# Advanced Algorithm Design and Analysis (Lecture 5)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

## **Greedy Algorithms**

- Goals of the lecture:
  - to understand the principles of the greedy algorithm design technique;
  - to understand the example greedy algorithms for activity selection and Huffman coding, to be able to prove that these algorithms find optimal solutions;
  - to be able to apply the greedy algorithm design technique.

### Activity-Selection Problem

#### Input:

A set of n activities, each with start and end times: A[i].s and A[i].f. The activity last during the period [A[i].s, A[i].f)

#### Output:

- The largest subset of mutually compatible activities
  - Activities are compatible if their intervals do not intersect



# "Straight-forward" solution

- Let's just pick (schedule) one activity A[k]
  - This generates two set's of activities compatible with it: Before(k), After(k)
    - E.g., Before(4) =  $\{1, 2\}$ ; After(4) =  $\{6,7,8,9\}$



#### Solution:

$$MaxN(A) = \begin{cases} 0 & \text{if } A = \emptyset, \\ \max_{1 \le k \le n} \{MaxN(Before(A)) + MaxN(After(A)) + 1\} & \text{if } A \ne \emptyset. \end{cases}$$

# Dynamic Programming Alg.

- The recurrence results in a dynamic programming algorithm
  - Sort activities on the start or end time (for simplicity assume also "sentinel" activities A[0] and A[n+1])
  - Let  $S_{ij}$  a set of activities after A[i] and before A[j] and compatible with A[i] and A[j].
  - Let's have a two-dimensional array, s.t.,  $c[i, j] = MaxN(S_{ij})$ .

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{i < k < j} \{c[1,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

■  $MaxN(A) = MaxN(S_{0,n+1}) = c[0, n+1]$ 

### Dynamic Programming Alg. II

- Does it really work correctly?
  - We have to prove the optimal sub-structure:
    - If an optimal solution A to  $S_{ij}$  includes A[k], then solutions to  $S_{ik}$  and  $S_{kj}$  (as parts of A) must be optimal as well
    - To prove use "cut-and-paste" argument
- What is the running time of this algorithm?

### Greedy choice

- What if we could choose "the best" activity (as of now) and be sure that it belongs to an optimal solution
  - We wouldn't have to check out all these sub-problems and consider all currently possible choices!
- Idea: Choose the activity that finishes first!
  - Then, solve the problem for the remaining compatible activities

### Greedy-choice property

- What is the running time of this algorithm?
- Does it find an optimal solution?:
  - We have to prove the greedy-choice property, i.e., that our locally optimal choice belongs to some globally optimal solution.
  - We have to prove the optimal sub-structure property (we did that already)
- The challenge is to choose the right interpretation of "the best choice":
  - How about the activity that starts first
    - Show a counter-example

### **Data Compression**

- Data compression problem strings S and S':
  - *S* -> *S'* -> *S*, such that |*S'*|<|*S*|
- Text compression by coding with variable-length code:
  - Obvious idea assign short codes to frequent characters:
     "abracadabra"

#### Frequency table:

|                      | a   | b   | С    | đ    | r   |
|----------------------|-----|-----|------|------|-----|
| Frequency            | 5   | 2   | 1    | 1    | 2   |
| Fixed-length code    | 000 | 001 | 010  | 011  | 100 |
| Variable-length code | 1   | 001 | 0000 | 0001 | 01  |

How much do we save in this case?

### Prefix code

- Optimal code for given frequencies:
  - Achieves the minimal length of the coded text
- Prefix code: no codeword is prefix of another
  - It can be shown that optimal coding can be done with prefix code



- We can store all codewords in a binary trie very easy to decode
  - Coded characters in leaves
  - Each node contains the sum of the frequencies of all descendants

### Optimal Code/Trie

■ The *cost* of the coding trie *T*:

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

- C the alphabet,
- f(c) frequency of character c,
- $d_T(c)$  depth of c in the trie (length of code in bits)
- Optimal trie the one that minimizes B(T)
- Observation optimal trie is always full:
  - Every non-leaf node has two children. Why?

# Huffman Algorithm - Idea

- Huffman algorithm, builds the code trie bottom up. Consider a forest of trees:
  - Initially one separate node for each character.
  - In each step join two trees into a larger tree



- Repeat this until one tree (trie) remains.
- Which trees to join? Greedy choice the trees with the smallest frequencies!

## Huffman Algorithm

```
Huffman(C)
01 Q.build(C) // Builds a min-priority queue on frequences
02 for i ← 1 to n-1 do
03    Allocate new node z
04    x ← Q.extractMin()
05    y ← Q.extractMin()
06    z.setLeft(x)
07    z.setRight(y)
08    z.setF(x.f() + y.f())
09    Q.insert(z)
10 return Q.extractMin() // Return the root of the trie
```

- What is its running time?
- Run the algorithm on: "oho ho, Ole"

### Correctness of Huffman

- Greedy choice property:
  - Let x, y two characters with lowest frequencies. Then there exists an optimal prefix code where codewords for x and y have the same length and differ only in the last bit
  - Let's prove it:
    - Transform an optimal trie T into one (T"), where x and y are max-depth siblings. Compare the costs.

### Correctness of Huffman

- Optimal sub-structure property:
  - Let *x*, *y* characters with minimum frequency
  - $C' = C \{x,y\} \cup \{z\}$ , such that f(z) = f(x) + f(y)
  - Let T' be an optimal code trie for C'
  - Replace leaf z in T' with internal node with two children x and y
  - The result tree T is an optimal code trie for C
- Proof a little bit more involved than a simple "cut-and-paste" argument

### Elements of Greedy Algorithms

- Greedy algorithms are used for optimization problems
  - A number of choices have to be made to arrive at an optimal solution
  - At each step, make the "locally best" choice, without considering all possible choices and solutions to sub-problems induced by these choices (compare to dynamic programming)
  - After the choice, only one sub-problem remains (smaller than the original)
- Greedy algorithms usually sort or use priority queues

## Elements of Greedy Algorithms

- First, one has to prove the optimal sub-structure property
  - the simple "cut-and-paste" argument may work
- The main challenge is to decide the interpretation of "the best" so that it leads to a global optimal solution, i.e., you can prove the greedy choice property
  - The proof is usually constructive: takes a hypothetical optimal solution without the specific greedy choice and transforms into one that has this greedy choice.
  - Or you find counter-examples demonstrating that your greedy choice does not lead to a global optimal solution.

# Other Greedy Algorithms

- Find a minimum spanning tree in a weighted graph
- Coin changing