Advanced Algorithm
Design and Analysis (Lecture 2)

SW5 fall 2004
Simonas Saltenis
E1-215b
simas@cs.aau.dk

External Mem. DS & Algs

m B-trees: insertion and deletion
m External-memory sorting

m Goals of the lecture:

m to understand the algorithms of B-tree and its
variants and to be able to analyze them,

m to understand how the different versions of
merge-sort derived algorithms work in
external memory and to be able to compare
their efficiency;

m to understand why the amount of available
main-memory is an important parameter for
the efficiency of external-memory algorithms.

AALG, lecture 2, © Simonas Saltenis, 2004

B-trees: Insert

m Insertion is always performed at the leaf
level

m Let's do an example (t = 2):
m Insert: H, J, P

L Q

G M T X-

qnlll S 1)

D EF| K NOQ R S|UV|Y Z

AALG, lecture 2, © Simonas Saltenis, 2004

Splitting Nodes 1

m Nodes fill up and reach their maximum
capacity 2t - 1

m Before we can insert a new key, we have
to "make room,"” i.e., split a node

AALG, lecture 2, © Simonas Saltenis, 2004

Splitting Nodes 11

m Result: one key of x moves up to parent +
2 nodes with t-1 keys

m How many I/O operations?

NN
&t
X $o ‘*'o
. N W .
y = Xx.p(i) l

HTHTH TR,

i n

AALG, lecture 2, © Simonas Saltenis, 2004

=

QD

RIS
\@ \@ \@

X $o ‘*'. ‘*'o

. NS W ..
= X.p(’i)/ \— x.p(i+1)
P QR TV W

Insert I

m Skeleton of the algorithm:

m Down-phase: recursively traverse down and
find the leaf

m Insert the key

m Up-phase: if necessary, split and propagate the
splits up the tree

m Assumptions:

m In the down-phase pointers to traversed nodes
are saved in the stack. Function parent(x)
returns a parent node of x (pops the stack)

m split(y:Bnode):(zk:key_t, z:Bnode)

AALG, lecture 2, © Simonas Saltenis, 2004 6

Insert 11

DownPhase (x, k)

01 1 « 1

02 while i < x.n() and k > x.key (1)
03 1« i+l

04 if x.leaf () then

05 return X

06 else DiskRead (x.p (1))

07 return DownPhase(x.p(1),bk)

Insert (T, k)

01 x <« DownPhase(T.root (), k)
02 UpPhase(x, k, nil)

AALG, lecture 2, © Simonas Saltenis, 2004

Insert III

UpPhase (x,k, p)

01 if x.n() = 2t-1 then

02 (zk,z) ¢« split (x)

03 if k <zk then InsertIntoNode (x,k,p)

04 else InsertIntoNode(z,k,p)

05 if parent (x)=nil then (Create new root)

06 else UpPhase (parent (x), zk, z)
07 else InsertIntoNode (x,k,p)

InsertIntoNode (x,k,p)
Inserts the hey k and the following pointer p (if
not nil) into the sorted order of keys of x, so
that all the keys before k are smaller or equal
to k and all the keys after k are greater than k

AALG, lecture 2, © Simonas Saltenis, 2004

Splitting the Root

m Splitting the root requires the creation of a
new root

T.root() \X T.root() \;{
/ A'/DjFiHiL \LN\‘P \ /\ Z

X
A D F L NP
iy T,

m The tree grows at the top instead of the
bottom

AALG, lecture 2, © Simonas Saltenis, 2004

One/Two Phase Algorithms

m Running time: O(h) = O(loggn)
m Insert could be done in one traversal down

the tree (by splitting all full nodes that we
meet, “just in case”)

m Disadvantage of the two-phase algorithm:
m Buffer of O(h) pages is required

AALG, lecture 2, © Simonas Saltenis, 2004 10

Deletion

m Case 1: A key kis in a non-leaf node

m Delete its predecessor (which is always in a
leaf, thus case 2) and put it in k’s place.

m Case 2: A key is in a leaf-node:
m Just delete it and handle under-full nodes

m Try: delete M, B, K (t =3)

L P 5

I \

AB||DETFI|[JKLI||NO||QRS SI|UV|Y

AALG, lecture 2, © Simonas Saltenis, 2004

Handling Under-full Nodes

m Distributing:

X

x.p(i)

X

x.p(i)

X
x.p(i) oy K,
y v
A B

AALG, lecture 2, © Simonas Saltenis, 2004

) ¢

12

Sequential access

m Other useful ADT operator: successor

m For example, range queries: find all accounts
with the amount in the range [100K - 200K].

