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Greedy Algorithms

Goals of the lecture:
to understand the principles of the greedy 
algorithm design technique; 
to understand the example greedy 
algorithms for activity selection and Huffman 
coding, to be able to prove that these 
algorithms find optimal solutions; 
to be able to apply the greedy algorithm 
design technique. 
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Activity-Selection Problem

Input:
A set of n activities, each with start and end 
times: A[i].s and A[i].f. The activity last during 
the period [A[i].s, A[i].f)

Output:
The largest subset of mutually compatible
activities
• Activities are compatible if their intervals do not 

intersect
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“Straight-forward” solution

Let’s just pick (schedule) one activity A[k]
This generates two set’s of activities compatible 
with it: Before(k), After(k)
• E.g., Before(4) = {1, 2};  After(4) = {6,7,8,9}

Solution:
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Dynamic Programming Alg.

The recurrence results in a dynamic 
programming algorithm

Sort activities on the start or end time (for 
simplicity assume also “sentinel” activities A[0] 
and A[n+1])
Let Sij – a set of activities after A[i] and before 
A[j] and compatible with A[i] and A[j].
Let’s have a two-dimensional array, s.t., 
c[i, j] = MaxN(Sij).

MaxN(A) = MaxN(S0,n+1) = c[0, n+1] 
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Dynamic Programming Alg. II

Does it really work correctly?
We have to prove the optimal sub-structure:
• If an optimal solution A to Sij includes A[k], then 

solutions to Sik and Skj (as parts of A) must be optimal 
as well

• To prove use “cut-and-paste” argument

What is the running time of this algorithm?
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Greedy choice

What if we could choose “the best” activity (as of 
now) and be sure that it belongs to an optimal 
solution

We wouldn’t have to check out all these sub-problems 
and consider all currently possible choices!

Idea: Choose the activity that finishes first!
Then, solve the problem for the remaining compatible 
activities 

MaxN(A[1..n], i)  //returns a set of activities
01 m ← i + 1 
02 while m ≤ n and A[m].s < A[i].f do 
03 m ← m + 1
04 if m ≤ n then return {A[m]} ∪ MaxN(A, m) 
05     else return ∅
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Greedy-choice property

What is the running time of this algorithm? 
Does it find an optimal solution?:

We have to prove the greedy-choice property, 
i.e., that our locally optimal choice belongs to 
some globally optimal solution.
We have to prove the optimal sub-structure
property (we did that already)

The challenge is to choose the right 
interpretation of “the best choice”:

How about the activity that starts first
• Show a counter-example
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Data Compression

Data compression problem – strings S and S’:
S -> S’ -> S, such that |S’|<|S|

Text compression by coding with variable-length
code:

Obvious idea – assign short codes to frequent characters: 
“abracadabra”

Frequency table: 

How much do we save in this case?

01000100000011Variable-length code

100011010001000Fixed-length code

21125Frequency

rdcba
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Prefix code

Optimal code for given 
frequencies:

Achieves the minimal length of 
the coded text 

Prefix code: no codeword is 
prefix of another

It can be shown that optimal 
coding can be done with prefix 
code
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We can store all codewords in a binary trie – very
easy to decode

Coded characters in leaves
Each node contains the sum of the frequencies of all 
descendants
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Optimal Code/Trie

The cost of the coding trie T:

C – the alphabet, 
f(c) – frequency of character c, 
dT(c) – depth of c in the trie (length of code in 
bits)  

Optimal trie – the one that minimizes B(T)
Observation – optimal trie is always full:

Every non-leaf node has two children. Why?

( ) ( ) ( )T
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Huffman Algorithm - Idea

Huffman algorithm, 
builds the code trie 
bottom up. Consider a 
forest of trees: 

Initially – one separate 
node for each character.
In each step – join two 
trees into a larger tree

Repeat this until one tree (trie) remains.
Which trees to join? Greedy choice – the trees 
with the smallest frequencies!

A B A B

A+B
10
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Huffman Algorithm

What is its running time?
Run the algorithm on: “oho ho, Ole”

Huffman(C)
01 Q.build(C) // Builds a min-priority queue on frequences
02 for i ← 1 to n–1 do 
03 Allocate new node z
04    x ← Q.extractMin()
05    y ← Q.extractMin()
06    z.setLeft(x)
07    z.setRight(y)
08    z.setF(x.f() + y.f())
09    Q.insert(z)
10 return Q.extractMin() // Return the root of the trie 
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Correctness of Huffman

Greedy choice property:
Let x, y – two characters with lowest 
frequencies. Then there exists an optimal prefix 
code where codewords for x and y have the 
same length and differ only in the last bit 
Let’s prove it:
• Transform an optimal trie T into one (T’’), where x

and y are max-depth siblings. Compare the costs. 
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Correctness of Huffman

Optimal sub-structure property:
Let x, y – characters with minimum frequency
C’ = C –{x,y}∪{z}, such that f(z) = f(x) + f(y)
Let T’ be an optimal code trie for C’
Replace leaf z in T’ with internal node with two 
children x and y
The result tree T is an optimal code trie for C

Proof a little bit more involved than a 
simple “cut-and-paste” argument



AALG, lecture 5, © Simonas Šaltenis, 2004 16

Elements of Greedy Algorithms

Greedy algorithms are used for 
optimization problems

A number of choices have to be made to arrive 
at an optimal solution
At each step, make the “locally best” choice, 
without considering all possible choices and 
solutions to sub-problems induced by these 
choices (compare to dynamic programming)
After the choice, only one sub-problem remains 
(smaller than the original) 

Greedy algorithms usually sort or use 
priority queues
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Elements of Greedy Algorithms

First, one has to prove the optimal sub-structure
property

the simple “cut-and-paste” argument may work

The main challenge is to decide the interpretation 
of “the best” so that it leads to a global optimal 
solution, i.e., you can prove the greedy choice 
property

The proof is usually constructive: takes a hypothetical 
optimal solution without the specific greedy choice and 
transforms into one that has this greedy choice.
Or you find counter-examples demonstrating that your 
greedy choice does not lead to a global optimal solution.
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Other Greedy Algorithms

Find a minimum spanning tree in a 
weighted graph
Coin changing  


