Advanced Algorithm
 Design and Analysis (Lecture 3)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

Text-search Algorithms

- Goals of the lecture:
- Naive text-search algorithm and its analysis;
- Rabin-Karp algorithm and its analysis;
- Knuth-Morris-Pratt algorithm ideas;
- Boyer-Moore-Horspool algorithm and its analysis.
- Comparison of the advantages and disadvantages of the different text-search algorithms.

Text-Search Problem

- Input:
- Text $T=$ "at the thought of"
- $n=$ length $(T)=17$
- Pattern $P=$ "the"
- $m=$ length $(P)=3$
- Output:
- Shift s - the smallest integer $(0 \leq s \leq n-m)$ such that $T[s . . s+m-1]=P[0 . . m-1]$. Returns -1 , if no such s exists

Naïve Text Search

- Idea: Brute force
- Check all values of s from 0 to $n-m$

```
Naive-Search (T, P)
01 for \(s \leftarrow 0\) to \(n-m\)
\(02 \quad j \leftarrow 0\)
03 // check if \(T[s \ldots s+m-1]=P[0 \ldots m-1]\)
04 while \(T[s+j]=P[j]\) do
\(05 \quad j \leftarrow j+1\)
06 if \(j=m\) return \(s\)
07 return -1
```

- Let $T=$ "at the thought of" and $P=$ "though"
- What is the number of character comparisons?

Analysis of Naïve Text Search

- Worst-case:
- Outer loop: n - m
- Inner loop: m
- Total $(n-m) m=O(n m)$
- What is the input the gives this worst-case behaviuor?
- Best-case: $n-m$
- When?
- Completely random text and pattern:
- $O(n-m)$

Fingerprint idea

- Assume:
- We can compute a fingerprint $f(P)$ of P in $O(m)$ time.
- If $f(P) \neq f(T[s . . s+m-1])$, then $P \neq T[s . . s+m-1]$
- We can compare fingerprints in $\mathrm{O}(1)$
- We can compute $f^{\prime}=f(T[s+1 . . s+m])$ from $f(T[s . . s+m-1])$, in $\mathrm{O}(1)$

Algorithm with Fingerprints

- Let the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$
- Let fingerprint to be just a decimal number, i.e., $f\left(\right.$ " $\left.1045^{\prime \prime}\right)=1^{*} 10^{3}+0 * 10^{2}+4^{*} 10^{1}+5=1045$

Fingerprint-Search (T, P)
$01 \mathrm{fp} \leftarrow$ compute $\mathrm{f}(\mathrm{P})$
$02 \mathrm{f} \leftarrow$ compute $\mathrm{f}(\mathrm{T}[0 \ldots \mathrm{~m}-1])$
03 for $s \leftarrow 0$ to $n-m$ do
04 if $\mathrm{fp}=\mathrm{f}$ return s
$05 \mathrm{f} \leftarrow\left(\mathrm{f}-\mathrm{T}[\mathrm{s}] * 10^{\mathrm{m}-1}\right) * 10+\mathrm{T}[\mathrm{s}+\mathrm{m}]$
06 return -1

- Running time $20(m)+O(n-m)=O(n)$!
- Where is the catch?

Using a Hash Function

- Problem:
- we can not assume we can do arithmetics with m-digits-long numbers in $O(1)$ time
- Solution: Use a hash function $h=f \bmod q$
- For example, if $q=7, h(" 52 ")=52 \bmod 7=3$
- $h\left(S_{1}\right) \neq h\left(S_{2}\right) \Rightarrow S_{1} \neq S_{2}$
- But $h\left(S_{1}\right)=h\left(S_{2}\right)$ does not imply $S_{1}=S_{2}$!
- For example, if $q=7$, h(" 73 ") $=3$, but " 73 " $=$ " 52 "
- Basic "mod q " arithmetics:
- $(a+b) \bmod q=(a \bmod q+b \bmod q) \bmod q$
- $(a * b) \bmod q=(a \bmod q) *(b \bmod q) \bmod q$

Preprocessing and Stepping

- Preprocessing:
- $f p=P[m-1]+10 *(P[m-2]+10 *(P[m-3]+\ldots$ $\ldots+10 *(P[1]+10 * P[0]) \ldots)) \bmod q$
- In the same way compute ft from $T[0 . . m-1]$
- Example: $P=$ " 2531 ", $q=7$, what is $f p$?
- Stepping:
- $\left.f t=\left(f t-T[s]^{*} 10^{m-1} \bmod q\right)^{*} 10+T[s+m]\right) \bmod q$
- $10^{m-1} \bmod q$ can be computed once in the preprocessing
- Example: Let $T[\ldots]=$ " 5319 ", $q=7$, what is the corresponding ft?