= How do you do that in B-trees?

AALG, lecture 2, © Simonas Saltenis, 2004

13

Bt-trees I

m Bt-trees is a variant of B-trees:

m All data keys are in leaf nodes

e The split does not move the middle key to the parent,
but copies it to the parent!

m Leaf-nodes are connected into a (doubly) linked
list

L O

AB>DUEVF=>J KL=>"?NO>QRS—>UV—Y Z

AALG, lecture 2, © Simonas Saltenis, 2004 14

Bt-trees 11

m Lets draw a B*-tree (t =2):
mA B C D, E F, G H I] K

m How is the range query performed?
s Compare with the B-tree

AALG, lecture 2, © Simonas Saltenis, 2004

15

External-Memory Sorting

m External-memory algorithms
s When data do not fit in main-memory

m External-memory sorting

m Rough idea: sort peaces that fit in main-
memory and "merge” them

m Main-memory merge sort:
m The main part of the algorithm is Merge

m Let's merge:
e3,6,7,11,13
e1,5,8,9, 10

AALG, lecture 2, © Simonas Saltenis, 2004 16

Main-Memory Merge Sort

Merge-Sort (A)
01 if length(A) > 1 then

02
03
04
05
06

Copy the first half of A into array Al { DIVIde
Copy the second half of A into array A2

Merge-Sort (Al) {
Merge-Sort (A2) CanueI‘
Merge (A, Al, A2) { Combine

= Running time?

AALG, lecture 2, © Simonas Saltenis, 2004 17

Merge-Sort Recursion Tree

(IHITALEIRIAIIEIBIE I T L RE L REN R B ED

‘1 2 5 7 9 10 13 193 4 6 8 11 12 15 17

log,N< /\ /\

1 2 5 107 9 13 19](3 4 8 15]|6 11 12 17

Hins Hins Hins Hins

2 10)1 5 J)(1319])(79 J(4 15])(3 8 J(1217](6 11

J J J J

AU NI Y
1o)(2)5)1)(@3)(29)(o)(7)(a5)(4)(8])(3)(12)(17)(l6 J(11]

m In each level: merge runs (sorted sequences) of
size x into runs of size 2x, decrease the number of
runs twofold.

m What would it mean to run this on a file in
external memory?

AALG, lecture 2, © Simonas Saltenis, 2004 18

External-Memory Merge-Sort

m Idea: increase the size of initial runs!

m Initial runs - the size of available main memory
(M data elements)

l1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19

External two-way merge /\

11 2 5 7 9 10 13 19)(3 4 6 8 11 12 15 17

External two-way merge/\ /\

1 2 5 10])(7 9 13 19][3 4 8 15](6 11 12 17|

i
Main-memory Main-memory Main-memory Main-memory
sort sort sgt sgt
A A

r r r r N

OO DOEOODEEGRmMEE

AALG, lecture 2, © Simonas Saltenis, 2004 19

External-Memory Merge Sort

m Input file X, empty file Y
m Phase 1: Repeat until end of file X:
m Read the next M elements from X

m Sort them in main-memory
s Write them at the end of file Y

m Phase 2: Repeat while there is more than
one runin Y:
s Empty X
m MergeAllRuns(Y, X)
m X is now called Y, Y is now called X

AALG, lecture 2, © Simonas Saltenis, 2004 20

External-Memory Merging

m MergeAllRuns(Y, X): repeat until the end of Y:

m Call TwowayMerge to merge the next two runs from Y
into one run, which is written at the end of X

m TwowayMerge: uses three main-memory arrays of
Size B

Bf1 SERPEREREN] :
Read, when . min(Bf1[p1], !
pl =B (p2 = B) p1 > ________ Bf2[p2]) | L Blo
(BfZ po
p2 .
Current Current Write, when
page page Bfo full
File Y: v v
) Y Y EOF
N ~ 1} ~~ ‘A
Run 1 Run 2 File X: v

