for pruning?

The lower bound on the cost of the tour can be 
the cost of all edges on P plus c(e)

When we are done with an edge e, we can 
repeat the same for the remaining edges

B, the cheapest tour seen so far, does not have 
to be reset for each starting edge – improved 
pruning 
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Example

Run the branch-and-bound algorithm to 
find TSP on the following graph:
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