Rabin-Karp Algorithm

```
Rabin-Karp-Search (T, P)
\(01 \mathrm{q} \leftarrow\) a prime larger than \(m\)
\(02 \mathrm{c} \leftarrow 10^{\mathrm{m}-1} \bmod \mathrm{q} / / \mathrm{run}\) a loop multiplying by \(10 \bmod q\)
\(03 \mathrm{fp} \leftarrow 0 ; \mathrm{ft} \leftarrow 0\)
04 for \(i \leftarrow 0\) to m-1 // preprocessing
\(05 \quad \mathrm{fp} \leftarrow(10 * f p+\mathrm{P}[\mathrm{i}]) \bmod q\)
\(06 \mathrm{ft} \leftarrow(10 * f t+\mathrm{T}[\mathrm{i}])\) mod q
07 for \(s \leftarrow 0\) to \(n-m \quad / /\) matching
08 if \(\mathrm{fp}=\mathrm{ft}\) then // run a loop to compare strings
09 if \(\mathrm{P}[0 . . \mathrm{m}-1]=\mathrm{T}[\mathrm{s} . . \mathrm{s}+\mathrm{m}-1]\) return s
\(10 \mathrm{ft} \leftarrow((\mathrm{ft}-\mathrm{T}[\mathrm{s}] * \mathrm{c}) * 10+\mathrm{T}[\mathrm{s}+\mathrm{m}]) \bmod \mathrm{q}\)
11 return -1
```

- How many character comparisons are done if

$$
T=" 2531978 " \text { and } P=" 1978 " ?
$$

Analysis

- If q is a prime, the hash function distributes m-digit strings evenly among the q values
- Thus, only every q-th value of shift s will result in matching fingerprints (which will require comparing stings with $O(m)$ comparisons)
- Expected running time (if $q>m$):
- Preprocessing: $O(m)$
- Outer loop: O($n-m$)
- All inner loops: $\frac{n-m}{q} m=O(n-m)$
- Total time: O(n-m)
- Worst-case running time: $O(n m)$

Rabin-Karp in Practice

- If the alphabet has d characters, interpret characters as radix-d digits (replace 10 with d in the algorithm).
- Choosing prime $q>m$ can be done with randomized algorithms in $\mathrm{O}(m)$, or q can be fixed to be the largest prime so that $10 * q$ fits in a computer word.
- Rabin-Karp is simple and can be easily extended to two-dimensional pattern matching.

Searching in n comparisons

- The goal: each character of the text is compared only once!
- Problem with the naïve algorithm:
- Forgets what was learned from a partial match!
- Examples:
- T = "Tweedledee and Tweedledum" and $P=$ "Tweedledum"
- $T=$ "pappar" and $P=$ "pappappappar"

General situation

- State of the algorithm:
- Checking shift s,
- q characters of P are matched,

- we see a non-matching character α in T.
- Need to find:
- Largest prefix " P-" such that it is a suffix of
 $P[0 . . q-1] \alpha$:
- New $q^{\prime}=\max \{k \leq q \mid P[0 . . k-1]=P[q-k+1 . . q-1] \alpha\}$

Finite automaton search

- Algorithm:
- Preprocess:
- For each q ($0 \leq \mathrm{q} \leq \mathrm{m}-1$) and each $\alpha \in \Sigma$ pre-compute a new value of q. Let's call it $\sigma(q, \alpha)$
- Fills a table of a size $m|\Sigma|$
- Run through the text
- Whenever a mismatch is found ($P[q] \neq T[s+q]$):
- Set $s=s+q-\sigma(q, \alpha)+1$ and $q=\sigma(q, \alpha)$
- Analysis:
- © Matching phase in $O(n)$
- : Too much memory: $O(m|\Sigma|)$, two much preprocessing: at best $O(m|\Sigma|)$.

