
Advanced Algorithm
Design and Analysis (Lecture 5)

SW5 fall 2004
Simonas Šaltenis
E1-215b
simas@cs.aau.dk

AALG, lecture 5, © Simonas Šaltenis, 2004 2

Greedy Algorithms

Goals of the lecture:
to understand the principles of the greedy
algorithm design technique;
to understand the example greedy
algorithms for activity selection and Huffman
coding, to be able to prove that these
algorithms find optimal solutions;
to be able to apply the greedy algorithm
design technique.

AALG, lecture 5, © Simonas Šaltenis, 2004 3

Activity-Selection Problem

Input:
A set of n activities, each with start and end
times: A[i].s and A[i].f. The activity last during
the period [A[i].s, A[i].f)

Output:
The largest subset of mutually compatible
activities
• Activities are compatible if their intervals do not

intersect

Time
0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

1
2

3
4

5
6

7

8
9

AALG, lecture 5, © Simonas Šaltenis, 2004 4

“Straight-forward” solution

Let’s just pick (schedule) one activity A[k]
This generates two set’s of activities compatible
with it: Before(k), After(k)
• E.g., Before(4) = {1, 2}; After(4) = {6,7,8,9}

Solution:

Time
0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

1
2

3
4

5
6

7

8
9

1

0 if ,
() max{ (()) (()) 1} if .

k n

A
MaxN A MaxN Before A MaxN After A A

≤ ≤

= ∅=  + + ≠ ∅

AALG, lecture 5, © Simonas Šaltenis, 2004 5

Dynamic Programming Alg.

The recurrence results in a dynamic
programming algorithm

Sort activities on the start or end time (for
simplicity assume also “sentinel” activities A[0]
and A[n+1])
Let Sij – a set of activities after A[i] and before
A[j] and compatible with A[i] and A[j].
Let’s have a two-dimensional array, s.t.,
c[i, j] = MaxN(Sij).

MaxN(A) = MaxN(S0,n+1) = c[0, n+1]

0 if ,
[,] max{ [1,] [,] 1} if .

ij

iji k j

S
c i j c k c k j S

< <

= ∅=  + + ≠ ∅

AALG, lecture 5, © Simonas Šaltenis, 2004 6

Dynamic Programming Alg. II

Does it really work correctly?
We have to prove the optimal sub-structure:
• If an optimal solution A to Sij includes A[k], then

solutions to Sik and Skj (as parts of A) must be optimal
as well

• To prove use “cut-and-paste” argument

What is the running time of this algorithm?

AALG, lecture 5, © Simonas Šaltenis, 2004 7

Greedy choice

What if we could choose “the best” activity (as of
now) and be sure that it belongs to an optimal
solution

We wouldn’t have to check out all these sub-problems
and consider all currently possible choices!

Idea: Choose the activity that finishes first!
Then, solve the problem for the remaining compatible
activities

MaxN(A[1..n], i) //returns a set of activities
01 m ← i + 1
02 while m ≤ n and A[m].s < A[i].f do
03 m ← m + 1
04 if m ≤ n then return {A[m]} ∪ MaxN(A, m)
05 else return ∅

AALG, lecture 5, © Simonas Šaltenis, 2004 8

Greedy-choice property

What is the running time of this algorithm?
Does it find an optimal solution?:

We have to prove the greedy-choice property,
i.e., that our locally optimal choice belongs to
some globally optimal solution.
We have to prove the optimal sub-structure
property (we did that already)

The challenge is to choose the right
interpretation of “the best choice”:

How about the activity that starts first
• Show a counter-example

AALG, lecture 5, © Simonas Šaltenis, 2004 9

Data Compression

Data compression problem – strings S and S’:
S -> S’ -> S, such that |S’|<|S|

Text compression by coding with variable-length
code:

Obvious idea – assign short codes to frequent characters:
“abracadabra”

Frequency table:

How much do we save in this case?

