Advanced Algorithm Design and Analysis (Lecture 5)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

Greedy Algorithms

- Goals of the lecture:
 - to understand the principles of the greedy algorithm design technique;
 - to understand the example greedy algorithms for activity selection and Huffman coding, to be able to prove that these algorithms find optimal solutions;
 - to be able to apply the greedy algorithm design technique.

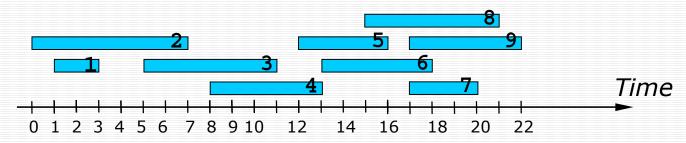
Activity-Selection Problem

Input:

A set of n activities, each with start and end times: A[i].s and A[i].f. The activity last during the period [A[i].s, A[i].f)

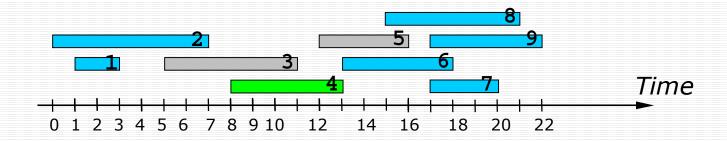
Output:

- The largest subset of mutually compatible activities
 - Activities are compatible if their intervals do not intersect



"Straight-forward" solution

- Let's just pick (schedule) one activity A[k]
 - This generates two set's of activities compatible with it: Before(k), After(k)
 - E.g., Before(4) = $\{1, 2\}$; After(4) = $\{6,7,8,9\}$



Solution:

$$MaxN(A) = \begin{cases} 0 & \text{if } A = \emptyset, \\ \max_{1 \le k \le n} \{MaxN(Before(A)) + MaxN(After(A)) + 1\} & \text{if } A \ne \emptyset. \end{cases}$$

Dynamic Programming Alg.

- The recurrence results in a dynamic programming algorithm
 - Sort activities on the start or end time (for simplicity assume also "sentinel" activities A[0] and A[n+1])
 - Let S_{ij} a set of activities after A[i] and before A[j] and compatible with A[i] and A[j].
 - Let's have a two-dimensional array, s.t., $c[i, j] = MaxN(S_{ij})$.

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{i < k < j} \{c[1,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

■ $MaxN(A) = MaxN(S_{0,n+1}) = c[0, n+1]$

Dynamic Programming Alg. II

- Does it really work correctly?
 - We have to prove the optimal sub-structure:
 - If an optimal solution A to S_{ij} includes A[k], then solutions to S_{ik} and S_{kj} (as parts of A) must be optimal as well
 - To prove use "cut-and-paste" argument
- What is the running time of this algorithm?

Greedy choice

- What if we could choose "the best" activity (as of now) and be sure that it belongs to an optimal solution
 - We wouldn't have to check out all these sub-problems and consider all currently possible choices!
- Idea: Choose the activity that finishes first!
 - Then, solve the problem for the remaining compatible activities

Greedy-choice property

- What is the running time of this algorithm?
- Does it find an optimal solution?:
 - We have to prove the greedy-choice property, i.e., that our locally optimal choice belongs to some globally optimal solution.
 - We have to prove the optimal sub-structure property (we did that already)
- The challenge is to choose the right interpretation of "the best choice":
 - How about the activity that starts first
 - Show a counter-example

Data Compression

- Data compression problem strings S and S':
 - *S* -> *S'* -> *S*, such that |*S'*|<|*S*|
- Text compression by coding with variable-length code:
 - Obvious idea assign short codes to frequent characters:
 "abracadabra"

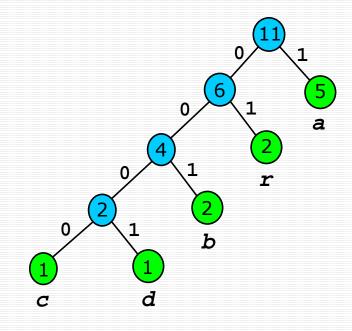
Frequency table:

	a	b	С	đ	r
Frequency	5	2	1	1	2
Fixed-length code	000	001	010	011	100
Variable-length code	1	001	0000	0001	01

How much do we save in this case?

Prefix code

- Optimal code for given frequencies:
 - Achieves the minimal length of the coded text
- Prefix code: no codeword is prefix of another
 - It can be shown that optimal coding can be done with prefix code



- We can store all codewords in a binary trie very easy to decode
 - Coded characters in leaves
 - Each node contains the sum of the frequencies of all descendants

Optimal Code/Trie

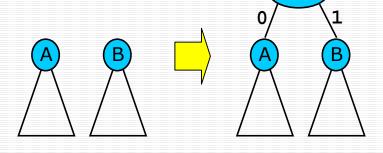
■ The *cost* of the coding trie *T*:

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

- C the alphabet,
- f(c) frequency of character c,
- $d_T(c)$ depth of c in the trie (length of code in bits)
- Optimal trie the one that minimizes B(T)
- Observation optimal trie is always full:
 - Every non-leaf node has two children. Why?

Huffman Algorithm - Idea

- Huffman algorithm, builds the code trie bottom up. Consider a forest of trees:
 - Initially one separate node for each character.
 - In each step join two trees into a larger tree



- Repeat this until one tree (trie) remains.
- Which trees to join? Greedy choice the trees with the smallest frequencies!

Huffman Algorithm

```
Huffman(C)
01 Q.build(C) // Builds a min-priority queue on frequences
02 for i ← 1 to n-1 do
03    Allocate new node z
04    x ← Q.extractMin()
05    y ← Q.extractMin()
06    z.setLeft(x)
07    z.setRight(y)
08    z.setF(x.f() + y.f())
09    Q.insert(z)
10 return Q.extractMin() // Return the root of the trie
```

- What is its running time?
- Run the algorithm on: "oho ho, Ole"

Correctness of Huffman

- Greedy choice property:
 - Let x, y two characters with lowest frequencies. Then there exists an optimal prefix code where codewords for x and y have the same length and differ only in the last bit
 - Let's prove it:
 - Transform an optimal trie T into one (T"), where x and y are max-depth siblings. Compare the costs.

Correctness of Huffman

- Optimal sub-structure property:
 - Let *x*, *y* characters with minimum frequency
 - $C' = C \{x,y\} \cup \{z\}$, such that f(z) = f(x) + f(y)
 - Let T' be an optimal code trie for C'
 - Replace leaf z in T' with internal node with two children x and y
 - The result tree T is an optimal code trie for C
- Proof a little bit more involved than a simple "cut-and-paste" argument

Elements of Greedy Algorithms

- Greedy algorithms are used for optimization problems
 - A number of choices have to be made to arrive at an optimal solution
 - At each step, make the "locally best" choice, without considering all possible choices and solutions to sub-problems induced by these choices (compare to dynamic programming)
 - After the choice, only one sub-problem remains (smaller than the original)
- Greedy algorithms usually sort or use priority queues

Elements of Greedy Algorithms

- First, one has to prove the optimal sub-structure property
 - the simple "cut-and-paste" argument may work
- The main challenge is to decide the interpretation of "the best" so that it leads to a global optimal solution, i.e., you can prove the greedy choice property
 - The proof is usually constructive: takes a hypothetical optimal solution without the specific greedy choice and transforms into one that has this greedy choice.
 - Or you find counter-examples demonstrating that your greedy choice does not lead to a global optimal solution.

Other Greedy Algorithms

- Find a minimum spanning tree in a weighted graph
- Coin changing