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External Mem. DS & Algs

B-trees: insertion and deletion
External-memory sorting
Goals of the lecture:

to understand the algorithms of B-tree and its 
variants and to be able to analyze them; 
to understand how the different versions of 
merge-sort derived algorithms work in 
external memory and to be able to compare 
their efficiency;
to understand why the amount of available 
main-memory is an important parameter for 
the efficiency of external-memory algorithms.
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B-trees: Insert

Insertion is always performed at the leaf 
level
Let’s do an example (t = 2):

Insert: H, J, P

G   M

K  L R   SN  O  Q Y   ZU   V

T   X

Q

D   E   F
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Splitting Nodes I

Nodes fill up and reach their maximum 
capacity 2t – 1
Before we can insert a new key, we have 
to “make room,” i.e., split a node
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Splitting Nodes II

P   Q   R   S   T   V   W

T1 T8...

...   N   W   ...

y = x.p(i)

x.key(
i-1

)

x.k
ey

(i)

x

...   N   S   W   ...
x.key(

i-1
)

x.k
ey

(i)

x x.k
ey

(i+
1)

P   Q   R T   V   W

y = x.p(i) z = x.p(i+1)

Result: one key of x moves up to parent + 
2 nodes with t-1 keys

How many I/O operations?
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Insert I

Skeleton of the algorithm:
Down-phase: recursively traverse down and
find the leaf
Insert the key
Up-phase: if necessary, split and propagate the 
splits up the tree

Assumptions:
In the down-phase pointers to traversed nodes 
are saved in the stack. Function parent(x) 
returns a parent node of x (pops the stack)
split(y:Bnode):(zk:key_t, z:Bnode)
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Insert II

DownPhase(x,k)
01 i ← 1
02 while i ≤ x.n() and k > x.key(i)
03    i ← i+1
04 if x.leaf() then
05    return x
06    else DiskRead(x.p(i))
07         return DownPhase(x.p(i),k)

Insert(T,k)
01 x ← DownPhase(T.root(), k)
02 UpPhase(x, k, nil)
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Insert III

UpPhase(x,k,p)
01 if x.n() = 2t-1 then
02   (zk,z) ← split(x)
03   if k ≤ zk then InsertIntoNode(x,k,p)
04  else InsertIntoNode(z,k,p)
05   if parent(x)=nil then (Create new root)
06   else UpPhase(parent(x),zk,z) 
07 else InsertIntoNode(x,k,p)

InsertIntoNode(x,k,p)
Inserts the hey k and the following pointer p (if  
not nil) into the sorted order of keys of x, so 
that all the keys before k are smaller or equal 
to k and all the keys after k are greater than k
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Splitting the root requires the creation of a  
new root

The tree grows at the top instead of the 
bottom

Splitting the Root

A   D   F   H   L   N   P

T1 T8...

T.root()
x

A   D   F L   N   P

H

T.root()

zx
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One/Two Phase Algorithms

Running time: O(h) = O(logBn)
Insert could be done in one traversal down 
the tree (by splitting all full nodes that we 
meet, “just in case”)
Disadvantage of the two-phase algorithm:

Buffer of O(h) pages is required
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Deletion

Case 1: A key k is in a non-leaf node
Delete its predecessor (which is always in a 
leaf, thus case 2) and put it in k’s place.

Case 2: A key is in a leaf-node:
Just delete it and handle under-full nodes   

Try: delete M, B, K (t =3)

C   G   M

A   B J   K   L Q   R   SN   O Y   ZU   V

T   X

P

D   E   F
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Handling Under-full Nodes

Distributing:

Merging:

x ... k’ ...

... k       

A   B

x.p(i)

x ... k ...

...       k’ ...

A

x.p(i)

B  

x ... l’ m’ ...

...l k m ...       

A   B

x ... l’ k m’...

... l        m …

A B  

x.p(i)

...
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Sequential access 

Other useful ADT operator: successor
For example, range queries: find all accounts 
with the amount in the range [100K – 200K].
How do you do that in B-trees?
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B+-trees I

B+-trees is a variant of B-trees:
All data keys are in leaf nodes
• The split does not move the middle key to the parent, 

but copies it to the parent! 

Leaf-nodes are connected into a (doubly) linked 
list

B   F   L

A   B J   K   L Q   R   SN   O Y   ZU   V

S   V

O

D   E   F
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B+-trees II

Lets draw a B+-tree (t =2):
A, B, C, D, E, F, G, H, I, J, K

How is the range query performed?
Compare with the B-tree
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External-Memory Sorting

External-memory algorithms
When data do not fit in main-memory

External-memory sorting
Rough idea: sort peaces that fit in main-
memory and “merge” them

Main-memory merge sort:
The main part of the algorithm is Merge
Let’s merge:
• 3, 6, 7, 11, 13
• 1, 5, 8, 9, 10    
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Main-Memory Merge Sort

Merge-Sort(A)
01 if length(A) > 1 then
02    Copy the first half of A into array A1 
03    Copy the second half of A into array A2
04    Merge-Sort(A1)
05    Merge-Sort(A2)
06    Merge(A, A1, A2)

Merge-Sort(A)
01 if length(A) > 1 then
02    Copy the first half of A into array A1 
03    Copy the second half of A into array A2
04    Merge-Sort(A1)
05    Merge-Sort(A2)
06    Merge(A, A1, A2)

Divide

Conquer
Combine

Running time?
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Merge-Sort Recursion Tree

In each level: merge runs (sorted sequences) of 
size x into runs of size 2x, decrease the number of 
runs twofold.
What would it mean to run this on a file in 
external memory? 