01000100000011Variable-length code

100011010001000Fixed-length code

21125Frequency

rdcba

AALG, lecture 5, © Simonas Šaltenis, 2004 10

Prefix code

Optimal code for given
frequencies:

Achieves the minimal length of
the coded text

Prefix code: no codeword is
prefix of another

It can be shown that optimal
coding can be done with prefix
code

2

1 1

4

2

2

56

11

0

We can store all codewords in a binary trie – very
easy to decode

Coded characters in leaves
Each node contains the sum of the frequencies of all
descendants

0 1

1

1

1

0

0

c d

b

r

a

AALG, lecture 5, © Simonas Šaltenis, 2004 11

Optimal Code/Trie

The cost of the coding trie T:

C – the alphabet,
f(c) – frequency of character c,
dT(c) – depth of c in the trie (length of code in
bits)

Optimal trie – the one that minimizes B(T)
Observation – optimal trie is always full:

Every non-leaf node has two children. Why?

() () ()T
c C

B T f c d c
∈

= ∑

AALG, lecture 5, © Simonas Šaltenis, 2004 12

Huffman Algorithm - Idea

Huffman algorithm,
builds the code trie
bottom up. Consider a
forest of trees:

Initially – one separate
node for each character.
In each step – join two
trees into a larger tree

Repeat this until one tree (trie) remains.
Which trees to join? Greedy choice – the trees
with the smallest frequencies!

A B A B

A+B
10

AALG, lecture 5, © Simonas Šaltenis, 2004 13

Huffman Algorithm

What is its running time?
Run the algorithm on: “oho ho, Ole”

Huffman(C)
01 Q.build(C) // Builds a min-priority queue on frequences
02 for i ← 1 to n–1 do
03 Allocate new node z
04 x ← Q.extractMin()
05 y ← Q.extractMin()
06 z.setLeft(x)
07 z.setRight(y)
08 z.setF(x.f() + y.f())
09 Q.insert(z)
10 return Q.extractMin() // Return the root of the trie

AALG, lecture 5, © Simonas Šaltenis, 2004 14

Correctness of Huffman

Greedy choice property:
Let x, y – two characters with lowest
frequencies. Then there exists an optimal prefix
code where codewords for x and y have the
same length and differ only in the last bit
Let’s prove it:
• Transform an optimal trie T into one (T’’), where x

and y are max-depth siblings. Compare the costs.

AALG, lecture 5, © Simonas Šaltenis, 2004 15

Correctness of Huffman

Optimal sub-structure property:
Let x, y – characters with minimum frequency
C’ = C –{x,y}∪{z}, such that f(z) = f(x) + f(y)
Let T’ be an optimal code trie for C’
Replace leaf z in T’ with internal node with two
children x and y
The result tree T is an optimal code trie for C

Proof a little bit more involved than a
simple “cut-and-paste” argument

AALG, lecture 5, © Simonas Šaltenis, 2004 16

Elements of Greedy Algorithms

Greedy algorithms are used for
optimization problems

A number of choices have to be made to arrive
at an optimal solution
At each step, make the “locally best” choice,
without considering all possible choices and
solutions to sub-problems induced by these
choices (compare to dynamic programming)
After the choice, only one sub-problem remains
(smaller than the original)

Greedy algorithms usually sort or use
priority queues

AALG, lecture 5, © Simonas Šaltenis, 2004 17

Elements of Greedy Algorithms

First, one has to prove the optimal sub-structure
property

the simple “cut-and-paste” argument may work

The main challenge is to decide the interpretation
of “the best” so that it leads to a global optimal
solution, i.e., you can prove the greedy choice
property

The proof is usually constructive: takes a hypothetical
optimal solution without the specific greedy choice and
transforms into one that has this greedy choice.
Or you find counter-examples demonstrating that your
greedy choice does not lead to a global optimal solution.

AALG, lecture 5, © Simonas Šaltenis, 2004 18

Other Greedy Algorithms

Find a minimum spanning tree in a
weighted graph
Coin changing