))

—- J

~
AALG, lecture 2, © Simonas Saltenis, 2004 Merged run 21

Analysis: Assumptions

m Assumptions and notation:
m Disk page size:
e B data elements
m Data file size:
e V elements, n = N/B disk pages
= Available main memory:
e M elements, m = M/B pages

AALG, lecture 2, © Simonas Saltenis, 2004

22

Analysis

(l

I
2

8M

/\

Phase 2< i a4M)(a4M

| 2M Il 2M Il 2M Il 2M
188 wE BN By wE BN By Ml
Phase 1< 1 ~ ~ ~ ~ ~
LM M M |l M M M

m Phase 1:
m Read file X, write file Y: 2n = O(n) I/0s

m Phase 2:
m One iteration: Read file Y, write file X: 2n = O(n) I/0s
s Number of iterations: log,N/M = log,n/m

JI

AALG, lecture 2, © Simonas Saltenis, 2004 23

Analysis: Conclusions

m Total running time of external-memory
merge sort: O(n log, n/m)

m We can do better!

m Observation:
m Phase 1 uses all available memory
m Phase 2 uses just 3 pages out of m available!!!

AALG, lecture 2, © Simonas Saltenis, 2004 24

Two-Phase, Multiway Merge Sort

m Idea: merge all runs at once!
m Phase 1: the same (do internal sorts)
m Phase 2: perform MultiwayMerge(Y,X)

Phase 2 | | DM = I
| %N
S
Phasel<[g][g][g][g][g][g][g][g
(M)Cv)M) YOV JCm)M I M

AALG, lecture 2, © Simonas Saltenis, 2004 25

Multiway Merging

Bf1
OUN RN nnil
Bf2 . min(Bf1[p1], !
Read, when p2 Bf2[p2], _, Bfo
Aottt i il k)| PO
Brk
pK Write, when
Bfo full
Current Current Current
page page page
File Y: ¢ ¢ ¢
(& '\ Y S S N B v
[4 i B EOF
Run 1 Run 2 Run k=n/m ¢
File X:| § §
S —_

AALG, lecture 2, © Simonas Saltenis, 2004 Merged run 26

Analysis of TPMMS

m Phase 1: O(n), Phase 2: O(n)
m Total: O(n) I/0Os!

m The catch: files only of “limited” size can
be sorted ®
m Phase 2 can merge a maximum of m-1 runs.
s Which means: N/M < m-1

m How large files can we sort with TPMMS on a
machine with 128Mb main memory and disk
page size of 16Kb?

AALG, lecture 2, © Simonas Saltenis, 2004

27

General Multiway Merge Sort

m What if a file is very large or memory is
small?

m General multiway merge sort:
m Phase 1: the same (do internal sorts)

m Phase 2: do as many iterations of merging as
necessary until only one run remains

e Each iteration repeatedly calls MultiwmayMerge(Y, X) to
merge groups of m-1 runs until the end of file Y is
reached

AALG, lecture 2, © Simonas Saltenis, 2004 28

Analysis

Phase 2 *
< ;

Phase 1 | \
<<

((m-13M = N
(m-1)2M i \
_ (m-)M [(m-1)M _ (m-u)M]
Mlm) ()M m]) (M MMM
FANES: & & & 2 FANES: 5
MM MM (m]) (M] M)(Mm])...(M]

m Phase 1: O(n), each iteration of phase 2: O(n)
= How many iterations are there in phase 27

s Number of iterations: log,,.;N/M = log,.,n
m Total running time: O(n log,, n) I/0s

AALG, lecture 2, © Simonas Saltenis, 2004

29

Conclusions

m External sorting can be done in O(n log,, n)
I/O operations for any n
m This is asymptotically optimal

m In practice, we can usually sort in O(n)
I/Os

m Use two-phase, multiway merge-sort

AALG, lecture 2, © Simonas Saltenis, 2004 30