10 2

2  10

5 1

1 5

13 19

13 19

9 7

7  9

15 4

4  15

8 3

3 8

12 17

12 17

6 11

6  11

1 2 5 10 7    9   13    19 3    4    8    15 6 11 12   17

1 2 5    7    9    10 13   19 3    4    6    8  11   12   15   17

1 2 3    4    5    6    7    8     9    10 11   12   13   15   17   19

log2N
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External-Memory Merge-Sort

Idea: increase the size of initial runs!
Initial runs – the size of available main memory 
(M data elements) 

10 2 5 1 13 19 9 7 15 4 8 3 12 17 6 11

1 2 5 10 7    9   13    19 3    4    8    15 6 11 12   17

1 2 5    7    9    10 13   19 3    4    6    8  11   12   15   17

1 2 3    4    5    6    7    8     9    10 11   12   13   15   17   19

Main-memory
sort

Main-memory
sort

Main-memory
sort

Main-memory
sort

External two-way merge

External two-way merges
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External-Memory Merge Sort 

Input file X, empty file Y 
Phase 1: Repeat until end of file X: 

Read the next M elements from X
Sort them in main-memory
Write them at the end of file Y

Phase 2: Repeat while there is more than 
one run in Y:

Empty X
MergeAllRuns(Y, X)
X is now called Y, Y is now called X
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External-Memory Merging

MergeAllRuns(Y, X): repeat until the end of Y:
Call TwowayMerge to merge the next two runs from Y 
into one run, which is written at the end of X

TwowayMerge: uses three main-memory arrays of 
size B

File Y:

File X:Run 1 Run 2

Merged run 

Current 
page

Current 
page

EOF

Bf1
p1

Bf2
p2

Bfo
po

min(Bf1[p1], 
Bf2[p2])

Read, when 
p1 = B (p2 = B)

Write, when 
Bfo full
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Analysis: Assumptions

Assumptions and notation:
Disk page size: 
• B data elements

Data file size: 
• N elements, n = N/B disk pages

Available main memory: 
• M elements, m = M/B pages
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Analysis

Phase 1: 
Read file X, write file Y: 2n = O(n) I/Os   

Phase 2:
One iteration: Read file Y, write file X: 2n = O(n) I/Os
Number of iterations: log2N/M = log2n/m

M M M M M M M M

2M 2M 2M 2M

4M 4M

8M = N

Phase 2

M M M M M M M M

Phase 1
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Analysis: Conclusions

Total running time of external-memory 
merge sort: O(n log2 n/m)
We can do better!
Observation: 

Phase 1 uses all available memory
Phase 2 uses just 3 pages out of m available!!!
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Two-Phase, Multiway Merge Sort

Idea: merge all runs at once!
Phase 1: the same (do internal sorts)
Phase 2: perform MultiwayMerge(Y,X) 

M M M M M M M M

8M = N

M M M M M M M M

Phase 2

Phase 1
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Multiway Merging

File Y:

File X:

Run 1 Run 2

Merged run 

Current 
page

Current 
page

EOF

Bf1
p1

Bf2
p2 Bfo

po

min(Bf1[p1], 
Bf2[p2],
…,
Bfk[pk])

Read, when 
pi = B 

Write, when 
Bfo full

Run k=n/m

Current 
page

Bfk
pk



AALG, lecture 2, © Simonas Šaltenis, 2004 27

Analysis of TPMMS

Phase 1: O(n), Phase 2: O(n)
Total: O(n) I/Os!
The catch: files only of “limited” size can 
be sorted 

Phase 2 can merge a maximum of m-1 runs.
Which means: N/M < m-1
How large files can we sort with TPMMS on a 
machine with 128Mb main memory and disk 
page size of 16Kb?
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General Multiway Merge Sort

What if a file is very large or memory is 
small?
General multiway merge sort:

Phase 1: the same (do internal sorts)
Phase 2: do as many iterations of merging as 
necessary until only one run remains
• Each iteration repeatedly calls MultiwayMerge(Y, X) to 

merge groups of m-1 runs until the end of file Y is 
reached
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Analysis 

Phase 1: O(n), each iteration of phase 2: O(n)    
How many iterations are there in phase 2?

(m-1)2M

(m-1)3M = N

Phase 2

Phase 1

…

M M

(m-1)M

M M

M

M

… M M

(m-1)M

M M

M

M

… M M

(m-1)M

M M

M

M

…

… …. . .

. . .

. . .

. . . . . .

Number of iterations: logm-1N/M = logmn

Total running time: O(n logm n) I/Os
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Conclusions

External sorting can be done in O(n logm n) 
I/O operations for any n

This is asymptotically optimal

In practice, we can usually sort in O(n) 
I/Os

Use two-phase, multiway merge-sort 