Prefix function

- Idea: forget unmatched character (α)!
- State of the algorithm:
- Checking shift s,
- q characters of P are matched,
- we see a non-matching character α in T.
- Need to find:
- Largest prefix " $P-$ " such that it is a suffix of $P[0 . . q-1]$:

- New $q^{\prime}=\pi[q]=\max \{k<q \mid P[0 . . k-1]=P[q-k . . q-1]\}$

Prefix table

- We can pre-compute a prefix table of size m to store values of $\pi[q](0 \leq q<m)$

p		p	a	p	p	a	\mathbf{r}
q	0	1	2	3	4	5	6
$\pi[q]$	0	0	0	1	1	2	0

- Compute a prefix table for: $P=$ "dadadu"

Knuth-Morris-Pratt Algorithm

```
KMP-Search(T, P)
0 1 \pi \leftarrow \text { Compute-Prefix-Table(P)}
0 2 q \leftarrow 0 ~ / / ~ n u m b e r ~ o f ~ c h a r a c t e r s ~ m a t c h e d ~
0 3 \text { for i } \leftarrow 0 \text { to n-1 // scan the text from left to right}
04 while q > 0 and P[q] \not= T[i] do
05 q < | [q]
06 if P[q] = T[i] then q }\leftarrowq|+
07 if q = m then return i - m + 1
08 return -1
```

- Compute-Prefix-Table is the essentially the same KMP search algorithm performed on P.

Analysis of KMP

- Worst-case running time: $O(n+m)$
- Main algorithm: $O(n)$
- Compute-Prefix-Table: $O(m)$
- Space usage: $O(m)$

Reverse naïve algorithm

- Why not search from the end of P ?
- Boyer and Moore

```
Reverse-Naive-Search(T, P)
0 1 ~ f o r ~ s ~ \leftarrow ~ < ~ t o ~ n ~ - ~ m ~
02 j \leftarrow m - 1 // start from the end
03 // check if T[s..s+m-1] = P[0..m-1]
04 while T[s+j] = P[j] do
05 j}\leftarrowj-
06 if j < 0 return s
0 7 \text { return -1}
```

- Running time is exactly the same as of the naïve algorithm...

Occurrence heuristic

- Boyer and Moore added two heuristics to reverse naïve, to get an $O(n+m)$ algorithm, but its complex
- Horspool suggested just to use the modified occurrence heuristic:
- After a mismatch, align $T[s+m-1]$ with the rightmost occurrence of that letter in the pattern P[0..m-2]
- Examples:
- $T=$ "detective date" and $P=$ "date"
- $T=$ "tea kettle" and $P=$ "kettle"

Shift table

- In preprocessing, compute the shift table of the size $|\Sigma|$.

$$
\operatorname{shift}[w]= \begin{cases}m-1-\max \{i<m-1 \mid P[i]=w\} & \text { if } w \text { is in } P[0 . . m-2] \\ m & \text { otherwise }\end{cases}
$$

- Example: $P=$ "kettle"
- $\operatorname{shift}[e]=4$, shift[1] $=1$, shift[t$]=2$, shift[t$]=5$
- shift[any other letter] = 6
- Example: $P=$ "pappar"
- What is the shift table?

Boyer-Moore-Horspool Alg.

```
BMH-Search (T, P)
01 // compute the shift table for P
01 for c }\leftarrow0\mathrm{ to }|\Sigma|-
02 shift[c] = m // default values
03 for k \leftarrow 0 to m - 2
04 shift[P[k]] = m - 1 - k
05 // search
06 s \leftarrow 0
07 while s \leq n - m do
08 j \leftarrow m - 1 // start from the end
09 // check if T[s..s+m-1] = P[0..m-1]
10 while T[s+j] = P[j] do
11 j < j - 1
12 if j < O return s
13 s \leftarrow s + shift[T[s + m-1]] // shift by last letter
14 return -1
```


BMH Analysis

- Worst-case running time
- Preprocessing: $O(|\Sigma|+m)$
- Searching: $O(n m)$
- What input gives this bound?
- Total: $O(n m)$
- Space: $O(|\Sigma|)$
- Independent of m
- On real-world data sets very fast

Comparison

- Let's compare the algorithms. Criteria:
- Worst-case running time
- Preprocessing
- Searching
- Expected running time
- Space used
- Implementation complexity

