
Advanced Algorithm
Design and Analysis (Lecture 2)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 2, © Simonas Šaltenis, 2004 2

External Mem. DS & Algs

B-trees: insertion and deletion
External-memory sorting
Goals of the lecture:

to understand the algorithms of B-tree and its
variants and to be able to analyze them;
to understand how the different versions of
merge-sort derived algorithms work in
external memory and to be able to compare
their efficiency;
to understand why the amount of available
main-memory is an important parameter for
the efficiency of external-memory algorithms.

AALG, lecture 2, © Simonas Šaltenis, 2004 3

B-trees: Insert

Insertion is always performed at the leaf
level
Let’s do an example (t = 2):

Insert: H, J, P

G M

K L R SN O Q Y ZU V

T X

Q

D E F

AALG, lecture 2, © Simonas Šaltenis, 2004 4

Splitting Nodes I

Nodes fill up and reach their maximum
capacity 2t – 1
Before we can insert a new key, we have
to “make room,” i.e., split a node

AALG, lecture 2, © Simonas Šaltenis, 2004 5

Splitting Nodes II

P Q R S T V W

T1 T8...

... N W ...

y = x.p(i)

x.key(
i-1

)

x.k
ey

(i)

x

... N S W ...
x.key(

i-1
)

x.k
ey

(i)

x x.k
ey

(i+
1)

P Q R T V W

y = x.p(i) z = x.p(i+1)

Result: one key of x moves up to parent +
2 nodes with t-1 keys

How many I/O operations?

AALG, lecture 2, © Simonas Šaltenis, 2004 6

Insert I

Skeleton of the algorithm:
Down-phase: recursively traverse down and
find the leaf
Insert the key
Up-phase: if necessary, split and propagate the
splits up the tree

Assumptions:
In the down-phase pointers to traversed nodes
are saved in the stack. Function parent(x)
returns a parent node of x (pops the stack)
split(y:Bnode):(zk:key_t, z:Bnode)

AALG, lecture 2, © Simonas Šaltenis, 2004 7

Insert II

DownPhase(x,k)
01 i ← 1
02 while i ≤ x.n() and k > x.key(i)
03 i ← i+1
04 if x.leaf() then
05 return x
06 else DiskRead(x.p(i))
07 return DownPhase(x.p(i),k)

Insert(T,k)
01 x ← DownPhase(T.root(), k)
02 UpPhase(x, k, nil)

AALG, lecture 2, © Simonas Šaltenis, 2004 8

Insert III

UpPhase(x,k,p)
01 if x.n() = 2t-1 then
02 (zk,z) ← split(x)
03 if k ≤ zk then InsertIntoNode(x,k,p)
04 else InsertIntoNode(z,k,p)
05 if parent(x)=nil then (Create new root)
06 else UpPhase(parent(x),zk,z)
07 else InsertIntoNode(x,k,p)

InsertIntoNode(x,k,p)
Inserts the hey k and the following pointer p (if
not nil) into the sorted order of keys of x, so
that all the keys before k are smaller or equal
to k and all the keys after k are greater than k

AALG, lecture 2, © Simonas Šaltenis, 2004 9

Splitting the root requires the creation of a
new root

The tree grows at the top instead of the
bottom

Splitting the Root

A D F H L N P

T1 T8...

T.root()
x

A D F L N P

H

T.root()

zx

AALG, lecture 2, © Simonas Šaltenis, 2004 10

One/Two Phase Algorithms

Running time: O(h) = O(logBn)
Insert could be done in one traversal down
the tree (by splitting all full nodes that we
meet, “just in case”)
Disadvantage of the two-phase algorithm:

Buffer of O(h) pages is required

AALG, lecture 2, © Simonas Šaltenis, 2004 11

Deletion

Case 1: A key k is in a non-leaf node
Delete its predecessor (which is always in a
leaf, thus case 2) and put it in k’s place.

