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Greedy Algorithms

m Goals of the lecture:

m to understand the principles of the greedy
algorithm design technigue;

m to understand the example greedy
algorithms for activity selection and Huffman
coding, to be able to prove that these
algorithms find optimal solutions;

m to be able to apply the greedy algorithm
design technigue.
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Activity-Selection Problem

m Input:

m A set of n activities, each with start and end
times: A[/].s and A[/].f. The activity last during
the period [A[i].s, A[i].f)

m Output:
m The largest subset of mutually compatible
activities
e Activities are compatible if their intervals do not
intersect
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“Straight-forward” solution

m Let’s just pick (schedule) one activity A[Kk]

m This generates two set’s of activities compatible
with it: Before(k), After(k)
e E.g., Before(4) = {1, 2}; After(4) = {6,7,8,9}
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m Solution:

0 ifA=0,
max{MaxN (Before(A))+ MaxN (After(A))+1} ifA#.

1<k<n

MaxN(A) = {
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Dynamic Programming Alg.

m The recurrence results in a dynamic
programming algorithm
m Sort activities on the start or end time (for

simplicity assume also “sentinel” activities A[O]
and A[n+1])

m Let S, - a set of activities after A[/] and before
Aljl and compatible with A[/] and A[j].

m Let's have a two-dimensional array, s.t.,
cli, j1 = MaxN(S;).

cli, j]1= max{c[l,k]+ c[k, j]+1} 1fS 7&@

i<k<j

m MaxN(A) = MaxN(S, ;) = c[0, n+1]
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Dynamic Programming Alg. II

m Does it really work correctly?

s We have to prove the optimal sub-structure:

e If an optimal solution A to S;; includes A[k], then
solutions to Sy and S,; (as parts of A) must be optimal
as well

e To prove use “cut-and-paste” argument
m What is the running time of this algorithm?
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Greedy choice

m What if we could choose “the best” activity (as of
now) and be sure that it belongs to an optimal
solution
= We wouldn’t have to check out all these sub-problems

and consider all currently possible choices!

m Idea: Choose the activity that finishes first!

m Then, solve the problem for the remaining compatible
activities

MaxN(A[1l..n], 1) //returns a set of activities
DA R m S B A
02 while m < n and A[m].s < A[i].f do

03 m <<<m + 1
04 if m < n then return {A[m]} UMaxN(A, m)
05 else return 9
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Greedy-choice property

m What is the running time of this algorithm?

m Does it find an optimal solution?:

s We have to prove the greedy-choice property,
i.e., that our locally optimal choice belongs to
some globally optimal solution.

s We have to prove the optimal sub-structure
property (we did that already)

m The challenge is to choose the right
interpretation of “the best choice”:

s How about the activity that starts first
e Show a counter-example
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Data Compression

m Data compression problem - strings S and S”:

m S->S5"->5, such that |S’|<|S|
m Text compression by coding with variable-length

code:

m Obvious idea - assign short codes to frequent characters:

“abracadabra”

Frequency table:

a b C d r
Frequency 5 2 1 1 2
Fixed-length code 000 001 010 011 100
Variable-length code 1 001 | 0000 | 0001 01

m How much do we save in this case?
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Prefix code

m Optimal code for given
frequencies:
m Achieves the minimal length of
the coded text
m Prefix code: no codeword is
prefix of another

m [t can be shown that optimal
coding can be done with prefix c d
code

m We can store all codewords in a binary trie — very
easy to decode
m Coded characters in leaves

m Each node contains the sum of the frequencies of all

descendants
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Optimal Code/Trie

m The cost of the coding trie T:
B(T)=Y_ f(c)d(c)

ceC
s C - the alphabet,
m f(c) - frequency of character c,

m d(c) - depth of c in the trie (length of code in
bits)

m Optimal trie — the one that minimizes B(T)

m Observation — optimal trie is always full:
m Every non-leaf node has two children. Why?
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Huffman Algorithm - Idea

m Huffman algorithm,
huilds the code trie
pottom up. Consider a
forest of trees:

1)
m Initially — one separate 0 3

node for each character. (B) j> (B
m In each step - join two

trees into a larger tree

m Repeat this until one tree (trie) remains.

s Which trees to join? Greedy choice - the trees
with the smallest frequencies!
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Huffman Algorithm

Huf fman (C)

01 Q.build(C) // Builds a min-priority queue on frequences
02 for 1 «1 to n-1 do
03 Allocate new node z

04 X ¢ Q.extractMin/()

05 y ¢« Q.extractMin /()

06 z.setLeft (x)

07 z .setRight (y)

08 z.setF(x.£() + yv.£())

09 Q.insert (z)
10 return Q.extractMin() // Return the root of the trie

m What is its running time?
m Run the algorithm on: “"oho ho, 0Ole”
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Correctness of Huffman

m Greedy choice property:

m Let x, y — two characters with lowest
frequencies. Then there exists an optimal prefix
code where codewords for x and y have the
same length and differ only in the last bit

m Let's prove it:

e Transform an optimal trie T into one (T”), where x
and y are max-depth siblings. Compare the costs.
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Correctness of Huffman

m Optimal sub-structure property:
m Let x, y — characters with minimum frequency
m C"=C —-{x,y}ru{z}, such that f(z) = f(x) + f(y)
m Let 7" be an optimal code trie for C’

m Replace leaf z in T” with internal node with two
children x and y

m The result tree T is an optimal code trie for C

m Proof a little bit more involved than a
simple “cut-and-paste” argument

AALG, lecture 5, © Simonas Saltenis, 2004 15



Elements of Greedy Algorithms

m Greedy algorithms are used for
optimization problems

m A number of choices have to be made to arrive
at an optimal solution

m At each step, make the “locally best” choice,
without considering all possible choices and
solutions to sub-problems induced by these
choices (compare to dynamic programming)

m After the choice, only one sub-problem remains
(smaller than the original)

m Greedy algorithms usually sort or use
priority queues
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Elements of Greedy Algorithms

m First, one has to prove the optimal sub-structure
property
m the simple “cut-and-paste” argument may work

m The main challenge is to decide the interpretation
of “the best” so that it leads to a global optimal
solution, i.e., you can prove the greedy choice
property
m The proof is usually constructive: takes a hypothetical

optimal solution without the specific greedy choice and
transforms into one that has this greedy choice.

m Or you find counter-examples demonstrating that your
greedy choice does not lead to a global optimal solution.
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Other Greedy Algorithms

m Find a minimum spanning tree in a
weighted graph
m Coin changing

AALG, lecture 5, © Simonas Saltenis, 2004

18