Case 2: A key is in a leaf-node:
Just delete it and handle under-full nodes

Try: delete M, B, K (t =3)

C G M

A B J K L Q R SN O Y ZU V

T X

P

D E F

AALG, lecture 2, © Simonas Šaltenis, 2004 12

Handling Under-full Nodes

Distributing:

Merging:

x ... k’ ...

... k

A B

x.p(i)

x ... k ...

... k’ ...

A

x.p(i)

B

x ... l’ m’ ...

...l k m ...

A B

x ... l’ k m’...

... l m …

A B

x.p(i)

...

AALG, lecture 2, © Simonas Šaltenis, 2004 13

Sequential access

Other useful ADT operator: successor
For example, range queries: find all accounts
with the amount in the range [100K – 200K].
How do you do that in B-trees?

AALG, lecture 2, © Simonas Šaltenis, 2004 14

B+-trees I

B+-trees is a variant of B-trees:
All data keys are in leaf nodes
• The split does not move the middle key to the parent,

but copies it to the parent!

Leaf-nodes are connected into a (doubly) linked
list

B F L

A B J K L Q R SN O Y ZU V

S V

O

D E F

AALG, lecture 2, © Simonas Šaltenis, 2004 15

B+-trees II

Lets draw a B+-tree (t =2):
A, B, C, D, E, F, G, H, I, J, K

How is the range query performed?
Compare with the B-tree

AALG, lecture 2, © Simonas Šaltenis, 2004 16

External-Memory Sorting

External-memory algorithms
When data do not fit in main-memory

External-memory sorting
Rough idea: sort peaces that fit in main-
memory and “merge” them

Main-memory merge sort:
The main part of the algorithm is Merge
Let’s merge:
• 3, 6, 7, 11, 13
• 1, 5, 8, 9, 10

AALG, lecture 2, © Simonas Šaltenis, 2004 17

Main-Memory Merge Sort

Merge-Sort(A)
01 if length(A) > 1 then
02 Copy the first half of A into array A1
03 Copy the second half of A into array A2
04 Merge-Sort(A1)
05 Merge-Sort(A2)
06 Merge(A, A1, A2)

Merge-Sort(A)
01 if length(A) > 1 then
02 Copy the first half of A into array A1
03 Copy the second half of A into array A2
04 Merge-Sort(A1)
05 Merge-Sort(A2)
06 Merge(A, A1, A2)

Divide

Conquer
Combine

Running time?

AALG, lecture 2, © Simonas Šaltenis, 2004 18

Merge-Sort Recursion Tree

In each level: merge runs (sorted sequences) of
size x into runs of size 2x, decrease the number of
runs twofold.
What would it mean to run this on a file in
external memory?

10 2

2 10

5 1

1 5

13 19

13 19

9 7

7 9

15 4

4 15

8 3

3 8

12 17

12 17

6 11

6 11

1 2 5 10 7 9 13 19 3 4 8 15 6 11 12 17

1 2 5 7 9 10 13 19 3 4 6 8 11 12 15 17

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19

log2N

AALG, lecture 2, © Simonas Šaltenis, 2004 19

External-Memory Merge-Sort

Idea: increase the size of initial runs!
Initial runs – the size of available main memory
(M data elements)

10 2 5 1 13 19 9 7 15 4 8 3 12 17 6 11

1 2 5 10 7 9 13 19 3 4 8 15 6 11 12 17

1 2 5 7 9 10 13 19 3 4 6 8 11 12 15 17

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19

Main-memory
sort

Main-memory
sort

Main-memory
sort

Main-memory
sort

External two-way merge

External two-way merges

AALG, lecture 2, © Simonas Šaltenis, 2004 20

External-Memory Merge Sort

Input file X, empty file Y
Phase 1: Repeat until end of file X:

Read the next M elements from X
Sort them in main-memory
Write them at the end of file Y

Phase 2: Repeat while there is more than
one run in Y:

Empty X
MergeAllRuns(Y, X)
X is now called Y, Y is now called X

AALG, lecture 2, © Simonas Šaltenis, 2004 21

External-Memory Merging

MergeAllRuns(Y, X): repeat until the end of Y:
Call TwowayMerge to merge the next two runs from Y
into one run, which is written at the end of X

TwowayMerge: uses three main-memory arrays of
size B

File Y:

File X:Run 1 Run 2

Merged run

Current
page

Current
page

EOF

Bf1
p1

Bf2
p2

Bfo
po

min(Bf1[p1],
Bf2[p2])

Read, when
p1 = B (p2 = B)

Write, when
Bfo full

AALG, lecture 2, © Simonas Šaltenis, 2004 22

Analysis: Assumptions

Assumptions and notation:
Disk page size:
• B data elements

Data file size:
• N elements, n = N/B disk pages

Available main memory:
• M elements, m = M/B pages

AALG, lecture 2, © Simonas Šaltenis, 2004 23

Analysis

Phase 1:
Read file X, write file Y: 2n = O(n) I/Os

Phase 2:
One iteration: Read file Y, write file X: 2n = O(n) I/Os
Number of iterations: log2N/M = log2n/m

M M M M M M M M

2M 2M 2M 2M

4M 4M

8M = N

Phase 2

M M M M M M M M

Phase 1

AALG, lecture 2, © Simonas Šaltenis, 2004 24

Analysis: Conclusions

Total running time of external-memory
merge sort: O(n log2 n/m)
We can do better!
Observation:

Phase 1 uses all available memory
Phase 2 uses just 3 pages out of m available!!!

AALG, lecture 2, © Simonas Šaltenis, 2004 25

Two-Phase, Multiway Merge Sort

Idea: merge all runs at once!
Phase 1: the same (do internal sorts)
Phase 2: perform MultiwayMerge(Y,X)

M M M M M M M M

8M = N

M M M M M M M M

Phase 2

Phase 1

AALG, lecture 2, © Simonas Šaltenis, 2004 26

Multiway Merging

File Y:

File X:

Run 1 Run 2

Merged run

Current
page

Current
page

EOF

Bf1
p1

Bf2
p2 Bfo

po

min(Bf1[p1],
Bf2[p2],
…,
Bfk[pk])

Read, when
pi = B

Write, when
Bfo full

Run k=n/m

Current
page

Bfk
pk

AALG, lecture 2, © Simonas Šaltenis, 2004 27

Analysis of TPMMS

Phase 1: O(n), Phase 2: O(n)
Total: O(n) I/Os!
The catch: files only of “limited” size can
be sorted

Phase 2 can merge a maximum of m-1 runs.
Which means: N/M < m-1
How large files can we sort with TPMMS on a
machine with 128Mb main memory and disk
page size of 16Kb?

AALG, lecture 2, © Simonas Šaltenis, 2004 28

General Multiway Merge Sort

What if a file is very large or memory is
small?
General multiway merge sort:

Phase 1: the same (do internal sorts)
Phase 2: do as many iterations of merging as
necessary until only one run remains
• Each iteration repeatedly calls MultiwayMerge(Y, X) to

merge groups of m-1 runs until the end of file Y is
reached

AALG, lecture 2, © Simonas Šaltenis, 2004 29

Analysis

Phase 1: O(n), each iteration of phase 2: O(n)
How many iterations are there in phase 2?

(m-1)2M

(m-1)3M = N

Phase 2

Phase 1

…

M M

(m-1)M

M M

M

M

… M M

(m-1)M

M M

M

M

… M M

(m-1)M

M M

M

M

…

… …. . .

. . .

. . .

.

Number of iterations: logm-1N/M = logmn

Total running time: O(n logm n) I/Os

AALG, lecture 2, © Simonas Šaltenis, 2004 30

Conclusions

External sorting can be done in O(n logm n)
I/O operations for any n

This is asymptotically optimal

In practice, we can usually sort in O(n)
I/Os

Use two-phase, multiway merge-sort

